Simplification and Generalization IGIRC

Eugen-loan Goriac Georgiana Caltais Dorel Lucanu

{egoriac, gcaltais, dlucan@info.uaic.ro
Faculty of Computer Science
Alexandru loan Cuza University
lasi, Romania

Abstract—CIRC is an automated theorem prover based on II. MOTIVATING EXAMPLES
the circular coinduction principle. The tool is used for the] o)
verification of programs, behavioral equivalence checkingand A. Simplification and its Correctness

proving properties over infinite data structures. In this paper Int ft ival tw id to b
we present two extensions ofCIRC that handle the case when n terms of trace equivalence, two processes are said to be

the prover indicates an infinite execution for a certain goal The ~€quivalent if they execute the same sequences of actions [6]

first extension involves goal simplification rules and a proedure Consider the two processés and X illustrated in Figure 1.

for checking that the new execution is indeed a proof, whilelte \We use “-” to represent thealternative compositior(non-

second one refers to finding and proving a generalization offe yetarministic choice) operator ang™to denote thesequential

goal. Each of the extensions is presented based on a case stud iti ¢ It t that the |

Binary Process Algebra (BPA) for checking the proof correchess compositionoperator. 'S easy 1o see tha e anguage§

and Streams for using generalization. generated by the execution of these tow processes contain
only words of the forma, aaa, aaaaa, and so on (action

a occurs for an odd number of times in each string).

I. INTRODUCTION

A subject of high interest in computer science refers to U: X: @

system specification and analysis. Systems are generatly co a/ g a \a
posed of several (concurrent) processes exchanging infor-,, . ; € X:a €
mation. One can prove properties for behaviorally specified a a
systems using theIRC prover [9], a metalanguage applicationg 5% ﬁ X:a:a a
implemented as an extension of Maude [5]. Normally, th av a a a a a
proofs can be handled automatically by this tool, but in some \ Xaaa aa €

cases the human intervention is needed. In this paper we
present two ways to minimize the human interventions. The cece e ¢
first approach uses the simplification rules of [12] in order

to ease the proving process. The novelty here is given by a
technique which allows to check if the new finite execution
of CIRC supplies indeed a proof of the initial goal(s). This

is done by executing exactly a command of CIRC. ThE{

second approach needs to analyze the proof session ancdtextra . . e .
more general goals which can be proved easier than me[12], this paper considers infinitary trace-equivaleine=

ones oained by e prover.Tis approac s soun and 0 Fecesses et v e e, e oo o e s
generalization can be automatized in CIRC. P

)) ., of the prover. These rules replace the current goal with a
The st_ruc-ture of the paperis as follqws. Section Il prov'dj'?s?mpler one. Since we do not impose any constraints over the
two motivating exam_ples n order_to lllustrate the necgssife,, goal, we need to prove that using these rules is sound. For
for the CIRC extensions. In Section Ill we present SOM,yq of these simplification rules, the soundness can blg easi

basic notions regarding BPA and Streams, used througheut oved by hand, but in many cases this approach is difficult
paper. Section IV provides a brief description of behavior nd time consuming

spegifications af.‘OC'RC- Both the theqretical aspects and_ For example, in the case of processes, we proved that using
the implementation of the two extensions are discussed s following rule is sound:

Sections V and VI.

Fig. 1. Two trace-equivalent processes

Our first aim was to us€IRC in order to prove that/ and
are trace-equivalent. As an extension to the work presented

2

o
This work is partially supported by the PNII grant IDEI 393 B = Ei o E2

Note that the equalities in the above rule are interpreted asCIRC now provides a better way to prove properties that

behavioral equivalences (which imply the trace equivadshc require generalizing some goals during a proof session. The
In this paper we introduce the behavioral specificatioffW command(set generalization on .) allows the

associated to basic process algebra with the infinitaryetra@9ine to automatically apply generalization over equutio

equivalence in order to exhibit the use of the simplificatiofn€never possible during a proof session:

rules and present our approach for automatically checking

the correctness of using simplification rules. This step Maude> (add goal f(norse) = norse .)

compulsory in the cases when we know nothing about th@ude> (set generalization on .)

soundness of the rules. For the above rule the soundnes¥fgde> (coinduction .)

easy to show, but this is not always the case. [|

B. Generalization Goal [+ f(tl(norse)) =] =
o . * zip(tl ,not (tl *
Streams are data structures used to model infinite behavua;r(_§ner gl i ileg(¢ 0(mor se), not (t1(norse))) «]

A stream is regarded as an infinite lig : ao : ... of [« f(S: Stream) *] =
data elements. Consider the mathematical definitions fer th [+ zip(S: Stream not(S:Stream) *]
operatordl, not, zipandf over infinite binary streams: [...]

Hia:s) = s Proof succeeded [...]

tla:s) =a:not . L
not(a:s) =a:not(s) In this paper we prove that the use of the generalization rule

zip(azs,s’) = a:zip(s', s) is sound.
fla:s) =a:a:f(s)

Ill. BASIC PROCESSALGEBRA AND STREAMS

wherea is a variable from{0,1}, @ is the bitwise negation |n this section we briefly present the two case studies used
of a, s and s’ are variables of sort stream, and' s the i the paper as running examples.

stream constructor. The Thue-Morse sequence [1] is defined

by: morse = 0: zip(not(morse), tl(morse)). Concurrent systems are encountered in the real world;
In [9], Example 2 presents ho®IRC is used in order to consider for example, a colony of ants. Each ant represents

prove thatmorseis a fixed point forf. The proposed approach@ Particular process and the interaction between ants stensi

is not fully automatic as the user needs to follow four step®f exchanging different information about some locations

. start the coinduction engine for the goal (equatiorf?’lr events. Another example is a network protocol, such as
f(morse) = morse the alternating bit protocol [2]. Usually, system behavi®r

modeled as a labeled transition system, where the nodes

Maude> (set show details on .) represent system states and the edges represent the actions
Maude> (add goal f(norse) = norse .) performed in order for the system to reach new states.
Maude> (coi nduction .) Process algebrés a framework for specification and manip-

ulation of processes by computers and it is used for analyzin
« analyze the output after the engine exceeds the maximy@ycess properties and behavior. In this section we briefly
number of steps allowed introduce some theoretical notions regarding the basicqs®
algebra; more details can be found in [6].

Hypo [+ f(tl(morse)) *] = Basic process termare defined by the following grammar:

[zip(tl(norse),not(tl(norse))) *]
added and coexpanded to

[..] pi=alX[p+plp;p
o extract an intermediary lemma that needs to be proved:)
f(tiimorse)) = zip(t((morse), not(ti(morse))) wherea ranges over an alphabétph and X over variables,
. start a new proof with two goals: “4” is the alternative composition operator and”“is the

— f(morse) = morse- the initial equation sequential composition operator. A process of the fprm
— f(s) = zip(s, not(s))- the generalization of the lemmal’. + po is a process that executes eitheror p,. A process
from the p}evious step of the formp = py ; po is a process that executes figgt and
thenp,. The notation® ¢ is used in order to represent the

Maude> (add goal f(norse) = norse .) successful termination after executing the actiowheres is a

Maude> (add goal f(S:Stream = special configuration that marks the end of a transition ggsc
zip(S: Stream not(S: Strean)) .) L6 Each atomic actiom always terminates successfully after
Maude> (coi nduction .) executing itselfa % ¢.

A process specification is a finite set of (recursive) equatio
Proof succeeded [...] of the form:

2) and 3) are proved using a similar reasoning. |

X1 =def p1(X1,..., Xn)

Streamsare infinite lists of elements. Supposing thatare
X2 =def p2(X1,...,Xn) pposing tha

data elements, a stream is denoted by an enumeration of the
form a; : as : a3 ;... A stream represents the solution to a
Xn =de Pn(X1,..., Xn) system of equations (such as the one provided in Sectioi. 11-B
For instancezero = 0: zero is the infinite stream of elements
that have the valu@ (0:0:...). For a detailed description of
streams and their properties see [14], [15] and [17]. No&¢ th
streams may be regarded as particular cases of binary groces
algebras with guarded process specifications.

whereX; are recursion variables, apd X, . .., X,,) are pro-
cess terms with possible occurrences of the recursionblasa
We only consider the case guardedprocess specifications
[6]. Intuitively, in a guarded specification, the right-libsides
of these equations can be adapted to:

ar;q1 (X, X))+ tagsqe(Xa, .o X)) b+ IV. BEHAVIORAL SPECIFICATIONS ANDCIRC

wherea;, b; € Alph, by replacing the recursion variables by We assume the reader familiar with the algebraic specifi-

the right-hand sides of their recursive equations. cations [7]. In this section we present the notations and the
Basic process algebréBPA) represents the collection of allconcepts used in the paper.

the basic process terms. The operational semantics of BPA ig et the triple3 = (5, %, E) denote a many sorted algebraic

given by the following transition rules (whege p’, ¢ andq’ specification, whereS is the set ofsorts ¥ = {%,., |

are process terms and’ =g p is an equation in the 4, ¢ §* s € S} is an S*xS-indexed set of operations,

specification): namedalgebraic signatureand E is a set ofS-equations
ay Let (VX)t =1t if cbeaX-equationt andt areX-terms
if a € Alph PP if X =gef p over variablesX in a fixed S-indexed set of variables andijs
a—¢ —-p the conditionof the equation consisting of a finite set of pairs
(u;,v;) Of terms over variableX' (note that the condition can
a a / a a / . e A
p—e p—p q—¢ q—q also be empty). We often write the condition of an equation
pta=e prqgmp pragme prgod as Nier (Ui = vi).

A behavioral specificatioris a pair of the form(5, A),
= - whereA is a set of:-contexts, calledierivatives A derivative
Piqg—4q pig—piq in A is a context written ag[x:h|, wherex is a special variable
of sorth. S consists ofhidden sorts H = {h | §[+:h] € A},
andvisible sorts V =S\ H.

A A-experimentfor the hidden sorth € H is inductively
defined as follows: each derivative for the hidden goe H
with visible result sort is aA-experiment forh; if C is a
A-experiment forh’ and§ a behavioral operation fat with
result sorth/, thenCd] is a A-experiment forh. As above,
C'[é] denotes the term obtained frofh by replacings for the
distinguished variable:n’.

Behavioral equivalenckeetween two terms of hidden sort
specification. Lep, q € {p: | i € I}. is defined as th@T “indistingui§hability gnder experimentye

1) Tr°(p+ q) = Tr™(p) U Tr™(q). denote the relatlon_ of behavioral equwalenc;eixylf Ty an.d

- - T, are terms of hidden sort, thefi, = Ty if and only if
2) Tr*(a;p) ={aa | a € Tr™(p)}. C[Ty] = C[T], for all A-experiments.
3) Tr*(p) = Tr™(plp:/ Xil)- Next we provide the behavioral specifications we considered
Proof: We prove all the equalities by double inclusion. for BPA and streams, as case studies.

1) “O" Let aj,as... € Tr*°(p). By definition, the transi-
tion sequence % r; 2 ry ... is valid (1,72, ... are basic A. BPA Behavioral Specification
procesasles). According t_o the rules in F|ga.1 2 we@deduce that'I'he equational specification of the processes is defined by
p+ q — 71 So the rewrite sequenge+ q — 1, — ra...

is also valid, leading tay, as ... € Tr*(p+q). The proof is the following items: _)
similar for the caseir, as ... € Tr™(q). « a sortAlph for the atomic actions (the alphabet)

“C"Let ar,az... € Tr*(p + q). In this case, the sequence , 3 sortPid for the process variables
p+qr 2 is valid. Fromp + ¢ 2% r; we identify
two situations: eithep = 1 =2 ... or g 25 r 2 ..
leading to eithew, as ... € Tr*(p) or ai,az ... € Tr(q). « the constructors for process terms:

pe P

Fig. 2. BPA operational semantics

We say that the sequenes,...,a, is afinite traceof p
if p 2% pr... 2% p,. Let Tr(p) represent the set of finite
traces for procesg. Infinite sequences of the form, ao, . ..
such thatp % p1 22 po... areinfinite tracesof p. Let
Tr*°(p) denote the set of all (finite and infinite) traces for
We say that two processes and ¢ are infinitary trace-
equivalent(p ~¢° ¢), if and only if Tr>(p) = Tr>(q).
Proposition 1: Let {X; =4e; p; | ¢ € I} be a process

o a sortPexpfor the process terms (expressions)

Alph < Pexp, Pid < Pexp Theorem 1:If a € Alph andp is a process therm sip. ¢
+: Pexp Pexp — Pexp {L,e} then Tr™(p{a}) = {o | ac € Tr™(p)}.
Proof: We proceed by structural induction gn

~i-: Pewp Pexp — Pexp Casep = p1 + p2. According to the equations used for

« a sortPeqtogether with the constructor defining the derivative {_} and to Proposition 1, the equalities
Tr>((p + 9)fa}) = Tr*(pla} + ¢fa}) = Tr>(p{a}) U
=def: Pid Pexp — Peq Tr*(¢{a}) hold. By the induction hypothesis, we deduce that

Tre (p{la})U Tr*(p{a}) = {a | aa € Tr**(p)} U{a | aa €
Tr*(q)} = {a | ac € Tre(p) U Tre(q)} = {a | ax €
« a sortSefPeq} together with the constructors Tr*°(p+q)}.

The other cases are proved in a similar manner. [|
Proposition 2: Let p be a basic process anda; € Alph,

for the process equations

Peg < Set{Peq}and

> 1.
,: Set{Peq} Set{Peq} — Set{Peq} 1) a € Tr>(p) < pla} # L.
for the sets of process equations. 2) ai,...,an € Tr(p) & p{ai}.. {an} # L.
Now we provide the behavioral aspect of the specification.3) ai1,az... € Tr(p) < (Yn)ai,...,a, € Tr(p) <
We consider two special process constantsuch thap < L (Vn)plar} ... {an} # L.

iff Zg.p = ¢, ande such thatva.a % ¢ (this corresponds to Two processep and ¢ are behavioral equivalenfp = q)

a successful termination). We also consider two derivativéf and only if C[p] =g C|[q] for all experimentsC (see [13]
The first one,x:Pexp{A:Alph}, has the intended meaningfor more details). In our case, the experiments are of tha for
Tre(pla}) = {a | aa € Tr>(p)} and it is similar to 1 ?(x:Pexp{ai}...{an}).

Brzozowski derivatives for the regular expressions. Tloesd Theorem 2:If p = ¢ thenp ~$° ¢.

derivative is L ?(x:Pexp, and has the meaning?(p) = true Proof: Recall that p ~% ¢ if and only if
iff Va.p = L. Tr(p) = Tr*(q). We proceed by proving this equality.
The derivatives are defined as ai,...,an, € Tr*(p) & L?(p{ai}... {an}) = false &
{} : Pexp Alph—> Pexp 12(¢{ar}-.. {an}go = false & aiy,...,a, € Tr*(g).
a,az,... € Tre(p) < (Yn)a,...,an, € Tr(p) <
L7 Pexp— Bool (Vn)ax,...,a, € Tr(q) & ay,az,... € Tre(q).
together with the following equations: u

(p+ q){a} = p{a} + ¢{a} J_?(p +4q) = J_7(p) Vv 17?(q) B. Streams Behavioral Specification

(p;@){a} =p{la};q if 12(p;q) = L2(p) In order to specify streams, we consider two sorts: a
pEeAp# L 17(L) = true hidden sortStream for the streams and a visible saftata
for the stream elements. The streams are defined in terms
a{a} =¢ L7(e) = false of the derivatives headhfl : Stream — Data) and tall
bla} =1 if b#a 17(a) = false (tl : Stream — Stream).
efa} =1 17(X) = false The behavior for an operation over streams is defined
X{a} = r{a} using these two derivatives. For instance, the operations

not, zip, f, andmorse introduced in Section II-B are defined
where X =4 r is @ process equation in the specificatipn, py the following equations:

andgq are basic processes ands an element fronAlph.
The function7r*°(_) is extended as follows:
Tree(Lsp)=Tre(L) =0
Tre (L +p) = Tr(p)
Tr*°(e) = {\},where\ is the empty trace
Tr*(e;p) = Tr™(p)

The equations associated to this extension that need to be

added to the specification are: hd(tl(f(s))) = hd(s)
Lip=1 t(tl(f(s))) = f(t(s))
L+p=p hd(morse) =0
Eip=p hd(tl(morse)) =1
tl(tl(morse)) = zip(tl(morse), not(tl(morse)))

[Normalize]: (B, F,G U {[el}) = (B,F,G U {|nf(e)]})
- removes the current goal from the set of proof obliga-

As Data is the only visible sort in our specification, , i
tions and adds its normal form as a new goal.

experiments over streams are of the foha(x), hd(tl(x)),

hd(tl(tl(x))) ..., wherex is a variable of sortStream. [Faill: (B, F,G U {@}) = fail
if BUFtA_ eandeis visible
C. TheCIRC Theorem Prover - stops the reduction process with failure whenever the

CIRC is an automated tool used for inductive and coin- current goale is visible and the corresponding normal
ductive theorem proving, created as an extension of Maude. forms are different.
This tool can be used in program verification, behavioral
equivalence checking and for proving process bisimilarity The syste_m_above is parar_netric over an _entailment relation
As presented in [9], the circular coinduction engine impld=- that satisfies the properties presented in [13].

ments the proof system given in [13] by a set of reductiongule 't IS €asy to see that the reduction ru[e®ne], [Reduce],
(B,F.G) = (B,F,G'), where B represents the (original) and[Derive] implement the proof rules with the same names

algebraic specificationF is the set of frozen axioms arglis 91Ven in [13]. The reduction ruled®ormalize] and[Fail] have
the current set of proof obligations. no correspondent in the proof system and are used to ease the

In order to present these rules, we introduce the underlyiHaer Interaction W'th the prover. . .

; ; ; . As already mentionedCIRC is a behavioral extension of
entailment relation used iGIRC: S : .
Maude. The derivatives (behavioral operations) are dedlar
|) , in a separate CIRC modulect heory ... endct heory),
€k (VX) =13t Ner (us = vi) iff nf(t) = nf(t) which extends the Maude-specific functional theory module.
Each derivative is specified using the keywatet i vati ve
_ _ . (the shortened formder can also be used). When spec-
« the variablesX of the equations are turned into freshfying processes one has to consider declarations of the

wherenf(t) is computed as follows:

constants; form derivative *: Pexp{a} for eacha € Alph and
« the condition equalities;; = v; are added as equationgderi vative bot ?(+: Pexp). For the case of streams, the
to the specification; derivative declarations arderi vative hd(*: Strean and

. the equations in the specification are oriented and usigf | vative tl(x:Stream. o
as rewrite rules. In order to test the examples presented in this paper, the

T |t ; ¢) ¢ the 1 reader may use the online version@RC:
(VX)? ior??f Corlrsn rgvgeé))ncf)(t)an:eglfjafgozj Co v&hgreo:r:ne http://fsl.cs.uiuc.edu/index.php/Special:CircOnline

constants from the normal forms are turned back into the V. SIMPLIFYING RULES AND PROOF CHECKING

corresponding variables. Recall from the example presented in Section II-A that our
In order to implement the circularity principle [13], wetask is to prove thaX ~5¢ U, whereX =g4.; (a; X ;a) + a,
use a freezing operatpr], declared inCIRC as the operator {7 =aef (a; V) +a,andV =4 (a;a;V)+ (a;a). We
[+ *]. For an equatiofv.X) ¢t = t' if ¢, the corresponding provide the specification for these processes:
frozen equation is:(VX) = [¢]if ¢. The role of the
freezing operator is to forbid the application of the coiciike .
. ctheory BPA is
hypotheses when the current goal does not match it at the OP; 11 udi ng BPA- EQ
Here is a brief description of the reduction rules included
in the CIRC prover engine: ops a : -> Alph .
ops XUV : -> Pid.
[Done]: (B, F,0) = -
- applied whenever the set of proof obligations is empty; €q pmain =

indicates the termination of the reduction process. (X =def (a; X; a) +a),
(U=def (a; V) +a),
[Reduce]: (B, F,GuU{e}) = (B, F,G)if BUFk._e (V=def (a; a; V) + (a; a))

- applied whenever the current goal isa -consequence
of BU F; it removede] from the set of goals.

[Derive]: (B, F,GuU = (B, FU ,GU -A e)})

(if Buf{bij)e an(de is hi{ddin (2e) scx *:Pexp + PX Pexp .
- applied when the current goal is hidden and it is SCX PX-Pexp + *:Pexp .
not at,.-consequence; it adds the current goal to theenOICt heory
hypothesis and its derivatives to the set of godige) Herepmai n represents the specification of all processes. Also,

denotes the sefdfe] | 6 € A}. we explicitly specify the operator” as special context [10].

derivative *:Pexp { a } .
derivative bot ?(*: Pexp)

We proceed by adding the go&l = X in the usual manner if (E2: Pexp = E2': Pexp)
and trying to prove it by coinduction. We also choose to view .
all the details of the steps performed during the proof sessi

.) to the specification and running the example for the second
by using the comman¢iset show details on .):

time, we still encounter the problem of infinite rewritingy B
using a similar technique, we identify another simplifioati

Maude> (add goal U= X .) rule:
Maude> (set show details on .)
Maude> (coi nduction .) Ey=Ey+(a;a;E3) + (X;a5a;a; F3)

Ey=FE+V; B3
Hypo [+ U *] = [+ X *]
added and coexpanded to
1. [* Ua} +] = [+ X{a} *]
2. [* bot?(U) *] = [* bot?(X) *]

After adding the corresponding rule

srl (ELl: Pexp) =

Goal [* Ufa} *] = [* X{a} =] normalized to (E2: Pexp +

[* V + epsilon *x] = [epsilon + X ; a *] (a; a; E3:Pexp) +
(X; a; a; a; E3:Pexp))

Hypo [* V + epsilon *] = [* epsilon + X : a *] => (El: Pexp) = (E2:Pexp + (V ; E3:Pexp))

added and coexpanded to
1.

[« (V + epsil On)? x] = to the specification, the engine manages to prove our goal.
[+ (epsilon + X a)a *] Note that the prover prints all the intermediate properties

2. [* bot?(V + epsilon) *] = .)
[+ bot2(epsilon + X : a)] proved during the session.

Maude> (add goal U= X .)

CGoal [+ bot?(U) =] = [+ bot?(X) =] Maude> (coi nduction .)
normelized to Proof succeeded.
[« false =] = [» false *] Nunber of derived goals: 14
Goal [+ false *x] = [» false *] Number of proving steps performed: 86
proved by reduction. Max. nunber of proving steps is set to: 256
Proved properties:
Goal [* (V + epsilon)a *] = a; V=a; a; a+a:; V; a: a
[+ (epsilon + X ; a)a *] V=a; a+V,; a; a
normalized to a V=a;a; a+X; a a a a
[* a+a; V*] = [+ a+X; a; a*] V=a,; a+X,; a; a,; a
a; V=X; a,; a
[...] V=X, a
Uu=X

St opped:

the nunber of prover steps was exceeded. In order to illustrate the use of simplifying rules, we

The prover exceeds the maximum number of steps allowddiovide the key parts of the proof obtained by using the
It is easy to see that the circular coinduction algorithfBommand(show proof .). The proof is given in terms of
produces an infinite set of new goals. A solution to thithe inference rules described in [13]:
problem is using simplification rules, as described in [B].
analyzing the provided output, we see that instead of apglyi[« v] = [+ a; a + V; a; a *]

a derivation, the prover could use a simplification rule fog t - - - - - - - - - oo oo [Sinplify]
second step. The rule is the one specified in the motivatihg V *] = [+ a; a+a; a; a; a +
example: X; a; a; a; a; a*x]
Ey+E;,=FE{+ E} . , [...]
if By =FE
E, = E| 2T
LoI- [* Ma}] = [+ (X; a){a} *]
2. - * bot ? x] = [* bot?(X ; a) *
For instance, according to our example, this rule simplifies _ l l l . [______ (V))] . [______ ([Dezi v]e]
thegoa||a—|—a;V|:|a+X;a;a|tO|a;V|:|X;a;a|_ [11- [* V=*] =[* X: a=*]
After adding the corresponding simplification rule
csrl (ELl: Pexp + E2: Pexp) = [* V] = [+ X; a =]
(EL : Pexp + E2':Pexp) e oo [Sinplify]

=> (El: Pexp = E1’: Pexp) [* V + epsilon *x] = [* epsilon + X ; a *]

[Generalize]: (B, F,GU{VY = }) =
(B,F.Gu{vy @=[t])),

|- [* V+epsilon «] =[x epsilon + X a ~] wheref : X — Tx(Y) is a substitution.

---------------------------------- [Normal i ze]

- [+ UYa}t] = [+ X{a} +]

Before introducing the theorem for the soundness of the
system enriched with the generalization rule, we recall the

1. |11- [* Ya} *] =[* X{a} *] substitution theorem:
2. ||]- [* bot?(U) *] = [* bot?(X) *] Theorem 3:Let § : X — Tx(Y) be a substitution. The
.................................. [Derive] following property holds:

if & (VY)t=1t then EF (VYY) 0(t) = 0(t').

The problem that arises when using simplification rules Theorem 4:If 5 is a behavioral specificatiort; is a set of
during a proof is the soundness of the proof itself. Ongquations, andB, 7, = 0,Gy = [G]) =* (B, Fn,Gn = 0),
could, for instance, use a simplification rule that transi®r using [Reduce], [Derive] and [Generalize], defined over a
the current goal intotrue = true, thus allowingCIRC t0 given entailment relatiok, thenB II- G.

“prove” any goal. Proof: Note that for everyi = 0..n, there is some

In order to check the correctness of the proof, we negd c g, such that one of the following statements holds, each
to consider the sef of all the lemmas obtained during thecorresponding to the three rules:

execution of the prover:

« the goals proved usinfperive], such as: [Reduce]: BUF; - [€], Gi1 = Gi — {[el} and Fipy = 7

U=X]||V=X;al| etc. [Derive]: Qi+1 = (Ql—{})u and}}+1 = F;U[e]
« the goals before and after applyif§implify], such as: . B B
|V + epsz'lon| = |epsilon + X a|, etc. [Generalize]: Gi11 = (Gi — {[el}) U Fit1 =7

The function gen(e) replaces each occurrence of a subterm

If we manage to prove that all the propertiesfhold 4t appears under both sidescofiith a variable of the same
without using the simplification rules, then the proof isreot. ¢t a5 the subterm.

This follows directly from Theorem 2 in [8] fofB3, (), F) =* Consider the sef = |J,_;— F;. Let us prove that/i =

(B’f@@)- . . 0.n BUF F G; by induction overn — i. The base casg
Considering the languag&OC! presented in [4], the ; _ . tolows directly becausB U F - 0 = G,..
strategy applied for proving the goals j is: For theinductive stepwe assume thab < i < n. Let
. . € G If € Giy1 thenBU F + by the induction
([Normalize] > [Reduce] > [Derive])! hypothesis. Ife] ¢ G, then we distinguish three cases:

We mention that> has the semantics of an “orelse”-like
operator, while ! imposes the prover to apply the indicated
strategy for as many times as possible.(until it succeeds [Derive]:[e] € Fiy1; but F; 11 C F, thereforeBUF +
or it fails). - .

The command that starts the execution of the prover for .[Gene.rahze]. gen@ € Giv1; BUF I |gen(e)] (by the
the setF automatically obtained from the last proof is induction hypothesis) angen(e)| - [(by Theorem 3),
(check proof .).The user dialog for checking the correct- SOBUJF F
ness of the proof is:

[Reduce]: BUF; +[e], but F; C F, thereforeBUF +

We proved thatvi = 0.n B U F + G;, and therefore, by
Maude> (check proof .) Theorem 2 in [13]BIIF G.

Check proof succeeded.)) u)
) o The user needs to pay attention when using the generaliza-
This message indicates thatRC manages to successfullytion during coinductive proofs becaus#RC does not detect

check the correctness of the proof that uses simplificatigier-generalizations. In this way, some goals that areqztov

rules. . . . without using this rule may not be proved when using it.
An important note is that i€IRC is able to prove the current
goal only by using equational reduction, then the simplifica VII. CONCLUSIONS AND RELATED WORK
rule is not applied. In this paper we presented two non-trivial extensions of

CIRC, a theorem prover implementing the circular coinduction
principle, in order to prove a set of properties over infiigea

In addition to the rules enumerated in Section IV-C, wstructures and over BPA processes.
present the generalization rule and prove that the systenmOne of the paper contributions consisted in providing a new
remains sound after including it: technique for checking the correctness of the proofs when

V1. GENERALIZATION

using the simplification rules introduced in [11]. As a casg4] J. J. M. M. Rutten. Behavioural Differential Equationa
study we considered the infinitary trace equivalence formno Coinductive Calculus of Streams, Automata, and Power Serie
trivial BPA example. A resembling behavioral specification Theoretical Computer Sciencg08(1-3):1-53, 2003.

BPA is found in [10], where the infinitary completed tracél3] J. J. M. M. Rutten. A coinductive calculus of streanvathe-
equivalence is considered. The difference between the two Matical Structures in Computer Sciende(1):93-147, 2005.
types of equivalences is presented in [16]. [16] R. van Glabbeek. The linear time-branching time speuoti -

. . . - the semantics of concrete, sequential processeddalmdbook
We enhgnced th€IRC proving engine with a generalization of Process Algebra, chapter, pages 3-99. Elsevier.
rule used in order to transform a goal into a more general o

e
that sometimes can be proved easier than the initial one 3%] H. Zantema. ~ Well-definedness of streams by termination
P - RTA09, to app. (LNCS).

also proved the soundness of the system enhanced with the
generalization rule. The idea of using generalization isnesv

in the domain of automated provers (see [3]). The contriuti

of the article consisted in applying the rule in the conteixt o
circular coinduction in a fully automated manner.

REFERENCES

[1] J.-P. Allouche and J. Shallit. The ubiquitous proutiete-morse
sequence. lIsequences and Their applications (Proc. SETA'98)
pages 1-16. Springer-Verlag, 1999.

[2] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A
note on reliable full-duplex transmission over half-duplieks.
Communications of the ACM2(5):260-261, 1969.

[8] R. S. Boyer and J. S. Moore. Proof-checking, theorenvipm
and program verification. Technical report, 1984.

[4] G. Caltais, E.-I. Goriac, D. Lucanu, and G. Grigoras. ANRi&e
Stack Machine for ROC! Symbolic and Numeric Algorithms
for Scientific Computing, International Symposium 0r85-91,
2008.

[5] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Olje
J. Meseguer, and C. L. Talcott, editorsAll About Maude
- A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Lagilume 4350
of Lecture Notes in Computer Scienc&pringer, 2007.

[6] W. Fokkink. Introduction to Process AlgebraSpringer-Verlag,
Berlin, 2000.

[7] J. Goguen and J. Meseguer. Completeness of Many-Sorted
Equational Logic.Houston Journal of Mathematic41(3):307—
334, 1985.

[8] G. Grigoras and D. L. G. Caltais, E. Goriac. Automatedving
of the behavioral attributes. Proceedings of the 4th Balkan
Conference in Informatics (BCI'09), 2009.

[9] D. Lucanu, E.-l. Goriac, G. Caltais, and G. Rosu. CIRC : A
behavioral verification tool based on circular coinductiolm
CALCO’09 volume 5728 ot.ecture Notes in Computer Science
pages 433-442, 2009.

[10] D. Lucanu and G. Rosu. Circular Coinduction with Spéci
Contexts. Technical Report UIUCDCS-R-2009-3039, Uniitgrs
of lllinois at Urbana-Champaign, 2009. Accepted for ICFEM
2009.

[11] D. Lucanu, G. Rosu, and G. Grigoras. Regular Strategis
Proof Tactics for CIRC Prover. Iiith International Workshop
on Reduction Strategies in Rewriting and Programmifg07.
to appear in ENTCS.

[12] D. Lucanu, G. Rosu, and G. Grigoras. Regular strategis
proof tactics for circ. Electron. Notes Theor. Comput. Sci.
204:83-98, 2008.

[13] G. Rosu and D. Lucanu. Circular Coinduction — A Proof
Theoretical Foundation. I@ALCO’09 volume 5728 ol ecture
Notes in Computer Sciencpages 127-144, 2009.

