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Abstract. Checking language equivalence (or inclusion) of finite au-
tomata is a classical problem in Computer Science, which has recently
received a renewed interest and found novel and more effective solu-
tions, such as approaches based on antichains or bisimulations up-to.
Several notions of equivalence (or preorder) have been proposed for the
analysis of concurrent systems. Usually, the problem of checking these
equivalences is reduced to checking bisimilarity. In this paper, we take a
different approach and propose to adapt algorithms for language equiva-
lence to check one prime equivalence in concurrency theory, must testing
semantics. To achieve this transfer of technology from language to must
semantics, we take a coalgebraic outlook at the problem.

1 Introduction

Determining whether two systems exhibit the same behavior under a given no-
tion of equivalence is a recurring problem in different areas from Computer
Science, from compiler analysis, to program verification, to concurrency theory.
A widely accepted notion of equivalence is that two systems are equivalent if
they behave the same when placed in the same context.

We will focus on the equivalence problem in the context of concurrency theory
and process calculi. Systems are processes and contexts will be given by sets
of tests a process should obey. This leads us to consider standard behavioural
equivalences and preorders for process calculi, in particularmust testing [14]: two
systems are equivalent if they pass exactly the same tests, in all their executions.

The problem of automatically checking such testing equivalences is usually
reduced to the problem of checking bisimilarity, as proposed in [12] and imple-
mented in several tools [13,10]. In a nutshell, equivalence is checked as follows.
Two processes are considered, given by their labeled transition systems (LTS’s).
Then, the given LTS’s are first transformed into “acceptance graphs”, using a
construction which is reminiscent of the determinization of non-deterministic
automata (NDA). Finally, bisimilarity is checked via the partition refinement
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algorithm [17,22]. And one can answer the question of testing equivalence be-
cause gladly bisimilarity in acceptance graphs coincides with testing equivalence
in the original LTS’s.

The partition refinement algorithm, which is the best-known for minimizing
LTS’s w.r.t. bisimilarity, is analogous to Hopcroft’s algorithm [16] for minimiz-
ing deterministic automatata (DA) w.r.t. language equivalence. In both cases,
a partition of the state space is iteratively refined until a fixpoint is reached.
Thus, the above procedure for checking testing semantics [12] is in essence the
same as the classical procedure for checking language equivalence of NDA: first
determinize and then compute a (largest) fixpoint.

In this work, we propose to transfer other algorithms for language equivalence,
which are not available for bisimilarity, to the world of testing semantics. In order
to achieve this, we take a coalgebraic perspective at the problem in hand, which
allows us to study the constructions and the semantics in a uniform fashion. The
abstract framework of coalgebras makes it possible to study different kinds of
state based systems in a uniform way [26]. In particular, both the determinization
of NDA’s and the construction of acceptance graphs in [12] are instances of the
generalized powerset construction [28,20,11]. This is the key observation of this
work, which enables us to devise the presented algorithms.

First, we consider Brzozowski’s algorithm [9] which transforms an NDA into
the minimal deterministic automaton accepting the same language in a rather
magical way: the input automaton is reversed (by swapping final and initial
states and reversing its transitions), determinized, reversed and determinized
once more. This somewhat intriguing algorithm can be explained in terms of
duality and coalgebras [4,2]. The coalgebraic outlook in [4] has several general-
ization of Brzozowski’s algorithm to other types of transition systems, including
Moore machines. This paves the way to adapt Brzozowski’s algorithm for check-
ing must semantics, which we will do in this paper.

Next, we consider several more efficient algorithms that have been recently in-
troduced in a series of papers [32,1,7]. These algorithms rely on different kinds of
(bi)simulations up-to, which are proof techniques originally proposed for process
calculi [21,27]. From these algorithms, we choose the one in [7] (HKC) which has
been introduced by a subset of the authors and which, as we will show, can be
adapted to must testing using a coalgebraic characterization of must equivalence,
which we will also introduce.

Comparing these three families of algorithms (partition refinement [12], Brzo-
zowski and bisimulations up-to) is not a simple task: both the problems of check-
ing language and must equivalence are PSPACE-complete [17] but, in both cases,
the theoretical complexity appears not to be problematic in practice, so that
an empirical evaluation is more desirable. In [31,29], experiments have shown
that Brzozowski’s algorithm performs better than Hopcroft for “high-density”
NDA’s, while Hopcroft is more efficient for generic NDA’s. Both algorithms ap-
pear to be rather inefficient compared to those of the new generation [32,1,7].
It is out of the scope of this paper to present an experimental comparison of
these algorithms and we confine our work to showing concrete examples where
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HKC and Brzozowski’s algorithm are exponentially more efficient than the other
approaches.

Contributions. The main contributions of this work are:

– The coalgebraic treatment of must semantics (preorder and equivalence).
– The adaptation of HKC and Brzozowski’s algorithm for must semantics. For

the latter, this includes an optimization which avoids an expensive deter-
minization step.

– The evidence that the coalgebraic analysis of systems yields not only a good
mathematical theory of their semantics but also a rich playground to devise
algorithms.

– An interactive applet allowing one to experiment with these algorithms [6].

The full version of this paper [5] contains further optimizations for the algo-
rithms, their proofs of correctness, the formal connections with the work in [12]
and the results of experiments checking the equivalence of an ideal and a dis-
tributed multiway synchronisation protocol [23].

Related Work. Another coalgebraic outlook on must is presented in [8] which
introduces a fully abstract semantics for CSP. The main difference with our work
consists in the fact that [8] builds a coalgebra from the syntactic terms of CSP,
while here we build a coalgebra starting from LTS’s via the generalized power-
set construction [28]. Our approach puts in evidence the underlying semilattice
structure which is needed for defining bisimulations up-to and HKC. As a further
coalgebraic approach to testing, it is worth mentioning test-suites [18], which
however do not tackle must testing. A coalgebraic characterization of other se-
mantics of the linear time/branching time spectrum is given in [3].

Notation. We denote sets by capital letters X,Y, S, T . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X × Y is the Cartesian product of X
and Y , X + Y is the disjoint union and XY is the set of functions f : Y → X .
The collection of finite subsets of X is denoted by P(X) (or just PX). These
operations, defined on sets, can analogously be defined on functions [26], yielding
(bi-)functors on Set, the category of sets and functions. For a set of symbols A,
A∗ denotes the set of all finite words over A; ε the empty word; and w1 · w2

(or w1w2) the concatenation of words w1, w2 ∈ A∗. We use 2 to denote the set
{0, 1} and 2A

∗
to denote the set of all formal languages over A. A semilattice with

bottom (X,�, 0) consists of a set X and a binary operation � : X×X → X that
is associative, commutative, idempotent (ACI) and has 0 ∈ X (the bottom) as
identity. A homomorphism (of semilattices with bottom) is a function preserving
� and 0. Every semilattice induces a partial order defined as x � y iff x� y = y.
The set 2 is a semilattice when taking � to be the ordinary Boolean disjunction.
Also the set of all languages 2A

∗
carries a semilattice structure where � is the

union of languages and 0 is the empty language. More generally, for any set S,
P(S) is a semilattice where � is the union of sets and 0 is the empty set. In the
rest of the paper we will indiscriminately use 0 to denote the element 0 ∈ 2, the



4 F. Bonchi et al.

empty language in 2A
∗
and the empty set in P(S). Analogously, � will denote

the “Boolean or” in 2, the union of languages in 2A
∗
and the union of sets in

P(S).
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2 Background

The core of this paper is about the problem of checking whether two states in a
transition system are testing equivalent by reducing it to the classical problem
of checking language equivalence. We will consider different types of transition
systems, deterministic and non-deterministic, which we will formally describe
next, together with their language semantics.

A deterministic automaton (DA) over the alphabet A is a pair (S, 〈o, t〉), where
S is a set of states and 〈o, t〉 : S → 2 × SA is a function with two components:
o, the output function, determines whether a state x is final (o(x) = 1) or not
(o(x) = 0); and t, the transition function, returns for each state and each input
letter, the next state. From any DA, there exists a function [[−]] : S → 2A

∗

mapping states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) [[x]](a · w) = [[t(x)(a)]](w) (1)

The language [[x]] is called the language accepted by x. Given an automaton
(S, 〈o, t〉), the states x, y ∈ S are said to be language equivalent iff they accept
they same language.

A non-deterministic automaton (NDA) is similar to a DA but the transition
function returns a set of next-states instead of a single state. Thus, an NDA
over the input alphabet A is a pair (S, 〈o, t〉), where S is a set of states and
〈o, t〉 : S → 2×(P(S))A. An example is depicted below (final states are overlined,
labeled edges represent transitions).

x

a

��za��
a ��

y
a

�� u
a ��

a

��w
a

�� va�� (2)

Classically, in order to recover language semantics of NDA, one uses the sub-
set (or powerset) construction, transforming every NDA (S, 〈o, t〉) into the DA
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(P(S), 〈o�, t�〉) where o� : P(S) → 2 and t� : P(S) → P(S)A are defined for all
X ∈ P(S) as

o�(X) =
⊔

x∈X

o(x) t�(X)(a) =
⊔

x∈X

t(x)(a) .

For instance with the NDA from (2), o�({x, y}) = 0�1 = 1 (i.e., the state {x, y}
is final) and t�({x, y})(a) = {y} � {z} = {y, z} (i.e., {x, y} a→ {y, z}).

Since (P(S), 〈o�, t�〉) is a deterministic automaton, we can now apply (1),
yielding a function [[−]] : P(S) → 2A

∗
mapping sets of states to languages. Given

two states x and y, we say that they are language equivalent iff [[{x}]] = [[{y}]].
More generally, for two sets of states X,Y ⊆ S, we say that X and Y are
language equivalent iff [[X ]] = [[Y ]].

In order to introduce the algorithms in full generality, it is important to remark
here that the sets 2, P(S), P(S)A, 2 × P(S)A and 2A

∗
carry semilattices with

bottom and that the functions 〈o�, t�〉 : P(S) → 2×P(S)A and [[−]] : P(S) → 2A
∗

are homomorphisms.

2.1 Checking Language Equivalence via Bisimulation Up-To

We recall the algorithm HKC from [7]. We first define a notion of bisimulation on
sets of states. We make explicit the underlying notion of progression.

Definition 1 (Progression, Bisimulation). Let (S, 〈o, t〉) be an NDA. Given
two relations R,R′ ⊆ P(S) × P(S), R progresses to R′, denoted R � R′, if
whenever X R Y then

1. o�(X) = o�(Y ) and 2. for all a ∈ A, t�(X)(a) R′ t�(Y )(a).

A bisimulation is a relation R such that R � R.

This definition considers the states, the transitions and the outputs of the de-
terminized NDA. For this reason, the bisimulation proof technique is sound and
complete for language equivalence rather than for the standard notion of bisim-
ilarity by Milner and Park [21].

Proposition 1 (Coinduction [7]). For all X,Y ∈ P(S), [[X ]] = [[Y ]] iff there
exists a bisimulation that relates X and Y .

For an example, we want to check the equivalence of {x} and {u} of the NDA
in (2). The part of the determinized NDA that is reachable from {x} and {u} is
depicted below. The relation consisting of dashed and dotted lines is a bisimu-
lation which proves that [[{x}]] = [[{u}]].

{x} a ��

1 �
�
�

{y} a ��

2 �

�
{z} a ��

3 �
�
�

{x, y} a �� {y, z} a �� {x, y, z}

a

		

{u}
a
�� {v, w}

a
�� {u,w}

a
�� {u, v, w} a



(3)
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The dashed lines (numbered by 1, 2, 3) form a smaller relation which is not a
bisimulation, but a bisimulation up-to congruence: the equivalence of {x, y} and
{u, v, w} can be immediately deduced from the fact that {x} is related to {u} and
{y} to {v, w}. In order to formally introduce bisimulations up-to congruence, we
need to define first the congruence closure c(R) of a relation R ⊆ P(S)×P(S).
This is done inductively, by the following rules:

X R Y

X c(R) Y X c(R) X

X c(R) Y

Y c(R) X (4)

X c(R) Y Y c(R) Z

X c(R) Z

X1 c(R) Y1 X2 c(R) Y2

X1 �X2 c(R) Y1 � Y2
Note that the term “congruence” here is intended w.r.t. the semilattice structure
carried by the state space P(S) of the determinized automaton. Intuitively, c(R)
is the smallest equivalence relation containing R and which is closed w.r.t �.
Definition 2 (Bisimulation up-to congruence). A relation R ⊆ P(S) ×
P(S) is a bisimulation up-to c if R � c(R), i.e., whenever X R Y then

1. o�(X) = o�(Y ) and 2. for all a ∈ A, t�(X)(a) c(R) t�(Y )(a).

Theorem 1 ([7]). Any bisimulation up-to c is contained in a bisimulation.

The corresponding algorithm (HKC) is given in Figure 1 (top). Starting from an
NDA (S, 〈o, t〉) and considering the determinized automaton (P(S), 〈o�, t�〉), it
can be used to check language equivalence of two sets of statesX and Y . Starting
from the pair (X,Y ), the algorithm builds a relation R that, in case of success,
is a bisimulation up-to congruence. In order to do that, it employs the set todo
which, intuitively, at any step of the execution, contains the pairs (X ′, Y ′) that
must be checked: if (X ′, Y ′) already belongs to c(R ∪ todo), then it does not
need to be checked. Otherwise, the algorithm checks if X ′ and Y ′ have the same
outputs. If o�(X ′) 
= o�(Y ′) then X and Y are different, otherwise the algorithm
inserts (X ′, Y ′) in R and, for all a ∈ A, the pairs (t�(X ′)(a), t�(Y ′)(a)) in todo.
The check (X ′, Y ′) ∈ c(R∪todo) at step 2.2 is done with the rewriting algorithm
of [7, Section 3.4].

Proposition 2. For all X,Y ∈ P(S), [[X ]] = [[Y ]] iff HKC(X,Y ).

The iterations corresponding to the execution of HKC({x}, {u}) on the NDA
in (2) are concisely described by the numbered dashed lines in (3). Observe that
only a small portion of the determinized automaton is explored; this fact usually
makes HKC more efficient than the algorithms based on minimization, that need
to build the whole reachable part of the determinized automaton.

2.2 Checking Language Equivalence via Brzozowski’s Algorithm

The problem of checking language equivalence of two sets of states X and Y
of a non-deterministic finite automaton can be reduced to that of building the
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minimal DA for [[X ]] and [[Y ]] and checking whether they are the same (up to
isomorphism). The most well-known procedure consists in first determinizing
the NDA and then minimizing it with the Hopcroft algorithm [16]. Another
interesting solution is Brzozowski’s algorithm [9].

To explain the latter, it is convenient to consider a set of initial states I. Given
an NDA (S, 〈o, t〉) and a set of states I, Brzozowski’s algorithm computes the
minimal automaton for the language [[I]] by performing the 4 steps in Figure 1
(bottom).

The operation reverse and determinize takes as input an NDA (S, 〈o, t〉)
and returns a DA (P(S), 〈oR, tR〉) where the functions oR : P(S) → 2 and
tR : P(S) → P(S)A are defined for all X ∈ P(S) as oR(X) = 1 iff X ∩ I 
= 0
and tR(X)(a) = {x ∈ S | t(x)(a) ∩ X 
= 0}. The new initial state is the set of
accepting states of the original NDA: IR = {x | o(x) = 1}. The second step
consists in taking the part of (P(S), 〈oR, tR〉) which is reachable from IR. The
third and the fourth steps perform this procedure once more.

As an example, consider the NDA in (2) with the set of initial states I = {x}.
Brzozowski’s algorithm builds the minimal DA accepting [[{x}]] as follows. After
the first two steps, it returns the following DA where the initial state is {y}.

{y} a �� {x, z} a �� {z, y} a �� {x, y, z} a��

After steps 3 and 4, it returns the DA below with initial state {{x, z}{x, y, z}}.

{{x, z}{x, y, z}} a �� {{y}{z, y}{x, y, z}} a �� {{x, z}{z, y}{x, y, z}}
a
��

{{y}{x, z}{z, y}{x, y, z}} a
��

Computing the minimal NDA in (2) with the set of initial states I = {u} results
in an isomorphic automaton, showing the equivalence of x and u.

2.3 Generalized Powerset Construction

The notions introduced above can be easily described using coalgebras. Given
a functor F : Set → Set, an F -coalgebra is a pair (S, f) where S is a set of
states and f : S → F (S) is its transition structure. F intuitively determines the
“type” of the transitions. An F -homomorphism from an F -coalgebra (S, f) to an
F -coalgebra (T, g) is a function h : S → T preserving the transition structure,
i.e., g ◦ h = F (h) ◦ f . An F -coalgebra (Ω,ω) is said to be final if for any F -
coalgebra (S, f) there exists a unique F -homomorphism [[−]] : S → Ω. Intuitively,
Ω represents the universe of “F -behaviours” and [[−]] represents the semantic
map associating states to their behaviours. Two states x, y ∈ X are said F -
behaviourally equivalent iff [[x]] = [[y]]. Such equivalence can be proved using
F -bisimulations [26]. For lack of space, we refer the reader to [25] for their
categorical definitions. Given a behaviour b ∈ Ω, the minimal coalgebra realizing
b is the part of (Ω,ω) that is reachable from b.
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Let us exemplify for DA’s how these abstract notions yield the expected con-
crete notions. DA’s are coalgebras for the functor F (S) = 2×SA. The final coal-
gebra of this functor is the set 2A

∗
of formal languages over A, or more precisely,

the pair (2A
∗
, 〈ε, (−)a〉) where 〈ε, (−)a〉, given a language L, determines whether

or not the empty word is in the language (ε(L) = 1 or ε(L) = 0, resp.) and, for
each input letter a, returns the a-derivative of L: La = {w ∈ A∗ | aw ∈ L}. The
unique map [[−]] into the final coalgebra 2A

∗
is precisely the map which assigns

to each state the language that it recognizes. For any language L ∈ 2A
∗
, the

minimal automaton for L is the part of (2A
∗
, 〈ε, (−)a〉) that is reachable from L.

In Section 3, we will use Moore machines which are coalgebras for the functor
F (S) = B × SA. These are like DA’s, but with outputs in a fixed set B. The
unique F -homomorphism to the final coalgebra [[−]] : S → BA∗

is defined exactly
as for DA’s by the equations in (1). Note that the behaviours of Moore machines
are functions ϕ : A∗ → B, rather than subsets of A∗. For each behaviour ϕ ∈
BA∗

, there exists a minimal Moore machine realizing it.
Recall that an NDA is a pair (S, 〈o, t〉), where 〈o, t〉 : S → 2 × (P(S))A. As

explained above, to recover language semantics one needs to use the subset
construction, which transforms an NDA into a DA. More abstractly, this can
be captured by observing that the type functor of NDA’s – 2 × P(−)A – is
a composition of the functor F (S) = 2 × SA (that is the functor for DA’s)
and the monad T (S) = P(S). P-algebras are exactly semilattices with bottom
and P-algebra morphisms are the ones of semilattices with bottom. Now note
that (a) the F -coalgebra (P(S), 〈o�, t�〉) resulting of the powerset construction
is a morphism of semilattices, (b) 2A

∗
carries a semilattice structure and (c)

[[−]] : P(S) → 2A
∗
is a morphism of semilattices. This is summarized by the

following commuting diagram:

S

〈o,t〉
��

{−}
�� P(S)

〈o�,t�〉

���
���

���
���

��
[[−]]

���������� 2A
∗

〈ε,(−)a〉
��

2× P(S)A id2×[[−]]A������ �������� 2× (2A
∗
)A

In the diagram above, one can replace 2 × −A and P by arbitrary F and T
as long as FT (S) carries a T -algebra structure. In fact, given an FT -coalgebra,
that is (S, f : S → FT (S)), if FT (S) carries a T -algebra structure h, then (a)
one can define an F -coalgebra (T (S), f � = h ◦ Tf) where f � : T (S) → FT (S) is
a T -algebra morphism (b) the final F -coalgebra (Ω,ω) carries a T -algebra and
(c) the F -homomorphism [[−]] : T (S) → Ω is a T -algebra morphism.

The F -coalgebra (T (S), f �) is (together with the multiplication μ : TT (S) →
T (S)) a bialgebra for some distributive law λ : FT ⇒ TF (we refer the reader
to [19] for a nice introduction on this topic). The behavioural equivalence of
bialgebras can be proved either via bisimulation, or, like in Section 2.1, via
bisimulation up-to congruence [20,25]: the result that justifies HKC (Theorem 1)
generalises to this setting – the congruence being taken w.r.t. the algebraic struc-
ture μ. This is what allows us to move to must semantics.
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HKC(X, Y ):

(1) R is empty; todo is {(X ′, Y ′)};
(2) while todo is not empty, do

(2.1) extract (X ′, Y ′) from todo;
(2.2) if (X ′, Y ′) ∈ c(R ∪ todo) then continue;

(2.3) if o�(X ′) �= o�(Y ′) then return false;
(2.4) for all a ∈ A,

insert (t�(X ′)(a), t�(Y ′)(a)) in todo;
(2.5) insert (X ′, Y ′) in R;

(3) return true;

Brzozowski:

(1) reverse and determinize;

(2) take the reachable part;

(3) reverse and determinize;

(4) take the reachable part.

Fig. 1. Top: Generic HKC algorithm, parametric on o�, t� and c. Bottom: Generic Br-
zozowski’s algorithm, parametric on reverse and determinize. Instantiations to lan-
guage and must equivalence in Sections 2 and 3.

3 Must Semantics

The operational semantics of concurrent systems is usually given by labelled tran-
sition systems (LTS’s), labelled by actions that are either visible to an external
observer or internal actions (usually denoted by a special symbol τ). Different
kinds of semantics can be defined on these structures (e.g., linear or branching
time, strong or weak semantics). In this paper we consider must semantics [14]
which, intuitively, equates those systems that pass exactly the same tests, in all
their executions.

Before formally introducing must semantics as in [12], we fix some notations:
ε
=⇒ denotes

τ−→∗
the reflexive and transitive closure of

τ−→ and, for a ∈ A,
a
=⇒

denotes
τ−→∗ a−→ τ−→∗

. For w ∈ A∗, w
=⇒ is defined inductively, in the obvious way.

The acceptance set of x after w is A(x,w) = {{a ∈ A | x′ a−→} | x w
=⇒ x′ ∧ x′ 
 τ−→}.

Intuitively, it represents the set of actions that can be fired after “maximal”
executions of w from x, those that cannot be extended by some τ -labelled tran-
sitions. The possibility of executing τ -actions forever is referred to as divergence.
We write x 
↓ whenever x diverges. Dually, the convergence relation x ↓ w for a
state x and a word w ∈ A∗ is inductively defined as follows: x ↓ ε iff x does not
diverge and x ↓ aw′ iff (a) x ↓ ε and (b) if x

a
=⇒ x′, then x′ ↓ w′. Given two sets

B,C ∈ PP(A), we write B ⊂⊂ C iff for all Bi ∈ B, there exists Ci ∈ C such
that Ci ⊆ Bi. With these ingredients, it is possible to introduce must preorder
and equivalence.
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Definition 3 (Must semantics [12]). Let x and y be two states of an LTS.
We write x �mst y iff for all words w ∈ A∗, if x ↓ w then y ↓ w and A(y, w) ⊂⊂
A(x,w). We say that x and y are must-equivalent (x ∼mst y) iff x �mst y and
y �mst x.

As an example, consider the LTS depicted below. States x4, x5 and y1 are diver-
gent. All the other states diverge for words containing the letter b and converge
for words on a∗. For these words and states x, x1, x2, x3 and y, the corresponding
acceptance sets are {{a, b}}. In particular, note that A(x2, ε) is {{a, b}} and not
{{b}, {a, b}}. It is therefore easy to conclude that x, x1, x2, x3 and y are all must
equivalent.

x
b

��a ��

a
��

x2
τ
��

b �� x4 τ
��

x1

a
		

b

��x3
a�� b �� x5

τ
��

ya
�� b �� y1 τ

��
(5)

3.1 A Coalgebraic Characterization of Must Semantics

In what follows we show how �mst can be captured in terms of coalgebras. This
will further allow adapting the algorithms introduced in Section 2 for checking
∼mst and �mst.

First, we model LTS’s in terms of coalgebras (S, t : S → (1 + P(S))A), where
1 = {�} is the singleton set, and for x ∈ S,

t(x)(a) = �, if x 
↓ a t(x)(a) = {y | x a
=⇒ y}, otherwise.

Intuitively, a state x ∈ S that displays divergent behaviour with respect to an
action a ∈ A is mapped to �. Otherwise t computes the set of states that
can be reached from x through a (by possibly performing a finite number of
τ -transitions). At this point we need some additional definitions: for a function
ϕ : A→ P(S), I(ϕ) denotes the set of all labels “enabled” by ϕ, given by I(ϕ) =
{a ∈ A | ϕ(a) 
= 0}, while Fail(ϕ) denotes the set {Z ⊆ A | Z ∩ I(ϕ) = 0}.
With these definitions, we decorate the states of an LTS by means of an output
function o : S → 1 + P(P(A)) defined as follows:

o(x) = �, if x 
↓ o(x) =
⋃

x
τ−→x′

o(x′) if x τ−→, o(x) = Fail (t(x)), otherwise.

Note that (S, 〈o, t〉) is an FT -coalgebra for the functor F (S) = (1+PPA)×SA

and the monad T (S) = 1 + P(S). Algebras for such monad T are semilattices
with bottom and an extra element � acting as top (i.e., such that x�� = � for
all x). For any set U , 1+P(U) carries a semilattice with bottom and top: bottom
is the empty set; top is the element � ∈ 1; X � Y is defined as the union for
arbitrary subsets X,Y ∈ P(U) and as � otherwise. Consequently, 1 + P(PA),
1 + P(S), (1 + P(S))A and FT (S) carry a T -algebra structure as well. This
enables the application of the generalized powerset construction (Section 2.3)
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associating to each FT -coalgebra (S, 〈o, t〉) the F -coalgebra (1 + P(S), 〈o�, t�〉)
defined for all X ∈ 1 + P(S) as expected:

o�(X) =

{
� if X = �⊔

x∈X o(x) if X ∈ P(S)
t�(X)(a) =

{
� if X = �⊔

x∈X t(x)(a) if X ∈ P(S)

Note that in the above definitions, � is not simply the union of subsets, but it
is the join operation in 1 + PPA and 1 + P(S). Moreover, (1 + PS, 〈o�, t�)〉 is
a Moore machine with output in 1 + PPA and, therefore, the equations in (1)
induce a function [[−]] : (1+P(S)) → (1+PPA)A∗

. The semilattice structure of
1 + PPA can be easily lifted to (1 + PPA)A∗

: bottom, top and � are defined
pointwise on A∗. If �M represents the preorder on (1+PPA)A∗

induced by this
semilattice, then the following theorem holds.

Theorem 2. x �mst y iff [[{y}]] �M [[{x}]] and x ∼mst y iff [[{x}]] = [[{y}]].
Note that according to the definition of �M, [[{y}]] �M [[{x}]] iff [[{y}]]� [[{x}]] =
[[{x}]], and since [[−]] is a T -homomorphism (namely it preserves bottom, top
and �), the latter equality holds iff [[{y, x}]] = [[{x}]]. Summarizing,

x �mst y iff [[{x, y}]] = [[{x}]].
Consider, once more, the LTS in (5). The part of the Moore machine (1 +

P(S), 〈o�, t�〉) which is reachable from {x} and {y} is depicted below (the output
function o� maps � to � and the other states to {0}). The relation consisting of
dashed and dotted lines is a bisimulation proving that [[{x}]] = [[{y}]], i.e., that
x ∼mst y.

�

a,b

��

{x}b�� a �� {x1, x2, x3}
� � � �

b
�� a �� {x, x1}

b

�� a �� {x, x1, x2, x3}

b

��

a

��

�
a,b

�� {y}
a

��b
��

(6)

Our construction is closely related to the one in [12], that transforms LTS’s into
(deterministic) acceptance graphs. We refer the interested reader to a detailed
comparison provided in the full version of this paper [5]. There we also show an
optimization for representing outputs by means of I(t(x)) rather Fail(t(x)).

3.2 HKC for Must Semantics

The coalgebraic characterization discussed in the previous section guarantees
soundness and completeness of bisimulation up-to congruence for must equiv-
alence. Bisimulations are now relations R ⊆ (1 + P(S)) × (1 + P(S)) on the
state space 1 + P(S) where o� and t� are defined as in Section 3.1. Now, the
congruence closure c(R) of a relation R ⊆ (1 + P(S)) × (1 + P(S)) is defined
by the rules in (4) where � is the join in (1 + P(S)) (rather than the union in
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P(S)). By simply redefining o�, t� and c(R), the algorithm in Figure 1 can be
used to check must equivalence and preorder (the detailed proof can be found in
the full version of the paper [5]). In particular, note that the check at step 2.1

can be done with the same algorithm as in [7, Section 3.4].
Suppose, for example, that we want to check whether the states x and y of the

LTS in (5) are must equivalent. The relation R = {({x}, {y}), ({x1, x2, x3}, {y})}
depicted by the dashed lines in (6) is not a bisimulation, but a bisimulation up-to
congruence, since both (�,�) ∈ c(R) and ({x, x1}, {y}) ∈ c(R). For the latter,
observe that

{x, x1} c(R) {y, x1} c(R) {x1, x2, x3} c(R) {y}.
It is important to remark here that HKC computes this relation without the need
of exploring all the reachable part of the Moore machine (1 +P(S), 〈o�, t�〉). So,
amongst all the states in (6), HKC only explores {x}, {y} and {x1, x2, x3}.

3.3 Brzozowski’s Algorithm for Must Semantics

A variation of the Brzozowski algorithm for Moore machines is given in [4]. We
could apply such algorithm to the Moore machine (1 + P(S), 〈o�, t�〉) which is
induced by the coalgebra (S, 〈o, t〉) introduced in Section 3.1. Here, we propose
a more efficient variation that skips the first determinization from (S, 〈o, t〉) to
(1 + P(S), 〈o�, t�〉).

The novel algorithm consists of the four steps described in Section 2.2, where
the procedure reverse and determinize is modified as follows: (S, 〈o, t〉) with
the set of initial states I is transformed into ((1 + PP(A))S , 〈oR, tR〉) where
oR : (1+PPA)S → 1+PPA and tR : (1+PPA)S → ((1+PPA)S)A are defined
for all functions ψ ∈ (1 + PPA)S as

oR(ψ) =
⊔

x∈I

ψ(x) tR(ψ)(a)(x) =

{
� if t(x)(a) = �⊔

y∈t(x)(a) ψ(y) otherwise

and the new initial state is IR = o.
Note that the result of this procedure is a Moore machine. Brzozowski’s al-

gorithm in Section 2.2 transforms an NDA (S, 〈o, t〉) with initial state I into
the minimal DA for [[I]]. Analogously, our algorithm transforms an LTS into the
minimal Moore machine for [[I]].

Let us illustrate the minimization procedure by means of an example. Take
the alphabet A = {a, b, c} and the LTS depicted below on the left.

q u o(p) = {0} o(s) = {0}
pa
��

b ��

c
��

a ��
s

a
��

b �����������

c �����
����

�� o(q) = P(A) o(u) = P(A)

r v o(r) = P(A) o(v) = P(A)

Since there are no τ transitions, the function t : S → (1 + P(S))A is defined as
on the left, and the function o : S → (1 + PPA) (given on the right) assigns to
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each state x the set Fail(t(x)). Suppose we want to build the minimal Moore
machine for the behaviour [[{p}]] : A∗ → 1 + PPA, which is the function

[[{p}]] : a∗ �→ {0}, a∗b �→ P(A), a∗c �→ P(A), �→ 0

where denotes all the words different from a∗, a∗b and a∗c. By applying our
algorithm to the coalgebra (S, 〈o, t〉), we first obtain the intermediate Moore
machine on the left below, where a double arrow ψ ⇒ Z means that the output
of ψ is the set Z. The initial state is ψ1 : S → 1 + PPA which, by definition, is
the output function o above. The explicit definitions of the other functions ψi

can be computed according to the definition of tR.

{0} ψ1
a ��

b,c

��

�� ψ2

b,c

��

a

��
�� {0}

P(A) ψ3

a

�� b,c
���� ψ4

a,b,c

��
�� 0

α1a
��

b,c
��

��
α2

a,b,c
��

��
α3 a,b,c

��

��
{0} P(A) 0

Observe that [[ψ1]] is the “reversed” of [[{p}]]. For instance, triggering ba∗ from
ψ1 leads to ψ3 with output P(A); this is the same output we get by executing
a∗b from p, according to [[{p}]]. Executing reverse and determinize once more
(step 3) and taking the reachable part (step 4), we obtain the minimal Moore
machine on the right, with initial state α1.

We have proved the correctness of this algorithm in the full version of this
paper [5]; it builds on the coalgebraic perspective on Brzozowski’s algorithm
given in [4].

4 A Family of Examples

As discussed in the introduction, the problem of checking must equivalence is
PSPACE-complete [17]. Hence, a theoretical comparison of HKC, Brzozowski
(BRZ) and the partition refinement (PR) of [12] will be less informative than
a thorough experimental analysis. Designing adequate experiments is out of the
scope of this paper. We will instead just show the reader some concrete exam-
ples. It is possible to show some concrete cases where (a) HKC takes polynomial
time while BRZ and PR exponential time and (b) (BRZ) polynomial time while
HKC and PR exponential time. There are also examples where (c) PR is polyno-
mial and BRZ is exponential, but it is impossible to have PR polynomial and HKC

exponential. Indeed, cycle 2 of HKC is repeated at most 1 + |A|·|R| times where
|A| is the size of the alphabet and |R| is the size of the produced relation R.
Such relation always contains at most n pairs of states, for n being the size of
the reachable part of the determinised system. Therefore, if HKC takes exponen-
tial time, then also PR takes exponential time since it always needs to build the
reachable part of the determinised LTS.
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In this section we show an example for (a). Examples for (b) and (c) can be
found in the full version of this paper [5].

Consider the following LTS, where n is an arbitrary natural number. After
the determinization, {x} can reach all the states of the shape {x} ∪XN , where

XN = {xi | i ∈ N} for any N ⊆ {1, . . . , n}. For instance for n = 2, {x} aa→ {x},
{x} ab→ {x, x1}, {x} ba→ {x, x2} and {x} bb→ {x, x1, x2}. All those states are
distinguished by must and, therefore, the minimal Moore machine for [[{x}]] has
at least 2n states.

xa,b
�� b �� x1

a,b
�� . . .

a,b
�� xn

b �� u τ
��

ya,b
�� b ��

a,b ��

y1
a,b

�� . . .
a,b

�� yn
b �� v τ

��

z
a

��
b

��

One can prove that x and y are must equivalent by showing that relation

R = {({x}, {y}), ({x}, {y, z}), (�,�)}
∪ {({x} ∪XN , {y, z} ∪ YN ) | N ⊆ {1, . . . , n}}

is a bisimulation (here YN = {yi | i ∈ N}). Note that R contains 2n + 2 pairs.
In order to check [[{x}]]=[[{y}]], HKC builds the following relation,

R′ = {({x}, {y}), ({x}, {y, z})}∪ {({x, xi}, {y, z, yi}) | i ∈ {1, . . . , n}}

which is a bisimulation up-to and which contains only n + 2 pairs. It is worth
to observe that R′ is like a “basis” of R: all the pairs (X,Y ) ∈ R can be gen-
erated by those in R′ by iteratively applying the rules in (4). Therefore, HKC
proves [[{x}]]=[[{y}]] in polynomial time, while minimization-based algorithms
(such as [12] or Brzozowski’s algorithm) require exponential time.

5 Conclusions and Future Work

We have introduced a coalgebraic characterization of must testing semantics by
means of the generalized powerset construction [28]. This allowed us to adapt
proof techniques and algorithms that have been developed for language equiva-
lence to must semantics. In particular, we showed that bisimulations up-to con-
gruence (that was recently introduced in [7] for NDA’s) are sound also for must
semantics. This fact guarantees the correctness of a generalization of HKC [7] for
checking must equivalence and preorder and suggests that the antichains-based
algorithms [32,1] can be adapted in a similar way. We have also proposed a vari-
ation of Brzozowski’s algorithm [9] to check must semantics, by exploiting the
abstract theory in [4]. Our contribution is not a simple instantiation of [4], but
developing our algorithm has required some ingenuity to avoid the preliminary
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determinization that would be needed to directly apply [4]. We implemented
these algorithms together with an interactive applet available online [6].

We focused on must testing semantics because it is challenging to compute,
but our considerations hold also for may testing and for several decorated trace
semantics of the linear time/branching time spectrum [30] (namely, those that
have been studied in [3]). Adapting these algorithms to check fair testing [24]
seems to be more complicated: while it is possible to coalgebraically capture
failure trees, we do not know how to model fair testing equivalence. We believe
that this is a challenging topic to investigate in the future. Moreover, since coal-
gebras can easily model probabilistic systems, it is worth to investigate whether
our approach can be extended to the testing semantics of probabilistic and non-
deterministic processes (e.g. [15]).
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