Distributed Programming with Typed Events

Patrick Th. Eugster

Distributed Systems and Computing
Research Group
Chalmers University of
Technology, Goteborg
S-412 96 Sweden
Phone: +46 702 90 30 60
Fax: +46 31 16 56 55
peugster@cs.chalmers.se

Abstract

Whereas the remote procedure call (RPC), in-
cluding its derivates such as remote method invo-
cation (RMI), has proven to be an adequate pro-
gramming paradigm for client/server applications
over LANs, type-based publish/subscribe (TPS) is
an appealing candidate programming abstraction
for decoupled and completely decentralized appli-
cations that run over large-scale and mobile net-
works. In short, TPS enforces type safety and
encapsulation (just like RPC) while providing de-
coupling and scalability properties (unlike RPC).
We present our experience gathered with two im-
plementations of TPS in Java, namely a semi-
nal approach relying on specific primitives added
to the Java language, and a second implementa-
tion based on more general “recent” mechanisms
of Java, avoiding any specific compilation.

Keywords: Distributed programming, pub-
lish/subscribe, events, type safety, java

1 Introduction
1.1 RPCetal.

The remote procedure call (RPC) [1] paradigm,
including its derivates (e.g., Java RMI, CORBA,

Rachid Guerraoui

Distributed Programming
Laboratory

Swiss Federal Institute of

Technology in Lausanne
CH-1015 Lausanne

Phone: +41 21 693 52 72
Fax: +41 21 693 75 70
rachid.guerraoui@epfl.ch

DCOM), currently represents one of the most pop-
ular paradigms for devising distributed applica-
tions. Objects (when acting as servers) are in-
voked remotely (by clients) through prozies (also
called stubs). By offering the same interfaces than
their respective associated remote objects, proxies
hide distribution details, leading to a very conve-
nient distributed programming style that enforces
type safety and encapsulation. As widely recog-
nized however, RPC-style interaction does not ap-
ply equally well in all contexts, since in its classic
form it tends to strongly synchronize, and hence
couple, the invoking and the invoked objects (Fig-
ure 1.2)%.

1.2 Publish/Subscribe

Inspired by the tuple space [2] paradigm, the
publish/subscribe [3] interaction style has ap-
peared as a very appealing alternative to RPC in
the case of asynchronous, so-called “event-based”
applications, which require the dissemination of
events to a potentially large number of consumers.
Events are published by producers (publishers)
without any knowledge of potential consumers,
and are delivered to exactly those consumers (sub-
scribers) who have expressed interest in (have

!Several asynchronous variants of RPC have been pro-
posed, illustrating the severeness of this drawback.

subscribed to) those events. This paradigm of-
fers strong scalability properties at the abstraction
level, as a result of its decoupling of participants
(Figure 1.2) in (1) space (participants do not have
to be co-located nor do they require references to
each other), (2) time (participants do not have to
be up at the same time), and (3) flow (data re-
ception/sending does not block participants).

Remote Procedure Call:

result = invoke(...)
N I

Publish/Subscribe:

? -
. 0
notify(...) L8l —7F—1— 0
s 0
=) P notify(...) [—] p-l
2 !
- |}
& X
. publish(...) 0
[N E
ol
X notify(...) 2
N I
B
. publish(...) notify(...) — 3
- 4 p3 0
j— notify(...) : =
p2 8 P
publish(...)
= s s

Figure 1. Coupling in RPC and publish/subscribe

1.3 The Type is the Subject

The classic publish/subscribe interaction model
is based on the notion of subjects (or topics),
which basically resemble the notion of groups
found in distributed computing [4]. Subscribing to
a subject S can in that sense be viewed as becom-
ing member of a group 5, and an event published
under subject S is delivered to all members of S.

Most subject-based systems arrange subjects
(e.g., “StockQuotes”) in hierarchies (e.g., “/Stock-
Quotes/TelcoMobile”) and introduce wildcards to
support some form of pattern matching on subject
names (e.g., “/StockQuotes/*”), rendering sub-
scriptions more expressive.

Such an addressing scheme based solely on
names strongly enforces interoperability, and pro-
vides for much flexibility especially in combination
with the general-purpose event types (comparable
to maps consisting of name-value pairs) usually
anchored as only permissible event types inside
the APIs of most current systems.

With type-based publish/subscribe (TPS),
events are instances of “arbitrary” application-
defined event types. In essence, the TPS paradigm
uses an “ordinary” type scheme without explicitly
introducing a subject hierarchy, nor any other spe-
cific notion of event kind: the type is the subject.

Effective application events do not have to be
explicitly inserted into, or extracted from, any
predefined general-purpose event types, improv-
ing type safety. Similarly, consumers do not have
to transform nor cast received events. General-
purpose event types such as maps are merely a
specific kind of events, and can still be used when-
ever the contents of events is not known at com-
pilation.

1.4 The State is the Content

It is usually very convenient to adopt a content-
based (property-based) publish/subscribe style,
where consumers express subscriptions as content
filters (a form of predicates) based on desired val-
ues for inherent properties of events (e.g., “value
i 20.2”). Most subject-based systems have been
extended to support content-based filtering.

With TPS, subscriptions include content filters
expressed on the public members of the types sub-
scribed to. The content of an event object is
hence implicitly defined: the state is the con-
tent. TPS nevertheless preserves the encapsula-
tion of the state of event objects, by not forcing
event types to reveal their state, i.e., content filters
can make use of public methods. This is opposed
to contemporary approaches, where applications

must define event types as sets of public fields.

In short, TPS is a high-level variant of pub-
lish/subscribe, pretty much like RPC can be
viewed as a high-level variant of synchronous mes-
sage passing. TPS, in contrast to the RPC how-
ever, focuses on exchanged objects rather than
on the interacting objects. TPS differs from
other “typed” variants of the publish/subscribe
paradigm (see Sidebar 1), by preserving type
safety and encapsulation with application-defined
event types — these types being viewed as inherent
attributes of event objects.

1.5 Example: Stock Trade

Figure 2 illustrates the intuitive idea underly-
ing TPS, through a recurring example for pub-
lish/subscribe interaction, which is the stock trade
application. A possible scenario is the following.
The stock market pl publishes stock quotes, and
receives purchase requests. These can be “spot
price” requests, which have to be satisfied imme-
diately, or “market price” requests for purchasing
quotes only at the end of the day, or once another
given criterion is fulfilled. As outlined in Figure 2,
these different kinds of events result in correspond-
ing event types, rooted at the StockEvent type
(details of the elaborate event types are omitted
here for simplicity). These event types are part of
the application design.

Market price requests can however expire, and
for the broker’s (e.g., p2) convenience, an interme-
diate party (p3), e.g., a bank, might also handle
such requests on behalf of her/him, for instance
by issuing spot price requests to the stock market
once the broker’s criteria are satisfied. Figure 2
illustrates this through p2, which expresses only
interest in stock quotes that cost less than $100.

Note that by subscribing to a type StockEvent,
p3 receives instances of its subtypes StockQuote
and StockRequest, and hence all objects of type
SpotPrice and MarketPrice.

1.6 Roadmap

The next two sections are devoted to present-
ing TPS from an abstract viewpoint. The two

cheaper (100) == true

J

StockEvent

String company

float price

int amount

boolean cheaper (float)

7

StockQuote

MarketPrice

Figure 2. Type-based publish/subscribe

following sections each report on an implementa-
tion of TPS in Java. For presentation simplicity,
and to better illustrate TPS, we start by present-
ing a very concise implementation of TPS relying
on an extension of Java with specific primitives
for TPS programming. We then present an im-
plementation of TPS in a “recent” variant of the
Java language, thereby ensuring type safety just
like encapsulation without however requiring in-
strumented compilation. This article concludes
with a note on interoperability.

2 Publishing Event Objects

The only contracts between publishers and sub-
scribers are the types of the published events. A
publisher has no explicit notion of “destination”
when publishing an event. The set of destinations
is implicitly and dynamically defined by the sub-
scribers whose criteria match that event object.

2.1 Distributed Object Cloning

With a published event e acting as template, a
publication can be pictured as a distributed form
of object cloning, where a clone of the prototyp-
ical object e is created for every subscriber. The
set of processes where this action will take place
is given by the set of processes who are willing
to host such objects, i.e., who’s subscription cri-
teria match the template object. Inversely, a sub-
scription expresses the desire of getting a clone of
every published object which corresponds to the
subscription criteria.

The notion of cloning here corresponds to a deep
cloning: when a clone of an object is created, its
fields are recursively cloned.

2.2 Sending Objects Over the Wire

This deep cloning is implicitly given by the seri-
alization that is applied. Published event objects
are serialized, i.e., they are traversed, and their
state extracted and used to generate a representa-
tion more suitable for the underlying communica-
tion layers, which take care of transmitting these
as “messages” to every process hosting matching
subscribers. There, these messages are deserial-
ized to instantiate new objects.

3 Subscribing to Event Types

The main subscription criterion for consumers
is the (abstract) type of the event objects of inter-
est. When subscribing to a type T, one expresses
interest in instances of T, that is, instances of any
types which conform to T.

3.1 Event Type System

The interpretation of conformance depends nat-
urally on the considered type system. A type sys-
tem for events can be derived from a single pro-
gramming language, leading to a first class TPS
package comparable to a first class RPC package
like Java RMI in the case of the Java program-
ming language. An event type system can as well
be based on a neutral event definition language

(EDL) to enforce interoperability, leading to a sec-
ond class TPS [6].

In any case, object types offer richer seman-
tics than just information about inclusion rela-
tionships. An object type encompasses contracts
guiding the interaction with its instances: an in-
terface composed of public members describing its
incarnations.

3.2 Types for Fine-Grained Subscriptions

This information can be naturally used to ex-
press more fine-grained subscriptions, that is, en-
compassing content filters. Ideally, when express-
ing content filters, the full semantics of the pro-
gramming language in which they are expressed
can be exploited. Consider the stock market ex-
ample introduced before-hand. Stock quotes are
published by the stock market, and are received by
brokers. Stock quote events carry a set of fields,
like the amount of stock quotes and their price.
(Figure 3 shows the Java class StockQuote corre-
sponding to simple stock quotes.)

A subscription expressing interest in all stock
quotes of Telco Mobiles with a price less than $100
could be expressed like the following, supposing
that q is a formal argument representing an in-
stance of type StockQuote:

q-cheaper(100) &&
q.getCompany () .equals("Telco Mobiles")

Expressing filters in such a convenient way con-
siderably relieves the burden on programmers, by
avoiding the learning of a specific subscription lan-
guage (& la SQL), and by enforcing static type
checking and hence decreasing the risk of runtime
errors. Furthermore, encapsulation of event ob-
jects is preserved, as methods are used to describe
content filters, which is not the case in related ap-
proaches (see Sidebar 1). One could further make
use of exceptions (try...catch clauses around the
above lines), arbitrary language statements (if,
while, etc.), parameters by passed by reference
rather than by value, etc.

3.3 Issues with Content Filters

Certain restrictions on the semantics of content
filters are however inevitable to ensure an effi-
cient and scalable implementation of the under-
lying TPS engine. As widely recognized, the more
expressive filters are, the more it becomes difficult
to analyze and optimize these filters [5], which in
turn makes effective distributed filtering and rout-
ing of events hard. Filtering is usually performed
by a distributed overlay network formed by hosts
acting as application-level routers. Content fil-
ters might hence have to be transferred to foreign
hosts, where they can be regrouped and redun-
dancies can be factored out [7]. This requires an
insight into these filters, which becomes increas-
ingly difficult as the programming language be-
comes involved, and becomes even harder when
interoperability is emphasized (see Section 6).

The following two sections illustrate two ways of
dealing with these issues in Java; (1) by extending
the Java programming language (and compiler)
for the sole purpose of inherently supporting TPS,
and (2) by relying on a library implemented with a
“recent” version of Java with support for generic-
ity[8].2 The expression of the above content filter
example in the respective approaches is illustrated
in Sidebar 2.

4 A Language Integration Approach to
TPS

Javapg [9] is an extension of Java, integrating
TPS by adding two specific primitives publish
and subscribe to the Java language.

4.1 Publishing

An event object e is published by making use
of the publish primitive, leading to the simple
syntax:

publish e;

This statement triggers the creation of a copy of
e for every subscriber.

2Genericity is foreseen for Java 1.5. We made use of the
compiler underlying Sun’s current efforts.

/* stock quote events */
import java.io.Serializable;

public class StockEvent implements Serializable {
private String company;
private float price;
private int amount;
public String getCompany() { return company; }
public float getPrice() { return price; }
public int getAmount() { return amount; }
public boolean cheaper(float thanPrice)

{ return (price < thanPrice); }
public StockEvent(String company, float price,
int amount)

{
this.company = company;
this.price = price;
this.amount = amount;
}
}

public class StockQuote extends StockEvent {
private long time;
public long getTime() ;
public StockEvent(String company, float price,
int amount, long time)
{
super (company, price, amount);
this.time = time;
3
}

Figure 3. Stock events

4.2 Subscribing

A subscription to a type T takes roughly the
following form:

Subscription s = subscribe (T t) {...} {...};

The first expression enclosed in brackets is a block,
provided by the application, which represents a
content filter for events of the subscribed type
T (expressed through a formal argument called
t here). A boolean value is returned, indicat-
ing whether the event is of interest or not. The
second block represents an event handler which is
evaluated every time an event successively passes
the filtering phase. The same formal argument t
represents the event of interest in this case. A
subscription handle is returned by a subscription

expression. It allows, among other things, the set-
ting of Qualities of Service (QoS) parameters, or
the activation and deactivation of a subscription:

s.activate();

s.deactivate();

Content filters are hence expressed through the
programming language itself, yet to enforce the
mobility of these filters, these filters can only sup-
port a subset of the semantics of Java. Javapg
relies on a specific compiler, whose main added
functionalities are required to generate abstract
syntax trees from these content filters.

5 A Library Approach to TPS

Generic Distributed Asynchronous Collections
(GDAGCs) [10] constitute a library approach to
TPS, meaning that GDACs are implemented with-
out any TPS-specific compiler.

5.1 GDACs

Just like any collection, a GDAC is an abstrac-
tion of a container object that represents a group
of objects (Figure 4, the GDAC type extends the
standard Java Collection type). A GDAC can
however also be viewed as an abstraction of an
event channel, where elements are events.

“G” for “Generic”: To enforce type safety, a
GDAC represents a specific type of events.
Strong typing is therefore possible and is en-
forced to avoid explicit type casts, and hence
potential runtime errors. In other terms, the in-
terface offered by a GDAC for a given Java type
T offers methods where parameters representing
event objects are of type T. Generating a typed
GDAC for every event type can be avoided by
using genericity, which allows to represent the
event type handled by GDACs as a type param-
eter (Figure 4).

“D” for “Distributed”: Unlike a conventional col-
lection, a GDAC is a distributed collection
whose operations might be invoked from vari-
ous nodes of a network, in a way similar to a

shared memory. GDACs are not centralized en-
tities with remote access capabilities, but are
essentially distributed to guarantee their avail-
ability despite certain failures. Participants act
with a GDAC through a local proxy, which is
viewed as a local collection and hides the distri-
bution of the GDAC.

“A” for “Asynchronous”: GDACs promote an
asynchronous interaction style. When adding
an element to a GDAC (add() method in
Figure 4), the call can return before the
element has appeared on all involved nodes.
By querying a GDAC for the presence of new
elements (overloaded contains() method from
standard Java collections), one expresses an
interest in future elements. A client expresses
its interest in such future objects by registering
a callback object with the GDAC, through
which the client will be notified of objects
“pushed” into the GDAC.

5.2 Generic Java

While languages like C++ or Ada 95 incor-
porate generic types [11], languages like Java or
Oberon have been initially designed to replace
variable types by the root of the type hierar-
chy. For such languages lacking generic types
and methods, including Java, adequate extensions
have been widely studied.

We implemented the first GDACs for TPS
based on Generic Java (GJ) [8], the most promi-
nent among a multitude of dialects of the Java
language with genericity. As a strict superset of
Java, GJ comes with a specific compiler, which is
fully compatible with the Sun release, and enables
the use of the original Java virtual machine.

6 A Note on Interoperability

The experiences presented so far have all been
conducted with the Java programming language,
and it has turned out that providing interoperabil-
ity for TPS involves more delicate issues than in
the case of RPC. Though, just like TPS, RPC re-
lies on the invocation semantics and type systems

import java.io.Serializable;
import java.util.Collection;

public interface GDACKT extends Serializable>
extends Collection<T> {
/* inserting an element: publishing */
public boolean add(T t);
/* query the local collection proxy */
public boolean contains(T t);

/* query the global collection: subscribing */
public Subscription<T> contains(Subscriber<T> s);

}

public interface Subscriber<T> {
public void notify(T t);
}

public class Subscription<T> {
public T getProxy();

public void activate()

throws CannotSubscribeException;
public void deactivate()

throws CannotUnSubscribeException;

Figure 4. Interfaces related to GDACs

of the supported programming languages, it seals
(in most cases) distinct address spaces from each
other, letting only invocations enter and exit. TPS
on the other hand, does not occasion the invoca-
tion of coarse-grained remote objects, but rather
relies on the transfer of fine-grained remote ob-
jects, which might require the transfer of the code
of such transferred objects. Similarly, applying
content filters remotely leads to the necessity of
migrating and “interpreting” code. Interoperabil-
ity in the case of TPS hence requires further as-
sumptions, like a common intermediate program-
ming language (e.g., byte-code [6]), or that all
event types are implemented in all involved lan-
guages.

References

[1] A.D. Birrell and B.J. Nelson. Implementing
remote procedure calls. ACM Transactions

on Computer Systems, 2(1):39-59, February
1984.

D. Gelernter. Generative communication in
Linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(1):80—
112, January 1985.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen.
The information bus - an architecture for ex-
tensible distributed systems. In 14th ACM
Symposium on Operating System Principles,
pages 58—68, December 1993.

D. Powell. Group communications. Com-
munications of the ACM, 39(4):50-97, April
1996.

A. Carzaniga, D.S. Rosenblum, and A.L.
Wolf. Achieving Scalability and Expressive-
ness in an Internet-Scale Event Notification
Service. In Proceedings of the 19th ACM Sym-
posium on Principles of Distributed Comput-
ing (PODC 2000), pages 219-227, July 2000.

S. Baehni, P.Th. Eugster, R. Guerraoui, and
P. Altherr. Pragmatic Type Interoperabil-
ity. In Proceedings of the 28rd IEEFE Interna-

tional Conference on Distributed Computing
Systems (ICDCS ’03), to appear May 2003

M.K. Aguilera, R.E. Strom, D.C. Sturman,
M. Astley, and T.D. Chandra. Matching
Events in a Content-Based Subscription Sys-
tem. In Proceedings of the 18th ACM Sympo-
sium on Principles of Distributed Computing
(PODC 1999), pages 53—62, November 1999.

G. Bracha, M. Odersky, D. Stoutamire, and
Ph. Wadler. Making the future safe for the
past: Adding genericity to the Java program-
ming language. In Proceedings of the 13th
ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA ’98), pages 183-200, Octo-
ber 1998.

P.Th. Eugster, R. Guerraoui, and Ch. Heide
Damm. On Objects and Events. In Proceed-
ings of the 16th ACM Conference on Object-

[10]

[11]

Oriented Systems, Languages, and Applica-
tions (OOPSLA 2001), October 2001.

P.Th. Eugster, R. Guerraoui, and J. Sven-
tek. Distributed Asynchronous Collections:
Abstractions for publish/subscribe interac-
tion. In Proceedings of the 14th FEuropean
Conference on Object-Oriented Programming
(ECOOP 2000), pages 252-276, June 2000.

R. Milner. A theory of type polymorphism in
programming. Journal of Computing Systems
Sciences, 17:348-375, 1977.

Sidebar 1 On Types and Events

We outline some of the most prominent ap-
proaches to distributed programming with some
form of typed events.

COM+

Microsoft’s COM+ [1] promotes a model based
on the types of subscribers rather than on the
types of events: similar to RPC, objects can
provide specific interfaces defining own methods
through which they will be invoked. Applications
must provide typed dummy proxies that publish-
ers invoke. At runtime, these invocations are then
intercepted by the event service and forwarded to
those subscribers implementing the same type as
the proxy. To respect the asynchronous nature
of event-based programming based on the pub-
lish /subscribe paradigm, such methods are not al-
lowed to return results.

Method invocations hence play the role of
events, the “content” of these events being made
up of the actual arguments. Content filters in
COM+ are obtained by specifying admissible val-
ues for invocation arguments of methods, and are
expressed through a limited subscription gram-
mar.

CORBA Event Service

The OMG has specified a CORBA ser-
vice for publish/subscribe-oriented communica-
tion, known as the CORBA Event Service [2].
According to the general service specified, a con-
sumer registers with an event channel expressing
thereby an interest in receiving all the events from
the channel. These channels are named objects,
coming close to non-hierarchical subject names.

A form of typed interaction is provided, sim-
ilar to the model in COM+, enabling the use
of the types of consumers, but also of produc-
ers (the CORBA Event Service supports pull- and
push-style interaction), as main subscription crite-
rion. According to the type of interaction, meth-
ods only have input parameters or return val-
ues to respect the asynchronous nature of pub-
lish/subscribe. Typed proxies are generated based

on the application’s interface, which in practice re-
quires a specific compiler.

TAO Event Service

Shortly after commercial implementations of
the CORBA Event Service became available, sev-
eral deficiencies (e.g., missing support for QoS and
realtime requirements, difficulties with the above-
mentioned typed events) became apparent, lead-
ing to extended event service implementations,
one of the most significant being the one used in
the TAO Realtime ORB [3]. It addresses mainly
realtime issues, but also enforces subscriptions
based on the identity of the publisher and/or the
event types. In the latter case, the “type” is an
integer value explicity assigned to every event by
storing it in a particular field.

CORBA Notification Service

Based on the observed lacks of the CORBA
Event Service, the OMG issued a request for pro-
posal for an augmented specification, the CORBA
Notification Service [4]. A notification channel is
an event channel with additional functionalities,
including notions of priority and reliability. A new
form of semi-typed events, called structured events
is introduced. These represent general-purpose
event types, which manifest fields like event type
and event name, and are roughly composed of an
event header and an event body. Both parts con-
sist each of a fixed part and a variable part.

The variable parts of structured events (as well
as the fixed header part) are composed of name-
value pairs, for which the specification mentions
a set of standardized and domain-specific compo-
sitions. Standard properties include a notion of
event type, however represented by a name.

In the context of content filtering, these name-
value pairs are used to describe content filters,
called filter objects. These are described as strings
following a complex subscription grammar called
the Default Filter Constraint Language, which are
interpreted at runtime and hence offer little safety.

Java Message Service

The Java Message Service (JMS) [5] is Sun’s an-
swer to the CORBA Event & Notification Service
Specifications. Different types of events are prede-
fined, varying by the format of their body, yet all
inheriting from a basic event type representing a
map for name-value pairs. A set of keys are prede-
fined, including a property representing the event
type, however, just like in the case of the CORBA
Notification Service specification, consisting sim-
ply of a type name. Content filters are called
message selectors, and are once more expressed
through strings based on a SQL-like grammar.

JavaSpaces

The JavaSpace [6], Java’s variant of the tuple
space originally introduced in Linda, is a container
of objects that can be shared among various pro-
ducers and consumers. When consumers register
callback objects with a JavaSpace, one ends up
with a publish/subscribe communication scheme
in which the JavaSpace plays the role of the event
channel aimed at multicasting event notifications
to a set of subscriber objects. Custom event types
subtype the Event type, adding publicly accessi-
ble fields. A given subscriber of a JavaSpace ad-
vertises the type of events it is interested in by
providing a template object t. A necessary con-
dition for o, an object notifying an event, to be
delivered to that subscriber, is that o conforms to
the type of t. Furthermore, the field values of t
have to match the corresponding field values of o,
with null playing the role of wildcard.

ECO

An approach to integrating event-based inter-
action with C++ is discussed in the ECO (events
+ constraints + objects) model [8]. Events are
added as specific language constructs decoupled
from the main application objects, necessitating a
considerable number of language add-ons. Filter-
ing can be based on the publisher’s identity (the
source), and several types of constraints. Notify
constraints are expressed based on the fields of

events, and pre- and post constraints use the state
of the subscriber object. Methods can however
not be used to express constraints.

CEA

The Cambridge Event Architecture (CEA) [7] is
based on an interoperable object model, in which
event types are described through the ODMG’s
Object Definition Language (ODL). C++ and
Java mappings for this language are mentioned.
Precompilers generate specific adapters (called
stubs in the CEA) for exchanging typed events.
Filtering mechanisms are also included, however
once more based on viewing the events as sets of

fields.
References

[1] R.J. Oberg. Understanding & Programming
COM+. Prentice Hall, 2000.

[2] OMG. CORBAservices: Common Object
Services Specification, Chapter 4: Event Ser-

vice. OMG, March 2001.

[3] T. Harrison, D. Levine, and D.C. Schmidt.
The design and performance of a real-time
CORBA event service. In Proceedings of
the 12th ACM Conference on Object- Oriented
Programming Systems, Languages and Appli-
cations (OOPSLA ’97), pages 184-200, Oc-

tober 1997.

[4] OMG. Notification Service Standalone Doc-

ument. OMG, June 2000.
[5]

Sun. Java Message Service Specification. Sun,
February 2002.

[6] E. Freeman, S. Hupfer, and K. Arnold.
JavaSpaces Principles, Patterns, and Prac-

tice. Addison-Wesley, June 1999.

[7] J. Bacon, K. Moody, J. Bates, R. Hayton,
C. Ma, A. McNeil, O. Seidel and M. Spi-
teri. Generic Support for Distributed Appli-
cations. IEEE Computer 33(3):68-76, March

2000.

10

[8] M. Haahr, R. Meier, P. Nixon, V. Cahill and
E. Jul. Filtering and Scalability in the ECO
Distributed Event Model. In Proceedings of
the 5th International Symposium on Software

Engineering for Parallel and Distributed Sys-
tems (PDSE 2000), pages 83-92, June 2000.

Sidebar 2 TPS Programming

We illustrate programming with TPS first
through Javapg, a variant of Java including prim-
itives for TPS, and second, through GDACs, a li-
brary for TPS based on Java with the recent com-
piler support for genericity.

Programming with TPS Language Primitives

Programming with TPS language primitives
can best be illustrated through the stock market
scenario introduced previously. The following ex-
ample reuses the StockQuote event class of Fig-
ure 3.

The stock market can publish a stock quote
event by doing something like the following:

StockQuote q =
new StockQuote("Telco Mobiles", 80, 10, 1500);

publish q;

Below, we give an example of a subscription, which
expresses an interest in all stock quotes of Telco
Mobiles with a price less than $100.

Subscription s = subscribe (StockQuote q)

{
return (q.cheaper(100) &&
q.getCompany () .equals("Telco Mobiles"));
}
{
System.out.print("Got offer: ");
System.out.println(q.getPrice());
s

s.activate();
Programming with a TPS Library

With GDACs, stock quotes can simply be pub-
lished by adding them to a GDAC parameterized
by the stock quote type:

GDAC<StockQuote> gs =
StockQuote q =

new StockQuote("Telco Mobiles", 80, 10, 1500);
gs.add(q) ;

new GDASet<StockQuotes>();

Expressing a subscription requires slightly more
effort. A subscriber type has to be created explic-
itly to handle events:

11

public class StockQuoteSubscriber
implements Subscriber<StockQuote> {
public void notify(StockQuote q) {
System.out.print ("Got offer: ");
System.out.println(q.getPrice());
}
}

Filters are expressed through the Subscription
class which has richer semantics than its homonym
used in the language integration approach. The
contains () method used for subscribing returns
an instance of that class, through which a content
filter can be expressed by making use of prozies
introduced for behavioral reflection [1] in Java 1.3.
Such a proxy enables to “record” the invocations
performed on it; it can be used as a form of formal
argument, which enables the expression of what
invocations are to be performed on a filtered event.
The following example illustrates the use:

GDAC<StockQuote> gs = new GDASet<StockQuote>();
Subscription<StockQuote> s =
gs.contains (new StockQuoteSubscriber());

StockQuote q = s.getProxy();
q.cheaper(100) ;
q.getCompany () .equals ("Telco Mobiles");
s.activate();

Here, we express the same subscription than in the
language integration approach. By convention, a
logical and of two constraints is indicated by ex-
pressing both constraints through the same proxy,
as above, while a logical or requires the creation
of two proxies, one for each constraint. More ex-
pressive content filters require additional function-
alities in the Subscription class. These lead to
additional complexity and reduced safety, which
are mainly a consequence of the fact that Java
is a hybrid object-oriented language, i.e., it pro-
vides primitive types. Moreover, Java only sup-
ports proxies for abstract types, i.e., interfaces.
To be able to implement the presented examples,
we had to extend the Java proxy implementation
to support proxies for classes.

References

[1] G. Kiczales, J. des Rivieres, and D.G. Bo-
brow. The Art of the Metaobject Protocol.

MIT Press, 1991.
Biographies

Patrick Th. FEugster is a postdoctoral researcher
at Chalmers University of Technology in
Goteborg, Sweden. His interests include al-
gorithms and abstractions for distributed pro-
gramming. He received an MS in computer sci-
ence and a PhD in communication systems, both
from the Swiss Federal Institute of Technology
in Lausanne.

Rachid Guerraoui is professor in computer science
at the Swiss Federal Institute of Technology in
Lausanne. He is interested in distributed and
object-oriented programming. He received an
MS and a PhD in computer science from the
universities of Jussieu and Orsay, respectively.

