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Abstract—CIRC is an automated theorem prover based on
the circular coinduction principle. The tool is used for the
verification of programs, behavioral equivalence checking, and
proving properties over infinite data structures. In this paper
we present two extensions ofCIRC that handle the case when
the prover indicates an infinite execution for a certain goal. The
first extension involves goal simplification rules and a procedure
for checking that the new execution is indeed a proof, while the
second one refers to finding and proving a generalization of the
goal. Each of the extensions is presented based on a case study:
Binary Process Algebra (BPA) for checking the proof correctness
and Streams for using generalization.

I. I NTRODUCTION

A subject of high interest in computer science refers to
system specification and analysis. Systems are generally com-
posed of several (concurrent) processes exchanging infor-
mation. One can prove properties for behaviorally specified
systems using theCIRC prover [9], a metalanguage application
implemented as an extension of Maude [5]. Normally, the
proofs can be handled automatically by this tool, but in some
cases the human intervention is needed. In this paper we
present two ways to minimize the human interventions. The
first approach uses the simplification rules of [12] in order
to ease the proving process. The novelty here is given by a
technique which allows to check if the new finite execution
of CIRC supplies indeed a proof of the initial goal(s). This
is done by executing exactly a command of CIRC. The
second approach needs to analyze the proof session and extract
more general goals which can be proved easier than the
ones obtained by the prover. This approach is sound and the
generalization can be automatized in CIRC.

The structure of the paper is as follows. Section II provides
two motivating examples in order to illustrate the necessity
for the CIRC extensions. In Section III we present some
basic notions regarding BPA and Streams, used throughout the
paper. Section IV provides a brief description of behavioral
specifications andCIRC. Both the theoretical aspects and
the implementation of the two extensions are discussed in
Sections V and VI.
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II. M OTIVATING EXAMPLES

A. Simplification and its Correctness

In terms of trace equivalence, two processes are said to be
equivalent if they execute the same sequences of actions [6].
Consider the two processesU andX illustrated in Figure 1.
We use “+” to represent thealternative composition(non-
deterministic choice) operator and “; ” to denote thesequential
compositionoperator. It is easy to see that the languages
generated by the execution of these tow processes contain
only words of the form:a, a a a, a a a a a, and so on (action
a occurs for an odd number of times in each string).
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Fig. 1. Two trace-equivalent processes

Our first aim was to useCIRC in order to prove thatU and
X are trace-equivalent. As an extension to the work presented
in [12], this paper considers infinitary trace-equivalencebe-
tween processes that are not normalized. We need an extra set
of simplification rules used in order to avoid infinite executions
of the prover. These rules replace the current goal with a
simpler one. Since we do not impose any constraints over the
new goal, we need to prove that using these rules is sound. For
some of these simplification rules, the soundness can be easily
proved by hand, but in many cases this approach is difficult
and time consuming.

For example, in the case of processes, we proved that using
the following rule is sound:

E1 + E2 = E′

1 + E′

2

E1 = E′

1

if E2 = E′

2



Note that the equalities in the above rule are interpreted as
behavioral equivalences (which imply the trace equivalences).

In this paper we introduce the behavioral specification
associated to basic process algebra with the infinitary trace
equivalence in order to exhibit the use of the simplification
rules and present our approach for automatically checking
the correctness of using simplification rules. This step is
compulsory in the cases when we know nothing about the
soundness of the rules. For the above rule the soundness is
easy to show, but this is not always the case.

B. Generalization

Streams are data structures used to model infinite behaviors.
A stream is regarded as an infinite lista1 : a2 : . . . of
data elements. Consider the mathematical definitions for the
operatorstl, not, zipand f over infinite binary streams:

tl(a :s) = s

not(a :s) = a :not(s)

zip(a :s, s′) = a :zip(s′, s)

f (a :s) = a :a : f (s)

wherea is a variable from{0, 1}, a is the bitwise negation
of a, s and s′ are variables of sort stream, and “:” is the
stream constructor. The Thue-Morse sequence [1] is defined
by: morse = 0:zip(not(morse), tl(morse)).

In [9], Example 2 presents howCIRC is used in order to
prove thatmorseis a fixed point forf. The proposed approach
is not fully automatic as the user needs to follow four steps:

• start the coinduction engine for the goal (equation)
f(morse) = morse:

Maude> (set show details on .)
Maude> (add goal f(morse) = morse .)
Maude> (coinduction .)

• analyze the output after the engine exceeds the maximum
number of steps allowed

Hypo [* f(tl(morse)) *] =
[* zip(tl(morse),not(tl(morse))) *]

added and coexpanded to
[...]

• extract an intermediary lemma that needs to be proved:
f(tl(morse)) = zip(tl(morse), not(tl(morse)))

• start a new proof with two goals:

– f(morse) = morse– the initial equation
– f(s) = zip(s, not(s))– the generalization of the lemma

from the previous step

Maude> (add goal f(morse) = morse .)
Maude> (add goal f(S:Stream) =

zip(S:Stream, not(S:Stream)) .)
Maude> (coinduction .)

Proof succeeded [...]

CIRC now provides a better way to prove properties that
require generalizing some goals during a proof session. The
new command(set generalization on .) allows the
engine to automatically apply generalization over equations
whenever possible during a proof session:

Maude> (add goal f(morse) = morse .)
Maude> (set generalization on .)
Maude> (coinduction .)

[...]
Goal [* f(tl(morse)) *] =

[* zip(tl(morse),not(tl(morse))) *]
generalized to

[* f(S:Stream) *] =
[* zip(S:Stream,not(S:Stream)) *]

[...]
Proof succeeded [...]

In this paper we prove that the use of the generalization rule
is sound.

III. B ASIC PROCESSALGEBRA AND STREAMS

In this section we briefly present the two case studies used
in the paper as running examples.

Concurrent systems are encountered in the real world;
consider for example, a colony of ants. Each ant represents
a particular process and the interaction between ants consists
of exchanging different information about some locations
or events. Another example is a network protocol, such as
the alternating bit protocol [2]. Usually, system behavioris
modeled as a labeled transition system, where the nodes
represent system states and the edges represent the actions
performed in order for the system to reach new states.

Process algebrais a framework for specification and manip-
ulation of processes by computers and it is used for analyzing
process properties and behavior. In this section we briefly
introduce some theoretical notions regarding the basic process
algebra; more details can be found in [6].

Basic process termsare defined by the following grammar:

p ::= a | X | p+ p | p ; p

wherea ranges over an alphabetAlph andX over variables,
“+” is the alternative composition operator and “; ” is the
sequential composition operator. A process of the formp =
p1 + p2 is a process that executes eitherp1 or p2. A process
of the formp = p1 ; p2 is a process that executes firstp1 and
then p2. The notation

a
−→ ε is used in order to represent the

successful termination after executing the actiona, whereε is a
special configuration that marks the end of a transition process
[6]. Each atomic actiona always terminates successfully after
executing itself:a

a
−→ ε.

A process specification is a finite set of (recursive) equations
of the form:



X1 =def p1(X1, . . . , Xn)

X2 =def p2(X1, . . . , Xn)

. . .

Xn =def pn(X1, . . . , Xn)

whereXi are recursion variables, andpi(X1, . . . , Xn) are pro-
cess terms with possible occurrences of the recursion variables.
We only consider the case ofguardedprocess specifications
[6]. Intuitively, in a guarded specification, the right-hand sides
of these equations can be adapted to:

a1 ; q1(X1, . . . , Xn)+ . . .+ak ; qk(X1, . . . , Xn)+b1+ . . .+bl

whereai, bj ∈ Alph, by replacing the recursion variables by
the right-hand sides of their recursive equations.

Basic process algebra(BPA) represents the collection of all
the basic process terms. The operational semantics of BPA is
given by the following transition rules (wherep, p′, q andq′

are process terms andX =def p is an equation in the
specification):

.

a
a
−→ ε

if a ∈ Alph
p

a
−→ p′

X
a
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if X =def p
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p+ q
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Fig. 2. BPA operational semantics

We say that the sequencea1, . . . , an is a finite traceof p
if p

a1−→ p1 . . .
an−−→ pn. Let Tr(p) represent the set of finite

traces for processp. Infinite sequences of the forma1, a2, . . .
such thatp

a1−→ p1
a2−→ p2 . . . are infinite tracesof p. Let

Tr∞(p) denote the set of all (finite and infinite) traces forp.
We say that two processesp and q are infinitary trace-

equivalent(p ∼∞

tr q), if and only if Tr∞(p) = Tr∞(q).
Proposition 1: Let {Xi =def pi | i ∈ I} be a process

specification. Letp, q ∈ {pi | i ∈ I}.
1) Tr∞(p+ q) = Tr∞(p) ∪ Tr∞(q).

2) Tr∞(a ; p) = {aα | α ∈ Tr∞(p)}.

3) Tr∞(p) = Tr∞(p[pi/Xi]).
Proof: We prove all the equalities by double inclusion.

1) “⊇”: Let a1, a2 . . . ∈ Tr∞(p). By definition, the transi-
tion sequencep

a1−→ r1
a2−→ r2 . . . is valid (r1, r2, . . . are basic

processes). According to the rules in Fig. 2 we deduce that
p+ q

a1−→ r1 so the rewrite sequencep+ q
a1−→ r1

a2−→ r2 . . .
is also valid, leading toa1, a2 . . . ∈ Tr∞(p+ q). The proof is
similar for the casea1, a2 . . . ∈ Tr∞(q).
“⊆”: Let a1, a2 . . . ∈ Tr∞(p+ q). In this case, the sequence
p+ q

a1−→ r1
a2−→ . . . is valid. Fromp+ q

a1−→ r1 we identify
two situations: eitherp

a1−→ r1
a2−→ . . . or q

a1−→ r1
a2−→ . . .,

leading to eithera1, a2 . . . ∈ Tr∞(p) or a1, a2 . . . ∈ Tr∞(q).

2) and 3) are proved using a similar reasoning.

Streamsare infinite lists of elements. Supposing thatai are
data elements, a stream is denoted by an enumeration of the
form a1 : a2 : a3 : . . . A stream represents the solution to a
system of equations (such as the one provided in Section II-B).
For instancezero = 0:zero is the infinite stream of elements
that have the value0 (0 :0 : . . .). For a detailed description of
streams and their properties see [14], [15] and [17]. Note that
streams may be regarded as particular cases of binary process
algebras with guarded process specifications.

IV. B EHAVIORAL SPECIFICATIONS AND CIRC

We assume the reader familiar with the algebraic specifi-
cations [7]. In this section we present the notations and the
concepts used in the paper.

Let the tripleB = (S,Σ, E) denote a many sorted algebraic
specification, whereS is the set ofsorts, Σ = {Σw,s |
w ∈ S∗, s ∈ S} is an S∗×S-indexed set of operations,
namedalgebraic signature, and E is a set ofΣ-equations.
Let (∀X) t = t′ if c be aΣ-equation. t and t′ areΣ-terms
over variablesX in a fixedS-indexed set of variables and,c is
theconditionof the equation consisting of a finite set of pairs
(ui, vi) of terms over variablesX (note that the condition can
also be empty). We often write the condition of an equation
as∧i∈I(ui = vi).

A behavioral specificationis a pair of the form(B,∆),
where∆ is a set ofΣ-contexts, calledderivatives. A derivative
in ∆ is a context written asδ[∗:h], where∗ is a special variable
of sort h. S consists ofhidden sorts, H = {h | δ[∗:h] ∈ ∆},
andvisible sorts, V = S \H .

A ∆-experimentfor the hidden sorth ∈ H is inductively
defined as follows: each derivative for the hidden sorth ∈ H
with visible result sort is a∆-experiment forh; if C is a
∆-experiment forh′ andδ a behavioral operation forh with
result sorth′, thenC[δ] is a ∆-experiment forh. As above,
C[δ] denotes the term obtained fromC by replacingδ for the
distinguished variable∗:h′.

Behavioral equivalencebetween two terms of hidden sort
is defined as the “indistinguishability under experiments”. We
denote the relation of behavioral equivalence by≡. If T1 and
T2 are terms of hidden sort, thenT1 ≡ T2 if and only if
C[T1] = C[T2], for all ∆-experimentsC.

Next we provide the behavioral specifications we considered
for BPA and streams, as case studies.

A. BPA Behavioral Specification

The equational specification of the processes is defined by
the following items:

• a sortAlph for the atomic actions (the alphabet)

• a sortPid for the process variables

• a sortPexpfor the process terms (expressions)

• the constructors for process terms:



Alph < Pexp, Pid < Pexp

+ : Pexp Pexp → Pexp

; : Pexp Pexp → Pexp

• a sortPeq together with the constructor

=def : Pid Pexp → Peq

for the process equations

• a sortSet{Peq} together with the constructors

Peq < Set{Peq}and

, : Set{Peq} Set{Peq} → Set{Peq}

for the sets of process equations.

Now we provide the behavioral aspect of the specification.
We consider two special process constants:⊥ such thatp

a
−→ ⊥

iff 6∃q.p
a
−→ q, andε such that∀a.a

a
−→ ε (this corresponds to

a successful termination). We also consider two derivatives.
The first one,∗:Pexp{A:Alph}, has the intended meaning
Tr∞(p{a}) = {α | aα ∈ Tr∞(p)} and it is similar to
Brzozowski derivatives for the regular expressions. The second
derivative is⊥?(∗:Pexp), and has the meaning⊥?(p) = true
iff ∀a.p

a
−→ ⊥.

The derivatives are defined as

{ } : Pexp Alph→ Pexp

⊥? : Pexp→ Bool

together with the following equations:

(p+ q){a} = p{a}+ q{a} ⊥?(p+ q) = ⊥?(p) ∨ ⊥?(q)

(p ; q){a} = p{a} ; q if ⊥?(p ; q) = ⊥?(p)

p 6= ε ∧ p 6= ⊥ ⊥?(⊥) = true

a{a} = ε ⊥?(ε) = false

b{a} = ⊥ if b 6= a ⊥?(a) = false

ε{a} = ⊥ ⊥?(X) = false

X{a} = r{a}

whereX =def r is a process equation in the specification,p
andq are basic processes anda is an element fromAlph.

The functionTr∞( ) is extended as follows:

Tr∞(⊥ ; p) = Tr∞(⊥) = ∅

Tr∞(⊥ + p) = Tr∞(p)

Tr∞(ε) = {λ},whereλ is the empty trace

Tr∞(ε ; p) = Tr∞(p)

The equations associated to this extension that need to be
added to the specification are:

⊥ ; p = ⊥

⊥+ p = p

ε ; p = p

Theorem 1:If a ∈ Alph and p is a process therm s.t.p 6∈
{⊥, ε} thenTr∞(p{a}) = {α | aα ∈ Tr∞(p)}.

Proof: We proceed by structural induction onp.
Case p = p1 + p2. According to the equations used for
defining the derivative{ } and to Proposition 1, the equalities
Tr∞((p + q){a}) = Tr∞(p{a} + q{a}) = Tr∞(p{a}) ∪
Tr∞(q{a}) hold. By the induction hypothesis, we deduce that
Tr∞(p{a})∪Tr∞(p{a}) = {α | aα ∈ Tr∞(p)}∪{α | aα ∈
Tr∞(q)} = {α | aα ∈ Tr∞(p) ∪ Tr∞(q)} = {α | aα ∈
Tr∞(p+ q)}.

The other cases are proved in a similar manner.
Proposition 2: Let p be a basic process anda, ai ∈ Alph,

i ≥ 1.

1) a ∈ Tr∞(p) ⇔ p{a} 6= ⊥.

2) a1, . . . , an ∈ Tr(p) ⇔ p{a1} . . . {an} 6= ⊥.

3) a1, a2 . . . ∈ Tr∞(p) ⇔ (∀n)a1, . . . , an ∈ Tr(p) ⇔
(∀n)p{a1} . . . {an} 6= ⊥.

Two processesp and q are behavioral equivalent(p ≡ q)
if and only if C[p] =E C[q] for all experimentsC (see [13]
for more details). In our case, the experiments are of the form
⊥?(∗:Pexp{a1} . . . {an}).

Theorem 2:If p ≡ q thenp ∼∞

tr q.
Proof: Recall that p ∼∞

tr q if and only if
Tr∞(p) = Tr∞(q). We proceed by proving this equality.
a1, . . . , an ∈ Tr∞(p) ⇔ ⊥?(p{a1} . . . {an}) = false ⇔
⊥?(q{a1} . . . {an}) = false ⇔ a1, . . . , an ∈ Tr∞(q).
a1, a2, . . . ∈ Tr∞(p) ⇔ (∀n)a1, . . . , an ∈ Tr(p) ⇔
(∀n)a1, . . . , an ∈ Tr(q) ⇔ a1, a2, . . . ∈ Tr∞(q).

B. Streams Behavioral Specification

In order to specify streams, we consider two sorts: a
hidden sortStream for the streams and a visible sortData

for the stream elements. The streams are defined in terms
of the derivatives head (hd : Stream → Data) and tail
(tl : Stream → Stream).

The behavior for an operation over streams is defined
using these two derivatives. For instance, the operations
not , zip, f , andmorse introduced in Section II-B are defined
by the following equations:

hd(not(s)) = hd(s)

tl(not(s)) = not(tl(s))

hd(zip(s1, s2)) = hd(s1)

tl(zip(s1, s2)) = zip(s2, tl(s1))

hd(f(s)) = hd(s)

hd(tl(f(s))) = hd(s)

tl(tl(f(s))) = f(tl(s))

hd(morse) = 0

hd(tl(morse)) = 1

tl(tl(morse)) = zip(tl(morse), not(tl(morse)))



As Data is the only visible sort in our specification,
experiments over streams are of the formhd(∗), hd(tl(∗)),
hd(tl(tl(∗))) . . ., where∗ is a variable of sortStream.

C. TheCIRC Theorem Prover

CIRC is an automated tool used for inductive and coin-
ductive theorem proving, created as an extension of Maude.
This tool can be used in program verification, behavioral
equivalence checking and for proving process bisimilarity.

As presented in [9], the circular coinduction engine imple-
ments the proof system given in [13] by a set of reduction rules
(B,F ,G) ⇒ (B,F ′,G′), whereB represents the (original)
algebraic specification,F is the set of frozen axioms andG is
the current set of proof obligations.

In order to present these rules, we introduce the underlying
entailment relation used inCIRC:

E ⊢�� (∀X)t = t′if ∧i∈I (ui = vi) iff nf(t) = nf(t′)

wherenf(t) is computed as follows:

• the variablesX of the equations are turned into fresh
constants;

• the condition equalitiesui = vi are added as equations
to the specification;

• the equations in the specification are oriented and used
as rewrite rules.

The normal formnf(e) of an equatione of the form
(∀X)t = t′ if c is (∀X)nf(t) = nf(t′) if c, where the
constants from the normal forms are turned back into the
corresponding variables.

In order to implement the circularity principle [13], we
use a freezing operator− , declared inCIRC as the operator
[* *]. For an equation(∀X) t = t′ if c, the corresponding
frozen equation is:(∀X) t = t′ if c. The role of the
freezing operator is to forbid the application of the coinductive
hypotheses when the current goal does not match it at the top.

Here is a brief description of the reduction rules included
in the CIRC prover engine:

[Done]: (B,F , ∅) ⇒ ·
- applied whenever the set of proof obligations is empty;
indicates the termination of the reduction process.

[Reduce]: (B,F ,G∪{ e }) ⇒ (B,F ,G) if B∪F ⊢�� e
- applied whenever the current goal is a⊢��-consequence
of B ∪ F ; it removese from the set of goals.

[Derive]: (B,F ,G∪{ e }) ⇒ (B,F ∪{ e },G∪{∆(e) })
if B ∪ F 6⊢�� e ande is hidden

- applied when the current goale is hidden and it is
not a ⊢��-consequence; it adds the current goal to the
hypothesis and its derivatives to the set of goals.∆(e)
denotes the set{δ[e] | δ ∈ ∆}.

[Normalize]: (B,F ,G ∪ { e }) ⇒ (B,F ,G ∪ { nf(e) })
- removes the current goal from the set of proof obliga-
tions and adds its normal form as a new goal.

[Fail]: (B,F ,G ∪ { e }) ⇒ fail
if B ∪ F 6⊢�� e ande is visible

- stops the reduction process with failure whenever the
current goale is visible and the corresponding normal
forms are different.

The system above is parametric over an entailment relation
⊢�� that satisfies the properties presented in [13].

It is easy to see that the reduction rules[Done], [Reduce],
and [Derive] implement the proof rules with the same names
given in [13]. The reduction rules[Normalize] and[Fail] have
no correspondent in the proof system and are used to ease the
user interaction with the prover.

As already mentioned,CIRC is a behavioral extension of
Maude. The derivatives (behavioral operations) are declared
in a separate CIRC module(ctheory ... endctheory),
which extends the Maude-specific functional theory module.
Each derivative is specified using the keywordderivative
(the shortened formder can also be used). When spec-
ifying processes one has to consider declarations of the
form derivative *:Pexp{a} for each a ∈ Alph and
derivative bot?(*:Pexp). For the case of streams, the
derivative declarations are:derivative hd(*:Stream) and
derivative tl(*:Stream).

In order to test the examples presented in this paper, the
reader may use the online version ofCIRC:

http://fsl.cs.uiuc.edu/index.php/Special:CircOnline.

V. SIMPLIFYING RULES AND PROOF CHECKING

Recall from the example presented in Section II-A that our
task is to prove thatX ∼∞

tr U, whereX =def (a ;X ; a) + a,
U =def (a ;V ) + a, andV =def (a ; a ;V ) + (a ; a). We
provide the specification for these processes:

ctheory BPA is
including BPA-EQ .

ops a : -> Alph .
ops X U V : -> Pid .

eq pmain =
( X =def (a ; X ; a) + a ),
( U =def (a ; V) + a ),
( V =def (a ; a ; V) + (a ; a) ) .

derivative *:Pexp { a } .
derivative bot?(*:Pexp) .

scx *:Pexp + PX:Pexp .
scx PX:Pexp + *:Pexp .

endctheory

Herepmain represents the specification of all processes. Also,
we explicitly specify the operator “+” as special context [10].



We proceed by adding the goalU = X in the usual manner
and trying to prove it by coinduction. We also choose to view
all the details of the steps performed during the proof session
by using the command(set show details on .):

Maude> (add goal U = X .)
Maude> (set show details on .)
Maude> (coinduction .)

Hypo [* U *] = [* X *]
added and coexpanded to

1. [* U{a} *] = [* X{a} *]
2. [* bot?(U) *] = [* bot?(X) *]

Goal [* U{a} *] = [* X{a} *] normalized to
[* V + epsilon *] = [* epsilon + X ; a *]

Hypo [* V + epsilon *] = [* epsilon + X ; a *]
added and coexpanded to

1. [* (V + epsilon)a *] =
[* (epsilon + X ; a)a *]

2. [* bot?(V + epsilon) *] =
[* bot?(epsilon + X ; a) *]

Goal [* bot?(U) *] = [* bot?(X) *]
normalized to

[* false *] = [* false *]
Goal [* false *] = [* false *]

proved by reduction.

Goal [* (V + epsilon)a *] =
[* (epsilon + X ; a)a *]

normalized to
[* a + a ; V *] = [* a + X ; a ; a *]

[...]

Stopped:
the number of prover steps was exceeded.

The prover exceeds the maximum number of steps allowed.
It is easy to see that the circular coinduction algorithm
produces an infinite set of new goals. A solution to this
problem is using simplification rules, as described in [12].By
analyzing the provided output, we see that instead of applying
a derivation, the prover could use a simplification rule for the
second step. The rule is the one specified in the motivating
example:

E1 + E2 = E′

1 + E′

2

E1 = E′

1

if E2 = E′

2

For instance, according to our example, this rule simplifies
the goal a+ a ;V = a+X ; a ;a to a ;V = X ; a ; a .

After adding the corresponding simplification rule

csrl (E1:Pexp + E2:Pexp) =
(E1’:Pexp + E2’:Pexp)

=> (E1:Pexp = E1’:Pexp)

if (E2:Pexp = E2’:Pexp)
.

to the specification and running the example for the second
time, we still encounter the problem of infinite rewriting. By
using a similar technique, we identify another simplification
rule:

E1 = E2 + (a ; a ;E3) + (X ; a ; a ;a ;E3)

E1 = E2 + V ;E3

After adding the corresponding rule

srl (E1:Pexp) =
(E2:Pexp +
(a ; a ; E3:Pexp) +
(X ; a ; a ; a ; E3:Pexp))

=> (E1:Pexp) = (E2:Pexp + (V ; E3:Pexp))
.

to the specification, the engine manages to prove our goal.
Note that the prover prints all the intermediate properties
proved during the session.

Maude> (add goal U = X .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 14
Number of proving steps performed: 86
Max. number of proving steps is set to: 256

Proved properties:
a ; V = a ; a ; a + a ; V ; a ; a
V = a ; a + V ; a ; a
a ; V = a ; a ; a + X ; a ; a ; a ; a
V = a ; a + X ; a ; a ; a
a ; V = X ; a ; a
V = X ; a
U = X

In order to illustrate the use of simplifying rules, we
provide the key parts of the proof obtained by using the
command(show proof .). The proof is given in terms of
the inference rules described in [13]:

[...]
[* V *] = [* a ; a + V ; a ; a *]
---------------------------------- [Simplify]
[* V *] = [* a ; a + a ; a ; a ; a +

X ; a ; a ; a ; a ; a *]

[...]

1. |||- [* V{a} *] = [* (X ; a){a} *]
2. |||- [* bot?(V) *] = [* bot?(X ; a) *]
---------------------------------- [Derive]
|||- [* V *] = [* X ; a *]

[* V *] = [* X ; a *]
---------------------------------- [Simplify]
[* V + epsilon *] = [* epsilon + X ; a *]



|- [* V + epsilon *] = [* epsilon + X ; a *]
---------------------------------- [Normalize]
|- [* U{a} *] = [* X{a} *]

1. |||- [* U{a} *] = [* X{a} *]
2. |||- [* bot?(U) *] = [* bot?(X) *]
---------------------------------- [Derive]
|||- [* U *] = [* X *]

The problem that arises when using simplification rules
during a proof is the soundness of the proof itself. One
could, for instance, use a simplification rule that transforms
the current goal intotrue = true, thus allowingCIRC to
“prove” any goal.

In order to check the correctness of the proof, we need
to consider the setF of all the lemmas obtained during the
execution of the prover:

• the goals proved using[Derive], such as:
U = X , V = X ;a , etc.

• the goals before and after applying[Simplify], such as:
V + epsilon = epsilon+X ; a , etc.

If we manage to prove that all the properties inF hold
without using the simplification rules, then the proof is correct.
This follows directly from Theorem 2 in [8] for(B, ∅,F) ⇒∗

(B,F ′, ∅).
Considering the languageROC! presented in [4], the

strategy applied for proving the goals inF is:

([Normalize] ⊲ [Reduce] ⊲ [Derive])!

We mention that⊲ has the semantics of an “orelse”-like
operator, while ! imposes the prover to apply the indicated
strategy for as many times as possible (i.e. until it succeeds
or it fails).

The command that starts the execution of the prover for
the set F automatically obtained from the last proof is
(check proof .). The user dialog for checking the correct-
ness of the proof is:

Maude> (check proof .)
Check proof succeeded.

This message indicates thatCIRC manages to successfully
check the correctness of the proof that uses simplification
rules.

An important note is that ifCIRC is able to prove the current
goal only by using equational reduction, then the simplification
rule is not applied.

VI. GENERALIZATION

In addition to the rules enumerated in Section IV-C, we
present the generalization rule and prove that the system
remains sound after including it:

[Generalize]: (B,F ,G ∪ {∀Y θ(t) = θ(t′) }) ⇒

(B,F ,G ∪ {∀Y t = t′ }),
whereθ : X → TΣ(Y ) is a substitution.

Before introducing the theorem for the soundness of the
system enriched with the generalization rule, we recall the
substitution theorem:

Theorem 3:Let θ : X → TΣ(Y ) be a substitution. The
following property holds:

if E ⊢ (∀Y ) t = t′ then E ⊢ (∀Y ) θ(t) = θ(t′).

Theorem 4:If B is a behavioral specification,G is a set of
equations, and(B,F0 = ∅,G0 = G ) ⇒∗ (B,Fn,Gn = ∅),
using [Reduce], [Derive] and [Generalize], defined over a
given entailment relation⊢, thenB � G.

Proof: Note that for everyi = 0..n, there is some
e ∈ Gi such that one of the following statements holds, each
corresponding to the three rules:

[Reduce]: B∪Fi ⊢ e , Gi+1 = Gi−{ e } andFi+1 = Fi

[Derive]: Gi+1 = (Gi−{ e })∪ ∆(e) andFi+1 = Fi∪ e

[Generalize]: Gi+1 = (Gi − { e }) ∪ gen(e) Fi+1 = Fi

The functiongen(e) replaces each occurrence of a subterm
that appears under both sides ofe with a variable of the same
sort as the subterm.

Consider the setF =
⋃

i=0..n Fi. Let us prove that∀i =
0..n B ∪ F ⊢ Gi by induction overn − i. The base case,
i = n, follows directly becauseB ∪ F ⊢ ∅ = Gn.

For the inductive stepwe assume that0 ≤ i < n. Let
e ∈ Gi. If e ∈ Gi+1 then B ∪ F ⊢ e by the induction
hypothesis. Ife 6∈ Gi+1 then we distinguish three cases:

[Reduce]: B∪Fi ⊢ e ; butFi ⊆ F , thereforeB∪F ⊢ e

[Derive]: e ∈ Fi+1; butFi+1 ⊆ F , thereforeB∪F ⊢ e

[Generalize]: gen(e) ∈ Gi+1; B ∪ F ⊢ gen(e) (by the
induction hypothesis) andgen(e) ⊢ e (by Theorem 3),
soB ∪ F ⊢ e

We proved that∀i = 0..n B ∪ F ⊢ Gi, and therefore, by
Theorem 2 in [13],B � G.

The user needs to pay attention when using the generaliza-
tion during coinductive proofs becauseCIRC does not detect
over-generalizations. In this way, some goals that are proved
without using this rule may not be proved when using it.

VII. C ONCLUSIONS ANDRELATED WORK

In this paper we presented two non-trivial extensions of
CIRC, a theorem prover implementing the circular coinduction
principle, in order to prove a set of properties over infinitedata
structures and over BPA processes.

One of the paper contributions consisted in providing a new
technique for checking the correctness of the proofs when



using the simplification rules introduced in [11]. As a case
study we considered the infinitary trace equivalence for a non-
trivial BPA example. A resembling behavioral specificationfor
BPA is found in [10], where the infinitary completed trace
equivalence is considered. The difference between the two
types of equivalences is presented in [16].

We enhanced theCIRC proving engine with a generalization
rule used in order to transform a goal into a more general one,
that sometimes can be proved easier than the initial one. We
also proved the soundness of the system enhanced with the
generalization rule. The idea of using generalization is not new
in the domain of automated provers (see [3]). The contribution
of the article consisted in applying the rule in the context of
circular coinduction in a fully automated manner.
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