
PREG Axiomatizer – A Ground Bisimilarity

Checker for GSOS with Predicates⋆

Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac, and Anna Ingolfsdottir
[luca,gcaltais10,egoriac10,annai]@ru.is

ICE-TCS, School of Computer Science, Reykjavik University, Iceland

Abstract. PREG Axiomatizer is a tool used for proving strong bisimilar-
ity between ground terms consisting of operations in the GSOS format
extended with predicates. It automatically derives sound and ground-
complete axiomatizations using a technique proposed by the authors of
this paper. These axiomatizations are provided as input to the Maude
system, which, in turn, is used as a reduction engine for provided ground
terms. These terms are bisimilar if and only if their normal forms ob-
tained in this fashion are equal. The motivation of this tool is the opti-
mized handling of equivalence checking between complex ground terms
within automated provers and checkers.

Keywords: Structural operational semantics, GSOS rule format, bisim-
ilarity, equational axiomatizations, Maude.

1 Introduction

Proving that two process terms are related by some notion of behavioural equiv-
alence is at the heart of the equivalence-checking approach to verification. In this
paper we introduce a tool named PREG Axiomatizer

1 that tackles this problem
focusing on ground (i.e., fully specified) terms built using operations defined
using the preg format, a predicates extension of the GSOS format presented
in [3]. GSOS [8] is a restricted, yet powerful, way of defining Structural Op-
erational Semantics (SOS) for programming and specification languages in the
style introduced by Plotkin in [14]. We refer the reader to [3] for the detailed de-
scription and intuition behind the preg rule format and the considered notion of
behavioural equivalence, which is a natural extension to predicates of the classic
strong bisimulation equivalence.

Building on the techniques in [2,7], we proposed in [3] a procedure to con-
struct a finite collection of sound equations that can be used to bring any ground
term to a normal form. We showed that the normal forms of two terms are equal

⋆ The authors have been been partially supported by the projects “New Developments
in Operational Semantics” (nr. 080039021) “Meta-theory of Algebraic Process The-
ories” (nr. 100014021) and “Extending and Axiomatizing Structural Operational
Semantics: Theory and Tools” (nr. 110294-0061) of the Icelandic Fund for Research.

1 The tool is downloadable from http://goriac.info/tools/preg-axiomatizer/.

http://goriac.info/tools/preg-axiomatizer/

if and only if the terms are bisimilar. Given a set of actions A and a set of pred-
icates P, the normal forms we refer to are terms built according to the grammar
for finite trees with predicates, namely

s ::= δ | κP (∀P ∈ P) | a.s (∀a ∈ A) | s+ s,

that are of the shape t =
∑

i∈I ai.ti +
∑

j∈J κPj
. Here the Pj ’s are all the pred-

icates satisfied by t, and the ti’s are terms in normal form. The empty sum
(I = ∅, J = ∅) is denoted by the constant δ.

Intuitively, δ represents the process exhibiting no behaviour, s + t is the
nondeterministic choice between the behaviours of s and t, while a.t is a process
that first performs action a and behaves like t afterwards. For each predicate P

we consider a constant κP , which denotes a process with no transitions. This
process only satisfies P . A finite tree satisfies predicate P if and only if it has
κP as a top summand of its associated normal form. We refer to predicates in
P as explicit predicates. The operational semantics that captures this intuition
is given by the rules of BCCSP extended with predicates. The SOS specification
for this language consists of rules parameterized over all actions a and explicit
predicates P :

a.x
a
−→ x

,
x

a
−→ x′

x+ y
a
−→ x′

,
y

a
−→ y′

x+ y
a
−→ y′

,
PκP

,
Px

P (x+ y)
,

Py

P (x+ y)
.

In [3] we showed that, for the above language, the following set of axioms [12]
is sound and ground-complete for bisimilarity on the set of ground finite trees
with predicates:

x+ y = y + x (x+ y) + z = x+ (y + z)
x+ x = x x+ δ = x

Recall that our purpose is to find ground-complete axiomatizations like the
one above for all the languages given in the preg format. In order to achieve this
goal for operators whose rules involve negative premises, we use the restriction

operator ∂B,Q (where B ⊆ A andQ ⊆ P are the sets of initially forbidden actions
and predicates, respectively). The semantics of ∂B,Q is given by the following two
types of transition rules:

x
a
−→ x′

∂B,Q(x)
a
−→ ∂∅,Q(x′)

if a 6∈ B,
Px

P (∂B,Q(x))
if P 6∈ Q.

The axiomatization of the operators ∂B,Q is provided in [3].
Internally, PREG Axiomatizer brings the provided rule system to a “manage-

able” format, introducing auxiliary operators as described in [3], and afterwards
performs the axiomatization itself. The tool is implemented in the Maude lan-
guage [11], which has been already proven to be very useful for analyzing SOS
rule formats in [13,10]. Not only did we use Maude as a programming language,
but also as an equational reduction system for the generated sets of axioms.

2

PREG Axiomatizer is, to our knowledge, the first public tool that automat-
ically derives sound and ground-complete axiomatizations modulo bisimilarity
for GSOS-like languages. Prior to using the techniques presented in [2,3,7], one
had to use ingenuity and dedicate a considerable amount of time in order to
obtain axiomatizations for a language with even a limited number of operators.

The tool is generic, in the sense that the SOS specification defining the la-
belled transition system semantics of the process calculus is provided by the user.
One does this in terms of well-founded GSOS systems, which only allow for the
derivation of finite labelled transition systems for the given terms (see [2] for
more details). As presented in [9], the generated axiomatizations are guaranteed
to be confluent, but, as a downside of our approach, only weakly normalizing.
This downside is diminished by the fact that there exists a substantial decidable
subclass of systems, namely the linear and syntactically well-founded ones [9],
for which the generated axiomatizations are strongly normalizing. This subclass
includes important languages such as CCS, CSP, and ACP.

2 Case Studies

In this section we present two scenarios involving several classic operations with
their semantics extended with certain explicit predicates. Conventionally, the
tool language accepts process term variables such as X, X1, Y’, actions like a, b,
c, a[0], b[2], c["name"], and predicates like P, Q, P[1], Q["prop"].

Example 1. Let us describe how PREG Axiomatizer is used in order to prove
that “a.(a.κ↓; b.(a.κ↓))” and “while a.b.κ↓ do a.κ↓” are bisimilar. Here ; and
while do are, respectively, the sequential composition and the process loop
operators (presented in [8]) extended to the preg format with the immediate
successful termination predicate ↓ (which we choose to denote by P in the speci-
fication for tool consumption). In Figure 1 we present the operational semantics
for these operations with the rules given both in standard notation, as well as
using the syntax supported by the tool.

x
a
−→ x′

x; y
a
−→ x′; y

:
X -(a)-> X’

===
X ; Y -(a)-> (X’ ; Y)

x ↓ y
a
−→ y′

x; y
a
−→ y′

:
P(X) , Y -(a)-> Y’

===
X ; Y -(a)-> Y’

x ↓ y ↓

(x; y) ↓
:
P(X) , P(Y)

===
P(X ; Y)

x ↓

(while x do y) ↓
:

P(X)
===

P(while X do Y)

x
a
−→ x′

while x do y
a
−→ y;while x′ do y

:
X -(a)-> X’

===
while X do Y -(a)-> Y ; while X’ do Y

Fig. 1. preg rule system for ; and while do

The rules involving action a also have to be instantiated for b. After providing
this specification, the user can press the button labelled “Axiomatize” and the
tool generates a Maude specification including the axioms obtained by following

3

the procedure described in [3]. We exemplify a small part of the output which
consists of the axiomatization for the while do operator:

eq while X0 + X1 do X3 = while X0 do X3 + while X1 do X3 .
ceq while X do Y = a . (Y ; while X’ do Y) if a . X’ := X .
ceq while X do Y = b . (Y ; while X’ do Y) if b . X’ := X .
ceq while X do Y = k[P] if X := k[P] .
eq while X1 do X2 = delta [owise] .

In order to check for the bisimilarity of the two process terms introduced at
the beginning of the current example, one loads the generated specification and
uses the Maude command reduce:

> reduce a . (a . k[P] ; b . (a . k[P])) ==
while a . b . k[P] do a . k[P] .

result Bool: true

> reduce while a . b . k[P] do a . k[P] .
result PTerm: a . a . a . b . a . a . k[P]

We successfully used PREG Axiomatizer to further extend the operational
semantics of ; with the predictable non-failure predicate 6= δ (which plays the

role of the predicate “ 6=0” presented in [4]) with the rules: x
a−→x′ y 6=δ

x;y
a−→x′;y

x 6=δ y 6=δ
(x;y) 6=δ

.

We managed to test the property that x; δ and δ are bisimilar on various closed
instantiations. It is worth noting that this property does not always hold for the
initial version of ; .

Example 2. In this example we show how we use our tool to obtain the execu-
tion tree of a network of communicating processes. This procedure is useful, for
instance, when one needs to use an external model checker to verify if the com-
munication protocol satisfies certain logical properties. Our example is based on
a case study from [5].

ia A ab

ac

B C co

Fig. 2. Communication protocol

Consider the process network given in Figure 2 where A,B,C are the com-
municating processes and ia, ab, ac, co are the ports. The actions of sending,
receiving, and synchronizing on the datum d over the port p are denoted by,
respectively, p!d, p?d, and p#d. By using these actions, the parallel composition
operator ‖ , and the immediate successful termination predicate ↓, we specify
the whole protocol as the term:

T = ia?d . (ab!d . κ↓ ‖ ac!d . κ↓) ‖ ab?d . κ↓ ‖ ac?d . co!d . κ↓ .

We present preg rules for ‖ , in which act ∈ {p!d, p?d, p#d}:

4

x
act

−−→ x′

x ‖ y
act

−−→ x′ ‖ y

y
act

−−→ y′

x ‖ y
act

−−→ x ‖ y′

x ↓ y ↓

(x ‖ y) ↓

x
p!d
−−→ x′ y

p?d
−−→ y′

x ‖ y
p#d
−−−→ x′ ‖ y′

x
p?d
−−→ x′ y

p!d
−−→ y′

x ‖ y
p#d
−−−→ x′ ‖ y′

Fig. 3. preg rule system for ‖

The input for PREG Axiomatizer consists of:

– the predicate rule
P(X) , P(Y)

===
P(X || Y)

,

– all the instantiations of the first two transition rules in Figure 1 for which
act is an action from the set A = {ia?d, ab!d, ac!d, ab?d, ac?d, ab#d, ac#d,

co!d}



e.g.,

X -(a["ia?d"])-> X’

===

X || Y -(a["ia?d"])-> X’ || Y



, and

– all the instantiations of the last two transition rules in Figure 1 in which p is

a port from {ab, ac}



e.g.,

X -(a["ab?d"])-> X’ , Y -(a["ab!d"])-> Y’

===

X || Y -(a["ab#d"])-> X’ || Y’



.

We generate the process network execution tree (consisting of 582 states) by
calling the command reduce on the specification term T :

> reduce ((a["ia?d"] . (a["ab!d"] . k[P] || a["ac!d"] . k[P])) ||
a["ab?d"] . k[P]) || a["ac?d"] . a["co!d"] . k[P] .

result PTerm: a["ab?d"] . (...) + a["ac?d"] . (...) + a["ia?d"] . (...)

The parallel composition allows for arbitrary interleavings of the actions in
A, but it does not enforce the communication over the ports ab and ac. Hiding
these ports so that other processes cannot interfere with the internal communi-
cations is desirable. This can be done with the help of a generalization of the
restriction operator ∂B,Q presented in Section 1, denoted by ∂B,Q, that preserves
the imposed restrictions on actions throughout the whole computation, not only
for the first step. Forbidding independent send and receive actions over the ports
ab and ac is denoted by the term ∂{p!d,p?d | p∈{ab,ac}},∅(T). In PREG Axiomatizer

we use %%[B;Q] as a syntactic notation for ∂B,Q:

> reduce %%[a["ab?d"] a["ab!d"] a["ac?d"] a["ac!d"] ; empty](
((a["ia?d"] . (a["ab!d"] . k[P] || a["ac!d"] . k[P])) ||

a["ab?d"] . k[P]) || a["ac?d"] . a["co!d"] . k[P]) .
result PTerm: a["ia?d"] . (a["ab#d"] . a["ac#d"] . a["co!d"] . k[P] +

a["ac#d"] . (a["ab#d"] . a["co!d"] . k[P] +
a["co!d"] . a["ab#d"] . k[P]))

We also tested our tool by generating the normal form of a3.κ↓ ‖ b3.κ↓ ‖ c3.κ↓

and obtained the same “2 page long” execution tree showed in [6], consisting of
6927 states. Maude derives this execution tree in less than 500 milliseconds on
a machine with a 2.53GHz processor and 4GB of RAM.

5

Example 3. We now show how PREG Axiomatizer is used in order to perform
equational proofs when working with predicates that have implicit behaviour.
Consider, for instance, the case of the eventual successful termination predicate

�. It represents the extension of ↓, introduced in the previous examples, with the
requirement that if t � holds for a term t, then a.t � holds for any action a.

Recall from Section 1 that our approach is based on denoting the property �

by using the explicit process constant κ� as a summand of the analyzed term. The
above characterization of � is given by the axiom a.(t+κ�) = a.(t+κ�)+κ�. With
this in mind, one could check, for instance, if a process t “eventually terminates”
by checking if it is bisimilar to t+ κ�.

In order to prove that a.κ� ‖ b.κ� is bisimilar to (a.κ� ‖ b.κ�) + κ� we need
to let the tool “know” that it should treat � (denoted by Q in the specification)
as an implicit predicate by using the operation expandImplicit. This operation
receives a term and the set of implicit predicate names:

> reduce expandImplicit(a . k[Q] || b . k[Q], Q) ==
expandImplicit(a . k[Q] || b . k[Q] + k[Q], Q) .

result Bool: True

> reduce expandImplicit(a . k[Q] || b . k[Q], Q) .
result PTerm: k[Q] + a . (k[Q] + b . k[Q]) + b . (k[Q] + a . k[Q])

Predicates with implicit behaviour, like �, can only be used during the nor-
malization process if the operators whose definition involves these predicates
are given by rules that satisfy certain sanity constraints mentioned in [3]. The
tool does not currently support the automated checking for those constraints, so
the user needs to do it manually before using the feature presented above. The
parallel composition operator does meet those constraints.

3 Discussion and Future Work

Aside from the features mentioned in Section 2, an important part of the PREG

Axiomatizer engine is dedicated to checking for the conformance of specified
operations and rules to the various formats presented in [3].

There are many areas in which the tool and the theory behind it can be im-
proved. First and foremost, an important feature would be to allow the user to
specify guarded recursively defined terms therefore greatly increasing the com-
plexity of the case studies our tool can handle. The most natural way to extend
our approach in order to reason about the bisimilarity of such terms is to inte-
grate the technique presented in [1], which is also based on generating complete
axiomatizations for a class of GSOS languages generating regular behaviours.
The main difficulty of this task will be the search for good strategies for apply-
ing the axioms and the unique fixed-point induction rule.

Another tool development direction is concerned with the ability to automat-
ically check if the specification meets certain complex requirements. One of these
requirements is, as presented in Section 1, the syntactic well-foundedness of the
given system. Without this feature the user needs to be careful not to specify

6

operators such as the reentrant server ! , defined by the rule
x

a
−→ x′

!x
a
−→ x′ ‖ !x

, for

which non-normalizing axioms are derived: !x =!′(x, x) , !′(a.x′, x) = a.(x′ || !x).
Another requirement the tool could check for consists of the sanity constraints
we mentioned in Example 3.

References

1. Aceto, L.: Deriving complete inference systems for a class of GSOS languages
generation regular behaviours. In: Jonsson, B., Parrow, J. (eds.) CONCUR ’94,
Concurrency Theory, 5th International Conference, Uppsala, Sweden, August 22–
25, 1994, Proceedings. Lecture Notes in Computer Science, vol. 836, pp. 449–464.
Springer (1994)

2. Aceto, L., Bloom, B., Vaandrager, F.: Turning SOS
rules into equations. Inf. Comput. 111, 1–52 (May 1994),
http://portal.acm.org/citation.cfm?id=184662.184663

3. Aceto, L., Caltais, G., Goriac, E.I., Ingólfsdóttir, A.: Axiomatizing GSOS with
predicates. Electronic Proceedings in Theoretical Computer Science (2011), ac-
cepted in SOS 2011. To appear.

4. Aceto, L., Cimini, M., Ingólfsdóttir, A., Mousavi, M., Reniers, M.A.: SOS rule for-
mats for zero and unit elements. Theoretical Computer Science (2011), to appear.

5. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes, Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press, Cambridge (2010)

6. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
New York, NY, USA (1990)

7. Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. J. Log. Al-
gebr. Program. 60-61, 323–351 (2004)

8. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42, 232–
268 (January 1995), http://doi.acm.org/10.1145/200836.200876

9. Bosscher, D.J.B.: Term rewriting properties of SOS axiomatisations. In: Pro-
ceedings of the International Conference on Theoretical Aspects of Com-
puter Software. pp. 425–439. TACS ’94, Springer-Verlag, London, UK (1994),
http://portal.acm.org/citation.cfm?id=645868.668513

10. Chalub, F., Braga, C.: Maude MSOS Tool. Electron.
Notes Theor. Comput. Sci. 176, 133–146 (July 2007),
http://portal.acm.org/citation.cfm?id=1279349.1279455

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in Com-
puter Science, vol. 4350. Springer (2007)

12. Milner, R.: Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs (1989)

13. Mousavi, M.R., Reniers, M.A.: Prototyping SOS meta-theory in
Maude. Electron. Notes Theor. Comput. Sci. 156, 135–150 (May 2006),
http://dx.doi.org/10.1016/j.entcs.2005.09.030

14. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

7

http://portal.acm.org/citation.cfm?id=184662.184663
http://doi.acm.org/10.1145/200836.200876
http://portal.acm.org/citation.cfm?id=645868.668513
http://portal.acm.org/citation.cfm?id=1279349.1279455
http://dx.doi.org/10.1016/j.entcs.2005.09.030

	PREG Axiomatizer – A Ground Bisimilarity Checker for GSOS with Predicates

