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Abstract. Alias analysis has been an interesting research topic in veri�-
cation and optimization of programs. The undecidability of determining
whether two expressions in a program may reference to the same ob-
ject is the main source of the challenges raised in alias analysis. In this
paper we propose an extension of a previously introduced alias calculus
based on program expressions, to the setting of unbounded program ex-
ecutions such as in�nite loops and recursive calls. Moreover, we devise a
corresponding executable speci�cation in the K-framework. An impor-
tant property of our extension is that, in a non-concurrent setting, the
corresponding alias expressions can be over-approximated in terms of a
notion of regular expressions. This further enables us to show that the
associated K-machinery implements an algorithm that always stops and
provides a sound over-approximation of the �may aliasing� information,
where soundness stands for the lack of false negatives. As a case study,
we analyze the integration and further applications of the alias calculus
in SCOOP. The latter is an object-oriented programming model for con-
currency, recently formalized in Maude; K de�nitions can be compiled
into Maude for execution.

1 Introduction

A research direction of interest in Computer Science is the application of alias
analysis in veri�cation and optimization of programs. One of the challenges
along this line of research has been the undecidability of determining whether
two expressions in a program may reference the same object. A rich suite of
approaches aiming at providing a satisfactory balance between scalability and
precision has already been developed in this regard. Examples include: (i) intra-
procedural frameworks [17, 16] that handle isolated functions only, and their
inter-procedural counterparts [16, 23, 12] that consider the interactions between
function calls; (ii) type-based techniques [9]; (iii) �ow-based techniques [4, 7]
that establish aliases depending on the control-�ow information of a procedure;
(iv) context-(in)sensitive approaches [10, 30] that depend on whether the call-
ing context of a function is taken into account or not; (v) �eld-(in)sensitive
approaches [21, 1] that depend on whether the individual �elds of objects in a
program are traced or not. More details on such classi�cations can be found
in [26], for instance. For a comprehensive survey on alias analyses for object-
oriented programs, corresponding issues and remaining open problems, we refer
the interested reader to the works in [29, 11].



Of particular interest for the work in this paper is the untyped, �ow-sensitive,
�eld sensitive, inter-procedural and context-sensitive calculus for may aliasing,
introduced in [15]. The aforementioned calculus covers most of the aspects of a
modern object-oriented language, namely: object creation and deletion, condi-
tionals, assignments, loops and (possibly recursive) function calls. The approach
in [15] abstracts the aliasing information in terms of explicit access paths [18]
referred to as alias expressions. Consider, for an example, the code

x : = y;
loop x : = x.next end

(1)

The corresponding execution causes x to become aliased to y.next.next. . . ., with
a possibly in�nite number of occurrences of the �eld next. The set of associated
alias expressions can be equivalently written as:

{[x, y.nextk] | k ≥ 0}. (2)

The sources of imprecision introduced by the calculus in [15] are limited to ig-
noring tests in conditionals, and to �cutting at length L�, for the case of possibly
in�nite alias relation as in (2). Intuitively, the cutting technique considers se-
quences longer than a given length L as aliased to all expressions.

There is a huge literature on heap analysis for aliasing [11], but hardly any
paper that presents a calculus as in [15] allowing the derivation of alias relations
as the result of applying various instructions of a programming language.

Our focus is two folded. First, we want extend the framework in [15] to the
setting of unbounded program executions such as in�nite loops and recursive
calls. In accordance, the goal is to provide a way to shift from ��nite� to �in�-
nite behaviours�. This can be achieved in a rather straightforward manner, by
rede�ning the construct loop p end in [15] according to the informal semantics:
�execute p repeatedly any number of times, including zero�. However, developing
a corresponding mechanism for reasoning on �may aliasing� in a �nite number of
steps is not trivial. The key observation that paves the way to a possible (�nite
state-based) modeling in a non-concurrent setting is that the alias expressions
corresponding to loops and recursive calls grow in a regular fashion. Hence, they
are �nitely representable, as it is easy to see in (2), for instance. Such regular-
ities cannot be exploited in concurrent contexts, due to the �non-determinism�
of process interaction.

A similar technique exploiting regular behaviour of (non-concurrent) pro-
grams, in order to reason on �may aliasing�, was previously introduced in [2]. In
short, the results in [2] utilize abstract representations of programs in terms of
�nite pushdown systems, for which in�nite execution paths have a regular struc-
ture (or are �lasso shaped�) [3]. Then, in the style of abstract interpretation [8],
the collecting semantics is applied over the (�nite state) pushdown systems to
obtain the alias analysis itself. In short, the main di�erence with the results
in [2] consists in how the abstract memory addresses corresponding to pointer
variables are represented. In [2] these range over a �nite set of natural numbers.
In this paper we consider alias expressions build according to the calculus in [15].



The work in [2] also proposes an implementation of pushdown systems in
the K-framework [27]. The latter is an executable semantic framework based on
Rewriting Logic (RL) [19], and has successfully been used for de�ning program-
ming languages and corresponding formal analysis tools. Moreover, K de�nitions
have a direct implementation in K-Maude [28].

We agree that it could be worth presenting our analysis as an abstract in-
terpretation (AI) [8]. A modelling exploiting the machinery of AI (based on
abstract domains, abstraction and concretization functions, Galois connections,
�xed-points, etc.) is an interesting, but di�erent research topic per se.

Our second interest w.r.t. may aliasing is its integration in SCOOP [22] � a
simple object oriented programming model for concurrency; thus an operational
based approach on handling the alias calculus is more appropriate. The basis
of a RL-based framework for the design and analysis of the SCOOP model was
recently set in [22]. The reference implementation of SCOOP is Ei�el [20]. The
integration of alias analysis belongs to a more ambitious goal, namely, the con-
struction of a RL-based toolbox for the analysis of SCOOP programs (examples
include a deadlock detector and a type checker).

Our contribution. By drawing inspiration from, and building on top of the results
in [15, 2], in this paper we propose:

� an extension of the (�nite) alias calculus in [15] to the setting of unbounded
program executions, and a sound over-approximation technique based on
�regular alias expressions�, for non-concurrent settings;

� a RL-based speci�cation of the extended calculus;
� an algorithm that always terminates and provides a sound over-approximation

of �may aliasing� by exploiting a notion of regular (�nitely representable)
aliases, for non-concurrent settings.

Moreover, we analyze the integration, implementation and further applications
of the alias calculus in SCOOP.

We refer the interested reader to [5] for the extended version of the current
paper including: the full speci�cation of the RL-based machinery, two examples
emphasizing the naturalness of applying the executable aliasing framework and a
case study exploiting the corresponding implementation in SCOOP, respectively,
together with the detailed proofs of the formal results.

Paper structure. The paper is organized as follows. In Section 2 we introduce
the extension of the alias calculus in [15] to unbounded executions. In Section 3
we provide the RL-based executable speci�cation of the calculus in the K se-
mantic framework. The implementation in SCOOP, and further applications are
discussed in Section 4. In Section 5 we draw the conclusions and provide pointers
to future work.

2 The alias calculus

In this section we de�ne an extension of the calculus in [15], to unbounded
program executions. Moreover, based on the idea behind the pumping lemma for



regular languages [25], we devise a corresponding sound over-approximation of
�may aliasing� in terms of regular expressions, applicable in sequential contexts.
This paves the way to developing an algorithm for the aliasing problem, as
presented in Section 3, in the formal setting of the K semantic framework [27].

Preliminaries. We proceed by brie�y recalling the notion of alias relation and
a series of associated notations and basic operations, as introduced in [15].

We call an expression a (possibly in�nite) path of shape x.y.z. . . ., where x
is a local variable, class attribute or Current, and y, z, . . . are attributes. Here,
Current, also known as this or self, stands for the current object. For an arbitrary
alias expression e, it holds that e.Current = Current .e = e. Let E represent the
set of all expressions of a program. An alias relation is a symmetric and irre�exive
binary relation over E × E.

Given an alias relation r and an expression e, we de�ne

r/e = {e} ∪ {x:E | [x, e] ∈ r}

denoting the set consisting of all elements in r which are aliased to e, plus e
itself.

Let x be an expression; we write r − x to represent r without the pairs with
one element of shape x.e.

We say that an alias relation is dot complete whenever for any t, u, v and
a it holds that if [t, u] and [t.a, v] are alias pairs, then [u.a, v] is an alias pair
and, moreover, if a is in the domain of t, then [t.a, u.a] is an alias pair. By
the �domain of t� we refer to a method or a �eld in the class corresponding to
the object referred by the expression associated to t. For instance, given a class
NODE with a �eld next of type NODE, and a NODE object x, we say that
next is in the domain of t = x.next.next. For the sake of brevity, we write
dot-complete(r) for the closure under dot-completeness of a relation r.

The notation r[x = u] represents the relation r augmented with pairs [x, y]
and made dot complete, where y is an element of u.

2.1 Extension to unbounded executions

We further introduce an extension of the alias calculus in [15] to in�nite alias
relations corresponding to unbounded executions such as in�nite loops or recur-
sive calls. The main di�erence in our approach is re�ected by the de�nition of
loops, which now complies to the usual �xed-point denotational semantics.

The alias calculus is de�ned by a set of axioms �describing� how the execution
a program a�ects the aliasing between expressions. As in [15], the calculus ignores
tests in conditionals and loops. The program instructions are de�ned as follows:

p :: = p ; p | then p else p end |
create x | forget x | t := s |
loop p end | call f(l) | x.call f(l).

(3)

In short, we write r � p to represent the alias information obtained by executing
p when starting with the initial alias relation r.



The axiom for sequential composition is de�ned in the obvious way:

r � (p ; q) = (r � p) � q. (4)

Conditionals are handled by considering the union of the alias pairs resulted
from the execution of the instructions corresponding to each of the two branches,
when starting with the same initial relation:

r � (then p else q end) = r � p ∪ r � q. (5)

As previously mentioned, we de�ne r � loop p end according to its informal
semantics : �execute p repeatedly any number of times, including zero�. The
corresponding rule is:

r � (loop p end) =
⋃
n∈N

(r � pn) (6)

where ∪ stands for the union of alias relations, as above. This way, our calculus is
extended to in�nite alias relations. This is the main di�erence with the approach
in [15] that proposes a �cutting� technique restricting the model to a maximum
length L. In [15], sequences longer than L are considered as aliased to all expres-
sions. Orthogonally, for sequential settings, we provide �nite representations of
in�nite alias relations based on over-approximating regular expressions, as we
shall see in Section 2.2.

Both the creation and the deletion of an object x eliminate from the current
alias relation all the pairs having one element pre�xed by x:

r � (create x) = r − x
r � (forget x) = r − x. (7)

The (quali�ed) function calls comply to their initial de�nitions in [15]:

r � (call f(l)) = (r[f•:l])� | f |
r � (x.call f(l)) = x.((x′.r)� call f(x′.l)).

(8)

Here f• and | f | stand for the formal argument list and the body of f , respec-
tively, whereas r[u:v] is the relation r in which every element of the list v is
replaced by its counterpart in u. Intuitively, the negative variable x′ is meant to
transpose the context of the quali�ed call to the context of the caller. Note that
�.� (i.e., the constructor for alias expressions) is generalized to distribute over
lists and relations: x.[a, b, . . .] = [x.a, x.b, . . .].

For an example, consider a class C in an OO-language, and an associated
procedure f that assigns a local variable y, de�ned as: f(x) { y : = x }. Then,
for instance, the aliasing for a.call f(a) computes as follows:

∅ � a.call f(a) =
a.(a′.∅ � y : = a′.a) =

a.(∅ � y : = Current) =
dot-complete({[a.y, a]}).



Recursive function calls can lead to in�nite alias relations. In sequential set-
tings, as for the case of loops, the mechanism exploiting sound regular over-
approximations in order to derive �nite representations of such relations is pre-
sented in the subsequent sections.

The axiom for assignment is as well in accordance with its original counter-
part in [15]:

r � (t := s) = given r1 = r[ot = t]
then (r1 − t)[t = (r1/s − t)]− ot end (9)

where ot is a fresh variable (that stands for �old t�). Intuitively, the aliasing
information w.r.t. the initial value of t is �saved� by associating t and ot in r
and closing the new relation under dot-completeness, in r1. Then, the initial t
is �forgotten� by computing r1 − t and the new aliasing information is added in
a consistent way. Namely, we add all pairs (t, s′), where s′ ranges over r1/s − t
representing all expressions already aliased with s in r1, including s itself, but
without t. Recall that alias relations are not re�exive, thus by eliminating t we
make sure we do not include pairs of shape [t, t]. Then, we consider again the
closure under dot-completeness and forget the aliasing information w.r.t. the
initial value of t, by removing ot.

Remark 1. It is worth discussing the reason behind not considering transitive
alias relations. Assume the following program:

then x := y else y := z end

Based on the equations (5) and (9) handling conditionals and assignments, re-
spectively, the calculus correctly identi�es the alias set: {[x, y], [y, z]}. Including
[x, z] would be semantically equivalent to the execution of the two branches in
the conditional at the same time, which is not what we want.

2.2 A sound over-approximation

In a sequential setting, the challenge of computing the alias information in the
context of (in�nite) loops and recursive calls reduces to evaluating their corre-
sponding �unfoldings�, captured by expressions of shape

r � pω,

with ω ranging over naturals plus in�nity, r an (initial) alias relation (r = ∅),
and p a basic control block de�ned by:

p :: = p ; p | then p else p end |
create x | forget x |
t := s.

(10)

The value r � pω refers to the alias relation obtained by recursively executing the
control block p, and it is calculated in the expected way:

r � p0 = r
r � pk+1 = (r � pk)� p.



Consider again the code in (1):

x := y;
loop x := x.next end.

Its execution generates the alias relation

(((∅ � (x := y)) � (x := x.next)) � (x := x.next) . . .

including an in�nite number of pairs of shape:

[x, y.next], [x, y.next.next], [x, y.next.next.next] . . . . (11)

A similar reasoning does not hold for concurrent applications, where process
interaction is not �regular�.

In what follows we provide a way to compute �nite representations of in�nite
alias relations in sequential settings. The key observation is that alias expressions
corresponding to unbounded program executions grow in a regular fashion. See,
for instance, the aliases in (11), which are pairs of type [x, y.nextk≥1].

Regular expressions are de�ned similarly to the regular languages over an
alphabet. We say that an expression is regular if it is a local variable, class at-
tribute or Current. Moreover, the concatenation e1 . e2 of two regular expressions
e1 and e2 is also regular. Given a regular alias expression e, the expression e∗

is also regular; here (−)∗ denotes the Kleene star [14]. We call an alias relation
regular if it consists of pairs of regular expressions.

Lemma 1. Assume p a program built according to the rules in (3). Then, in a
sequential setting, the relation ∅ � p is regular.

Proof. The result follows by induction on the structure of p.

Inspired by the idea behind the pumping lemma for regular languages [25], we
de�ne a lasso property for alias relations, which identi�es the repetitive patterns
within the structure of the corresponding alias expressions. The intuition is that
such patterns will occur for an in�nite number of times due to the execution of
loops or recursive function calls. Then, we supply sound over-approximations of
�lasso� relations, based on regular alias expressions.

In the context of alias relations, we say that the lasso property is satis�ed
by r and r′ whenever the following two conditions hold: (1) r behaves like a
lasso base of r′. Namely, all the pairs [e1, e2] ∈ r are used to generate elements
[e′1, e

′
2] ∈ r′, by repeating tails of pre�xes of e1 and e2, respectively, and (2) r′ is

a lasso extension of r. Namely, all the pairs in r′ are generated from elements of
r by repeating tails of their pre�xes. For example, if e1 above is an expression
of shape x.y.z.w, then e′1 can be x.y.y.z.w if we consider the tail y of the pre�x
x.y, or x.y.z.y.z.w if we take the tail y.z of the pre�x x.y.z.

Formally, consider r and r′ two alias relations, and xi, yi and zi a set of
(possibly empty) expressions, for i ∈ {1, 2}. Then:

lasso(r, r′) = ([x1y1z1, x2y2z2] ∈ r i� [x1y1y1z1, x2y2y2z2] ∈ r′). (12)



For the simplicity of notation we sometimes omit the dot-separators between
expressions. For instance, we write x y z in lieu of x.y.z.

Assuming a lasso over r and r′, we compute a relation consisting of regular
expressions over-approximating r and r′ as:

reg(r, r′) = {[x1y∗1z1, x2y∗2z2] |
[x1y1z1, x2y2z2] ∈ r∧
[x1y1y1z1, x2y2y2z2] ∈ r′}

(13)

where xi, yi and zi are possibly empty expressions, for i ∈ {1, 2}. As previously
indicated, the over-approximation is sound w.r.t. the repeated application of a
basic control block as in (10), in the way that it does not introduce any false
negatives:

Lemma 2. Consider r and r′ two alias relations, and p a basic control block in
a sequential setting. If r � p = r′ and lasso(r, r′) = true, then the following holds
for all n ≥ 1:

r � pn ∈ reg(r, r′).

Proof. The reasoning is by induction on n. The base case follows immediately,
whereas the induction step is proved by �reductio ad absurdum�. ut

3 A K-machinery for collecting aliases

In this section we provide the speci�cation of a RL-based mechanism collecting
the alias information in the K semantic framework [27]. We choose K more as
a notational convention to enable compact and modular de�nitions. In reality,
the K-rules in this section are implemented in Maude, as rewriting theories, on
top of the formalization of SCOOP [22] (we refer to Section 4 for more details
on our approach).

In short, our strategy is to start with a program built on top of the control
structures in (3), then to apply the corresponding K-rules in order to get the
�may aliasing� information in a designated K-cell (〈 − 〉al). Independently of
the setting (sequential or concurrent) one can exploit this approach in order to
evaluate the aliases of a given �nite length L. We also show that for sequential
contexts, the application of the K-rules is �nite and the aliases in the �nal
con�guration soundly over-approximate the (in�nite) �may alias� relations of
the calculus.

Brief overview of K. K [27] is an executable semantic framework based on
Rewriting Logic [19]. It is suitable for de�ning (concurrent) languages and cor-
responding formal analysis tools, with straightforward implementation in K-
Maude [28]. K-de�nitions make use of the so-called cells, which are labelled
and can be nested, and (rewriting) rules describing the intended (operational)
semantics.

A cell is denoted by 〈 − 〉[name], where [name] stands for the name of the
cell. A construction 〈 . 〉n stands for an empty cell named n. We use �pattern



matching� and write 〈 c . . .〉n for a cell with content c at the top, followed by
an arbitrary content (. . .). Orthogonally, we can utilize cells of shape 〈. . . c 〉n
and 〈 . . . c . . . 〉n, de�ned in the obvious way.

Of particular interest is 〈 − 〉k � the continuation cell, or the k-cell, holding
the stack of program instructions (associated to one processor), in the context
of a programming language formalization. We write

〈 i1 y i2 . . .〉k

for a set of instructions to be �executed�, starting with instruction i1, followed
by i2. The associative operation y is the instruction sequencing.

A K-rewrite rule

〈 c . . .〉n1〈 c
′ 〉n2 ⇒ 〈 c′ . . .〉n1〈. . . c′ 〉n3 (14)

reads as: if cell n1 has c at the top and cell n2 contains value c
′, then c is replaced

by c′ in n1 and c′ is added at the end of the cell n3. The content of n2 remains
unchanged. In short, (14) is written in a K-like syntax as:

〈 c . . .〉n1

c′
〈 c′ 〉n2

〈. . . . 〉n3

c′
.

We further provide the details behind the K-speci�cation of the alias calcu-
lus. As expected, the k-cell retains the instruction stack of the object-oriented
program. We utilize cells 〈−〉al to enclose the current alias information, and the
so-called back-tracking cells 〈−〉bkt-. . . enabling the sound computation of aliases
for the case of then − else − end and, in non-concurrent contexts, for loops and
(possibly recursive) function calls. As a convention, we mark with (♣) the rules
that are sound only for non-concurrent applications, based on Lemma 2. Due
to space limitations, in what follows we introduce only the K-rules for handling
assignments and loops. The entire speci�cation can be found in [5].

As expected, the assignment rule simply restores the current alias relation
according to its axiom in (9), and removes the assignment instruction from the
top of the k-cell:

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (15)

For loop p end, we utilize a meta-construction p l loop p end simulating
the unfolding corresponding to (6), and a back-tracking stack 〈−〉bkt-l collect-
ing the alias information obtained after each execution of p. Moreover, the K-
implementation exploits the result in Lemma 2. Whenever a �lasso� is reached,
the in�nite rewriting is prevented by resuming the in�nite application of p in
terms of a sound over-approximating alias relation. The K-rules are as follows.

First, the aforementioned unfolding is performed, and the alias relation before
p is stored in the back-tracking cell as 〈r〉al-o〈p〉l:

〈 r 〉al
〈 loop p end . . .〉k
p l loop p end

〈 . . . .〉bkt-l
〈 r 〉al-o〈 p 〉l

(16)



If the alias relation r′ obtained after the successful execution of p (marked

by l at the top of the continuation) is not a lasso of the aliasing r before
p (previously stored in 〈−〉bkt-l) then p is constrained to a new execution by
becoming the top of the k-cell, and r′ is memorized for back-tracking:

〈 r′ 〉al
〈 l loop p end . . .〉k
p l loop p end

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l
〈 r′ 〉al-o〈 p 〉l

if not lasso(r, r′) (♣) (17)

Last, if a lasso is reached after the execution of p, then the current aliasing is
soundly replaced by a �regular� over-approximation reg(r, r′), the corresponding
back-tracking information is removed from 〈−〉bkt-l and the loop instruction is
eliminated from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 l loop p end . . .〉k
.

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l
.

if lasso(r, r′) (♣) (18)

In a non-concurrent setting, the machinery orchestrating the K-rules intro-
duced in this section implements an algorithm that always terminates and pro-
vides a sound over-approximation of �may aliasing�.

Theorem 1. Consider p a program built on top of the control structures in (3),
that executes in a sequential setting. Then, the application of the corresponding
K-rules when starting with p and an empty alias relation, is a �nite rewriting of
shape

〈 ∅ 〉al〈 p 〉k
(∗)
=⇒ 〈 r 〉al〈 . 〉k,

with r a sound over-approximation of the aliasing information corresponding to
the execution of p.

Proof. The key observation is that, due to the execution of loops and/or recursive
calls, expressions can in�nitely grow in a regular fashion. Hence, a lasso is always
reached. Consequently, the control structure generating the in�nite behaviour is
removed from the k-cell, according to the associated K-speci�cation for loops
and/or recursive calls. This guarantees termination. Moreover, recall that the
regular expressions replacing the current alias information are a sound over-
approximation, according to Lemma 2. ut

Observe that the RL-based machinery can simulate precisely the �cutting
at length L� technique in [15]. It su�ces to disable the rules (♣) and stop the
rewriting after L steps.

4 Integration in SCOOP

In this section we provide a brief overview on the integration and applicability
of the alias calculus in SCOOP [22] � a simple object-oriented programming
model for concurrency. Two main characteristics make SCOOP simple: 1) just



one keyword programmers have to learn and use in order to enable concurrent
executions, namely, separate and 2) the burden of orchestrating concurrent ex-
ecutions is handled within the model, therefore reducing the risk of correctness
issues.

In short, the key idea of SCOOP is to associate to each object a processor,
or handler (that can be a CPU, or it can also be implemented in software, as a
process or thread). Assume a processor p that performs a call o.f() on an object
o. If o is declared as �separate�, then p sends a request for executing f() to q �
the handler of o (note that p and q can coincide). Meanwhile, p can continue.
Processors communicate via channels.

The Maude semantics of SCOOP in [22] is de�ned over tuples of shape

〈p1 ::St1 | . . . | pn ::Stn, σ〉

where, pi denotes a processor (for i ∈ {1, . . . , n}), Sti is the call stack of pi
and σ is the state of the system. States hold the information about the heap
(which is a mapping of references to objects) and the store (which includes
formal arguments, local variables, etc.).

The assignment instruction, for instance, is formally speci�ed as the transi-
tion rule:

a is fresh

Γ ` 〈p :: t : = s;St, σ〉 → 〈p :: eval(a, s);wait(a);write(t, a.data);St, σ〉
(19)

where, intuitively, �eval(a, s)� evaluates s and puts the result on channel a,
�wait(a)� enables processor p to use the evaluation result, �write(t, a.data)� sets
the value of t to a.data, St is a call stack, and Γ is a typing environment [24]
containing the class hierarchy of a program and all the type de�nitions.

At this point it is easy to understand that the K-rule for assignments

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (15)

can be straightforwardly integrated in (19) by enriching the state structure with
a new �eld encapsulating the alias information, and considering instead the tran-
sition Γ ` 〈p :: t : =s;St, σ〉 → 〈p :: eval(a, s);wait(a);write(t, a.data);St, σ′〉
where

σ.aliases = r σ′.aliases = (r1 − t)[t = (r1/s − t)]− ot

with r and r1 as in (15). The integration of all the K-rules of the alias calculus
on top of the Maude formalization of SCOOP can be achieved by following a
similar approach.

For a case study, one can download the SCOOP formalization at:
https://dl.dropboxusercontent.com/u/1356725/SCOOP.zip

and run the command
> maude SCOOP.maude ..\examples\aliasing-linked_list.maude

corresponding to the code in (1):

x : = y; loop x : = x.next end.



The console outputs the aliased expressions for a rewriting of depth 100 which
include, as expected, pairs of shape [x, y.nextk]. (The over-approximating mech-
anism for sequential settings is still to be implemented.)

As can be observed based on the code in aliasing-linked_list.maude, in or-
der to implement our applications in Maude, we use intermediate (still intuitive)
representations. For instance, the class structure de�ning a node in a simple
linked list, with �led next is declared as:

class 'NODE

create {'make}

( attribute { 'ANY } 'next : [?, . , 'NODE] ; )

[...]

end ;

where 'next : [?, . , 'NODE] stands for an object of type NODE, that is han-
dled by the current processor (.) and that can be Void (?), and 'make plays the
role of a constructor. The intermediate representation of the instruction block
in (1) is:

assign ('x, 'y);

until False loop ( assign ('x, 'x . 'next(nil)) ; ) end ;

For a detailed description of SCOOP and its Maude formalization we refer
the interested reader to the work in [22].

4.1 Further applications of the alias calculus

Apart from providing an alias analysis tool, the alias calculus can be exploited
in order to build an abstract semantics of SCOOP. For example, an abstraction
of the assignment rule (15) would omit the evaluation of the right-hand side of
the assignment t : = s and the associated message passing between channels:

·
Γ ` 〈p :: t : = s;St, σ〉 → 〈p :: St, σ′〉

where

σ.aliases = r σ′.aliases = (r1 − t)[t = (r1/s − t)]− ot

with r and r1 as in (15). This way one derives a simpli�ed, reduced seman-
tics of SCOOP, more appropriate for model checking, for instance; the current
SCOOP formalization in Maude is often too large for this purpose. A survey on
abstracting techniques on top of Maude executable semantics is provided in [19].

Furthermore, the aliasing information could be used for the so-called �dead-
locking� problem, where two or more executing threads are each waiting for
the other to �nish. In the context of SCOOP, this is equivalent to identifying
whether a set of processors reserve each other circularly (i.e., there is a Co�man
deadlock). This situation might occur, for instance, in a Dinning Philosophers
scenario, where both philosophers and forks are objects residing on their own
processors. The di�culty of identifying such deadlocks stems from the fact that
SCOOP processors are known from object references, which may be aliased.



5 Conclusions

In this paper we provide an extension of the alias calculus in [15] from �nite alias
relations to in�nite ones corresponding to loops and recursive calls. Moreover, we
devise an associated executable speci�cation in the K semantic framework [27].
In Theorem 1 we show that the RL-based machinery implements an algorithm
that always terminates with a sound over-approximation of �may aliasing�, in
non-concurrent settings. This is achieved based on the sound (�nitely repre-
sentable) over-approximation of (�lasso shaped�) alias expressions in terms of
regular expressions, as in Lemma 2. We also discuss the integration and appli-
cability of the alias calculus on top of the Maude formalization of SCOOP [22].

An immediate direction for future work is to identify interesting (industrial)
case studies to be analyzed using the framework developed in this paper. We
are also interested in devising heuristics comparing the e�ciency and the preci-
sion (e.g., the number of false positives introduced by the alias approximations)
between our approach and other aliasing techniques. In this respect, we antici-
pate that the rewriting modulo associativity, together with the pattern matching
capabilities of Maude will accelerate the identi�cation of the �lasso� properties
and the corresponding over-approximating regular alias expressions. This could
eventually provide an e�ective reasoning apparatus for the �may aliasing� prob-
lem.

Another research direction is to derive alias-based abstractions for analyzing
concurrent programs. We foresee possible connections with the work in [13] on
concurrent Kleene algebra formalizing choice, iteration, sequential and concur-
rent composition of programs. The corresponding de�nitions exploit abstractions
of programs in terms of traces of events that can depend on each other. Thus,
obvious challenges in this respect include: (i) de�ning notions of dependence
for all the program constructs in this paper, (ii) relating the concurrent Kleene
operators to the semantics of the SCOOP concurrency model and (iii) checking
whether �xed-points approximating the aliasing information can be identi�ed
via �xed-point theorems.

Furthermore, it would be worth investigating whether the graph-based model
of alias relations introduced in [15] can be exploited in order to derive �nite K
speci�cations of the extended alias calculus. In case of a positive answer, the
general aim is to study whether this type of representation increases the speed
of the reasoning mechanism, and why not � its accuracy. With the same purpose,
we refer to a possible integration with the technique in [6] that handles point-to
graphs via a stack-based algorithm for �xed-point computations.

We are also interested to what extent an abstract semantics based on aliases
for SCOOP can be exploited for building more e�cient analysis tools such as
deadlock detectors, for instance. A survey on similar techniques that abstract
away from possibly irrelevant information w.r.t. the problem under consideration
is provided in [19].
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