
Contracts in Practice�

H.-Christian Estler, Carlo A. Furia, Martin Nordio,
Marco Piccioni, and Bertrand Meyer

Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Contracts are a form of lightweight formal specification embedded in
the program text. Being executable parts of the code, they encourage program-
mers to devote proper attention to specifications, and help maintain consistency
between specification and implementation as the program evolves. The present
study investigates how contracts are used in the practice of software development.
Based on an extensive empirical analysis of 21 contract-equipped Eiffel, C#, and
Java projects totaling more than 260 million lines of code over 7700 revisions,
it explores, among other questions: 1) which kinds of contract elements (precon-
ditions, postconditions, class invariants) are used more often; 2) how contracts
evolve over time; 3) the relationship between implementation changes and con-
tract changes; and 4) the role of inheritance in the process. It has found, among
other results, that: the percentage of program elements that include contracts is
above 33% for most projects and tends to be stable over time; there is no strong
preference for a certain type of contract element; contracts are quite stable com-
pared to implementations; and inheritance does not significantly affect qualitative
trends of contract usage.

1 Introduction

Using specifications as an integral part of the software development process has long
been advocated by formal methods pioneers and buffs. While today few people question
the value brought by formal specifications, the software projects that systematically
deploy them are still a small minority. What can we learn from these adopters about the
practical usage of specifications to support software development?

In this paper, we answer this question by looking into contracts, a kind of lightweight
formal specification in the form of executable assertions (preconditions, postconditions,
and class invariants). In the practice of software development, contracts support a range
of activities such as runtime checking, automated testing, and static verification, and
provide rigorous and unambiguous API documentation. They bring some of the ad-
vantages of “heavyweight” formal methods while remaining amenable to programmers
without strong mathematical skills: whoever can write Boolean expressions can also
write contracts. Therefore, learning how contracts are used in the projects that use them
can shed light on how formal methods can make their way into the practice of software
development.

� Work supported by Gebert-Ruf Stiftung, by ERC grant CME # 291389, and by SNF grant
ASII # 200021-134976.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 230–246, 2014.
c© Springer International Publishing Switzerland 2014

Contracts in Practice 231

The empirical study of this paper analyzes 21 projects written in Eiffel, C#, and Java,
three major object-oriented languages supporting contracts, with the goal of studying
how formal specifications are written, changed, and maintained as part of general soft-
ware development. Eiffel has always supported contracts natively; the Java Modeling
Language (JML [16]) extends Java with contracts written as comments; and C# has
recently added support with the Code Contracts framework [8]. Overall, our study ana-
lyzed more than 260 million lines of code and specification distributed over 7700 revi-
sions. To our knowledge, this is the first extensive study of the practical evolving usage
of simple specifications such as contracts over project lifetimes.

The study’s specific questions target various aspects of how contracts are used in
practice: Is the usage of contracts quantitatively significant and uniform across the var-
ious selected projects? How does it evolve over time? How does it change with the
overall project? What kinds of contracts are used more often? What happens to con-
tracts when implementations change? What is the role of inheritance?

The main findings of the study, described in Section 3, include:

– The projects in our study make a significant usage of contracts: the percentages of
routines and classes with specification is above 33% in the majority of projects.

– The usage of specifications tends to be stable over time, except for the occasional
turbulent phases where major refactorings are performed. This suggests that con-
tracts evolve following design changes.

– There is no strong preference for certain kinds of specification elements (precondi-
tions, postconditions, class invariants); but preconditions, when they are used, tend
to be larger (have more clauses) than postconditions. This indicates that different
specification elements are used for different purposes.

– Specifications are quite stable compared to implementations: a routine’s body may
change often, but its contracts will change infrequently. This makes a good case
for a fundamental software engineering principle: stable interfaces over changing
implementations [21].

– Inheritance does not significantly affect the qualitative findings about specification
usage: measures including and excluding inherited contracts tend to correlate. This
suggests that the abstraction levels provided by inheritance and by contracts are
largely complementary.

As a supplemental contribution, we make all data collected for the study available online
as an SQL database image [3]. This provides a treasure trove of data about practically
all software projects of significant size publicly available that use contracts.

Positioning: What this Study is Not. The term “specification” has a broad meaning.
To avoid misunderstandings, let us mention other practices that might be interesting to
investigate, but which are not our target in this paper. We do not consider formal specifi-
cations in forms other than executable contracts. We do not look for formal specifications
in generic software projects: it is well-known [22] that the overwhelming majority of soft-
ware does not come with formal specifications (or any specifications). Instead, we pick
our projects among the minority of those actually using contracts, to study how the few
adopters use formal specifications in practice. We do not study applications of contracts;
but our analysis may serve as a basis to follow-up studies targeting applications. We do

232 H.-C. Estler et al.

not compare different methodologies to design and write contracts; we just observe the
results of programming practices.

Extended Version. For lack of space, we can only present the most important facts; an
extended version [7] provides more details on both the analysis and the results.

2 Study Setup

Our study analyzes contract specifications in Eiffel, C#, and Java, covering a wide range
of projects of different sizes and life spans developed by professional programmers and
researchers. We use the terms “contract” and “specification” as synonyms.

Data Selection. We selected 21 open-source projects that use contracts and are available
in public repositories. Save for requiring a minimal amount of revisions (at least 30) and
contracts (at least 5% of elements in the latest revisions), we included all open-source
projects written in Eiffel, C# with CodeContracts, or Java with JML we could find when
we performed this research. Table 1 lists the projects and, for each of them, the total
number of REVisions, the life span (AGE, in weeks), the size in lines of code (LOC) at
the latest revision, the number of DEVelopers involved (i.e., the number of committers
to the repository), and a short description.

Table 1. List of projects used in the study. “AGE” is in weeks, “#LOC” is lines of code.

PROJECT LANG. # REV. AGE # LOC # DEV. DESCRIPTION

1 AutoTest Eiffel 306 195 65’625 13 Contract-based random testing tool
2 EiffelBase Eiffel 1342 1006 61’922 45 General-purpose data structures library
3 EiffelProgramAnalysis Eiffel 208 114 40’750 8 Utility library for analyzing Eiffel programs
4 GoboKernel Eiffel 671 747 53’316 8 Library for compiler interoperability
5 GoboStructure Eiffel 282 716 21’941 6 Portable data structure library
6 GoboTime Eiffel 120 524 10’840 6 Date and time library
7 GoboUtility Eiffel 215 716 6’131 7 Library to support design patterns
8 GoboXML Eiffel 922 285 163’552 6 XML Library supporting XSL and XPath
9 Boogie C# 766 108 88’284 29 Program verification system

10 CCI C# 100 171 20’602 3 Library to support compilers construction
11 Dafny C# 326 106 29’700 19 Program verifier
12 LabsFramework C# 49 30 14’540 1 Library to manage experiments in .NET
13 Quickgraph C# 380 100 40’820 4 Generic graph data structure library
14 Rxx C# 148 68 55’932 2 Library of unofficial reactive LINQ extensions
15 Shweet C# 59 7 2352 2 Application for messaging in Twitter style
16 DirectVCGen Java 376 119 13’294 6 Direct Verification Condition Generator
17 ESCJava Java 879 366 73’760 27 An Extended Static Checker for Java (version 2)
18 JavaFE Java 395 389 35’013 18 Front-end parser for Java byte and source code
19 Logging Java 29 106 5’963 3 A logging framework
20 RCC Java 30 350 10’872 7 Race Condition Checker for Java
21 Umbra Java 153 169 15’538 8 Editor for Java bytecode and BML specifications

Total 7’756 6’392 830’747 228

Measures. The raw measures produced by include: the number of classes, the num-
ber of classes with invariants, the average number of invariant clauses per class, and
the number of classes modified compared to the previous revision; the number of rou-
tines (public and private), the number of routines with non-empty precondition, with
non-empty postcondition, and with non-empty specification (that is, precondition, post-
condition, or both), the average number of pre- and postcondition clauses per routine,
and the number of routines with modified body compared to the previous revision.

Contracts in Practice 233

Measuring precisely the strength of a specification (which refers to how constraining
it is) is hardly possible as it requires detailed knowledge of the semantics of classes
and establishing undecidable properties in general. In our study, we count the number
of specification clauses (elements anded, normally on different lines) as a proxy for
specification strength. The number of clauses is a measure of size that is interesting in
its own right. If some clauses are changed,1 just counting the clauses may measure
strength incorrectly. We have evidence, however, that the error introduced by measur-
ing strengthening in this way is small. We manually inspected 277 changes randomly
chosen, and found 11 misclassifications (e.g., strengthening reported as weakening).
Following [17, Eq. 5], this implies that, with 95% probability, the errors introduced by
our estimate (measuring clauses for strength) involve no more than 7% of the changes.

3 How Contracts Are Used

Our study targets the following main questions, addressed in the following subsections.

Q1. Do projects make a significant usage of contracts, and how does usage evolve over
time?

Q2. How does the usage of contracts change with projects growing or shrinking in size?
Q3. What kinds of contract elements are used more often?
Q4. What is the typical size and strength of contracts, and how does it change over

time?
Q5. Do implementations change more often than their contracts?
Q6. What is the role of inheritance in the way contracts change over time?

Table 2 shows the essential quantitative data we discuss for each project; Table 3 shows
sample plots of the data for four projects. In the rest of the section, we illustrate and
summarize the data in Table 2 and the plots in Table 3 as well as much more data and
plots that, for lack of space, are available elsewhere [3,7].

3.1 Writing Contracts

In the majority of projects in our study, developers devoted a considerable part of their
programming effort to writing specifications for their code. While we specifically target
projects with some specification (and ignore the majority of software that doesn’t use
contracts), we observe that most of the projects achieve significant percentages of rou-
tines or classes with specification. As shown in column % ROUTINES SPEC of Table 2,
in 7 of the 21 analyzed projects, on average 50% or more of the public routines have
some specification (pre- or postcondition); in 14 projects, 35% or more of the routines
have specification; and only 3 projects have small percentages of specified routines
(15% or less). Usage of class invariants (column % CLASSES INV in Table 2) is more
varied but still consistent: in 9 projects, 33% or more of the classes have an invariant;
in 10 projects, 12% or less of the classes have an invariant. The standard deviation of
these percentages is small for 11 of the 21 projects, compared to the average value over

1 We consider all concrete syntactic changes, that is all textual changes.

234 H.-C. Estler et al.

Ta
bl

e
2.

S
pe

ci
fi

ca
ti

on
ov

er
al

l
st

at
is

ti
cs

w
it

h
no

n-
fl

at
cl

as
se

s.
Fo

r
ea

ch
pr

oj
ec

t,
w

e
re

po
rt

th
e

nu
m

be
r

of
cl

as
se

s
an

d
of

pu
bl

ic
ro

ut
in

es
(#

C
L

A
S

S
E

S
,

#
R

O
U

T
IN

E
S
);

th
e

pe
rc

en
ta

ge
(1

is
10

0%
)

of
cl

as
se

s
w

it
h

no
n-

em
pt

y
in

va
ri

an
t(

%
C

L
A

S
S

E
S

IN
V

);
of

ro
ut

in
es

w
it

h
no

n-
em

pt
y

sp
ec

ifi
ca

ti
on

(%
R

O
U

T
IN

E
S

S
P

E
C

)
an

d
m

or
e

sp
ec

ifi
ca

lly
w

ith
no

n-
em

pt
y

pr
ec

on
di

tio
n

(P
R

E
)

an
d

po
st

co
nd

it
io

n
(P

O
S

T
);

th
e

m
ea

n
nu

m
be

r
of

cl
au

se
s

of
ro

ut
in

e
pr

ec
on

di
ti

on
s

(A
V

G

R
O

U
T

IN
E

S
P

R
E

)
an

d
of

po
st

co
nd

it
io

ns
(P

O
S

T
).

Fo
r

ea
ch

m
ea

su
re

,t
he

ta
bl

e
re

po
rt

s
m

in
im

um
(m

),
m

ed
ia

n
(μ

),
m

ax
im

um
(M

),
an

d
st

an
da

rd
de

vi
at

io
n

(σ
)

ac
ro

ss
al

lr
ev

is
io

ns
.

#
C

L
A

S
S

E
S

%
C

L
A

S
S

E
S

IN
V

#
R

O
U

T
IN

E
S

%
R

O
U

T
IN

E
S

S
P

E
C

%
R

O
U

T
IN

E
S

P
R

E
%

R
O

U
T

IN
E

S
P

O
S

T
A

V
G

R
O

U
T

IN
E

S
P

R
E

A
V

G
R

O
U

T
IN

E
S

P
O

S
T

P
ro

je
ct

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

m
μ

M
σ

A
ut

oT
es

t
98

22
0

25
4

66
0.

38
0.

43
0.

55
0.

06
35

2
10

53
12

34
37

2
0.

47
0.

49
0.

61
0.

06
0.

23
0.

25
0.

4
0.

07
0.

34
0.

36
0.

45
0.

04
1.

73
1.

76
1.

85
0.

03
1.

19
1.

22
1.

28
0.

03
E

if
fe

lB
as

e
93

18
4

25
6

36
0.

24
0.

34
0.

39
0.

03
54

5
19

84
33

23
69

6
0.

26
0.

4
0.

44
0.

04
0.

17
0.

27
0.

3
0.

03
0.

14
0.

24
0.

26
0.

03
1.

43
1.

6
1.

7
0.

05
1.

2
1.

46
1.

51
0.

06
E

if
fe

lP
ro

gr
am

A
na

ly
si

s
0

17
9

22
1

30
0

0.
04

0.
05

0
0

82
8

11
27

19
9

0
0.

25
0.

27
0.

02
0

0.
14

0.
16

0.
02

0
0.

15
0.

16
0.

01
0

1.
23

1.
25

0.
09

0
1.

13
1.

17
0.

08
G

ob
oK

er
ne

l
0

72
15

7
38

0
0.

11
0.

13
0.

04
0

16
8

70
2

15
5

0
0.

6
1

0.
17

0
0.

3
0.

4
0.

09
0

0.
51

1
0.

19
0

2.
1

2.
91

0.
59

0
1.

32
1.

86
0.

25
G

ob
oS

tr
uc

tu
re

42
75

10
9

17
0.

19
0.

33
0.

39
0.

06
12

2
37

2
48

3
88

0.
18

0.
29

0.
41

0.
07

0.
07

0.
19

0.
28

0.
06

0.
16

0.
23

0.
32

0.
05

1.
45

1.
82

1.
93

0.
13

1.
17

1.
44

1.
49

0.
1

G
ob

oT
im

e
0

22
47

10
0

0.
12

0.
28

0.
09

0
17

6
33

3
53

0
0.

63
0.

66
0.

06
0

0.
28

0.
33

0.
03

0
0.

58
0.

6
0.

06
0

1.
62

1.
7

0.
15

0
2.

28
2.

53
0.

25
G

ob
oU

ti
li

ty
3

25
43

10
0

0.
22

0.
5

0.
08

1
90

18
5

55
0

0.
9

0.
98

0.
14

0
0.

58
0.

83
0.

12
0

0.
58

0.
67

0.
11

0
1.

8
2.

07
0.

24
0

1.
29

1.
52

0.
25

G
ob

oX
M

L
0

17
6

85
9

25
2

0
0.

38
0.

48
0.

07
0

88
3

54
65

16
03

0
0.

35
0.

44
0.

05
0

0.
23

0.
35

0.
03

0
0.

23
0.

33
0.

06
0

1.
43

1.
55

0.
14

0
1.

2
1.

36
0.

07
B

oo
gi

e
9

60
6

64
7

18
1

0.
24

0.
34

0.
58

0.
06

80
35

42
37

48
10

55
0.

49
0.

52
0.

81
0.

09
0.

28
0.

3
0.

74
0.

13
0.

08
0.

32
0.

38
0.

04
1.

6
1.

73
1.

76
0.

03
1

1.
02

1.
02

0.
01

C
C

I
45

60
10

8
15

0.
01

0.
04

0.
06

0.
01

16
0

21
0

30
2

50
0

0.
03

0.
05

0.
01

0
0.

03
0.

04
0.

01
0

0
0.

01
0

1
1.

33
1.

6
0.

22
0

0
1

0.
49

D
af

ny
11

14
8

18
4

25
0.

04
0.

47
0.

52
0.

06
25

37
5

55
1

85
0.

16
0.

64
0.

74
0.

07
0.

16
0.

57
0.

64
0.

06
0

0.
18

0.
22

0.
03

1
2.

29
2.

36
0.

18
0

1.
04

1.
05

0.
14

L
ab

s
47

58
75

8
0.

35
0.

38
0.

42
0.

02
35

1
41

3
51

8
29

0.
38

0.
47

0.
5

0.
03

0.
28

0.
38

0.
42

0.
03

0.
1

0.
13

0.
21

0.
03

1.
34

1.
37

1.
58

0.
08

1.
13

1.
17

1.
28

0.
05

Q
ui

ck
gr

ap
h

22
8

26
0

33
6

27
0

0.
02

0.
04

0.
01

10
74

12
62

18
62

17
9

0
0.

16
0.

22
0.

07
0

0.
15

0.
21

0.
07

0
0.

01
0.

02
0.

01
0

1.
71

2.
1

0.
71

0
1.

18
1.

36
0.

46
R

xx
0

14
5

18
9

53
0

0.
42

0.
44

0.
08

0
13

58
17

92
49

4
0

0.
7

0.
97

0.
11

0
0.

6
0.

93
0.

13
0

0.
62

0.
81

0.
08

0
2.

1
2.

24
0.

18
0

1.
03

1.
12

0.
1

S
hw

ee
t

0
28

36
13

0
0

0
0

0
57

85
33

0
0.

1
0.

4
0.

07
0

0.
1

0.
4

0.
07

0
0.

01
0.

07
0.

02
0

1.
6

2
0.

77
0

1
1

0.
49

D
ir

ec
tV

C
G

en
13

55
82

17
0

0
0.

03
0

74
44

0
58

2
11

5
0.

06
0.

15
0.

37
0.

04
0.

06
0.

15
0.

37
0.

04
0.

02
0.

1
0.

35
0.

05
1

1
1.

33
0.

05
1

1
1

0
E

S
C

Ja
va

66
16

1
30

8
80

0.
11

0.
17

0.
26

0.
05

23
3

58
5

30
79

85
3

0.
16

0.
36

0.
74

0.
21

0.
14

0.
27

0.
69

0.
2

0.
06

0.
12

0.
2

0.
03

1.
07

1.
27

1.
66

0.
21

1.
21

1.
52

1.
88

0.
12

Ja
va

F
E

10
7

12
4

64
1

29
0.

12
0.

47
0.

62
0.

04
49

9
58

9
10

81
12

5
0.

34
0.

43
0.

8
0.

15
0.

26
0.

34
0.

74
0.

14
0.

13
0.

18
0.

31
0.

04
1.

2
1.

54
1.

61
0.

12
1.

26
1.

48
1.

82
0.

09
L

og
gi

ng
20

22
23

1
0.

04
0.

09
0.

09
0.

01
15

4
17

1
17

3
6

0.
32

0.
49

0.
54

0.
04

0.
14

0.
33

0.
35

0.
04

0.
21

0.
28

0.
33

0.
02

1.
39

1.
43

1.
5

0.
04

1.
58

1.
75

2
0.

08
R

C
C

48
14

2
14

4
42

0.
08

0.
1

0.
11

0.
01

35
9

44
1

44
7

35
0.

06
0.

56
0.

59
0.

24
0.

03
0.

07
0.

1
0.

02
0.

04
0.

52
0.

54
0.

23
1.

21
1.

28
1.

36
0.

04
1

1.
04

1.
05

0.
02

U
m

br
a

23
41

77
16

0
0.

06
0.

1
0.

03
36

12
2

33
2

78
0

0.
02

0.
05

0.
02

0
0.

01
0.

03
0.

01
0

0.
02

0.
04

0.
01

0
1

1
0.

49
0

1
1

0.
47

Contracts in Practice 235

Ta
bl

e
3.

S
el

ec
te

d
pl

ot
s

fo
r

pr
oj

ec
ts

E
if

fe
lB

as
e,

A
ut

oT
es

t,
E

S
C

Ja
va

,a
nd

B
oo

gi
e.

E
ac

h
gr

ap
h

fr
om

le
ft

to
ri

gh
t

re
pr

es
en

ts
th

e
ev

ol
ut

io
n

ov
er

su
cc

es
si

ve
re

vi
si

on
s

of
:

(1
)

an
d

(2
),

pe
rc

en
ta

ge
of

ro
ut

in
es

w
it

h
pr

ec
on

di
ti

on
(p

re
in

th
e

le
ge

nd
),

w
it

h
po

st
co

nd
it

io
n

(p
os

t)
,a

nd
of

cl
as

se
s

w
it

h
in

va
ri

an
t

(i
nv

);
(3

),
av

er
ag

e
nu

m
be

r
of

cl
au

se
s

in
co

nt
ra

ct
s;

(4
),

nu
m

be
r

of
ch

an
ge

s
to

im
pl

em
en

ta
ti

on
an

d
sp

ec
ifi

ca
ti

on
(b

od
y+

sp
ec

),
to

im
pl

em
en

ta
ti

on
on

ly
(b

od
y

on
ly

),
an

d
ch

an
ge

to
sp

ec
ifi

ca
ti

on
on

ly
.W

he
n

pr
es

en
t,

a
th

in
gr

ay
li

ne
pl

ot
s

th
e

to
ta

ln
um

be
r

of
ro

ut
in

e
in

th
e

pr
oj

ec
t(

sc
al

ed
).

S
im

il
ar

pl
ot

s
fo

r
al

lp
ro

je
ct

s
ar

e
av

ai
la

bl
e

[7
,3

].

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

0.150.200.250.300.350.40

E
if

fe
lB

a
s

e
:

%
 r

o
u

ti
n

e
s

 a
n

d
 c

la
s

s
e

s
 w

it
h

 s
p

e
c

if
ic

a
ti

o
n

re
vi

si
o

n

% routines or classes

p
re

p
o

st
in

v

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

0.250.300.350.400.450.500.55

A
u

to
T
e

s
t:

 %
 r

o
u

ti
n

e
s

 a
n

d
 c

la
s

s
e

s
 w

it
h

 s
p

e
c

if
ic

a
ti

o
n

re
vi

si
o

n

% routines or classes

p
re

p
o

st
in

v

0
2

0
0

4
0

0
6

0
0

8
0

0

0.20.40.60.8

E
S

C
J

a
v
a

:
S

p
e

c
if

ic
a

ti
o

n
 c

la
u

s
e

s
 p

e
r

ro
u

ti
n

e
 o

r
c
la

s
s

re
vi

si
o

n

clauses per routine or class

p
re

p
o

st
in

v

2
0

0
4

0
0

6
0

0
8

0
0

050100150

B
o

o
g

ie
:

#
 c

h
a

n
g

e
d

 r
o

u
ti

n
e

s
 o

r
s

p
e

c

re
vi

si
o

n

routines

b
o

d
y+

sp
e

c
b

o
d

y
o

n
ly

sp
e

c
o

n
ly

236 H.-C. Estler et al.

all revisions: the latter is at least five times larger. suggesting that deviations from the
average are normally small. Section 3.2 gives a quantitative confirmation of this hint
about the stability of specification amount over time.

The EiffelBase project—a large standard library used in most Eiffel projects—is a
good “average” example of how contracts may materialize over a project’s lifetime.
After an initial fast growing phase (see the first plot in Table 3), corresponding to a
still incipient design that is taking shape, the percentages of routines and classes with
specification stabilize around the median values with some fluctuations that—while still
significant, as we comment on later—do not affect the overall trend or the average per-
centage of specified elements. This two-phase development (initial mutability followed
by stability) is present in several other projects of comparable size, and is sometimes
extreme, such as for Boogie, where there is a widely varying initial phase, followed by a
very stable one where the percentages of elements with specification is practically con-
stant around 30%. Analyzing the commit logs around the revisions of greater instability
showed that wild variations in the specified elements coincide with major reengineer-
ing efforts. For Boogie, the initial project phase coincides with the porting of a parent
project written in Spec# (a dialect of C#), and includes frequent alternations of adding
and removing code from the repository; after this phase, the percentage of routines and
classes with specification stabilizes to a value close to the median.

There are few outlier projects where the percentage of elements with specification
is small, not kept consistent throughout the project’s life, or both. Quickgraph, for ex-
ample, never has more than 4% of classes with an invariant or routines with a postcon-
dition, and its percentage of routines with precondition varies twice between 12% and
21% in about 100 revisions (see complete data in [7]).

In two thirds of the projects, on average 1/3 or more of the routines
have some specification (pre- or postconditions).

Public vs. Private Routines. The data analysis focuses on contracts of public routines.
To determine whether trends are different for private routines, we visually inspected the
plots [3] and computed the correlation coefficient2 τ for the evolution of the percentages
of specified public routines against those of private routines. The results suggest to parti-
tion the projects into three categories. For the 9 projects in the first category—AutoTest,
EiffelBase, Boogie, CCI, Dafny, JavaFE, Logging, RCC and Umbra—the correlation
is positive (0.51 ≤ τ ≤ 0.94) and highly significant. The 2 projects in the second
category—GoboStructure and Labs—have negative (τ ≤ −0.47) and also significant
correlation. The remaining 10 projects belong to the third category, characterized by
correlations small in absolute value, positive or negative, or statistically insignificant.
This partitioning seems to correspond to different approaches to interface design and
encapsulation: for projects in the first category, public and private routines always re-
ceive the same amount of specification throughout the project’s life; projects in the sec-
ond category show negative correlations that may correspond to changes to the visibility
status of a significant fraction of the routines; visual inspection of projects in the third
category still suggests positive correlations between public and private routines with

2 All correlation measures in the paper employ Kendall’s rank correlation coefficient τ .

Contracts in Practice 237

specification, but the occasional redesign upheaval reduces the overall value of τ or the
confidence level. In fact, the confidence level is typically small for projects in the third
category; and it is not significant (p = 0.418) only for EiffelProgramAnalysis which
also belongs to the third category. Projects with small correlations tend to be smaller
in size with fewer routines and classes; conversely, large projects may require a stricter
discipline in defining and specifying the interface and its relations with the private parts,
and have to adopt consistent approaches throughout their lives.

In roughly half of the projects, the amounts of contracts in public and in private
routine correlate; in the other half, correlation vanishes due to redesign changes.

3.2 Contracts and Project Size

The correlation between the number of routines or classes with some specification and
the total number of routines or classes (with or without specification) is consistently
strong and highly significant. Looking at routines, 10 projects exhibit an almost perfect
correlation with τ > 0.9 and p ∼ 0; only 3 projects show medium/low correlations
(Labs and Quickgraph with τ = 0.48, and Logging with τ = 0.32) which are however
still significant. The outlook for classes is quite similar: the correlation between number
of classes with invariants and number of all classes tends to be high. Outliers are the
projects Boogie and JavaFE with the smaller correlations τ = 0.28 and τ = 0.2, but
visual inspection still suggests that a sizable correlation exists for Boogie (the results
for JavaFE are immaterial since it has only few invariants overall). In all, the absolute
number of elements with specification is normally synchronized to the overall size of
a project, confirming the suggestion of Section 3.1 that the percentage of routines and
classes with specification is stable over time.

Having established that, in general, specification and project size have similar trends,
we can look into finer-grained variations of specifications over time. To estimate the rel-
ative effort of writing specifications, we measured the correlation between percentage
of specified routines or classes and number of all routines or all classes.

A first large group of projects, almost half of the total whether we look at routines
or classes, show weak or negligible correlations (−0.35 < τ < 0.35). In this ma-
jority of projects, the relative effort of writing and maintaining specifications evolves
largely independently of the project size. Given that the overall trend is towards stable
percentages, the high variance often originates from initial stages of the projects when
there were few routines or classes in the system and changes can be momentous. Gobo-
Kernel and DirectVCGen are specimens of these cases: the percentage of routines with
contracts varies wildly in the first 100 revisions when the system is still small and the
developers are exploring different design choices and styles.

Another group of 3 projects (AutoTest, Boogie, and Dafny) show strong negative
correlations (τ < −0.75) both between percentage of specified routines and number of
routines and between percentage of specified classes and number of classes. The usual
cross-inspection of plots and commit logs points to two independent phenomena that
account for the negative correlations. The first is the presence of large merges of project
branches into the main branch; these give rise to strong irregularities in the absolute and
relative amount of specification used, and may reverse or introduce new specification

238 H.-C. Estler et al.

styles and policies that affect the overall trends. As evident in the second plot of Ta-
ble 3, AutoTest epitomizes this phenomenon, with its history clearly partitioned into
two parts separated by a large merge at revision 150. The second phenomenon that
may account for negative correlations is a sort of “specification fatigue” that kicks in
as a project becomes mature and quite large. At that point, there might be diminish-
ing returns for supplying more specification, and so the percentage of elements with
specification gracefully decreases while the project grows in size. (This is consistent
with Schiller et al.’s suggestion [27] that annotation burden limits the extent to which
contracts are used.) The fatigue is, however, of small magnitude if present at all, and
may be just be a sign of reached maturity where a solid initial design with plenty of
specification elements pays off in the long run to the point that less relative investment
is sufficient to maintain a stable level of maintainability and quality.

The remaining projects have significant positive correlations (τ > 0.5) between ei-
ther percentage of specified routines and number of routines or between percentage of
specified classes and number of classes, but not both. In these special cases, it looks as
if the fraction of programming effort devoted to writing specification tends to increase
with the absolute size of the system: when the system grows, proportionally more rou-
tines or classes get a specification. However, visual inspection suggests that, in all cases,
the trend is ephemeral or contingent on transient phases where the project size changes
significantly in little time. As the projects mature and their sizes stabilize, the other two
trends (no correlation or negative correlation) emerge in all cases.

The fraction of routines and classes with some specification is quite stable over time.
Local exceptions are possible when major redesign changes take place.

3.3 Kinds of Contract Elements

Do programmers prefer preconditions? Typically, one would expect that preconditions
are simpler to write than postconditions (and, for that matter, class invariants): post-
conditions are predicates that may involve two states (before and after routine execu-
tion). Furthermore, programmers have immediate benefits in writing preconditions as
opposed to postconditions: a routine’s precondition defines the valid input; hence, the
stronger it is, the fewer cases the routine’s body has to deal with.

Contrary to this common assumption, the data in our study (columns % ROUTINES

PRE and POST in Table 2) is not consistently lopsided towards preconditions. 2 projects
show no difference in the median percentages of routines with precondition and with
postcondition. 10 projects do have, on average, more routines with precondition than
routines with postcondition, but the difference in percentage is less than 10% in 5 of
those projects, and as high as 39% only in one project (Dafny). The remaining 9 projects
even have more routines with postcondition than routines with precondition, although
the difference is small (less than 5%) in 5 projects, and as high as 45% only in RCC.

On the other hand, in 17 projects the percentage of routines with some specification
(precondition, postcondition, or both) is higher than both percentages of routines with
precondition and of routines with postcondition. Thus, we can partition the routines
of most projects in three groups of comparable size: routines with only precondition,
routines with only postcondition, and routines with both. The 4 exceptions are CCI,

Contracts in Practice 239

Shweet, DirectVCGen, and Umbra where, however, most elements have little speci-
fication. In summary, many exogenous causes may concur to determine the ultimate
reasons behind picking one kind of contract element over another, such as the project
domain and the different usage of different specification elements. Our data is, however,
consistent with the notion that programmers choose which specification to write accord-
ing to context and requirements, not based on a priori preferences. It is also consistent
with Schiller et al.’s observations [27] that contract usage follows different patterns in
different projects, and that programmers are reluctant to change their preferred usage
patterns—and hence patterns tend to remain consistent within the same project.

A closer look at the projects where the difference between percentages of routines
with precondition and with postcondition is significant (9% or higher) reveals another
interesting pattern. All 6 projects that favor preconditions are written in C# or Java:
Dafny, Labs, Quickgraph, Shweet, ESCJava (third plot in Table 3, after rev. 400), and
JavaFE; conversely, the 3 of 4 projects that favor postconditions are in Eiffel (AutoTest,
GoboKernel, and GoboTime), whereas the fourth is RCC written in Java. A possible
explanation for this division involves the longer time that Eiffel has supported contracts
and the principal role attributed to Design by Contract within the Eiffel community.

Preconditions and postconditions are used equally frequently across most projects.

Class Invariants. Class invariants have a somewhat different status than pre- or post-
conditions. Since class invariants must hold between consecutive routine calls, they
define object consistence, and hence they belong to a different category than pre- and
postconditions. The percentages of classes with invariant (% CLASSES INV in Table 2)
follow similar trends as pre- and postconditions in most projects in our study. Only
4 projects stick out because they have 4% or less of classes with invariant, but other-
wise make a significant usage of other specification elements: Quickgraph, EiffelPro-
gramAnalysis, Shweet, and DirectVCGen.3 Compared to the others, Shweet has a short
history and EiffelProgramAnalysis involves students as main developers rather than
professionals. Given that the semantics of class invariants is less straightforward than
that of pre- and postconditions—and can become quite intricate for complex
programs [1]—this might be a factor explaining the different status of class invariants
in these projects. A specific design style is also likely to influence the usage of class
invariants, as we further comment on in Section 3.4.

Kinds of Constructs. An additional classification of contracts is according to the con-
structs they use. We gathered data about constructs of three types: expressions involv-
ing checks that a reference is Void (Eiffel) or null (C# and Java); some form of finite
quantification (constructs for ∀/∃ over containers exist for all three languages); and old
expressions (used in postconditions to refer to values in the pre-state). Void/null checks
are by far the most used: in Eiffel, 36%–93% of preconditions, 7%–62% of postcon-
ditions, and 14%–86% of class invariants include a Void check; in C#, 80%–96% of
preconditions contain null checks, as do 34%–92% of postconditions (the only excep-
tion is CCI which does not use postconditions) and 97%–100% of invariants (exceptions

3 While the projects CCI and Umbra have few classes with invariants (4%–6%), we don’t discuss
them here because they also only have few routines with preconditions or postconditions.

240 H.-C. Estler et al.

are Quickgraph at 20% and Shweet which does not use invariants); in Java, 88%–100%
of preconditions, 28%–100% of postconditions, and 50%–77% of class invariants con-
tain null (with the exception of Umbra which has few contracts in general). Void/null
checks are simple to write, and hence cost-effective, which explains their wide usage;
this may change in the future, with the increasing adoption of static analyses which su-
persede such checks [19,4]. The predominance of simple contracts and its justification
have been confirmed by others [27].

At the other extreme, quantifications are very rarely used: practically never in pre-
or postconditions; and very sparsely (1%–10% of invariants) only in AutoTest, Boogie,
Quickgraph, ESCJava, and JavaFE’s class invariants. This may also change in the fu-
ture, thanks to the progresses in inferring complex contracts [11,30,29], and in method-
ological support [24].

The usage of old is more varied: C# postconditions practically don’t use it, Java
projects rarely use it (2%–3% of postconditions at most), whereas it features in as many
as 39% of postconditions for some Eiffel projects. Using old may depend on the design
style; for example, if most routines are side-effect free and return a value function solely
of the input arguments there is no need to use old.

The overwhelming majority of contracts involves Void/null checks.
In contrast, quantifiers appear very rarely in contracts.

3.4 Contract Size and Strength

The data about specification size (and strength) partly vindicates the intuition that pre-
conditions are more used. While Section 3.3 showed that routines are not more likely
to have preconditions than postconditions, preconditions have more clauses on aver-
age than postconditions in all but the 3 projects GoboTime, ESCJava, and Logging.
As shown in columns AVG ROUTINES PRE and POST of Table 2, the difference in fa-
vor of preconditions is larger than 0.5 clauses in 9 projects, and larger than 1 clause
in 3 projects. CCI never deploys postconditions, and hence its difference between pre-
and postcondition clauses is immaterial. GoboTime is a remarkable outlier: not only do
twice as many of its routines have a postcondition than have precondition, but its av-
erage postcondition has 0.66 more clauses than its average precondition. ESCJava and
Logging also have larger postconditions on average but the size difference is less con-
spicuous (0.25 and 0.32 clauses). We found no simple explanation for these exceptions,
but they certainly are the result of deliberate design choices.

The following two facts corroborate the idea that programmers tend to do a better job
with preconditions than with postconditions—even if they have no general preference
for one or another. First, the default “trivial” precondition true is a perfectly reason-
able precondition for routines that compute total functions—defined for every value of
the input; a trivial postcondition is, in contrast, never satisfactory. Second, in general,
“strong” postconditions are more complex than “strong” preconditions [24] since they
have to describe more complex relations.

Class invariants are not directly comparable to pre- and postconditions, and their
usage largely depends on the design style. Class invariants apply to all routines and at-
tributes of a class, and hence they may be used extensively and involve many clauses;

Contracts in Practice 241

conversely, they can also be replaced by pre- and postconditions in most cases, in
which case they need not be complex or present at all. In the majority of projects
(15 out of 21), however, class invariants have more clauses on average than pre- and
postconditions. We might impute this difference to the traditional design principles for
object-oriented contract-based programming, which attribute a significant role to class
invariants [18,5,25] as the preferred way to define valid object state.

In over eighty percent of the projects, the average preconditions
contain more clauses than the average postconditions.

Section 3.1 observed the prevailing stability over time of routines with specification.
Visual inspection and the values of standard deviation point to a qualitatively similar
trend for specification size, measured in number of clauses. In the first revisions of a
project, it is common to have more varied behavior, corresponding to the system design
being defined; but the average strength of specifications typically reaches a plateau, or
varies quite slowly, in mature phases.

Project Labs is somewhat of an outlier, where the evolution of specification strength
over time has a rugged behavior (see [7] for details and plots). Its average number of
class invariant clauses has a step at about revision 29, which corresponds to a merge,
when it suddenly grows from 1.8 to 2.4 clauses per class. During the few following
revisions, however, this figure drops quickly until it reaches a value only slightly higher
than what it was before revision 29. What probably happened is that the merge mixed
classes developed independently with different programming styles (and, in particular,
different attitudes towards the usage of class invariants). Shortly after the merge, the
developers refactored the new components to make them comply with the overall style,
which is characterized by a certain average invariant strength.

One final, qualitative, piece of data about specification strength is that in a few
projects there seems to be a moderate increase in the strength of postconditions to-
wards the latest revisions of the project. This observation is however not applicable
to any of the largest and most mature projects we analyzed (e.g., EiffelBase, Boogie,
Dafny).

The average size (in number of clauses) of specification elements is stable over time.

3.5 Implementation vs. Specification Changes

Contracts are executable specifications; normally, they are checked at runtime during
debugging and regression testing sessions (and possibly also in production releases, if
the overhead is acceptable, to allow for better error reporting from final users). Specif-
ically, most applications and libraries of our study are actively used and maintained.
Therefore, their contracts cannot become grossly misaligned with the implementation.

A natural follow-up question is then whether contracts change more often or less
often than the implementations they specify. To answer, we compare two measures in
the projects: for each revision, we count the number of routines with changed body and
changed specification (pre- or postcondition) and compare it to the number of routines
with changed body and unchanged specification. These measures aggregated over all

242 H.-C. Estler et al.

revisions determine a pair of values (cP , uP) for each project P : cP characterizes the
frequency of changes to implementations that also caused a change in the contracts,
whereas uP characterizes the frequencies of changes to implementations only. To avoid
that few revisions with very many changes dominate the aggregate values for a project,
each revision contributes with a binary value to the aggregate value of a project: 0 if no
routine has undergone a change of that type in that revision, and 1 otherwise.4 We per-
formed a Wilcoxon signed-rank test comparing the cP ’s to the uP ’s across all projects to
determine if the median difference between the two types of events (changed body with
and without changed specification) is statistically significant. The results confirm with
high statistical significance (V = 0, p = 9.54 · 10−7, and large effect size—Cohen’s
d > 0.99) that specification changes are quite infrequent compared to implementation
changes for the same routine. Visual inspection also confirms the same trend: see the last
plot in Table 3 about Boogie. A similar analysis ignoring routines with trivial (empty)
specification leads to the same conclusion also with statistical significance (V = 29,
p = 4.78 · 10−3, and medium effect size d > 0.5).

When specifications do change, what happens to their strength measured in number
of clauses? Another Wilcoxon signed-rank test compares the changes to pre- and post-
conditions and class invariants that added clauses (suggesting strengthening) against
those that removed clauses (suggesting weakening). Since changes to specifications are
in general infrequent, the results were not as conclusive as those comparing specifi-
cation and implementation changes. The data consistently points towards strengthening
being more frequent than weakening: V = 31.5 and p < 0.02 for precondition changes;
V = 29 and p < 0.015 for postcondition changes; V = 58.5 and p = 0.18 for invari-
ant changes. The effect sizes are, however, smallish: Cohen’s d is about 0.4, 0.42, and
0.18 for preconditions, postconditions, and invariants. In all, the effect of strengthening
being more frequent than weakening seems to be real but more data is needed to obtain
conclusive evidence.

The implementation of an average routine changes
much more frequently than its specification.

3.6 Inheritance and Contracts

Inheritance is a principal feature of object-oriented programming, and involves con-
tracts as well as implementations; we now evaluate its effects on the findings previously
discussed.

We visually inspected the plots and computed correlation coefficients for the per-
centages and average strength of specified elements in the flat (explicitly including all
routines and specification of the ancestor classes) and non-flat (limited to what appears
in the class text) versions of the classes. In the overwhelming majority of cases, the cor-
relations are high and statistically significant: 16 projects have τ ≥ 0.54 and p < 10−9

for the percentage of routines with specification; 17 projects have τ ≥ 0.66 and p ∼ 0
for the percentage of classes with invariant; 12 projects have τ ≥ 0.58 and p < 10−7

for the average precondition and postcondition strength (and 7 more projects still have

4 Using other “reasonable” aggregation functions (including exact counting) leads to qualita-
tively similar results.

Contracts in Practice 243

τ ≥ 0.33 and visually evident correlations); and 15 projects have τ ≥ 0.45 and p ∼ 0
for the average invariant strength. The first-order conclusion is that, in most cases, ig-
noring the inherited specification does not preclude understanding qualitative trends.

What about the remaining projects, which have small or insignificant correlations for
some of the measures in the flat and non-flat versions? Visual inspection often confirms
the absence of significant correlations, in that the measures evolve along manifestly
different shapes in the flat or non-flat versions; the divergence in trends is typically ap-
parent in the revisions where the system size changes significantly, where the overall
design—and the inheritance hierarchy—is most likely to change. To see if these visible
differences invalidate some of the findings discussed so far, we reviewed the findings
against the data for flat classes. The big picture was not affected: considering inheri-
tance may affect the measures and offset or bias some trends, but the new measures
are still consistent with the same conclusions drawn from the data for non-flat classes.
Future work will investigate whether this result is indicative of a mismatch between
the semantics of inheritance and how it is used in practice [28,26]. (See the extended
version [7] for details.)

Qualitative trends of measures involving contracts do not change significantly
whether we consider or ignore inherited contracts.

4 Threats to Validity

Construct Validity. Using the number of clauses as a proxy for the strength of a specifi-
cation may produce imprecise measures; Section 2, however, estimated the imprecision
and showed it is limited, and hence an acceptable trade-off in most cases (also given
that computing strength exactly is infeasible). Besides, the number of clauses is still a
valuable size/complexity measure in its own right (Section 3.4).

Internal Validity. Since we targeted object-oriented languages where inheritance is
used pervasively, it is essential that the inheritance structure be taken into account in
the measures. We fully addressed this major threat to internal validity by analyzing all
projects twice: in non-flat and flat version (Section 3.6).

External Validity. Our study is restricted to three formalisms for writing contract spec-
ifications. While other notations for contracts are similar, we did not analyze other
types of formal specification, which might limit the generalizability of our findings. In
contrast, the restriction to open-source projects does not pose a serious threat to external
validity in our study, because several of our projects are mainly maintained by profes-
sional programmers (EiffelBase and Gobo projects) or by professional researchers in
industry (Boogie, CCI, Dafny, and Quickgraph).

An important issue to warrant external validity involves the selection of projects. We
explicitly targeted projects that make a non-negligible usage of contracts (Section 2),
as opposed to the overwhelming majority that only include informal documentation or
no documentation at all. This deliberate choice limits the generalizability of our find-
ings, but also focuses the study on understanding how contracts can be seriously used
in practice. A related observation is that the developers of several of the study’s projects
are supporters of using formal specifications. While this is a possible source of bias it

244 H.-C. Estler et al.

also contributes to reliability of the results: since we are analyzing good practices and
success stories of writing contracts, we should target competent programmers with suf-
ficient experience, rather than inexpert novices. Besides, Schiller et al.’s independent
analysis [27] of some C# projects using CodeContracts also included in our study sug-
gests that their developers are hardly fanatic about formal methods, as they use contracts
only to the extent that it remains inexpensive and cost-effective, and does not require
them to change their programming practices.

Nevertheless, to get an idea of whether the programmers we studied really have in-
comparable skills, we also set up a small control group, consisting of 10 projects devel-
oped by students of a software engineering course involving students from universities
all around the world. In summary (see [7] for details), we found that several of the
trends measured with the professional programmers were also present in the student
projects—albeit on the smaller scale of a course project. This gives some confidence
that the big picture outlined by this paper’s results somewhat generalizes to developers
willing to spend some programming effort to write contracts.

5 Related Work

To our knowledge, this paper is the first quantitative empirical study of specifications in
the form of contracts and their evolution together with code. Schiller et al. [27] study C#
projects using CodeContracts (some also part of our study); while our and their results
are not directly comparable because we take different measures and classify contract
usage differently, the overall qualitative pictures are consistent and nicely complemen-
tary. In the paper we also highlighted a few points where their results confirm or justify
ours. Schiller et al. do not study contract evolution; there is evidence, however, that
other forms of documentation—e.g., comments [9], APIs [13], or tests [32]—evolve
with code.

A well-known problem is that specification and implementation tend to diverge over
time; this is more likely for documents such as requirements and architectural de-
signs that are typically developed and stored separately from the source code. Much
research has targeted this problem; specification refinement, for instance, can be ap-
plied to software revisions [10]. Along the same lines, some empirical studies analyzed
how requirements relate to the corresponding implementations; [12], for example, ex-
amines the co-evolution of certain aspects of requirements documents with change logs
and shows that topic-based requirements traceability can be automatically implemented
from the information stored in version control systems.

The information about the usage of formal specification by programmers is largely
anecdotal, with the exceptions of a few surveys on industrial practices [2,31]. There is,
however, some evidence of the usefulness of contracts and assertions. [15], for exam-
ple, suggests that increases of assertions density and decreases of fault density correlate.
[20] reports that using assertions may decrease the effort necessary for extending exist-
ing programs and increase their reliability. In addition, there is evidence that developers
are more likely to use contracts in languages that support them natively [2]. As the tech-
nology to infer contracts from code reaches high precision levels [6,30], it is natural to
compare automatically inferred and programmer-written contracts; they turn out to be,
in general, different but with significant overlapping [23].

Contracts in Practice 245

6 Concluding Discussion and Implications of the Results

Looking at the big picture, our empirical study suggests a few actionable remarks.
(i) The effort required to make a quantitatively significant usage of lightweight specifi-
cations is sustainable consistently over the lifetime of software projects. This supports
the practical applicability of methods and processes that rely on some form of rigorous
specification. (ii) The overwhelming majority of contracts that programmers write in
practice are short and simple. This means that, to be practical, methods and tools should
make the best usage of such simple contracts or acquire more complex and complete
specifications by other means (e.g., inference). It also encourages the usage of simple
specifications early on in the curriculum and in the training of programmers [14]. (iii) In
spite of the simplicity of the contracts that are used in practice, developers who commit
to using contracts seem to stick to them over an entire project lifetime. This reveals that
even simple specifications bring a value that is worth the effort: a little specification can
go a long way. (iv) Developers often seem to adapt their contracts in response to changes
in the design; future work in the direction of facilitating these adaptations and making
them seamless has a potential for a high impact. (v) A cornerstone software engineer-
ing principle—stable interfaces over changing implementations—seems to have been
incorporated by programmers. An interesting follow-up question is then whether this
principle can be leveraged to improve not only the reusability of software components
but also the collaboration between programmers in a development team. (vi) Somewhat
surprisingly, inheritance does not seem to affect most qualitative findings of our study.
The related important issue of how behavioral subtyping is achieved in practice [26]
belongs to future work, together with several other follow-up questions whose answers
can build upon the foundations laid by this paper’s results.

Acknowledgments. Thanks to Sebastian Nanz for comments on a draft of this paper;
and to Todd Schiller, Kellen Donohue, Forrest Coward, and Mike Ernst for sharing a
draft of their paper [27] and comments on this work.

References

1. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Comm. ACM 54(6), 81–91 (2011)

2. Chalin, P.: Are practitioners writing contracts? In: Butler, M., Jones, C.B., Romanovsky,
A., Troubitsyna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157, pp. 100–113. Springer,
Heidelberg (2006)

3. http://se.inf.ethz.ch/data/coat/
4. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.W.: Building and using pluggable

type-checkers. In: ICSE, pp. 681–690. ACM (2011)
5. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework for ver-

ification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 412–437. Springer, Heidelberg (2008)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:
The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69,
35–45 (2007)

7. Estler, H.C., Furia, C.A., Nordio, M., Piccioni, M., Meyer, B.: Contracts in practice (2013),
extended version with appendix http://arxiv.org/abs/1211.4775

http://se.inf.ethz.ch/data/coat/
http://arxiv.org/abs/1211.4775

246 H.-C. Estler et al.

8. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC, pp. 2103–
2110. ACM (2010)

9. Fluri, B., Würsch, M., Gall, H.: Do code and comments co-evolve? on the relation between
source code and comment changes. In: WCRE, pp. 70–79. IEEE (2007)

10. García-Duque, J., Pazos-Arias, J., López-Nores, M., Blanco-Fernández, Y., Fernández-Vilas,
A., Díaz-Redondo, R., Ramos-Cabrer, M., Gil-Solla, A.: Methodologies to evolve formal
specifications through refinement and retrenchment in an analysis-revision cycle. Require-
ments Engineering 14, 129–153 (2009)

11. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container
classes. IEEE Trans. Software Eng. 33(8), 526–543 (2007)

12. Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Relating requirements to implementa-
tion via topic analysis. In: ICSM (2012)

13. Kim, M., Cai, D., Kim, S.: An empirical investigation into the role of API-level refactorings
during software evolution. In: ICSE, pp. 151–160. ACM (2011)

14. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuellar, J., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 214–228. Springer, Heidelberg (2008)

15. Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software asser-
tions and faults: An empirical investigation. In: ISSRE, pp. 204–212 (2006)

16. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Behavioral
Specifications of Businesses and Systems, pp. 175–188. Kluwer Academic Publishers (1999)

17. Martin, J.K., Hirschberg, D.S.: Small sample statistics for classification error rates II. Tech.
rep., CS Department, UC Irvine (1996), http://goo.gl/Ec8oD

18. Meyer, B.: Object Oriented Software Construction, 2nd edn. Prentice Hall PTR (1997)
19. Meyer, B., Kogtenkov, A., Stapf, E.: Avoid a Void: the eradication of null dereferencing. In:

Reflections on the Work of C.A.R., pp. 189–211. Springer (2010)
20. Müller, M.M., Typke, R., Hagner, O.: Two controlled experiments concerning the usefulness

of assertions as a means for programming. In: ICSM, pp. 84–92 (2002)
21. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053–1058 (1972)
22. Parnas, D.L.: Precise documentation: The key to better software. In: The Future of Software

Engineering, pp. 125–148. Springer (2011)
23. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written and auto-

matically inferred contracts. In: ISSTA, pp. 93–104 (2009)
24. Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What good are strong specifications?

In: ICSE, pp. 257–266. ACM (2013)
25. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through semantic

collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
505–520. Springer, Heidelberg (2014)

26. Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent substitutability. In:
ICSE, pp. 282–291. ACM (2013)

27. Schiller, T.W., Donohue, K., Coward, F., Ernst, M.D.: Writing and enforcing contract speci-
fications. In: ICSE. ACM (2014)

28. Tempero, E., Yang, H.Y., Noble, J.: What programmers do with inheritance in Java. In:
Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 577–601. Springer, Heidelberg (2013)

29. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. 18(3-4), 263–292 (2011)

30. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE, pp. 191–200
(2011)

31. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice and ex-
perience. ACM CSUR 41(4) (2009)

32. Zaidman, A., Van Rompaey, B., Demeyer, S., van Deursen, A.: Mining software repositories
to study co-evolution of production and test code. In: ICST, pp. 220 –229 (2008)

http://goo.gl/Ec8oD

	Contracts in Practice
	1 Introduction
	2 Study Setup
	3 How Contracts Are Used
	3.1 Writing Contracts
	3.2 Contracts and Project Size
	3.3 Kinds of Contract Elements
	3.4 Contract Size and Strength
	3.5 Implementation vs. Specification Changes
	3.6 Inheritance and Contracts

	4 Threats to Validity
	5 Related Work
	6 Concluding Discussion and Implications of the Results
	References

