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Abstract

In this paper we focus on the development of a toolbox for the veri�cation of programs in the context of
SCOOP � an elegant concurrency model, recently formalized based on Rewriting Logic (RL) and Maude.
SCOOP is implemented in Ei�el and its applicability is demonstrated also from a practical perspective, in
the area of robotics programming. Our contribution consists in devising and integrating an alias analyzer
and a Co�man deadlock detector under the roof of the same RL-based semantic framework of SCOOP. This
enables using the Maude rewriting engine and its LTL model-checker �for free�, in order to perform the
analyses of interest. We discuss the limitations of our approach for model-checking deadlocks and provide
solutions to the state explosion problem. The latter is mainly caused by the size of the SCOOP formalization
which incorporates all the aspects of a real concurrency model. On the aliasing side, we propose an extension
of a previously introduced alias calculus based on program expressions, to the setting of unbounded program
executions such as in�nite loops and recursive calls. Moreover, we devise a corresponding executable speci-
�cation easily implementable on top of the SCOOP formalization. An important property of our extension
is that, in non-concurrent settings, the corresponding alias expressions can be over-approximated in terms
of a notion of regular expressions. This further enables us to derive an algorithm that always stops and
provides a sound over-approximation of the �may aliasing� information, where soundness stands for the lack
of false negatives.

Keywords: concurrency, SCOOP, operational semantics, alias analysis, deadlock detection, Maude,
rewriting logic

1. Introduction

In light of the widespread deployment and complexity of concurrent systems, the development of cor-
responding frameworks for rigorous design and analysis has been a great challenge. Along this research
direction, the focus can be two-fold. On the one hand, the interest might be on formalizing and reasoning
about a concurrency model, its characteristic concepts and synchronization mechanisms, for instance. On
the other hand, of equal importance, the e�orts might be directed towards checking the behavior of concur-
rent applications and their properties. These two research areas are closely related: it is often the case that,
for example, analysis tools for concurrent applications depend on the underlying concurrency model. Hence,
the development of a unifying framework for the design and analysis of both the model and its applications
is of interest.

In this paper we are targeting SCOOP [1], a simple object-oriented programming model for concurrency.
Two main characteristics make SCOOP simple: 1) just one keyword programmers have to learn and use in
order to enable concurrent executions, and 2) the burden of orchestrating concurrent executions is handled
within the model, therefore reducing the risk of correctness issues. The reference implementation is Ei�el [2],
but implementations have also been built on top of languages such as Java. The success of SCOOP is
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demonstrated not only from a research perspective, but also from a practical perspective, with applications
appearing, for instance, in the area of robotics programming [3].

The basis of a framework for the design and analysis of the SCOOP model has already been set. In
this respect, we refer to the recent formalization of SCOOP in [1] based on Rewriting Logic (RL) [4], which
is �executable� and straightforwardly implementable in the programming language Maude [5]. In [5] these
capabilities have been successfully exploited in order to reason on the original SCOOP model and to identify
a number of design �aws.

Moreover, an executable semantics can be exploited in order to formalize and �run� analysis tools for
SCOOP programs as well. This facilitates the extension of the aforementioned SCOOP formalization to
the level of a unifying executable semantic framework for the design and analysis of both the model and its
concurrent applications. In this paper we focus on the development of a RL-based toolbox for the analysis
of SCOOP programs on top of the formalization in [1]. We are interested in constructing an alias analyzer
and a deadlock detector.

Alias analysis has been an interesting research direction for the veri�cation and optimization of programs.
One of the challenges along this line of research has been the undecidability of determining whether two
expressions in a program may reference the same object. A rich suite of approaches aiming at providing a
satisfactory balance between scalability and precision has already been developed in this regard. Examples
include: (i) intra-procedural frameworks [6, 7] that handle isolated functions only, and their inter-procedural
counterparts [7, 8, 9] that consider the interactions between function calls; (ii) type-based techniques [10];
(iii) �ow-based techniques [11, 12] that establish aliases depending on the control-�ow information of a
procedure; (iv) context-(in)sensitive approaches [13, 14] that depend on whether the calling context of a
function is taken into account or not; (v) �eld-(in)sensitive approaches [15, 16] that depend on whether the
individual �elds of objects in a program are traced or not.

There is a huge literature on heap analysis for aliasing [17], but hardly any paper that presents a calculus
allowing the derivation of alias relations as the result of applying various instructions of a programming
language. Hence, of particular interest for the work in this paper is the untyped, �ow-sensitive, �eld
sensitive, inter-procedural and context-sensitive calculus for may aliasing, introduced in [18]. The calculus
covers most of the aspects of a modern object-oriented language, namely: object creation and deletion,
conditionals, assignments, loops and (possibly recursive) function calls. The approach in [18] abstracts the
aliasing information in terms of explicit access paths [19] referred to as alias expressions straightforwardly
computed in an equational fashion, based on the language constructs. As we shall see later on in this paper,
the language-based expressions can be exploited in order to reason on �may aliasing� in a �nite number of
steps in non-concurrent settings and, moreover, can be easily incorporated in the semantic rules de�ning
SCOOP in [1].

Deadlock is one of the most serious problems in concurrent systems. It occurs when two or more executing
threads are each waiting for the other to �nish. Along time, the complexity of the problem determined
various approaches to combat deadlocks [20]. Examples include: (i) deadlock prevention [21] which ensures
that at least one of the deadlock conditions cannot hold, (ii) deadlock avoidance [22] that provides a priori
information so that the system can predict and avoid deadlock situations, (iii) deadlock detection [23, 24]
that detects and recovers from a deadlock state.

Our focus is on deadlock detection for SCOOP programs. We base our work on the fact that this
type of analysis is in strict connection with the underlying model of interest. Consequently, as described
in the corresponding subsequent sections, our approach consists in formalizing deadlocks in the context
of the SCOOP concurrency model and enriching its semantics in [1] with the equivalent operational-based
de�nition of deadlocks. This enables using the Maude rewriting capabilities �for free� in order to test SCOOP
programs for deadlock. Nevertheless, the more ambitious goal of using the Maude LTL model-checker for
deadlock detection is not straightforward. As discussed in more detail later on in this paper, veri�cation
of deadlocks was possible after reducing the SCOOP semantics in [1] and abstracting it based on aliasing
information, and modifying a series of implementation aspects (such as indexed-based parameterizations)
that determined state explosion issues.

2



Our contribution. This paper is an extended version of [25] where we proposed:

1. a translation of the (�nite) alias calculus in [18] to the setting of unbounded program executions such
as in�nite loops and recursive calls, together with a sound over-approximation technique based on
(�nitely representable) �regular alias expressions� capturing unbounded executions in non-concurrent
settings;

2. a RL-based speci�cation of the extended calculus suitable for integration within the SCOOP formal-
ization in [1] (for this purpose we chose the K semantic framework as a RL-based formalism enabling
compact and modular de�nitions);

3. an algorithm for �may aliasing� (exploiting the �niteness property in 1.) that always terminates in
non-concurrent settings.

The current work adds to 1.�3. above:

4. the full RL-based speci�cation in 2. and the complete formal proofs showing the soundness of the
over-approximating technique based on �regular alias expressions�;

5. examples of exploiting the algorithm in 3. and its implementation on top of the SCOOP formalization
in Maude [1];

6. the formalization and integration of a deadlock detection mechanism on top of the SCOOP operational
semantics [1], together with discussions on the limitations of our approach and associated workarounds.

Paper structure. The paper is organized as follows. In Section 2 we provide a brief overview of SCOOP.
In Section 3 we introduce the extension of the alias calculus in [18] to unbounded executions. In Section 4
we provide the full RL-based executable speci�cation of the calculus. The implementation in SCOOP and
further applications are discussed in Section 5. Section 6 is dedicated to deadlocking in SCOOP. In Section 7
we draw the conclusions, discuss some of the related works and provide pointers to future developments.

2. Biref introduction to SCOOP

As already stated, the purpose of the current work is the development of a toolbox for the analysis of
SCOOP programs by exploiting the semantics proposed in [1]. SCOOP is particularly attractive due to
its simplicity and elegance, as it allows the switch from sequential to concurrent programming in a rather
straightforward fashion, by means of just one keyword, namely, separate. Transparent to the user, the
key notion in SCOOP is the processor, or handler (that can be a CPU, or it can also be implemented in
software, as a process or thread). Handlers are in charge of executing the routines of �separate� objects, in
a concurrent fashion.

For an example, assume a processor p that performs a call o.f(a1, a2, . . .) on an object o. If o is declared
as �separate�, then p sends a request for executing f(a1, a2, . . .) to q � the handler of o (note that p and q can
coincide). Meanwhile, p can continue. Moreover, assume that a1, a2, . . . are of �separate� types. According
to the SCOOP semantics, the application of the call f(. . .) will wait until it has been able to lock all
the separate objects associated to a1, a2, . . .. This mechanism guarantees exclusive access to these objects.
Given a processor p, by W (p) we denote the set of processors p waits to release the resources p needs for its
asynchronous execution. Orthogonally, by H(p) we represent the set of resources (more precisely, resource
handlers that) p already acquired.

The semantics of SCOOP in [1] is de�ned over tuples of shape

〈p1 ::St1 | . . . | pn ::Stn, σ〉 (1)

where, pi denotes a processor (for i ∈ {1, . . . , n}), Sti is the call stack of pi and σ is the state of the system.
States hold information about the heap (which is a mapping of references to objects) and the store (which
includes formal arguments, local variables, etc.). Processors communicate via channels.

Roughly speaking, one could classify the operational rules formalizing SCOOP in [1] in: a) language rules
that provide the semantics of language constructs such as �if . . . then . . . else . . . end� or �until . . . loop
. . . end�, and b) control rules implementing mechanisms such as locking or scheduling.
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For an example in category a) above, consider the rules specifying �if� instructions:

a is fresh

〈p :: if e then St1 else St2 end ;St, σ〉 →
〈p :: eval(a, e);wait(a); provided a.data then St1 else St2;St, σ〉

(2)

.

〈p :: provided true then St1 else St2;St, σ〉 → 〈p ::St1;St, σ〉
(3)

.

〈p :: provided false then St1 else St2;St, σ〉 → 〈p ::St2;St, σ〉
(4)

Intuitively, �eval(a, e)� evaluates e and puts the result on a fresh channel a and �wait(a)� enables processor
p to use the evaluation result stored in a.data. It is straightforward to see that, according to (3), in case the
condition e is evaluated to true then the �if branch� St1 is placed on top of the call stack of p. Otherwise,
based on (4), if e is evaluated to false, the �else branch� is executed.

As we shall see in Section 5, an operational view on the alias calculus in [18] exploiting the instructions
of a programming language will enable a straightforward implementation on top of the �language rules� of
SCOOP.

For the case b) above we refer to the locking rule:

∀qi ∈ {q1, . . . , qm} :σ.rq_locked(qi) = false

〈p :: lock({q1, . . . qm});St, σ〉 →
〈p ::St, σ.lock_rqs(p, {q1, . . . qm})〉

(5)

stating that a processor p can lock a set of handlers {q1, . . . , qm} by calling lock_rqs on the state σ whenever
none of the handlers qi has previously been acquired by other processors, i.e., σ.rq_locked(qi) = false.

As it will become clear in Section 6, �control rules� pave the way to an immediate implementation of a
corresponding �deadlock rule� on top of the Maude formalization of SCOOP in [1].

3. The alias calculus

The calculus for may aliasing introduced in [18] abstracts the aliasing information in terms of explicit
access paths referred to as �alias expressions�. Consider, for an example,the case of a linked list. We write
xi (i ≥ 0) to represent node i in the list, and use a setter to assign the next node of the list:

create x0
loop

i : = i+ 1
create xi
xi.set_next(xi−1)

end

(6)

The result of the execution of the code above can be intuitively depicted as the in�nite sequence:

x0
next←−−− x1

next←−−− . . . xk−1
next←−−− xk

next←−−− xk+1 . . .

Hence, x0 becomes aliased to x1.next, x2.next.next, x3.next.next.next, so on and so on. In short, the set
of associated alias expressions can be equivalently written as:

{[xi, xi+k.next
k] | i ≥ 0 ∧ k ≥ 1}. (7)

The sources of imprecision introduced by the calculus in [18] are limited to ignoring tests in conditionals,
and to �cutting at length L� for the case of possibly in�nite alias relation corresponding to unbounded
executions as in (6). The cutting technique considers sequences longer than a given length L as aliased to
all expressions.
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In this section we de�ne an extension of the calculus in [18], to unbounded program executions. Moreover,
based on the idea behind the pumping lemma for regular languages [26], we devise a corresponding sound
over-approximation of �may aliasing� in terms of regular expressions, applicable in sequential contexts. This
paves the way to developing an algorithm for the aliasing problem, as presented in Section 4, in the formal
setting of the K semantic framework [27]. Note that K is used more as a notational convention, as its
operational �avor enables a straightforward integration within the SCOOP formalization in [1].

Brief overview of the alias calculus. We proceed by recalling the notion of alias relation and a series of
associated notations and basic operations, as introduced in [18].

We call an expression a (possibly in�nite) path of shape x.y.z. . . ., where x is a local variable, class
attribute or Current, and y, z, . . . are attributes. Here, Current, also known as this or self, stands for the
current object. For an arbitrary alias expression e, it holds that e.Current = Current .e = e. Let E represent
the set of all expressions of a program. An alias relation is a symmetric and irre�exive binary relation over
E × E.

Given an alias relation r and an expression e, we de�ne

r/e = {e} ∪ {x:E | [x, e] ∈ r}

denoting the set consisting of all elements in r which are aliased to e, plus e itself.
Let x be an expression; we write r − x to represent r without the pairs with one element of shape x.e.
We say that an alias relation is dot complete whenever for any t, u, v and a it holds that if [t, u] and [t.a, v]

are alias pairs, then [u.a, v] is an alias pair and, moreover, if a is in the domain of t, then [t.a, u.a] is an alias
pair. By the �domain of t� we refer to a method or a �eld in the class corresponding to the object referred
by the expression associated to t. For instance, given a class NODE with a �eld next of type NODE, and
a NODE object x, we say that next is in the domain of t = x.next.next. For the sake of brevity, we write
dot-complete(r) for the closure under dot-completeness of a relation r.

The notation r[x = u] represents the relation r augmented with pairs [x, y] and made dot complete,
where y is an element of u.

3.1. Extension to unbounded executions

We further introduce an extension of the alias calculus in [18] to in�nite alias relations corresponding
to unbounded executions such as in�nite loops or recursive calls. The main di�erence in our approach is
re�ected by the de�nition of loops, which now complies to the usual �xed-point denotational semantics.

The alias calculus is de�ned by a set of axioms �describing� how the execution a program a�ects the
aliasing between expressions. As in [18], the calculus ignores tests in conditionals and loops. The program
instructions are de�ned as follows:

p :: = p ; p | then p else p end |
create x | forget x | t := s |
loop p end | call f(l) | x.call f(l).

(8)

In short, we write r � p to represent the alias information obtained by executing p when starting with the
initial alias relation r.

The axiom for sequential composition is de�ned in the obvious way:

r � (p ; q) = (r � p) � q. (9)

Conditionals are handled by considering the union of the alias pairs resulted from the execution of the
instructions corresponding to each of the two branches, when starting with the same initial relation:

r � (then p else q end) = r � p ∪ r � q. (10)
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As previously mentioned, we de�ne r � loop p end according to its informal semantics : �execute p
repeatedly any number of times, including zero�. The corresponding rule is:

r � (loop p end) =
⋃
n∈N

(r � pn) (11)

where ∪ stands for the union of alias relations, as above. This way, our calculus is extended to in�nite
alias relations. This is the main di�erence with the approach in [18] that proposes a �cutting� technique
restricting the model to a maximum length L. In [18], sequences longer than L are considered as aliased
to all expressions. Orthogonally, for sequential settings, we provide �nite representations of in�nite alias
relations based on over-approximating regular expressions, as we shall see in Section 3.2.

Both the creation and the deletion of an object x eliminate from the current alias relation all the pairs
having one element pre�xed by x:

r � (create x) = r − x
r � (forget x) = r − x. (12)

The (quali�ed) function calls comply to their initial de�nitions in [18]:

r � (call f(l)) = (r[f•:l])� | f |
r � (x.call f(l)) = x.((x′.r) � call f(x′.l)).

(13)

Here f• and | f | stand for the formal argument list and the body of f , respectively, whereas r[u:v] is
the relation r in which every element of the list v is replaced by its counterpart in u. Intuitively, the
negative variable x′ is meant to transpose the context of the quali�ed call to the context of the caller.
Note that �.� (i.e., the constructor for alias expressions) is generalized to distribute over lists and relations:
x.[a, b, . . .] = [x.a, x.b, . . .].

For an example, consider a class C in an OO-language, and an associated procedure f that assigns a
local variable y, de�ned as: f(x) { y : = x }. Then, for instance, the aliasing for a.call f(a) computes as
follows:

∅ � a.call f(a) =
a.(a′.∅ � y : = a′.a) =

a.(∅ � y : = Current) =
dot-complete({[a.y, a]}).

Recursive function calls can lead to in�nite alias relations. In sequential settings, as for the case of loops,
the mechanism exploiting sound regular over-approximations in order to derive �nite representations of such
relations is presented in the subsequent sections.

The axiom for assignment is as well in accordance with its original counterpart in [18]:

r � (t := s) = given r1 = r[ot = t]
then (r1 − t)[t = (r1/s − t)]− ot end (14)

where ot is a fresh variable (that stands for �old t�). Intuitively, the aliasing information w.r.t. the initial
value of t is �saved� by associating t and ot in r and closing the new relation under dot-completeness, in
r1. Then, the initial t is �forgotten� by computing r1 − t and the new aliasing information is added in a
consistent way. Namely, we add all pairs (t, s′), where s′ ranges over r1/s − t representing all expressions
already aliased with s in r1, including s itself, but without t. Recall that alias relations are not re�exive,
thus by eliminating t we make sure we do not include pairs of shape [t, t]. Then, we consider again the
closure under dot-completeness and forget the aliasing information w.r.t. the initial value of t, by removing
ot.

Remark 1. It is worth discussing the reason behind not considering transitive alias relations. Assume the
following program:

then x := y else y := z end

Based on the equations (10) and (14) handling conditionals and assignments, respectively, the calculus
correctly identi�es the alias set: {[x, y], [y, z]}. Including [x, z] would be semantically equivalent to the
execution of the two branches in the conditional at the same time, which is not what we want.

6



3.2. A sound over-approximation

In a sequential setting, the challenge of computing the alias information in the context of (in�nite) loops
and recursive calls reduces to evaluating their corresponding �unfoldings�, captured by expressions of shape

r � pω,

with ω ranging over naturals plus in�nity, r an (initial) alias relation (r = ∅), and p a basic control block
de�ned by:

p :: = p ; p | then p else p end |
create x | forget x |
t := s.

(15)

The value r � pω refers to the alias relation obtained by recursively executing the control block p, and it is
calculated in the expected way:

r � p0 = r
r � pk+1 = (r � pk) � p.

Consider again the code in (6):
create x0
loop

i : = i+ 1
create xi
xi.set_next(xi−1)

end

Its execution generates an alias relation including an in�nite number of pairs of shape:

[xi, xi+1.next], [xi, xi+2.next.next], [xi, xi+3.next.next.next] . . . . (16)

A similar reasoning does not hold for concurrent applications, where process interaction is not �regular�.
In what follows we provide a way to compute �nite representations of in�nite alias relations in sequential

settings. The key observation is that alias expressions corresponding to unbounded program executions grow
in a regular fashion. See, for instance, the aliases in (16), which are pairs of type [xi, xi+k.next

k≥1].
Regular expressions are de�ned similarly to the regular languages over an alphabet. We say that an

expression is regular if it is a local variable, class attribute or Current. Moreover, the concatenation e1 . e2
of two regular expressions e1 and e2 is also regular. Given a regular alias expression e, the expression e∗ is
also regular; here (−)∗ denotes the Kleene star [28]. We call an alias relation regular if it consists of pairs
of regular expressions.

Lemma 2. Assume p a program built according to the rules in (8). Then, in a sequential setting, the
relation ∅ � p is regular.

In order to prove Lemma 2, we proceed by demonstrating a series of intermediate results.

Remark 3. We �rst observe that the operations r/s, r − x, dot-completeness and r[x = u] introduced in
Section 3 preserve the regularity of an alias relation r.

Then, we de�ne a notion of �nite execution control blocks:

p :: = create x | forget x | t := s |
p ; p | then p else p end |
call f(l) | x.call f(l)

(17)

where f stands for a non-recursive function.
It is easy to see that the execution of control blocks as in (17) preserve the regularity of alias relations

as well.
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Lemma 4. For all regular alias relations r and p a �nite-execution control block, in a sequential setting, it
holds that r � p is also regular.

Proof. The proof follows immediately, by induction on the structure of p and Remark 3. Base cases are:
create x, forget x and t : = s. For function calls, the result is a consequence of their corresponding
unfolding, based on the de�nitions in (13).

Remark 5. With respect to may aliasing, recursive calls can be handled via loops. Consider, for instance
the recursive function

f(x) {B1; f(y); B2 }

where B1 and B2 are instruction blocks built as in (8). It is intuitive to see that computing the may aliases
resulted from the execution of f(x) reduces executing unfoldings of shape:

loop B1 end; loop B2 end.

Moreover, unbounded program executions also preserve regularity.

Lemma 6. For all regular alias relations r and p a control block that can execute unboundedly, in a sequential
setting, it holds that r � p is also regular.

Proof. The proof follows by induction on the number of nested loops in p and Remark 5.

At this point, the result in Lemma 2 follows immediately by Lemma 4 and Lemma 6.
Inspired by the idea behind the pumping lemma for regular languages [26], we de�ne a lasso property

for alias relations, which identi�es the repetitive patterns within the structure of the corresponding alias
expressions. The intuition is that such patterns will occur for an in�nite number of times due to the execution
of loops or recursive function calls. Then, we supply sound over-approximations of �lasso� relations, based
on regular alias expressions.

In the context of alias relations, we say that the lasso property is satis�ed by r and r′ whenever the
following two conditions hold: (1) r behaves like a lasso base of r′. Namely, all the pairs [e1, e2] ∈ r are
used to generate elements [e′1, e

′
2] ∈ r′, by repeating tails of pre�xes of e1 and e2, respectively, and (2) r′ is a

lasso extension of r. Namely, all the pairs in r′ are generated from elements of r by repeating tails of their
pre�xes. For example, if e1 above is an expression of shape x.y.z.w, then e′1 can be x.y.y.z.w if we consider
the tail y of the pre�x x.y, or x.y.z.y.z.w if we take the tail y.z of the pre�x x.y.z.

Formally, consider r and r′ two alias relations, and xi, yi and zi a set of (possibly empty) expressions,
for i ∈ {1, 2}. Then:

lasso(r, r′) = ([x1y1z1, x2y2z2] ∈ r i� [x1y1y1z1, x2y2y2z2] ∈ r′). (18)

For the simplicity of notation we sometimes omit the dot-separators between expressions. For instance, we
write x y z in lieu of x.y.z.

Assuming a lasso over r and r′, we compute a relation consisting of regular expressions over-approximating
r and r′ as:

reg(r, r′) = {[x1y∗1z1, x2y∗2z2] |
[x1y1z1, x2y2z2] ∈ r∧
[x1y1y1z1, x2y2y2z2] ∈ r′}

(19)

where xi, yi and zi are possibly empty expressions, for i ∈ {1, 2}. As previously indicated, the over-
approximation is sound w.r.t. the repeated application of a basic control block as in (15), in the way that
it does not introduce any false negatives:

Lemma 7. Consider r and r′ two alias relations, and p a basic control block in a sequential setting. If
r � p = r′ and lasso(r, r′) = true, then the following holds for all n ≥ 1:

r � pn ∈ reg(r, r′).
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Proof. We proceed by induction on n.

• Base case: n = 1. By hypothesis it holds that lasso(r, r′) = true. Hence, according to the de�nition
of lasso(−,−) in (18), there exists a one-to-one correspondence of the shape

[x1y1z1, x2y2z2] ∈ r i� [x1y1y1z1, x2y2y2z2] ∈ r′

between the elements of r and r′, respectively.

Consequently, by the de�nition of reg(−,−) in (19), it is easy to see that

r′ ∈ reg(r, r′).

• Induction step. Fix a natural number n and suppose that

r � pk ∈ reg(r, r′) (20)

for all k ∈ {1, . . . , n}. We want to prove that (20) holds also for k = n+ 1.

We continue by �reductio ad absurdum�. Consider

r = r � pn ∈ reg(r, r′),

and assume that
r � p 6∈ reg(r, r′) (21)

Clearly, the execution of p when starting with r identi�es an alias pair which is not in reg(r, r′). Given
that p is a basic control block as in (15), and based on the corresponding de�nitions in (9)�(14), it
is not di�cult to observe that the regular structure of the alias information can only be broken via a
new added pair (t, s′) associated to an assignment t := s within p.

Let p = C[t := s], where C is a context built according to (15), and t := s is the upper-most assignment
instruction in the syntactic tree associated to p, that introduces a pair [t, s′] which is not in reg(r, r′).
Assume that r̃ is the intermediate alias relation obtained by reducing r �C[t : = s] according to the
equations (9)�(14), before the application of the assignment axiom corresponding to t := s.

Note that t := s was executed at least once before, as n ≥ 1, and observe that r̃ ∈ reg(r, r′). Hence, we
identify two situations in the context of the aforementioned execution: (a) either all the newly added
pairs corresponding to the assignment t : = s complied to the regular structure, or (b) each new pair
[t′, s′] that did not �t the regular pattern was later removed via a subsequent instruction �create u�
or �forget u� within p, with u a pre�x of t′ or s′.

If the case (a) above was satis�ed, then, based on the de�nition of dot-completeness, a pair

(t, s′) ∈ (r̃1 − t)[t = r̃1/s− t]− ot,

where
r̃1 = r̃[ot = t]

cannot break the regular pattern of the alias expressions either. For the case (b) above, all the �non-
well-behaved� new pairs will be again removed via a subsequent �create u� or �forget u� within
p.

Therefore, the assumption in (21) is false, so it holds that:

r � p = r � pn+1 ∈ reg(r, r′).
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4. A K-machinery for collecting aliases

In this section we provide the speci�cation of a RL-based mechanism collecting the alias information
in the K semantic framework [27]. We choose K more as a notational convention to enable compact and
modular de�nitions. In reality, the K-rules in this section are implemented in Maude, as rewriting theories,
on top of the formalization of SCOOP [1] (we refer to Section 5 for more details on our approach).

In short, our strategy is to start with a program built on top of the control structures in (8), then
to apply the corresponding K-rules in order to get the �may aliasing� information in a designated K-cell
(〈 − 〉al). Independently of the setting (sequential or concurrent) one can exploit this approach in order to
evaluate the aliases of a given �nite length L. We also show that for sequential contexts, the application of
the K-rules is �nite and the aliases in the �nal con�guration soundly over-approximate the (in�nite) �may
alias� relations of the calculus.

Brief overview of K. K [27] is an executable semantic framework based on Rewriting Logic [4]. It is
suitable for de�ning (concurrent) languages and corresponding formal analysis tools, with straightforward
implementation in K-Maude [29]. K-de�nitions make use of the so-called cells, which are labelled and can
be nested, and (rewriting) rules describing the intended (operational) semantics.

A cell is denoted by 〈 − 〉[name], where [name] stands for the name of the cell. A construction 〈 . 〉n
stands for an empty cell named n. We use �pattern matching� and write 〈 c . . .〉n for a cell with content c
at the top, followed by an arbitrary content (. . .). Orthogonally, we can utilize cells of shape 〈. . . c 〉n and
〈 . . . c . . . 〉n, de�ned in the obvious way.

Of particular interest is 〈 − 〉k � the continuation cell, or the k-cell, holding the stack of program
instructions (associated to one processor), in the context of a programming language formalization. We
write

〈 i1 y i2 . . .〉k
for a set of instructions to be �executed�, starting with instruction i1, followed by i2. The associative
operation y is the instruction sequencing.

A K-rewrite rule
〈 c . . .〉n1〈 c

′ 〉n2 ⇒ 〈 c′ . . .〉n1〈. . . c′ 〉n3 (22)

reads as: if cell n1 has c at the top and cell n2 contains value c′, then c is replaced by c′ in n1 and c′ is
added at the end of the cell n3. The content of n2 remains unchanged. In short, (22) is written in a K-like
syntax as:

〈 c . . .〉n1

c′
〈 c′ 〉n2

〈. . . . 〉n3

c′
.

We further provide the details behind the K-speci�cation of the alias calculus. As expected, the k-cell
retains the instruction stack of the object-oriented program. We utilize cells 〈−〉al to enclose the current alias
information, and the so-called back-tracking cells 〈−〉bkt-. . . enabling the sound computation of aliases for
the case of then − else − end and, in non-concurrent contexts, for loops and (possibly recursive) function
calls. As a convention, we mark with (♣) the rules that are sound only for non-concurrent applications,
based on Lemma 7.

The following K-rules are straightforward, based on the axioms (9)�(14) in Section 3.1. Namely, the rule
implementing an instruction p ; q simply forces the sequential execution of p and q by positioning p y q at
the top of the continuation cell:

〈 p ; q . . .〉k
p y q

(23)

Handling create x and forget x complies to the associated de�nitions. Namely, it updates the current
alias relation by removing all the pairs having (at least) one element with x as pre�x. In addition, it also
pops the corresponding instruction from the continuation stack:

〈 r 〉al
r − x

〈 create x . . .〉k
.

〈 r 〉al
r − x

〈 forget x . . .〉k
.

(24)
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The assignment rule restores the current alias relation according to its axiom in (14), and removes the
assignment instruction from the top of the k-cell:

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (25)

The K-implementation of a then p else q end statement is more sophisticated, as it instruments a
stack-based mechanism enabling the computation of the union of alias relations r � p ∪ r � q in three steps.
First, we de�ne the K-rule:

〈 r 〉al
〈 then p else q end . . .〉k

p et q ee

〈 . . . .〉bkt-te
〈 r, p 〉t 〈 r, q 〉e

(26)

saving at the top of the back-tracking stack 〈−〉bkt-te the initial alias relation r to be modi�ed by both p and
q, via two cells 〈r, p〉t and 〈r, q〉e, respectively. Note that the original instruction in the k-cell is replaced by
a meta-construction marking the end of the executions corresponding to the then and else branches with
et and ee , respectively.

Second, whenever the successful execution of p (signaled by et ) at the top of the k-cell) builds an alias
relation r′, the execution of q starting with the original relation r is forced by replacing r′ with r in 〈−〉al,
and by positioning q ee at the top of the k-cell. The new alias information after p, denoted by 〈r′, p〉t, is
updated in the back-tracking cell:

〈 r′ 〉al
r

〈 et q ee . . .〉k
q ee

〈 〈 r, p 〉t 〈 r, q 〉e . . .〉bkt-te
〈 r′, p 〉t

(27)

Eventually, if the successful execution of q (marked by ee at the top of 〈−〉k) produces an alias relation
r′′, then the �nal alias information becomes r′ ∪ r′′, where r′ is the aliasing after p, stored as showed in (27).
The corresponding back-tracking information is removed from 〈−〉bkt-te, and the next program instruction
is enabled in the k-cell:

〈 r′′ 〉al
r′ ∪ r′′

〈 ee . . .〉k
.

〈 〈 r′, p 〉t 〈 r, q 〉e . . .〉bkt-te
.

(28)

For loop p end, we utilize a meta-construction p l loop p end simulating the set union in (11), and
a back-tracking stack 〈−〉bkt-l collecting the alias information obtained after each execution of p. Moreover,
the K-implementation exploits the result in Lemma 7. Whenever a �lasso� is reached, the in�nite rewriting
is prevented by resuming the in�nite application of p in terms of a sound over-approximating alias relation.
The K-rules are as follows.

First, the aforementioned unfolding is performed, and the alias relation before p is stored in the back-
tracking cell as 〈r〉al-o〈p〉l:

〈 r 〉al
〈 loop p end . . .〉k
p l loop p end

〈 . . . .〉bkt-l
〈 r 〉al-o〈 p 〉l

(29)

If the alias relation r′ obtained after the successful execution of p (marked by l at the top of the
continuation) is not a lasso of the aliasing r before p (previously stored in 〈−〉bkt-l) then p is constrained to
a new execution by becoming the top of the k-cell, and r′ is memorized for back-tracking:

〈 r′ 〉al
〈 l loop p end . . .〉k
p l loop p end

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l
〈 r′ 〉al-o〈 p 〉l

if not lasso(r, r′) (♣) (30)

Last, if a lasso is reached after the execution of p, then the current aliasing is soundly replaced by a
�regular� over-approximation reg(r, r′), the corresponding back-tracking information is removed from 〈−〉bkt-l
and the loop instruction is eliminated from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 l loop p end . . .〉k
.

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l
.

if lasso(r, r′) (♣) (31)
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For handling function calls such as call f(l) we use a meta-construction | f | f . Here | f | stands
for the body of f and f marks the end of the corresponding execution. Moreover, a stack 〈−〉bkt-cf is
utilized in order to store the alias information before each (possibly recursive) call of f , with the purpose
of identifying the lassos generated by the (possibly repeated) execution of f . In order to guarantee a sound

implementation of (mutually) recursive calls, both f and 〈−〉bkt-cf are parameterized by f � the name of
the function. An example illustrating this reasoning mechanism is provided in Section 4.1.

The �rst K rule for handling function calls matches the associated axiom in (13): the alias information is
set to r[f•:l], whereas the next instructions to be executed are given by | f |. Note that the original aliasing
is retained in the (initially empty) back-tracking cell via 〈r〉al-o.

〈 r 〉al
r[f•:l]

〈 call f(l) . . .〉k
| f | f

〈 . 〉bkt-cf
〈 r 〉al-o

(32)

Remark 8. Observe that the back-tracking cell does not need to be parameterized by the actual argument
list l of f . Each such argument is anyways replaced in the current alias relation r by its counterpart in the
formal argument list of f . In short: r becomes r[f•:l].

A successful execution of call f(l) is distinguished by the occurrence of f at the top of the continuation
stack. If this is the case, then the corresponding back-tracking alias information is removed from 〈−〉bkt-cf
and the next program instruction (if any) is enabled at the top of the k-cell:

〈 r′ 〉al
〈 f . . .〉k

.

〈 〈 r 〉al-o . . .〉bkt-cf
.

(33)

Recursive calls are treated by means of two K-rules. Note that a recursive context is identi�ed whenever
the current program instruction is of shape call f(l) and the associated back-tracking structure is not empty,
i.e., rule (32) was previously applied. Then, if the recursive call of f when starting with r produces a lasso
r′, the execution of f(l) is stopped by soundly over-approximating the alias information with reg(r, r′),
according to Lemma 7, and by removing call f(l) from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 call f(l) . . .〉k
.

〈 〈 r 〉al-o . . .〉bkt-cf if lasso(r, r′) (♣) (34)

If a lasso is not reached, then the body of f is executed once more, and the current aliasing is pushed to
the back-tracking cell:

〈 r′ 〉al
〈 call f(l) . . .〉k
| f | f

〈 . 〈 r 〉al-o . . .〉bkt-cf
〈 r′ 〉al-o

if not lasso(r, r′) (♣) (35)

Quali�ed calls x.call f(l) are handled by two K-rules as follows. First, based on the de�nition in (13), the
�negative variable� x′ transposing the context of the call to to the context of the caller is distributed to the

elements of the initial alias relation r, and to l � the argument list of f . Moreover, a meta-construction qf

is utilized in order to mark the end of the quali�ed call in the continuation cell, similarly to the rule (32).
The caller is stored in a back-tracking stack 〈 . 〉bkt-qf also parameterized by f � the name of the function.
The current instruction in the k-cell becomes call f(x′.l), as expected:

〈 r 〉al
x′.r

〈 x.call f(l) . . .〉k
call f(x′.l) qf

〈 . 〉bkt-qf
〈 x 〉f

(36)

Second, when the successful termination of the quali�ed call is signaled by qf at the top of the k-cell,

the corresponding stored caller is distributed to the current alias relation and removed from the back-tracking

cell. The next instruction in the continuation cell is released by eliminating the top qf :

〈 r 〉al
x.r

〈 qf . . .〉k
.

〈 〈 x 〉f . . .〉bkt-qf
.

(37)
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In a non-concurrent setting, the machinery orchestrating the K-rules introduced in this section imple-
ments an algorithm that always terminates and provides a sound over-approximation of �may aliasing�.

Theorem 9. Consider p a program built on top of the control structures in (8), that executes in a sequential
setting. Then, the application of the corresponding K-rules when starting with p and an empty alias relation,
is a �nite rewriting of shape

〈 ∅ 〉al〈 p 〉k
(∗)
=⇒ 〈 r 〉al〈 . 〉k,

with r a sound over-approximation of the aliasing information corresponding to the execution of p.

Proof. The key observation is that, due to the execution of loops and/or recursive calls, expressions can
in�nitely grow in a regular fashion. Hence, a lasso is always reached. Consequently, the control structure
generating the in�nite behaviour is removed from the k-cell, according to the associated K-speci�cation for
loops and/or recursive calls. This guarantees termination. Moreover, recall that the regular expressions
replacing the current alias information are a sound over-approximation, according to Lemma 7.

Observe that the RL-based machinery can simulate precisely the �cutting at length L� technique in [18].
It su�ces to disable the rules (♣) and stop the rewriting after L steps.

The naturalness of applying the resulted aliasing framework is illustrated in the example in Section 4.1,
for the case of two mutually recursive functions.

4.1. The K-machinery by example

For an example, in this section we show how the K-machinery developed in Section 4 can be used in
order to extract the alias information for the case of two mutually recursive functions de�ned as:

f(x) { x := x.a ; call g(x) } g(x) { x := x.b ; call f(x) }

We assume that x is an object of a class with two �elds a and b, respectively. We consider a sequential
setting.

At �rst glance it is easy to see that the execution of call f(x), when starting with an empty alias relation
r, produces the alias expressions:

[x, x.(a.b)∗] [x.a, x.(a.b)∗.a] [x.b, x.(a.b)∗.b] (38)

The associated reasoning in K is depicted in Figure 4.1. The whole procedure starts with an empty
alias relation r = ∅, and call f(x) in the continuation stack. Then, the corresponding K rules (for handling
assignments and function calls) are applied in the natural way.

A lasso is reached after two calls of f(x) that, consequently, determine two calls of g(x) � identi�ed

by g f g f in the k-cell. This triggers the application of rule (34) enabling the �regular� over-

approximation as in Lemma 7.
Our example also illustrates the importance of isolating the back-traced alias information in cells of

shape 〈 . 〉bkt-cf parameterized by the (possibly recursive) function f . More explicitly, rule (34) is soundly
applied by identifying the aforementioned lasso based on: the current alias relation r4, the recursive call f(l)
at the top of the continuation, and the back-traced aliasing 〈 〈 r2 〉al-o . . .〉bkt-cf associated to the previous
executions of f(l).

As introduced in (18), an alias relation r′ is a lasso of a relation r whenever there is a one-to-one
correspondence between their elements as follows:

[x1y1z1, x2y2z2] ∈ r i� [x1y1y1z1, x2y2y2z2] ∈ r′.

The current alias relation

r4 = {[x, x.a.b.a.b], [x.a, x.a.b.a.b.a], [x.b, x.a.b.a.b.b]},
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before applying rule (34), is a lasso of

r2 = {[x, x.a.b], [x.a, x.a.b.a], [x.b, x.a.b.b]}.

The aforementioned one-to-one correspondence is summarized in the following table:

[x1y1z1, x2y2z2] ∈ r2 i� [x1y1y1z1, x2y2y2z2] ∈ r4 x1 y1 z1 x2 y2 z2

[x, x.a.b] ∈ r2 i� [x, x.a.b.a.b] ∈ r4 x ε ε x a.b ε

[x.a, x.a.b.a] ∈ r2 i� [x.a, x.a.b.a.b.a] ∈ r4 x ε a x a.b a

[x.b, x.a.b.b] ∈ r2 i� [x.b, x.a.b.a.b.b] ∈ r4 x ε b x a.b b

Here ε stands for the empty alias expression.
Moreover, according to rule (34), the lasso shaped by r2 and r4 also causes the (otherwise in�nite)

recursive calls to stop, as call f(l) is eliminated from the top of the k-cell. Hence, the rewriting process
�nishes with a sound over-approximation reg(r2, r4) replacing the current alias relation (cf. Lemma 7),
de�ned precisely as in (38).

5. Aliasing in SCOOP

In this section we provide a brief overview on the integration and applicability of the alias calculus in
SCOOP. First, recall from Section 2 that the Maude semantics of SCOOP in [1] is de�ned over tuples of
shape

〈p1 ::St1 | . . . | pn ::Stn, σ〉

where, pi and Sti stand for processors and their call stacks, respectively. σ is the state of the system and it
holds information about the heap and the store.

The assignment instruction, for instance, is formally speci�ed as the transition rule:

a is fresh

Γ ` 〈p :: t : = s;St, σ〉 → 〈p :: eval(a, s);wait(a);write(t, a.data);St, σ〉
(39)

where, intuitively, �eval(a, s)� evaluates s and puts the result on channel a, �wait(a)� enables processor p to
use the evaluation result, �write(t, a.data)� sets the value of t to a.data, St is a call stack, and Γ is a typing
environment [30] containing the class hierarchy of a program and all the type de�nitions.

At this point it is easy to understand that the K-rule for assignments

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
. with r1 = r[ot = t] (25)

can be straightforwardly integrated in (39) by enriching the SCOOP con�guration with a new component
alias_ encapsulating the alias information, and considering instead the transition:

Γ ` 〈p :: t : =s;St, σ, aliasold〉 →
〈p :: eval(a, s);wait(a);write(t, a.data);St, σ, aliasnew〉

where
aliasold = r aliasnew = (r1 − t)[t = (r1/s − t)]− ot

with r and r1 as in (25). The integration of all the K-rules of the alias calculus on top of the Maude
formalization of SCOOP is achieved by following a similar approach.

For a case study, one can download the SCOOP formalization at:
https://dl.dropboxusercontent.com/u/1356725/SCOOP-SCP.zip

and run the command
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〈 r 〉al 〈 call f(x) 〉k
〈 . 〉bkt-cf 〈 . 〉bkt-cg

⇓ (32)

〈 r 〉al 〈 x := x.a; call g(x) f 〉k
〈 〈 r 〉al-o 〉bkt-cf 〈 . 〉bkt-cg

⇓ (25)

〈 r1 〉al 〈 call g(x) f 〉k
〈 〈 r 〉al-o 〉bkt-cf 〈 . 〉bkt-cg

where r1 = {[x, x.a], [x.a, x.a.a], [x.b, x.a.b]}
⇓ (35)

〈 r1 〉al 〈 x := x.b; call f(x) g f 〉k
〈 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

⇓ (25)

〈 r2 〉al 〈 call f(x) g f 〉k
〈 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

where r2 = {[x, x.a.b], [x.a, x.a.b.a], [x.b, x.a.b.b]}
⇓ (35)

〈 r2 〉al 〈 x := x.a; call g(x) f g f 〉k
〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

⇓ (25)

〈 r3 〉al 〈 call g(x) f g f 〉k
〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

where r3 = {[x, x.a.b.a], [x.a, x.a.b.a.a], [x.b, x.a.b.a.b]}
⇓ (35)

〈 r3 〉al 〈 x := x.b; call f(x) g f g f 〉k
〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r3 〉al-o 〈 r1 〉al-o 〉bkt-cg

⇓ (25)

〈 r4 〉al 〈 call f(x) g f g f 〉k
〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r3 〉al-o 〈 r1 〉al-o 〉bkt-cg

where r4 = {[x, x.a.b.a.b], [x.a, x.a.b.a.b.a], [x.b, x.a.b.a.b.b]}
⇓ (34)

〈 reg(r2, r4) 〉al 〈 g f g f 〉k
〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r3 〉al-o 〈 r1 〉al-o 〉bkt-cg

⇓ (*)(33)

〈 {[x, x.(a.b)∗], [x.a, x.(a.b)∗.a], [x.b, x.(a.b)∗.b]} 〉al〈 . 〉k〈 . 〉bkt-cf〈 . 〉bkt-cg

Figure 1: Aliasing and mutual recursion in K.
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> maude SCOOP.maude ..\examples\linked_list-test.maude

corresponding to the execution of the code in (6)

create x0
loop
i : = i+ 1
create xi
xi.set_next(xi−1)

end

for �ve iterations of the loop. As can be observed based on the code in aliasing-linked_list.maude,
in order to implement our applications in Maude, we use intermediate (still intuitive) representations. For
instance, the class structure de�ning a node in a simple linked list, with �led next and setter set_next is
declared as:

class 'NODE

create {'make} (

attribute { 'ANY } 'next : [?, . , 'NODE] ;

procedure { 'ANY } 'set_next ( 'a_next : [?, ., 'NODE] ;) [...]

)

end ;

where 'next : [?, . , 'NODE] stands for an object of type NODE, that is handled by the current processor
(.) and that can be Void (?), and 'make plays the role of a constructor. The �entry point� of the program
corresponds to the function 'make in the (main) class 'LINKED_LIST_TEST and is set via:

settings('LINKED_LIST_TEST, 'make, aliasing-on) .

Observe that the �ag for performing the alias analysis is switched to �on�.
The relevant parts of the corresponding Maude output after executing the aforementioned command are

as follows:

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.6 built: Mar 31 2011 23:36:02

rewrite in SYSTEM :

[...] settings('LINKED_LIST_TEST, 'make, aliasing-on))

|-

{0}proc(0) :: nil | {0}proc(1) :: nil,

{['x0 ; 'x0]} U {['x0 ; 'x1.'next]} U

{['x0 ; 'x2.'next.'next]} U {['x0 ; 'x3.'next.'next.'next]} U

{['x0 ; 'x4.'next.'next.'next.'next]} U

[...]

{['x3 ; 'x3]} U {['x3 ; 'x4.'next]}

state

heap [...]

store [...]

end

In short, one can see that two processors that were created �nished executing the instructions on their
corresponding call stacks: {0}proc(0) :: nil and {0}proc(1) :: nil. The aliased expressions include,
as expected based on (7), pairs of shape [xi ;xi+k.next

k]. Moreover, the output displays the contents of the
current system state, by providing information on the heap and store, as formalized in [1].
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6. Deadlocking in SCOOP

In what follows we provide the details behind the formalization and the implementation of a deadlock
detection mechanism for SCOOP. We discuss how Maude can be exploited in order to test and, respectively,
model-check deadlocks in the context of SCOOP programs, we analyze the associated challenges and propose
a series of corresponding solutions.

6.1. Formalizing deadlocks in SCOOP

Recall that the key idea of SCOOP is to associate to each object declared as separate a processor, or
handler in charge of executing the routines of that object. Assume a processor p that performs a call
o.f(a1, a2, . . .) on a separate object o, with separate arguments ai (i ≥ 1). As previously stated in Section 2,
in the SCOOP semantics, the application of the call f(. . .) will wait until it has been able to lock all the
separate objects associated to a1, a2, . . .. This reservation mechanism enables deadlocks to occur whenever
a set of processors reserve each other circularly. This situation might happen, for instance, in a Dining
Philosophers scenario, where both philosophers and forks are objects residing on their own processors.

De�nition 10 (Deadlock). For a processor p, let W (p) be the set of handlers p waits for its asynchronous
execution, and H(p) represent the set of resources p already acquired. A deadlock exists if for some set D
of processors the following holds:

(∀p ∈ D).(∃p′ ∈ D).(p 6= p′) ∧ (W (p) ∩H(p′) = ∅). (40)

The integration of a deadlock detection mechanism based on De�nition 10 on top of the SCOOP for-
malization in [1] is immediate. As already presented in Section 2, the operational semantics of SCOOP is
de�ned over tuples of shape:

〈p1 ::St1 | . . . | pn ::Stn, σ〉

where, pi and Sti stand for processors and their call stacks, respectively, and σ is the state of the system.
Given a processor p′ as in (40), the set H(p′) corresponds, based on [1], to σ.rq_locks(p′). Whenever the top
of the instruction stack of a processor p is of shape lock({qi, . . . , qn}), we say that the wait set W (p) is the
set of processors {q1, . . . , qn}. Hence, assuming a prede�ned system con�guration 〈deadlock〉, the SCOOP
transition rule in Maude corresponding to (40) can be written as:

(∃D ⊆ σ.procs).(∀p ∈ D).(∃p′ ∈ D).(p 6= p′)∧
(aqs : = . . . | p :: lock({qi, . . .});St | . . .) ∧ (σ.rq_locks(p′).has(qi))

〈aqs, σ〉 → 〈deadlock〉
(41)

It is intuitive to guess that σ.procs in (41) returns the set of processors in the system, whereas aqs stands
for the list of these processors and their associated instruction stacks (separated by the associative and
commutative operator �|� ). We use � . . .� to represent an arbitrary sequence of processors and processor
stacks.

6.2. Testing deadlocks

We implemented (41) and tested the deadlock detection mechanism on top of the formalization in [1] for
the Dining Philosophers problem. A case study considering two philosophers sharing two forks can be run
by downloading the SCOOP formalization at:
https://dl.dropboxusercontent.com/u/1356725/SCOOP-SCP-deadlock.zip

and executing the command
> maude SCOOP.maude ..\examples\dining-philosophers-rewrite.maude

The class implementing the philosopher concept is brie�y given below:
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(class 'PHILOSOPHER

create { 'make } (

attribute {'ANY} 'left : [!,T,'FORK] ;

attribute {'ANY} 'right : [!,T,'FORK] ;

procedure { 'ANY } 'make ( 'fl : [!,T,'FORK] ;

'fr : [!,T,'FORK] ; )

do ( assign ('left, 'fl) ; assign ('right, 'fr) ; )

[...]

end ;

procedure { 'ANY } 'eat_wrong (nil)

do ( command ('Current . 'pick_in_turn('left ;)) ; )

[...]

end ;

procedure { 'ANY } 'pick_in_turn ('f : [!,T,'FORK] ; )

do ( command ('Current . 'pick_two('f ; 'right ;)) ; )

[...]

end ;

procedure { 'ANY } 'pick_two ('fa : [!,T,'FORK] ;

'fb : [!,T,'FORK] ; )

do

(

command ('fa . 'use(nil)) ;

command ('fb . 'use(nil)) ;

)

[...]

end ;

[...] end)

It declares two forks � 'left and 'right of type 'FORK, that can be handled by any processor (T) and that
cannot be Void (!). Assume two philosophers p1 and p2 (of separate type PHILOSOPHER) and two forks f1
and f2 (of separate type FORK). Moreover, assume that 'left and 'right for p1 correspond to 'f1 and 'f2.
For the case of p2 they correspond to 'f2 and 'f1, respectively. Asynchronously, p1 and p2 can execute
eat_wrong, which calls pick_in_turn(left). In the context of p1, the actual value of left is f1, whereas
for p2 is f2. Consequently, both resources f1 and f2, respectively, may be locked �at the same time� by p1

and p2, respectively. Note that pick_in_turn subsequently calls pick_two that, intuitively, should enable
the philosophers to use both forks. Thus, if f1 and f2, respectively, are locked by p1 and p2, respectively,
the calls pick_two(f2, f1) and pick_two(f1, f2) corresponding to p1 and p2 will (circularly) wait for
each other to �nish. According to the SCOOP semantics, pick_two(f1, f2) is waiting for p2 to release
f2, whereas pick_two(f2, f1) is waiting for p1 to release f1, as the forks are passed to pick_two(...) as
separate types. In the context of SCOOP, this corresponds to a Co�man deadlock [31].

The entry point of the program implementing the Dining Philosophers example is the function 'make

in the class APPLICATION, which asks the two philosophers p1 and p2 to adopt a wrong eating strategy as
above, possibly leading to a deadlock situation. The �ag enabling the deadlock analysis as in (41) is set to
�on�. This information is speci�ed using the instruction settings('APPLICATION, 'make, deadlock-on).

Unfortunately, none of the executions of the Dining Philosophers scenario by simply invoking the Maude
rewrite command lead to a deadlock situation. Each of our tests displayed the output:
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\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.6 built: Mar 31 2011 23:36:02

Copyright 1997-2010 SRI International

rewrite in SYSTEM :

[...] settings('APPLICATION, 'make, deadlock-on)

|- {0}proc(0) :: nil | {0}proc(1) :: nil | {0}proc(3) :: nil

{0}proc(5) :: nil | {0}proc(7) :: nil

{0}proc(9) :: nil | {0}proc(11) :: nil

consisting of a list of processors (including the handlers of both the philosophers and the forks) with empty
call stacks (:: nil). This indicates that every time, the two philosophers proceeded by lifting their forks
simultaneously, hence no deadlock was possible.

One possible workaround is to use prede�ned strategies [32] in order to guide the rewriting of the Maude
rules formalizing SCOOP towards a 〈deadlock〉 system con�guration. An example of applying such a strategy
for the Dining Philosophers case can be tested by running the command:
> maude SCOOP.maude ..\examples\dining-philosophers-strategy.maude

The command srew [...] using init ; parallelism{lock} ; [...] ; deadlock-on forces the ex-
ecution of a pick_in_turn approach as above. This determines Maude to �rst trigger the rule [init] in
the SCOOP formalization in [1]. This makes all the required initializations of the bootstrap processor. Then,
one of the processors that managed to lock the necessary resources is (�randomly�) enabled to proceed to the
asynchronous execution of its instruction stack, according to the strategy parallelism{lock} . The last
step of the strategy calls the rule [deadlock-on] implementing the Co�man deadlock detection as in (41).

This time the guided rewriting leads, indeed, to one solution identifying a deadlock. The relevant parts
of the corresponding Maude output are as follows:

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.6 built: Mar 31 2011 23:36:02

Copyright 1997-2010 SRI International

srewrite in SYSTEM :

[...] settings('APPLICATION, 'make, deadlock-on)

using init ; parallelism{lock} ; [...] ; deadlock-on .

Solution 1

rewrites: 479677 in 2674887330ms cpu (7379ms real) (0 rewrites/second)

result Configuration: deadlock

No more solutions.

rewrites: 479677 in 2674887330ms cpu (7453ms real) (0 rewrites/second)

Nevertheless, such an approach requires lots of ingeniousness (our strategy has more than 300 rules!)
and, moreover, is not automated.

6.3. Model-checking deadlocks

In this section we provide an overview on our approach to model-checking deadlocks for SCOOP, using
the LTL Maude model-checker [33]. As mentioned in the beginning of the current paper, the idea behind
our work is to exploit the unifying �avor of the Maude executable semantics of SCOOP [1]. The latter
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integrates both the formalization of the language and its concurrency mechanisms, thus enabling using the
semantic framework for program analysis purposes, �for free�.

One possible way to proceed is by simply running the Maude LTL model-checker via a search com-
mand. For model-checking deadlocks, one could invoke search [b, d] subject =>* deadlock. In a
Dining Philosophers setting, for instance, this corresponds to performing a breadth-�rst search starting with
subject � the corresponding (intermediate Maude representation of the) SCOOP program � to a deadlock

state, in zero or more steps of proof (=>*). The optional arguments b and d provide an upper bound in the
number of solutions to be found and, respectively, the maximum depth of the search.

Unfortunately, running the aforementioned search command led to the state explosion problem. At a
�rst look, the issue was caused by the size of the SCOOP formalization in [1] which includes all the aspects
of a real concurrency model.

As a �rst step, we reduced this formalization by eliminating the parts that are not relevant in the context
of deadlocking; examples include the garbage collection and the exception handling mechanisms.

In addition, we provided a simpli�ed, abstract semantics of SCOOP based on aliasing. This idea stems
from the fact that SCOOP processors are known from object references, that may be aliased. Therefore,
the SCOOP semantics can be simpli�ed by retaining within the corresponding transition rules only the
information important for aliasing. Consider, for instance, the rules (2)�(4) specifying �if� instructions in
Section 2. The abstract transition rule omits the evaluation of the conditional and computes the aliasing
information similarly to the semantics of then . . . else . . . end in (10), in Section 3. The abstraction collects
the aliases resulted after the execution of both �if� and �else� branches:

.

〈p :: if e then St1 else St2 end ;St, σ, aliasold〉 →
〈p ::St, σ, aliasnew〉

(42)

Observe that the SCOOP system con�gurations in (1) are enriched with a new component alias_ consisting
of a set of alias expressions. Above, aliasold is the aliasing before the execution of the �if� instruction,
whereas, intuitively, aliasnew stands for aliasold �St1 ∪ aliasold �St2.

As a second step, we analyzed the implementation in [1] from a more engineering perspective, and
identi�ed a series of design decisions that either slowed down considerably the rewriting or made the search
space grow unnecessarily large.

After running some experiments, we understood that the parallelism rule

〈p1 ::St1, σ〉 → 〈p′1 ::St′1, σ
′〉

〈p1 ::St1 | p2 ::St2, σ〉 → 〈p′1 ::St′1 | p2 ::St2, σ′〉
(43)

in [1] was increasing the rewriting time. Though elegant from the formalization perspective, the usage of
this rule was not e�cient. Therefore, we eliminated it from the SCOOP semantics and made the remaining
rules apply directly, by matching at top. For instance, the abstract rule (42) formalizing �if� instructions in
the context of one processor p becomes:

.

〈p :: if e then St1 else St2 end ;St | aqs, σ, aliasold〉 →
〈p ::St | aqs, σ, aliasnew〉

(44)

for an arbitrary list aqs of processors and their instruction stacks. For Dining Philosophers, for example,
this modi�cation reduced the rewriting time from around 10s to less than 1s.

Recall that SCOOP processors communicate via channels. The implementation in [1] creates fresh
channels (as in (2), for instance) parameterized by natural indexes. This was ine�cient for model-checking
purposes, as the state space contained many identical states up-to channel naming.

The implementation of the above observations enabled us to successfully identify a deadlock situation in
a Dining Philosophers scenario, by using the Maude LTL model-checker. The new (reduced) formalization
of SCOOP can be found at:
https://dl.dropboxusercontent.com/u/1356725/SCOOP-SCP.zip

20



whereas the example considering two philosophers can be run by executing the command
> maude SCOOP.maude ..\examples\dining-philosophers-model-check.maude

A bounded search successfully identi�es one deadlock:

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.6 built: Mar 31 2011 23:36:02

Copyright 1997-2010 SRI International

search [1, 200] in SYSTEM :

[...] settings('APPLICATION, 'make, deadlock-on) =>* deadlock .

Solution 1 (state 769167)

states: 769168

rewrites: 342475817 in 2674905322ms cpu (1226403ms real)

The amount of time necessary for model-checking is still quite large (approximately 20mins for the
example above). However, further improvements may be obtained by following the same recipe of col-
lapsing semantically equivalent states, from the deadlocking perspective. A major source of redundancy
is represented by the so-called regions in [1] that, intuitively, manage all the objects handled by the same
processor. Their elimination from the SCOOP abstract state would enable the model-checker to make less
identi�cations, therefore improving the overall time performance.

7. Discussion

The focus of this paper is on building a toolbox for the analysis of SCOOP programs, with emphasis on
an alias analyzer and a deadlock detector. The naturalness of our approach consists in exploiting the recent
formalization of SCOOP in [1], that is executable and implemented in Maude [5]. This provides a unifying
framework that can be used not only to reason on the SCOOP model and its design as in [1], but also to
analyze SCOOP programs via Maude rewriting and model-checking.

Of particular interest for the aliasing tool is the calculus introduced in [18], which abstracts the aliasing
information in terms of explicit access paths referred to as �alias expressions�. We provide an extension of this
calculus from �nite alias relations to in�nite ones corresponding to loops and recursive calls. Moreover, we
devise an associated executable speci�cation in the K semantic framework [27]. In Theorem 9 we show that
the RL-based machinery implements an algorithm that always terminates with a sound over-approximation
of �may aliasing�, in non-concurrent settings. This is achieved based on the sound (�nitely representable)
over-approximation of alias expressions in terms of regular expressions, as in Lemma 7. We also discuss the
integration of the alias calculus on top of the Maude formalization of SCOOP [1].

A similar technique exploiting regular behaviour of (non-concurrent) programs, in order to reason on
�may aliasing�, was previously introduced in [34]. In short, the results in [34] utilize abstract representations
of programs in terms of �nite pushdown systems, for which in�nite execution paths have a regular structure
(or are �lasso shaped�) [35]. Then, in the style of abstract interpretation [36], the collecting semantics is
applied over the (�nite state) pushdown systems to obtain the alias analysis itself. The main di�erence
with the results in [34] consists in how the abstract memory addresses corresponding to pointer variables
are represented. In [34] these range over a �nite set of natural numbers. In this paper we consider alias
expressions build according to the calculus in [18], based on program constructs. The work in [34] also
proposes an implementation of pushdown systems in the K-framework [27].

We agree that it could be worth presenting our analysis as an abstract interpretation (AI) [36]. A mod-
eling exploiting the machinery of AI (based on abstract domains, abstraction and concretization functions,
Galois connections, �xed-points, etc.) is an interesting topic left for future investigation.

An immediate direction for future work is to identify interesting (industrial) case studies to be analyzed
using the framework developed in this paper. We are also interested in devising heuristics comparing the
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e�ciency and the precision (e.g., the number of false positives introduced by the alias approximations)
between our approach and other aliasing techniques.

Another research direction is to derive alias-based abstractions for analyzing concurrent programs. We
foresee possible connections with the work in [37] on concurrent Kleene algebra formalizing choice, iteration,
sequential and concurrent composition of programs. The corresponding de�nitions exploit abstractions of
programs in terms of traces of events that can depend on each other. Thus, obvious challenges in this respect
include: (i) de�ning notions of dependence for all the program constructs in this paper, (ii) relating the
concurrent Kleene operators to the semantics of the SCOOP concurrency model and (iii) checking whether
�xed-points approximating the aliasing information can be identi�ed via �xed-point theorems.

Furthermore, it would be worth investigating whether the graph-based model of alias relations introduced
in [18] can be exploited in order to derive �nite K speci�cations of the extended alias calculus. In case of
a positive answer, the general aim is to study whether this type of representation increases the speed of
the reasoning mechanism, and why not � its accuracy. With the same purpose, we refer to a possible
integration with the technique in [38] that handles point-to graphs via a stack-based algorithm for �xed-
point computations.

Related to deadlock detection, the second contribution of this paper, we provided a formalization based
on the sets of acquired resources and the sets of handlers processors wait to lock in their attempt to execute
asynchronously. This de�nition corresponds to Co�man deadlocks [31] in the context of SCOOP, occurring
whenever there is a set of processors reserving each other circularly. We presented the equivalent SCOOP
semantic rule and discussed the results of using Maude in order to analyze deadlocks in the context of a
Dining Philosophers scenario. In addition, we presented how an abstract semantics based on aliases, together
with a series of implementation improvements enabled the Maude LTL model-checker to correctly identify
deadlocks. A survey on abstracting techniques on top of Maude executable semantics is provided in [4].

The literature on using static analysis [7] and abstracting techniques for (related) concurrency models
is considerable. We refer, for instance, to the recent work in [39] that introduces a framework for detecting
deadlocks by identifying circular dependencies in the (�nite state) model of so-called contracts that abstract
methods in an OO-language. Nevertheless, the integration of a deadlock analyzer in SCOOP on top of Maude
is an orthogonal approach that aims at constructing a RL-based toolbox for SCOOP programs laying over
the same semantic framework.

In [40] SCOOP programs are veri�ed for deadlocks and other behavioral properties using GROOVE [41].
The work in [40] proposes a rede�nition of the most common features of the SCOOP semantics based on
graph transformation systems (GPSs). This is a bottom-up approach, as it aims at rede�ning the SCOOP
semantics from scratch via GPSs, orthogonal to our rather top-down strategy of narrowing the original
semantics proposed in [1].

As a clear direction for future work we consider designing and analyzing deadlock situations for more
SCOOP applications. Based on the experience so far, this would help better understand and observe the
SCOOP state space, thus providing hints for further improvements in the context of model-checking, for
instance. As we could already see, major advances in this regard are obtained when semantically equivalent
states are identi�ed and collapsed within the same equivalence classes. This was the case of the indexed-
based communication channels in Section 6.3. Similar redundant states are introduced by the so-called
�regions� in SCOOP �administrating� objects handled by the same processor. We foresee their elimination
would speed-up the LTL model-checker.
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