
A Spreadsheet-like User Interface for

Combinatorial Multi-Objective Optimization

Derek Rayside
MIT CSAIL

drayside@csail.mit.edu

H.-Christian Estler
University of Paderborn

estler@upb.de

Abstract

We present Moolloy, a general purpose,
spreadsheet-like user interface for combinato-
rial multi-objective optimization. Current user
interfaces for multi-objective optimization tend
to either require some programming experi-
ence to use, or are narrowly focused on spe-
cific problems. Consequently, multi-objective
optimization is usually only used by sophisti-
cated technical workers, such as aerospace en-
gineers. Moolloy makes multi-objective opti-
mization accessible to a larger set of potential
users.

1 Introduction

In a single-objective optimization problem, a
set of decision variables are assigned values
from a given domain; a solution is an assign-
ment for which the specified constraints hold.
The optimal solution is the solution with the
best value, computed by applying an objective
function to the assignment.

A multi-objective optimization problem
(MOOP) is an optimization problem with

Copyright c© 2009 Derek Rayside and H.-Christian Es-
tler. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

several, oftentimes conflicting, objectives. In
the design of a bicycle, for example, cost and
performance conflict. The decision variable
frame material might take one of the values
Aluminum (for high performance but high
cost) or Steel (for lower performance but lower
cost).

In most cases, a MOOP does not have a sin-
gle optimal solution, but a set of optimal so-
lutions. For the bicycle problem, a range of
solutions that balance cost and performance in
different ways might be obtained. These solu-
tions are optimal in the sense that the value
of one objective can be raised only by lowering
the value of another. Furthermore, no solution
in this set is dominated by any other solution
in the set, meaning that for each pair of so-
lutions 〈s1, s2〉, s1 has at least one objective-
value that is better than s2’s corresponding
objective-value. Named after the economist
Vilfredo Pareto, the set of non-dominated so-
lutions is often called the Pareto front.

Single-objective optimization is supported
by common end-user tools (such as spread-
sheets) and is widely used as a decision-making
aide. The same cannot be said for multi-
objective optimization: tools that support it
tend to require programming expertise, and
their use is most often constrained to highly

1

skilled professionals in specialised technical do-
mains, such as the aerospace industry.

Scaffidi et al. [16] estimate, based on data
from the US Bureau of Labor Statistics, that by
2012 over 90 million Americans will use com-
puters at work. Of these, 55 million will be
spreadsheet and database users; 13 million will
do some programming, and fewer than 3 million
will be professional programmers. We would
like to expand the potential user-base for multi-
objective optimization from its current position
of those with some programming experience to
all spreadsheet users.

We imagine that multi-objective optimiza-
tion will become more important for regu-
lar business people as concerns for the envi-
ronment, social responsibility, life-cycle costs,
safety, etc., compete with regard for the short-
term bottom line.

A similar transformation occurred in the
American aerospace industry in the 1970s [17]:
in the 1960s the aerospace industry pursued
performance at any cost; by the 1970s they
realized that each marginal increase in perfor-
mance was coming at larger and larger costs,
both to the short-term bottom line, as well as
to maintainability and life-cycle costs. Hence
the aerospace industry has been interested
in multi-objective optimization for some time
now. However, the tools they use tend to be
restricted to those with some programming ex-
perience (which is reasonably common amongst
the highly trained engineers who design air-
craft).

We have been collaborating with a group
of aerospace engineers here at MIT, and have
studied the kinds of multi-objective optimiza-
tion problems that they are most commonly
interested in solving. In previous work [15] we
developed a new algorithm for multi-objective
optimization and applied it to solving some of
their complex challenge problems. This algo-
rithm uses the Kodkod [20] relational model-
finder as its underlying constraint solver.

In this work we report on a novel user inter-
face that we have designed and implemented
based on (a) our study of the kinds of models
that they write with their existing tools, and
(b) interviews and design reviews with them.
From this collaboration and study we posit
that:

1. the idea of multi-objective optimization
is comprehensible to regular spreadsheet
users;

2. a spreadsheet-like user interface can be de-
signed for multi-objective optimization;

3. such a user interface will make multi-
objective optimization more accessible.

In this paper we concretely substantiate the
second proposition by describing the design of
a spreadsheet-like user interface for discrete
multi-objective optimization. We provide ar-
guments supporting the first and third propo-
sitions but leave their empirical exploration for
future work.

The prototype of our user interface and
solver may be downloaded from http://sdg.
csail.mit.edu/moolloy/

2 Problem Statement

This section gives a formal description of com-
binatorial multi-objective optimzation, Pareto
dominance, Pareto optimality, etc.: the con-
cepts that are needed to understand what our
user interface is intended to do.

2.1 Problem Input

In a multi-objective optimization problem, a
vector of decision variables ~X = [x1, . . . , xz] is
assigned a vector of values, called an assign-
ment. Each value is drawn from a given do-
main, thus we sometimes refer to it as domain
value. An assignment is feasible if it respects
all the constraints represented by a vector ~C =
[c1(~X), . . . , cp(~X)]. A feasible assignment is
also called a solution. A vector of metric (or ob-
jective) functions ~M = [m1, . . . ,mq] is applied
to a solution to obtain a point (or metric values
or objective values) [m1(~X), . . . ,mq(~X)].

2.2 Pareto dominance and Pareto
optimality

Two solutions can be compared based on their
metric values. We make the following distinc-
tions:

2

Definition 1 Let ȧ and â be solutions, q the
number of metric functions, and let u, v be met-
ric function indices in {1, . . . , q}. We say

• â (Pareto) dominates ȧ with respect to the
metric M : ⇔ ∀u : mu(â) ≥ mu(ȧ) and
∃v : mv(â) > mv(ȧ)

• â (Pareto) equals â: ⇔ ∀u : mu(â) =
mu(ȧ)

Given a set of solutions S, we are interested
in finding maximal or optimal solutions (min-
imization problems can be expressed as max-
imization problems). Optimality is defined in
terms of metric values:

Definition 2 Let ȧ, â be solutions.
We call â maximal or (Pareto) optimal iff no
ȧ exists such that ȧ dominates â. The set
containing all optimal solutions is called the
Pareto front.

2.3 Solving a Multi-Objective
Optimization Problem

The result of solving a multi-objective opti-
mization problem is its Pareto Front. Con-
ventionally, the Pareto front is regarded as a
set. In practice, however, an algorithm pro-
duces one solution at a time. The Pareto front
may be so large that the user cannot wait for all
optimal solutions to be generated; or the user
may simply wish to start assessing and explor-
ing solutions as they are generated.

It is therefore important to specify a solver
in terms of the sequence of solutions that it
produces, and not the set (which may never be
obtained).

A MOOP solver has three essentual proper-
ties:

Definition 3 Specification of a MOOP
solver

Given decision variables ~X, metric functions
~M , and constraints ~C. Let S be the set of
all solutions for 〈 ~X, ~M, ~C〉. A solver should
produce a sequence of assignments O such that:

i) Soundness: Every generated assignment
satisfies the constraints (i.e. is a solution):
∀a ∈ O |

∧
ci(a), 1 ≤ i ≤ p

ii) Optimality: Every generated assignment
is optimal:
∀a ∈ O |a is Pareto optimal

iii) Completeness: Every optimal assignment
is generated:
∀a ∈ S | a is Pareto optimal ⇒ a ∈ O

It is up to the MOOP solver to satisfy the 3
criteria given above and the design of a user in-
terface can be seen as separate task. Neverthe-
less, only with a solver which computes correct
solutions and yields them as early as possible
during the computation, we are able to build
interfaces with high usability which fulfill to-
day’s criteria for human-computer interactions,
e.g. “provide feedback” [12].

2.4 Problem domains of MOOPs

In different research communities, the vectors
~X, ~M and ~C take different forms. In Opera-
tions Research, for instance, the decision vari-
ables are usually assigned numerical values, ei-
ther drawn from a continuous domain like R, or
from a discrete domain like Z. Likewise, con-
straints are given as equations or inequations
over ~X (e.g. as linear functions).

For so called pseudo boolean problems, ~M
and ~C are used in the same manner as just
described, but decision variables are restricted
to take the values 0 or 1.

The solver underlying our interface is dif-
ferent. Addressing the solver directly over its
API, we can specify domain values which can
themselves be complex structures (though fi-
nite and discrete). Thus the topology of a net-
work or the shape of a directory hierarchy, for
example, might be the value assigned to a sin-
gle variable. For the graphical user interface,
however, we tried to identify the subset of op-
timization problems which are most relevant in
practice. This subset is described in more de-
tail in the next section.

3 Moolloy - an Interface for
MOOP

We introduce the interface of our tool, called
Moolloy, by further pursuing the bicycle exam-
ple from the introduction. A number of vari-

3

ables with their associated domain values de-
scribe the characteristics of a bike. Our goal is
to find all Pareto optimal solutions: i.e., those
on the maximal performance and minimal cost
trade-off curve.

3.1 Declaring Metrics

Figure 1 shows the default window directly af-
ter the start of the Moolloy tool. On the left
hand side, a tree with with 4 nodes is provided.
Using context menus, we add new nodes to this
tree; each node representing parts of the opti-
mization model. Therefore, we also call the tree
a model-tree.

Figure 1: Moolloy’s main window with an
empty model-tree.

Usually, the first step during the develop-
ment of an optimization model is to state the
metrics of the problem. For our example, we
define the two metrics Cost and Performance
as shown in Figure 2. We set the preference
of metric Cost to “min” and the preference
of metric performance to “max”. The oper-
ator determines if metric values are combined
with addition or multiplication. We discuss the
columns “Min” and “Max” in the next section.

Figure 2: Declaring metrics of the model.

3.2 Declaring Domain Values

In a next step, we declare domains and their
values (shown in Figure 3). Note that the
ordering in which domain values are listed is
meaningful. Internally, we define a total order-
ing over the values of each domain; i.e., in our
example Steel < Aluminum < Carbon fiber
holds. Such an ordering is useful once we add
constraints to the model.

Figure 3: Adding a domain and its values. The
ordering of the values describes a total ordering
over the values of the domain.

As different decision variables, e.g. Frame
and Fork, will take different domain values, we
can declare multiple domains. Later on, we as-
sign the decision variables to their correspond-
ing domains. Each declaration of a domain
adds a new node (a child of the mapping node)
in the model-tree.

3.3 Declaring Variables

We can now add decision variables to each do-
main of our model. This is, again, done by us-
ing the context menu of the model-tree. Each
variable creates a new node in the tree. Open-
ing such a node, e.g., for the variable Frame,
opens a table as shown in Figure 5. Using this
table we specify how a particular domain value
changes a metric value (in case the variable gets
assigned to the domain value).

It might happen that some variables should
not be able to get assigned to particular do-
main value. This can be achieved by simply
leaving the row of that value blank. In the ex-
ample: if we don’t enter at least one metric
value in the row of Carbon fiber, the variable

4

Figure 4: The entire model-tree, the solution window and the plot of the Pareto front.

Figure 5: For each variable we declare the in-
fluence of a domain value on the metric value.

Frame will never be assigned to this domain
value. Rows which are only partially filled with
metric values, are automatically completed by
adding a neutral element (0 for addition, 1 for
multiplication) in the empty fields.

3.4 Solving the Model

Once we have completed our model, we solve
it in order to get the Pareto optimal solutions
(the Pareto front). Figure 4 shows the main
window with the complete model-tree for our
bicycle example.

A separate window displays a table with
all the Pareto optimal solutions, showing their
metric values (see Figure 6). Clicking on one
of these rows will open up a new window dis-
playing the details of the the solution, i.e. the

assignments of variables to domain values (see
Figure 7).

To visually inspect the Pareto front of our
model, we can plot two metrics in a diagram.
For our bicycle example, we can observe that
there is high density of solutions with low
costs and low to medium performance but only
a few solutions with excellent performance.
This might indicate that we have not enough
medium-price, medium-performance options in
our model.

Figure 6: Pareto optimal solutions to the
model. The Pareto front can be plotted using
the context menu.

5

Figure 7: The assignment window displays the
detail of a particular solution.

4 Expressing Constraints

Once the decision variables, domain values and
metrics of an optimization model are defined, a
user might want to add constraints (also called
restrictions) to the model. Constraints en-
sure that every solution respects certain prop-
erties. In our bicycle example, for instance, we
might want to ensure only a certain fork model
is used, given that the frame material is alu-
minum. Thus, a constraint might be: if frame
= aluminum then fork = RockShock XL.

4.1 Classification of Constraints

We identify three major types of constraints:

1. Assignment constraints: this type of con-
straint relates to the example given above.
The assignment of a decision variable to a
certain value influences the assignment of
other decision variables.

2. Metric constraints: a metric constraint en-
sures that a solution respects certain met-
ric properties. For example, we could for-
mulate a constraint “overall performance
of a solution must be > 40” for our bicy-
cle model. At a more fine-grained level,
a metric constraint might not just restrict
the overall value of a metric but instead
a specific part of the model: e.g. “cost of
handlebar + stem must be ≤ 250”.

3. Functional constraints: given a decision
variable which is assigned to a domain
value, a metric value for this assignment
might depend on other decision variables.
Again, we give an example from our bi-
cycle model: the performance of the rear
mech (the rear gear shifter) depends on the
type of chain chosen. A constraint could
be “if chain = Shimanu XYZ then the per-
formance of the Shimanu XYZ rear mech
equals 10, else it is 8”.

We do not claim that every constraint of
an arbitrary combinatorial MOOP can be
matched to one of the three categories. How-
ever, our work with real world case studies and
a variety of (sometimes artificial) benchmark
problems has shown that most constraints fit
within this classification.

During the development of the interface, our
cooperation with aero-space engineers revealed
that assignment constraints and metric con-
straints are essential to model (even simpli-
fied versions of) real-word optimization prob-
lems. In contrast, functional constraints are of
greater importance for the fine adjustment of
the optimization model.

4.2 Implicit and Explicit Expres-
sion of Constraints

The Moolloy user interface is structured so as
to make the most common kinds of constraints
that users wish to express as simple as enter-
ing a value in to a cell in a table. We refer
to such constraints as implicit because they do
not require the user to write an explicit logical
formula.

We gave an example for such an implicit con-
straint in Section 3.3: by not defining any met-
ric values for a particular domain value, we
implicitly stated a constraint which prohibits
any variable from being assigned to this do-
main value.

Another possibility to state an implicit con-
straint is shown in Figure 2. Entering a value
in the “Min” field ensures that all solutions will
have a value for this metric that is greater than
or equal to the specified value. Entering a value
in the “Max” field ensures that all solutions will
have a value for this metric that is less than or
equal to the specified value.

6

constraint ::= ’(’ constraint ’)’ formulaOp := ’=’ | ’<’ | ’>’ | ’<=’ | ’>=’

| ’@’ classId

| negationOp constraint expr ::= ’(’ expr ’)’

| constraint logicOp constraint | expr exprOp expr

| formula | sumExpr

| logicConst | multExpr

| intConst

negationOp ::= ’not’ | ’!’

exprOp ::= ’*’ | ’/’ | ’%’ | ’+’ | ’-’

logicOp ::= ’and’ | ’&’

| ’implies’ | ’=>’ sumExpr ::=

| ’iff’ | ’<=>’ ’$sum(’ metricId ’,’ domainId ’,’

| ’or’ | ’|’ valueId ’,’ number ’)’

logicConst ::= ’true’ | ’false’ multExpr ::=

’$mult(’ metricId ’,’ domainId ’,’

formula ::= expr formulaOp expr valueId ’,’ number ’)’

| varId formulaOp (varId | valueId)

| valueId formulaOp varId intConst ::= ’$’number

Figure 8: Grammar of Moolloy’s expression language: every name ending with Id represents an
identifier, and is to be treated as a terminal. The terminal number represents a positive integer
value. Precedence of logical operators (tightes first): not, and, implies, iff, or. Expression operators
* (multiplication), / (division) and % (modulo) have higher precedence than + (addition) and -
(substraction). All operators associate to the left.

In a similar fashion, we can assure that a
minimal or maximal number of variables get
assigned to a particular domain value. Fig-
ure 9 shows the fields “MinVars” and “Max-
Vars” which are used for this purpose.

Figure 9: “MinVars” and “MaxVars” allow a
implicit definition of a constraint.

Sometimes, however, the user wishes to ex-
press constraints that do not correspond to a
single table cell in the user interface. In this
uncommon case the user may write an explicit
logical formula, such as the example shown in
Figure 10. In the next section we describe the
grammar for these explicit constraints.

Figure 10: Explicit definition of a constraint
using the expression language.

4.3 Explicit Constraints

Figure 8 shows the grammar of the expres-
sion language currently implemented in Mool-
loy. As an example, we show how to express the
constraints from the beginning of this section
in Moolloy’s expression language:

• the constraint if frame = aluminum then
fork = RockShock XL gets almost di-
rectly translated to: frame = aluminum
=> fork = RockShock_XL (where frame

7

is a varId and aluminum is a valueId).

• the metric constraint “cost of handlebar +
stem must be ≤ 250” can be translated to:
$sum(Cost, cockpit, Syntace_Race, 4)
<= $250. The expression specifies that
the sum of Cost for the variables in the
domain cockpit (these variables are
handlebar and stem) has to be less than
250. We specified that every domain value
from the cockpit should be considered
in the calculation because Syntace_Race
is the first value in the domain cockpit
which has 4 additional domain values.
The last two parameters of the $sum()
expression define the range over which the
calculation is performed. If, for instance,
instead of Syntace_Race, 4 we would
write Snytace_Race,0, then only vari-
ables assigned to the value Syntace_Race
would be considered in the calculation.

We already mentioned that Moolloy’s under-
lying constraint solver [15] has a greater expres-
siveness than what is expressible within the in-
terface. The same accounts for the expression
language. While our experience shows that
most user constraints can be handled within
Moolloy itself, there might be case where a con-
straint can not be expressed due to the limi-
tations of the expression language. In such a
case, an experienced user can write the con-
straint directly as a Kodkod input (i.e. as a
Java class) and refer to it in the interface using
@classId, where classId represents the full
name of the class. The class will then dynami-
cally be instantiated and invoked before solving
the model.

5 Related Work

There is relatively little work on end-user in-
terfaces for combinatorial multi-objective opti-
mization that we are aware of.

Most tools that do multi-objective optimiza-
tion have interfaces like Matlab (which in-
cludes some evolutionary algorithms for multi-
objective optimization). These interfaces are
intended for a technically sophisticated audi-
ence, and are usually targeted for problems
with continuous variables and few constraints.

By contrast, we are interested in develop-
ing a user interface for spreadsheet-level users
who wish to solve multi-objective optimization
problems with discrete variables with many
constraints.

Catalyst Development Corporation (http:
//catalyst.com) is currently running a pri-
vate beta test of their forthcoming ChoiceAna-
lyst tool, which has similar objectives to ours:
combinatorial multi-objective optimization for
spreadsheet-level users. Our prototype has a
richer and more general language for expressing
constraints. ChoiceAnalyst has an interesting
idea of having not only multiple objectives, but
multiple decision makers. The tool attempts to
find the solutions that are good not only on all
metrics but also for all decision makers. This
is a very interesting dimension that we have
not yet explored: we assume a single decision
maker with multiple objectives.

Blasco et al. [1] and Eskelinen et al. [7]
have developed some techniques for visualiz-
ing Pareto fronts in high-dimensional spaces.
These techniques are complementary to ours,
and we discuss them more in the Future Work
section below.

Our aerospace collaborators here at MIT
have largely been developing their own user-
interfaces and solving algorithms [11, 18].
Their most fully developed user-interface
and associated solver is the Object-Process-
Network (OPN) tool [11] (http://opn.mit.
edu). One may think of OPN as Petri-nets
annotated with short procedures written in
Python. This is a very popular tool with our
collaborators for a few reasons:

1. It is very easy to draw the Petri-net-like
structure of the model.

2. It is relatively easy to write short proce-
dures within a framework – as compared
to writing complete programs. These users
have the technical sophistication to write
short procedures within a framework, but
find it inconvenient to write complete pro-
grams.

3. OPN is Turing complete, and hence capa-
ble of modelling a wide variety of prob-
lems – not just multi-objective optimiza-
tion. For example, they also use OPN to

8

model stakeholder value-flow feedback net-
works.

The OPN user-interface makes it relatively
easy for technically sophisticated users to
model a wide variety of problems. Our goal is
to take one of these problems that OPN is com-
monly used for – combinatorial multi-objective
optimization – and make it accessible to regular
business people who are familiar with spread-
sheets but not programming.

A good introduction to the literature on
multi-objective decision making is the collec-
tion of surveys edited by Figueira et al. [8].
More focused surveys of the literature on multi-
objective combinatorial optimization include
those by Ehrgott and Gandibleux [3–5, 9] and
by Ulungu and Teghem [21]. Additionally, the
Annals of Operations Research recently ran a
special issue on combinatorial multi-objective
decision making [6].

6 Future Work

We are pursuing future work along a number of
fronts, including enhanced user input of expres-
sions with schematic tables [2], improved visu-
alization of the computed Pareto fronts, and
usability studies with our implemented tool.

6.1 Schematic Tables

The goal of the work reported in this paper was
to move the expression of combinatorial multi-
objective problems from imperative code to a
functional (i.e., stateless) spreadsheet-like user
interface. This has been accomplished. The
next step down this path is to transfer formu-
las from the textual expression language to a
more graphical and tabular form.

Schematic tables [2] are a new form of deci-
sion tables [14, 19] developed by Edwards [2]
that we could use to supplant some usages of
our expression language. Schematic tables have
a number of useful features:

• Canonical form: there is only one way to
express each meaning.

• Proper partitioning: a decidable logic en-
sures that the table covers the input space
both exhaustively and disjointly.

• Editability: schematic tables have a sys-
tematic way that they can be put into an
inconsistent state while the user is editing
the table, and the user is given feedback
about how to continue editing the table to
resolve the introduced inconsistencies.

Peyton Jones et al. [13] also developed a
more tabular approach to user-defined spread-
sheet functions. These ideas are actually
more similar to the way that regular spread-
sheet users work than are decision tables or
schematic tables. However, the approach of
Peyton Jones et al. [13] does not offer any of
the discipline of schematic tables: for exam-
ple, ensuring that the function covers all of its
inputs exhaustively and disjointly. Such disci-
pline is important in this domain, and so we
think that schematic tables are the best choice
here.

6.2 Visualizing the Pareto Front

The focus of our work reported here has
been on a spreadsheet-like user interface for
describing combinatorial multiobjective prob-
lems: i.e., on the input to the solver. We have
not emphasized here the user interface for in-
specting the computed Pareto front: i.e., the
output of the solver.

Blasco et al. [1] and Eskelinen et al. [7]
have recently proposed techniques for visual-
izing Pareto fronts – especially fronts in spaces
with more than two dimensions. Pareto fronts
in two-dimensional spaces are easily visualized
in the obvious way, as we already do (e.g., Fig-
ure 4). It is less obvious how to visualize Pareto
fronts in high-dimensional spaces. However,
since our solver [15] is designed to work in high-
dimensional spaces, we are very interested to
incorporate appropriate visualizations for the
resulting Pareto fronts.

6.3 Usability Studies

While we have conducted user interviews and
mock-up walkthroughs in the work reported
here, we have not yet conducted quantitative
usability studies with the working tool. Three
particular issues that we are interested in ex-
ploring empirically include:

9

1. Whether users prefer the problem space hi-
erarchy organized around domains (as it is
currently the case), or around decisions.

2. Which kinds of functions users prefer to
write formulæ for, and which they prefer
to use schematic tables for. The results
of previous usability studies (e.g., [10, 22])
do not obviously make predictions of what
users will find easier in our context.

3. Whether the problems that other classes
of business and engineering users are inter-
ested in can be expressed within our user
interface. We are currently collaborating
with some materials scientists here at MIT
who are also interested in a multi-objective
approach to planning manufacturing.

7 Conclusions

Multi-objective optimization is likely to be-
come more important to business people wish-
ing to make rigorous decisions in complex
spaces.

In the 1970s the aerospace industry evolved
from a single-minded focus on performance to a
richer view including maintainability, life-cycle
costs, etc. [17] Business is now evolving from
a single-minded focus on the bottom-line to a
richer view that includes environmental con-
cerns, social responsibility, etc.

The aerospace industry has highly technical
staff that can make use of sophisticated tools
such as Matlab in their decision making. Reg-
ular business users need better user interfaces
to make ideas such as multi-objective optimiza-
tion accessible. The idea of multi-objective op-
timization is not that hard to understand, but
the currently available tools that implement it
are insurmountably difficult to use for most
spreadsheet users.

We have designed and implemented a pro-
totype user-interface for combinatorial multi-
objective optimization with a spreadsheet-like
tabular design. This design is based on our
study of the kinds of multi-objective optimiza-
tion problems that a group of aerospace engi-
neers works with most commonly. We believe
that this user interface will also support many
problems that users in other domains, such as

business and other areas of engineering, may
be interested in.

Acknowledgements

Many people have participated in helpful dis-
cussions of this work, and we are grateful for
their time and insights; in alphabetical order:
Felix Chang, Justin Colson, Ed Crawley, Greg
Dennis, Arthur Guest, Wilfried Hofstetter, An-
drew Yi Huang, Daniel Jackson, Eunsuk Kang,
Ben Koo, Ben Kuhn, Maokai Lin, Gustavo Pin-
heiro, Rob Seater, Theo Seher, Bill Simmons,
Dan Sturtevant, Tim Sutherland, Emina Tor-
lak, Olivier de Weck, and Brian Williams. Ben
Kuhn implemented part of an early version of
this user interface.

This research was funded in part by the Na-
tional Science Foundation under grant 0438897
(SoD Collaborative Research: Constraint-
based Architecture Evaluation), and by the Air
Force Research Laboratory (AFRL)/IF and
Disruptive Technology Office (DTO) in the Na-
tional Intelligence Community Information As-
surance Research (NICIAR) Programme (Con-
figAssure: Dynamic System Configuration As-
surance for National Intelligence Community
Cyber Infrastructure). A research scholarship
was provided by the University of Paderborn.

About the Authors

Derek Rayside is a doctoral student in Daniel
Jackson’s Software Design Group at the MIT
Computer Science and Artificial Intelligence
Laboratory. Derek was previously a master’s
student with Kostas Kontogiannis at the Uni-
versity of Waterloo, during which time he did
research in collaboration with CAS Toronto.
Derek worked as an intern in the IBM Toronto
Lab while studying for his undergraduate de-
gree.

Christian Estler is a masters student at the
University of Paderborn. He became involved
with this project while visiting MIT. When he
returned back to Germany he sold Derek his bi-
cycle: a large Schwinn Madison in single-speed
configuration with a steel frame and mountain-
bike handlebars.

10

References

[1] X. Blasco, J.M. Herrero, J. Sanchis, and
M. Martinez. Decision making graphical
tool for multiobjective optimization prob-
lems. In IWINAC’07, volume 4527 of
Lecture Notes in Computer Science, pages
568–577, 2007.

[2] Jonathan Edwards. No ifs, ands,
or buts: Uncovering the simplicity
of conditionals. In Proceedings of
the 22ndACM/SIGPLAN Conference on
Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA),
pages 639–658, Montréal, Canada, Octo-
ber 2007.

[3] Matthias Ehrgott and Xavier Gandibleux.
A survey and annotated bibliography
of multiobjective combinatorial optimiza-
tion. OR Spektrum, 22(4):425–460, 2000.

[4] Matthias Ehrgott and Xavier Gandibleux.
Multiobjective combinatorial optimiza-
tion: theory, methodology, and applica-
tions. In Matthias Ehrgott and Xavier
Gandibleux, editors, Multiple Criteria Op-
timization: State of the Art Annotated
Bibliographic Survey, volume 52 of In-
ternational Series in Operations Research
and Management Science, pages 369–
444. Kluwer Academic Publishers, Boston,
MA, 2002. ISBN 1-4020-7128-0.

[5] Matthias Ehrgott and Xavier Gandibleux.
Hybrid metaheuristics for multi-objective
combinatorial optimization. In Christian
Blum, Maria José Blesa Aguilera, An-
drea Roli, and Michael Sampels, editors,
Hybrid Metaheuristics: An Emerging Ap-
proach to Optimization. Springer-Verlag,
2008. ISBN 978-3540782940.

[6] Matthias Ehrgott, José Figueira, and
Xavier Gandibleux. Special issue on mul-
tiple objective discrete and combinatorial
optimization. Annals of Operations Re-
search, 147(1), October 2006.

[7] Petri Eskelinen, Kaisa Miettinen, Kathrin
Klamroth, and Jussi Hakanen. Pareto nav-
igator for interactive nonlinear multiob-

jective optimization. OR Spectrum, 2008.
doi://10.1007/s00291-008-0151-6.

[8] José Figueira, Salvatore Greco, and
Matthias Ehrgott, editors. Multiple Cri-
teria Decision Analysis: State of the Art
Surveys. Springer-Verlag, 2005.

[9] Xavier Gandibleux and Matthias Ehrgott.
1984–2004 — 20 years of multiobjective
metaheuristics. but what about the solu-
tion of combinatorial problems with mul-
tiple objectives? In Carlos A. Coello
Coello, Arturo Hernández Aguirre, and
Eckart Zitzler, editors, Proceedings of
the 3rdEvolutionary Multi-Criterion Opti-
mization, volume 3410 of Lecture Notes in
Computer Science, pages 33–46, Guana-
juato, Mexico, March 2005. ISBN ISBN
3-540-24983-4.

[10] R. Halverson Jr. An Empirical Investiga-
tion Comparing IF-THEN Rules and De-
cision Tables for Rrogramming Rule-based
Expert Systems. System Sciences, 1993,
Proceeding of the Twenty-Sixth Hawaii In-
ternational Conference on, 3, 1993.

[11] H.-Y. Benjamin Koo. A Meta-language for
Systems Architecting. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.
Advised by Edward Crawley.

[12] Rolf Molich and Jakob Nielsen. Improving
a human-computer dialogue. Commun.
ACM, 33(3), 1990.

[13] Simon Peyton Jones, Alan Blackwell, and
Margaret Burnett. A user-centred ap-
proach to functions in Excel. In Olin
Shivers, editor, Proceedings of the 8thACM
SIGPLAN International Conference on
Functional Programming (ICFP), pages
165–176, Uppsala, Sweden, August 2003.
ACM Press, NYC, NY.

[14] U.W. Pooch. Translation of Decision Ta-
bles. ACM Computing Surveys (CSUR), 6
(2):125–151, 1974.

[15] Derek Rayside, H.-Christian Estler, and
Daniel Jackson. A Guided Improvement
Algorithm for Exact, General Purpose,

11

Many-Objective Combinatorial Optimiza-
tion. Technical Report MIT-CSAIL-TR-
2009-033, MIT Computer Science and Ar-
tificial Intelligence Laboratory, 2009. URL
http://hdl.handle.net/1721.1/46322.

[16] Christopher Scaffidi, Mary Shaw, and
Brad Myers. Estimating the numbers of
end users and end user programmers. In
VL/HCC’05, 2005.

[17] Daniel Schrage, editor. White Paper on
Current State of the Art. AIAA Technical
Committee on Multidisciplinary Design
Optimization (MDO), January 1991. URL
http://endo.sandia.gov/AIAA MDOTC/
sponsored/aiaa paper.html.

[18] Willard Simmons. A Framework for Deci-
sion Support in Systems Architecting. PhD
thesis, Massachusetts Institute of Technol-
ogy, 2008. Advised by Edward Crawley.

[19] D. Thomas. Agile Programming: Design
to Accommodate Change. IEEE Software,
22(3):14–16, 2005.

[20] Emina Torlak and Daniel Jackson. Kod-
kod: A relational model finder. In
Orna Grumberg and Michael Huth, edi-
tors, Proceedings of the 13thInternational
Conference on Tools and Algorithms for
the Construction and Analysis of Systems
(TACAS), volume 4424 of Lecture Notes in
Computer Science, pages 632–647, Braga,
Portugal, March 2007. Springer-Verlag.

[21] E. L. Ulungu and J. Teghem. Multi-
objective combinatorial optimization
problems: A survey. Journal of Multi-
Criteria Decision Analysis, 3(2):83–104,
1993.

[22] I. Vessey and R. Weber. Structured Tools
and Conditional Logic: an Empirical In-
vestigation. Communications of the ACM,
29(1):48–57, 1986.

12

