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Abstract

This paper addresses the fundamental tradeoffs in event
systems between scalability (of event filtering, routing, and
delivery mechanisms), expressiveness (when describing in-
terests in events), and event safety (ensuring encapsula-
tion and type-safe interaction with polymorphic events). We
point out some ramifications underlying these tradeoffs and
we propose a pragmatic approach to handle them. We
achieve scalability using a multi-stage filtering strategy that
combines approximate and perfect matching techniques for
the purpose of event routing and filtering. We achieve ex-
pressiveness and event safety by viewing events as objects,
i.e., instances of application-defined abstract types.

1 Introduction

The design and implementation of event systems have
been an active field of research over the last few years.
These systems have evolved from simple multicast-oriented
topic-based systems (e.g., [Cor99, Ske98, TIB99, AEM99])
to elaborate, content-based, systems that filter and dissemi-
nate data events according to their content (e.g., [SAB+00,
CRW00, SBCea98, CNF98, M0̈1, SCG01]). Content-
based dissemination techniques permit accurate addressing
of events to selected subscribers according to their interests.

Event systems do however face fundamental tradeoffs
while attempting to satisfy several requirements made on
them. First, these systems must scale to a potentially large
number of subscribers (hundreds of thousands), subscrip-
tions (millions), and events (hundreds per second). Second,
they should provide expressive mechanisms to precisely
specify the interests of subscribers, in order to avoid hav-
ing these receive irrelevant events. Third, the event model
must be safe enough to permit exchange of arbitrary infor-
mation concealed behind application-defined abstract types,

i.e., without revealing implementation details (preserving
encapsulation) or requiring explicit marshaling and unmar-
shaling (enforcing type safety) of this information.

Until now, event systems have been focusing only on
parts of the equation, such as scalability and expressive-
ness [CRW00], and we are not aware of any system that
provides (even partial) support for all three aspects, namely
scalability, expressiveness, and event safety. In fact, the
tradeoffs are a consequence of an underlying conflict that
prevents filtering techniques from scaling without reducing
subscription expressiveness or violating encapsulation.

This paper proposes a way to pragmatically combine the
benefits of 1) a highly-scalable filtering technique and 2) an
expressive subscription language with 3) a generic yet safe
event representation. Event safety is achieved by viewing
events as objects which are instances of application-defined
types, and subscription expressiveness is obtained by sup-
porting subscriptions based on any public members of these
types. Scalability is achieved using a multiple stage filtering
approach, where events are pre-filtered using elaborate in-
formation retrieval techniques. While the use of these tech-
niques generally has the undesirable consequence of break-
ing event encapsulation, we circumvent this problem by
performing approximate filtering on the intermediate stages
and preserving subscription expressiveness and type safety
on an end-to-end basis.

In short, the contribution of this paper is twofold. First,
we explicitly pose the inherent tradeoffs in devising event
systems. Second, we propose a pragmatic way to handle
these issues.

The rest of the paper is organized as follows. Section
2 describes the tradeoffs involving event safety, expressive-
ness and scalability. Section 3 introduces the idea underly-
ing our multi-stage filtering approach and Section 4 presents
an architecture for putting our approach to work. Section 5
presents the concluding remarks.
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2 Tradeoffs

In this section, we first discuss in more detail the three
desirable properties of events systems, namely scalability,
expressiveness, and event safety, before pointing out inher-
ent tradeoffs between these properties. We start by the latter
property, in order to underline the impact of this often ne-
glected constraint on the two former, better known, aspects.

2.1 The Desirable Properties

Event Safety. Most event systems make few or no as-
sumption on the nature of the events or their format be-
cause of the loose coupling between the publishers and
subscribers. As a consequence, these systems usually pro-
vide low-level message-passing abstractions. As discussed
in [EGD01], working with typed events (and objects in
particular) in event systems offers a number of advantages
over unstructured and untyped events. When events are ob-
jects (encompassing implicit type inclusion information, a
“value”, and some behaviour), type hierarchies additionally
permit the filtering of these events according to their poly-
morphic nature. In other terms, events can be filtered ac-
cording to their conformance to types, including “content-
based” queries expressed on any public members of these
event types. Subscribers can register their interest to some
event type (including all its subtypes), and if encapsulation
and type safety are guaranteed, publishers can easily extend
the hierarchy and create new event (sub)types without re-
quiring subscribers to update their subscriptions.

Filtering Scalability. Most content-based event systems
use an indirect form of addressing where selectivity is con-
trolled by subscribers. One can imagine different alternative
architectures for content-based event systems.

The first and naive architecture consists in broadcasting
events to all subscribers and letting the subscriber filter out
events that do not match the local subscriptions at runtime.
This approach does not scale well as the number of mes-
sages increases.

The second one relies on a centralized server (e.g.,
Elvin3 [SAB+00]) for filtering events and forward those of
interest to the appropriate subscribers. The major drawback
of the “centralized” approach is that the server is a bottle-
neck both in terms of processing power and network band-
width, in addition to being a single point of failure.

The last and most scalable approach relies on a set of net-
worked nodes (e.g., [CRW00], also known as overlay net-
work) for content distribution. Publishers and subscribers
are connected to a local node (or a server) that is responsi-
ble for forwarding events in the system and delivering it to
the local subscribers.

Overlay networks are a key for scalability in content-
based event systems because the resource-consuming tasks
can be split among all the nodes of the network. Each node
is responsible for only a subset of all subscribers and filter-
ing can be performed in a distributed manner. The architec-
ture of the network nodes (e.g., hierarchical, peer-to-peer)
and the techniques employed to filter and route events are
also key factors in scaling to a large number of subscribers,
subscriptions, and event types and instances.

Subscription Expressiveness. The expressiveness of
subscriptions defines how accurately subscriptions can rep-
resent the interests of the subscribers. With different kinds
of subscription languages, it is possible to achieve different
“levels” of expressiveness.

The simplest form of subscription languages only per-
mits string matching. Most subscription languages use fil-
ters [SAB+00, CRW00, M0̈1] in the form of a set of at-
tributes and constraints on the values of those attributes,
where constraints are specified using common equality and
ordering relations (=, �=, <, >, etc.), as well as regular ex-
pressions.

A further step in subscription expressiveness is to allow
events to be filtered according to their type [EGD01]. Type-
based filtering adds a new dimension to content-based event
systems, by letting subscribers register their interests both
to the nature and the value of published events.

Advanced subscription languages are highly desirable,
because subscribers can more accurately express their in-
terests.

2.2 The Conflicts

Event safety is a property of event representation, scal-
ability depends on the system architecture, and expressive-
ness relates to the subscription language. These three as-
pects , depicted in Figure 1, are not orthogonal: desirable
characteristics of one aspect may have unwanted effect on
the other aspects. These conflicts are highlighted in the rest
of this section.

Event Safety vs. Filtering Scalability. The use of typed
information adds some overhead to event filtering. This
overhead is generally small when events are not objects,
since it only includes the cost of type verification and poly-
morphic data handling. Specially when events are objects
(with their own behavior) and data is in principle accessible
only through the object access methods, each object might
have to be de-marshalled and instantiated in the runtime ex-
ecution environment before filtering. When such a scheme
is naively applied at each filtering step, scalability and per-
formance decrease strongly.
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Figure 1. Three Aspects of Event Systems.

In general, as data representation becomes more power-
ful and type-safe (becoming even part of the application de-
sign), the subscription language should also become more
expressive, which however might jeopardize scalability.

Expressiveness vs. Filtering Scalability. Highly-
expressive subscription languages allow subscribers to ac-
curately specify their interest. In some respect, this can in-
crease scalability by limiting the number of irrelevant events
delivered to subscribers. On the other hand, expressiveness
increases filtering complexity and processing time. When
dealing with real-time events, large numbers of subscrip-
tions and high emission frequencies, filtering time must be
kept as small as possible.

Event Safety vs. Expressiveness. Giving the applica-
tion the possibility of defining own event types makes it
difficult to ensure type safety and encapsulation of these
events when describing subscriptions. Indeed, to ensure en-
capsulation and for expressiveness, a subscription should
be able to involve methods defined by the type subscribed
to, which is difficult to achieve ”reasonably” in a pro-
gramming language in a way ensuring static type safety.
Given the fact that, for a reasonable performance in filter-
ing and routing of events, the publish/subscribe engine has
to be given an insight into subscriptions (e.g., for collaps-
ing subscriptions), describing subscriptions by implement-
ing typed filter objects is clearly unappealing. Language
extensions [HMN+00, Eug01], or at least powerful lan-
guage mechanisms, such as advanced reflection and gener-
icity mechanisms are required [Eug01] to achieve satisfac-
tory event safety and expressiveness..

3 Multi-Stage Filtering

In this section, we present a pragmatic approach for the
provision of scalability with a type-safe data representation

and an expressive subscription language. Our approach is
based on multi-stage filtering. We first define some notions
related to filtering before describing our approach.

3.1 Definitions

Publishers and subscribers communicate by exchanging
events. A subscriber subscribes to specific events by regis-
tering a filter that is applied to incoming events: Subscriber
only receives the events that matches its filter(s).

Definition 1 (Filter). Consider a language LD for repre-
senting events, and a language LF for specifying filters. A
filter is a function f ∈ LF : LD → {true, false} such that
f(d) = true if and only if data d matches the filter f .

A filter corresponds to a subscription of a subscriber. An
event is forwarded to a subscriber when at least one of its
subscriptions returns true, and discarded otherwise. The
filter fT defined by “∀d ∈ LD fT (d) = true” expresses
interest in all data events, while the filter fF defined by
“∀d ∈ LD fF (d) = false” discards all events.

Example 1. Consider the following events describing
stock quotes (events are represented by name-value tuples):

d1 = (symbol,“Foo”) (price, 10.0) (volume, 32300)

d2 = (symbol, “Bar”) (price, 15.0) (volume, 25600)

A filter selecting only the stock quotes for symbol “Foo”
with price higher than $5 can be defined as follows (filters
are represented by name-value-operator tuples):

f = (symbol, “Foo”, =) (price, 5.0, >)

Applying filter f to events d1 and d2 yields f(d1) = true and
f(d2) = false. ✷

We now introduce a covering relation for filters.

Definition 2 (Filter Covering). A filter f covers another
filter f ′ (f � f ′) if and only if the following property holds:

f � f ′ ⇔ ∀d ∈ LD f ′(d) = true⇒ f(d) = true

Informally, this means that f ′ is a more restrictive (or
stronger) filter than f . The fT filter covers all filters and
the fF filter is covered by all filters.

Example 2. The following filters cover filter f of Exam-
ple 1:

f ′ = (symbol, “Foo”, =)

f ′′ = (symbol, “Foo”, =) (price, 4.5, >=)

✷

We also define a covering relation on data.
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Definition 3 (Data Covering). A data event d covers an-

other data event d′ for filter f , (i.e. d
f

� d′) if and only if
the following property holds:

d
f

� d′ ⇔ f(d′) = true⇒ f(d) = true

Informally, this means that d can be filtered more accurately
than (or as well as) d′ by filter f , and d is therefore a more
accurate representation of the data event.

Example 3. The following data event covers data event d1

of Example 1 for filter f :
d′1 = (symbol, “Foo”) (price, 10.0)

Note that the data covering relation is bound to a filter.

3.2 Scalability through Pre-filtering

As described in Section 2.1, filtering data as early as pos-
sible on the path between the publisher and the subscribers
in an overlay network can help to achieve scalability. If
the data traverses multiple nodes, it may be filtered multiple
times, but the amount of data filtered by each node — in par-
ticular nodes close to subscribers — will be smaller. This
is especially important when matching is time-expensive,
e.g., when using objects for events and filters. Without pre-
filtering, each node or subscriber would need to filter the
sum of all events published by all publishers. The main goal
of pre-filtering is thus to scale to a large number of publish-
ers (i.e., data events), while efficient indexing and matching
techniques aim at scaling to a large number of subscribers
(i.e., subscriptions).

d

d

d’’
f’’ d

d’
f’ d

f
Logical pathPublish

Transform

Deliver

Node n’Node n’’

Producer Consumer

Type Safety (data) Expressiveness (filters)

Figure 2. Multi-stage filtering increases scalability by

weakening the data representation and the subscription

language, and by filtering data on intermediary nodes.

The intuition behind our multi-stage filtering approach is
illustrated in Figure 2. Subscription filters are transformed
into covering subscriptions that are simpler to evaluate and
can be easily indexed for efficient matching. Produced data
is transformed into covering data adequate for matching
against the weakened subscriber filters; with event objects,
transformation typically leads to augmenting the event with
some meta-data that describes the relevant attributes of the
object’s state.

3.3 Transformations

We now describe how the transformations are performed
to guarantee that filtering will be consistent with the original
data and subscriptions.

Filter Transformation. A filter f can be transformed into
a weaker filter f ′ for the purpose of pre-filtering. Using
f ′ at strategic locations in the infrastructure can reduce the
network traffic (in comparison with having no filters) and
the amount of data to be filtered by the subscribers.

Proposition 1 (Filter Transformation). Given an original
filter f , a filter f ′ can be used for data pre-filtering if and
only if f ′ � f .

Proof (sketch) : Since f ′ � f and using the definition of fil-
ter covering, we have ∀d f(d) = f ′(d). if f ′ does not cover
f then (from the covering definition), there exists some d′

such that f(d′) = true and f ′(d′) = false; therefore d′ is valid
for f but is discarded by f ′.

It follows, if f ′ � f , then f ′ can be applied before f to
the data without loss of consistency.

Data Transformation. Since the data covering relation
depends on a filter, data and filter must be weakened in a
coordinated manner. For that purpose, one should use trans-
formation functions that generate covering filters in such a
way that weakened data events cover original events for all
covering filters.

Proposition 2 (Data Transformation). Given two sub-
scription languagesLF and LF ′ , a transformation function
t : LF → LF ′ , and an original data event d, an event d′

can be used for pre-filtering if ∀f ∈ LF d′
t(f)

� d.

A concrete example of a typed event, filter and data
transformation is shown in the [EFGH02].

4 The Architecture

For the implementation of multi-staged filtering, we ar-
range a set of intermediate nodes in a hierarchy. Each
node in the hierarchy has one or more child nodes (or
subscribers). Filters associated with child nodes (or sub-
scribers) are weakened and stored in the parent node with
the corresponding child node (or subscriber) identity (ID).
Hence a node has a set of filters and an associated set of
child nodes (or subscribers). When a node receives an
event, it is checked against each filter and if the event passes
through the filter, it is forwarded to the child node/s (or sub-
scriber/s) associated with the filter.
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4.1 An Example

An example of this arrangement is shown in Figure 3. In
this example there are four stages1. We consider the user-
level stage as the lowest stage; subscribers are at this stage.
Other three stages consist of intermediate nodes. Events
are filtered and forwarded to the subscribers by these nodes.
Published events are first forwarded to the top most stage.
Then the events are forwarded from higher stages to lower
stages. Filters are kept at each node. Weaker filters are ap-
plied at higher-stages; the strongest filters are at the lowest
stage.

*

* *

* * * *
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Figure 3. Multi-stage filtering using hierarchical nodes.

In our architecture the filters are arranged in the hierar-
chy as follows.

Stage-0. At this stage the received events are evaluated
against the exact filters specified by the subscribers. Hence
the perfect filtering is achieved at this level. For example,
the following filters could be a set of filters specified by
subscribers.

f1 = (class, “Stock”, =) (symbol, “Foo”, =)
(price, 10.0, <) (volume, 3000, >)

f2 = (class, “Stock”, =) (symbol, “Foo”, =)
(price, 11.0, <) (volume, 8000, >)

f3 = (class, “Stock”, =) (symbol, “Bar”, =)
(price, 8.0, <) (volume, 10000, >)

f4 = (class, “Auction”, =) (Product, “Vehicle”, =)
(Kind, “Car”, =) (Capacity, 2000, <)
(price, 10K, <)

Stage-1. Filters at this stage are constructed by weakening
the subscriber filters. The weakening is done such that the
weakened filters cover one or more user-level filters. As a
result there will be lesser number of filters at this stage than

1The number of stages is a parameter the system designer can decide.

the user level stage. The weakening of filters is done by
transforming the least general2 set of attributes. The most
general set of attributes are kept unchanged when weaken-
ing the filters at this stage. The user-level filters (f1, f2, f3,
f4,) are weakened to obtain the following filters (g1, g2, g3)
which will be used at first stage.

g1 = (class, “Stock”, =) (symbol, “Foo”, =)
(price, 11.0, <)

g2 = (class, “Stock”, =) (symbol, “Bar”, =)
(price, 8.0, <)

g3 = (class, “Auction”, =) (Product, “Vehicle”, =)
(Kind, “Car”, =) (Capacity, 2K, <)

Stage-2. Filters at this stage are constructed by weaken-
ing the filters at first stage. The next set of least general
attributes are weakened as appropriate to form the filter at
the second stage. The filters h1, h2 and h3 are constructed
by transforming g1, g2 and g3.

h1 = (class, “Stock”, =) (symbol, “Foo”, =)
h2 = (class, “Stock”, =) (symbol, “Bar”, =)
h3 = (class, “Auction”, =) (Product, “Vehicle”, =)

(Kind, “Car”, =)

Stage-3. At this stage filtering is done only on the type
of events. That is, the filters are constructed by weaken-
ing second stage filters such that the newly formed filters
contain only type information. Finally h1, h2 and h3 are
transformed to obtain i1 and i2.

i1 = (class, “Stock”, =)

i2 = (class, “Auction”, =)

The above shown weakening process can be automated
such that the system create all the weakened filters once
the subscription filters are available for an advertised set of
events. A simple automation scheme is described next.

4.2 Automating the Filter Weakening

In this automation process, at different stages a subset
of attributes are removed from filters to form the weak-
ened filters. For removing attributes at each stage, we first
divide (categorize) attributes in to groups. Each group is
associated with a stage. A group associated with a stage
consists of one or more attribute which can be removed at
that stage to form the weakened filter. The publisher at the

2In a filter such as f1 = (class, “Stock”, =) (symbol, “Foo”, =) (price,
10.0, <) we choose “class” as the most general attribute and “price” as
the least general attribute. The process of classifying attributes from most
general to least general is described later in this section under “Grouping
the attributes”.
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phase of advertisement specify which attribute is in which
group. The information about the groups and their contents
(attributes) is disseminated by the publisher with advertise-
ments of events. As a result, any node which receives this
information knows which attribute/s should be removed at
particular stage and which attribute/s should be used in the
weakened filters. A node knows their respective stage. As
a result, when a node receives a filter to be weakened, the
node can use the group information from the publisher and
create the weakened filter in an automated fashion. Once
the advertisement and subscriber filters are available, all the
necessary filters for intermediate nodes can be generated au-
tomatically.

Grouping the attributes. Among all attributes, the at-
tribute which divides the event space into large (with many
events) but few sub categories is called the most general
attribute. The least general attribute would be the attribute
which divides the event space into many sub categories with
small numbers of events in each. After identifying the gen-
erality of the attributes, they are arranged from the most
general attribute to least general attribute. Once this has
been done, groups can be created accordingly. In the filter-
ing process, the most general attributes are used at higher
stage nodes, and at these stages the least general attributes
are ignored.

5 Conclusion

To achieve a type safe, expressive (these two properties
add overhead to filtering) and scalable system, computa-
tional power requirement at each node should be as low as
possible for the proposed filtering scheme. We performed
simulations to evaluate the performance of our multi-stage
filtering scheme. Due to space constraint we do not present
the details and results in this paper but the details of the sim-
ulations and results are shown in [EFGH02]. The results are
promising. In particular the power requirement for filtering
at each node is considerably less than the centralized ap-
proach. Hence the event system scales better in terms of
event rate. As a result events can be used more safely with
more expressive filters without much performance degrada-
tion.
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