Linguistic Support for Distributed Programming Abstractions *

Christian Heide Damm Patrick Thomas Eugster Rachid Guerraoui
Microsoft Business Solutions Sun Microsystems Distr. Progr. Laboratory, EPFL
DK-2950 Vedb, Denmark CH-8604 Volketswil, Switzerland CH-1015 Lausanne, Switzerland

Abstract second, complementary, question thehadsvto implement
the abstraction within the middleware.
What abstractions are useful for distributed program- One common technique, particularly employed in single-

ming? This question has constituted an active area of re-language academic settings, consists inirgagration of
search in the last decades and several candidate abstrac-the distributed programming abstraction with the program-
tions have been proposed, including remote method invo-ming language through specific primitives. That is, the dis-
cations, tuple spaces and publish/subscribew should tributed programming abstractions sit in the language, as
such abstractions be offered to the programmer? Shouldfirst class citizens besides traditional centralized abstrac-
they sit besides centralized programming abstractions in thetions (e.g., [8]). This approach might be motivated by per-
core of a language? Should they rather sit within external formance and type safety, but might hamper portability and
libraries? Should they benefit from specific compiler sup- flexibility of the considered programming language, which
port? These questions are also important but have sparkedis a strong concern in distributed settings since it is still not
less enthousiasm. clear which are the relevant abstractions.

This paper contributes to addressing these questions in A second approach is to rely arompilationfor gen-
the context of Java and the type-based publish/subscribeerating the glue between the abstraction (i.e., the middle-
(TPS) abstraction, an object-oriented variant of the pub- ware) and the applications relying on it. This approach can
lish/subscribe paradigm. We present an experience thatalso provide type safety, and as shown by the success of
compares implementations of TPS in (1) a variant of Java RPC/RMI, seems to yield appealing results for program-
we designed to inherently support TPS, (2) standard Java,mers (cf. CORBA).

and (3) Java augmented with genericity. As illustrated by efforts in the Java community, which

We derive from our implementation experience general ¢ iminated in the introduction of thdynamic proxyas a
observations on what features a programming language mechanism supportingemote method invocation@®MI)
should support in order to enable a satisfactory library im- \vithout specific (pre)compilation, simple and general lan-
plementation of TPS, and finally, also alternative abstrac- guage features can offer very good support for implement-
tions In particular, we (re-) insist here on the importance of ing specific abstractions, e.g., for distributed programming,
providirjg genericity and reflective features in the language, i, 4 type-safe and elegant manner. A third approach to im-
and point out the very fact that current efforts towards pro- plementing specific abstractions for distributed program-
viding such features are still insufficient. ming consists precisely in implementing those abstractions
in a type-safe manner by using only such simple and gen-
eral language features.

The motivation of this work was to find out whether
such an approach can be adopted for alternative abstrac-
tions to RMI, and more precisely for thgpe-based pub-
lish/subscribe(TPS) abstraction [6], a variant of the pub-
lish/subscribe interaction scheme. Roughly speaking, TPS
is to publish/subscribe what the RMI is to the RPC: namely,
an object-oriented variant of the paradigm. Just like RMI,
+ Financially supported by the Swiss National Science Foundation - TPS can be m'Fegrated with .a programn_nng Ianguag_e, yet

NCCR / PRN MICS IP 5.2 can as well be implemented in a way which enforces inter-
+ Contact author. Former affilation: Distributed Programming Labora- operability @ la CORBA).

tory, EPFL patrick.eugster@epfl.ch This paper compares three implementations of TPS. The

1. Introduction

When designing and implementing a distributed middle-
ware, one of the first questions to addresa/lisch abstrac-
tion to provide to the programer. Typical answers to this
question areemote procedure cabr publish/subscribeA

first implementation is based on Jaya which is avariant ~ 2.2. A challenging abstraction
of Java that we devised with specific primitives for support-
ing the TPS interaction style [6]. The second implementa- By enabling the expression of content-based queries
tion [7] is based on standard Java. The third implementationbased on event methods, TPS offers new possibilities, but
is based on Generic Java (GJ) [4], an extension of Java thaglso poses new challenges related to the native language
providesgenericity(and is underlying Sun’s efforts for in- connection. Design issues include how to translate the ac-
tegrating genericity into Java at version 1.5). tion of “subscribing to a type”, and how to express type-
We consider four comparison axes: @ijmplicity, (2) safe content filters i.n the programming language itself, in.a
flexibility, (3) type safetyand (4)performance Through way that does not wolgte encaps_ulauon, yet allows for opti-
this comparison, we point out how inherent reflective and Mizations when applying these filters. Clearly, TPS mainly
generic capabilities could enable a satisfactory library im- @ms at ensuring [6] (1}ype-safetyand (2)encapsulation
plementation of TPS, refraining from any language exten- With (3) application-defined event typgge first two re-
sions. While the importance of these capabilities has al-quirements could be trivially satisfied with predefined event
ready been pointed out in other contexts, this paper arguestyPes). Since TPS aims at large-scale, decentralized appli-
through TPS and Java, that current support of the capabili-cations in which performance is a primary concernp@gn

ties in mainstream languages are still not sufficient for dis- content filtersare important to enable optimizations in the
tributed computing. filtering and routing of events, i.e., the underlying com-

Roadmap. The rest of the paper is organized as follows munication infrastructure must be granted insight into sub-
Section 2 briefly overviews the TPS paradigm. Section 3 S.C”pt'oné' Last bu; not IeasF, Ia' form o(;.(Q).Jbahty dOf Ser-
contains a short introduction to the three implementations ¥IC€ (Q0S) éxpressioris crucial in any distributed context
of TPS. Sections 4-7 examine the approaches according tdvhere partlgl fallures are an issue and application require-
the four above-mentioned aspects. Section 8 summarize{"€Nts on this issue change drastically.

the comparison and discusses a selected design alternative.)

Section 9 concludes the paper. 2.3. Running example

We describe below an example application, which is
2. Type-based publish/subscribe used throughout this paper to examine how our three im-
plementations handle these challenges.

A stock market publishestock quotesand stock bro-
kers subscribe to these stock quotes. A stock quote is an of-
fer to buy a certain amount of stocks of a company at a cer-
tain price, and it may be implemented as shown in Figure 1.

Figure 2 illustrates a situation, where process pl pub-
lishes a stock quote, i.e., an instance of the tgpeck-

Quote . Process p2 has subscribed to SB®ckQuote

type and thus receives the stock quote published by p1. Pro-
cess p3 has subscribed to tBeent type, which is the ba-

sic event type and a supertypeStbckQuote , and it thus
receives all published events, including the stock quote from

The basic publish/subscribe paradigm offers the illusion
of a “software bus” interconnecting components in a dis-
tributed application, leading to the decoupling of these com-
ponents.

2.1. Overview of type-based publish/subscribe

Type-based publish/subscribe [6] (TPS) is a recent
object-oriented variant of the publish/subscribe interac-
tion style. In TPS, publishers publish instances of native
types, i.e.event objectsand subscribers subscribe to par- '
ticular types of objects. A subscription can furthermore . Inthe ex_amples given mthe“rest Of this paper, we will be
have acontent filterassociated, which is based on the pub- interested in .StOCkS from the Telc_o _Group that cost less
lic members of the type, including fields well asmeth- than 1003. Given ‘? stock quotg this interest can be ex-
ods. Since event objects are instances of application-define(ﬁ)re"ssed as follows:
types, they are first-class citizens. The main contract thatd-getPrice() < 100 &&
the design of such types involves is the subtyping of a ba- 9-98tcompany().indexOf(*Telco")i= -1
sic event type.

TPS is general, in the sense that it can be used to imple-3. Three implementations
ment the traditionatontent-basegublish/subscribe (e.g.,

[1]), and hence alssubject-basegublish/subscribe (e.g., This section gives a short introduction to the three im-
[10]). In a single-language setting, TPS can exploit the type plementations of TPS that we have considered. The first ap-
system of the language at hand. TPS can, however, also b@roach augments Java with primitives for TPS, resulting in
put to work in a heterogeneous environment [3]. a dialect of Java called Jaya. The second approach is an

public class StockQuote implements Event { interface DAC extends java.util.Collection {

private String company; boolean add(Object event);

private float price; Object get();

private int amount; boolean contains(Object event);

public String getCompany() { return company; } boolean contains(Subscriber subscriber,
public float getPrice() { return price; } Condition contentFilter);

public int getAmount() { return amount; }
public StockQuote(String company, float price,
int amount) interface Subscriber {
void notify(Object event, String subject);
this.company = company; this.price = price;

this.amount = amount; interface Condition {
} boolean conforms(Object event, String subject);
} }
Figure 1. Simple stock quote events Figure 3. API of the Java implementation

{
return (g.getPrice() < 100 &&

g.getCompany().indexOf("Telco")!=-1);
}

{
System.out.printin("Offer: " + q.getPrice());

s.activate();

Note that the content filter is expressed in Java with the ex-
act same code as in Section 2.3 above.

3.2. Java implementation
Figure 2. Type-based publish/subscribe Our Java implementation described in this sec-
tion is based on ourDistributed Asynchronous Col-
implementation of TPS in standard Java, while the last ap-lections (DACs) [7]. DACs are abstractions of object

proach is based on GJ, which adpsericityto Java. containers (e.g., a DAC can be queried with tn-
tains(Object) method), which however differ from

conventional collections by being asynchronous and essen-
tially distributed. A DAC is thus not centralized on a single

Javas [6] is a dialect of Java designed to support TPS host, and operations may be invoked on it through lo-

3.1. Javapg implementation

through specific primitives: cal proxies from various nodes of a network. A DAC may
also be used in an asynchronous way; instead of invok-

publish Expression ing the synchronousontains(Object) method, you

subscribe (EventType Identifi¢r Block Block can invoke thecontains(Subscriber,...) method

passing a callback object, which will be notified when-
The publish primitive publishes an event. Theub- ever a new matching element is inserted into the DAC (cf.

scribe primitive generates a subscription to an event type. F19ure 3). _ _ o o

The first block represents a content filter referring to the ac- ~ EXPressing ones interest in receiving notifications when-
tual event through an identifier, and the second block rep-8Ver an objectis inserted into a DAC can be viewed as sub-
resents an event handler which is executed every time arsCfiPing to the objects, cevents belonging to that DAC.
event passes the filter and uses the same identifier. Theoimilarly, inserting objects into a DAC can be viewed as

subscribe primitive returns an expression of tyfSeib- publishing those events, since all subscribers will be noti-
scription , representing a handle for that subscription. fied of the new event. In this sense, a DAC may represent
Publishing a stock quote boils down to the following: a subject, and publishing and subscribing to events corre-

sponds to inserting events and expressing interest in inserted
Stoncek\,?“gttgcfQjote(..TelcoopS..’ 80, 10). events, respectively. By mapping types to subjects, a DAC
publish g; can be used to support TPS. A subscription to an event type
. (and implicitly, its subtypes) is issued through a DAC repre-
Subscribing to stock quotes can be expressed as follows: senting that type, which might require the creation of a new
Subscription s = subscribe (StockQuote q) DAC for that type if none is available.

class StockQuoteSubscriber implements Subscriber
public void notify(Object event, String subj)

StockQuote q = (StockQuote)event;
System.out.printin("Offer:" + q.getPrice());
}
}

Condition telcoCondition =
new Equals("getCompany.indexOf",
new Object[[{"Telco"},
new Integer(-1));
Condition priceCondition
new Compare(".getPrice",
new Object[l{new Integer(100)}, -1);
Condition contentFilter =
telcoCondition.not().and(priceCondition);

Subscriber subscriber =

new StockQuoteSubscriber();
DAC stockQuotes = new DAS("StockQuote");
stockQuotes.contains(subscriber, contentFilter);

Figure 4. Subscribing with DACs

Figure 4 illustrates how a stock broker issues a subscrip-
tion through a DAC representing tyg&tockQuote (the
instantiated DAC clas®AS[7] reflects reliable delivery).
The awkward appearance of the filter is motivated by the
special requirements on content filters, such as its undergo
ing of deferred evaluation to enforce prior optimization (see
Section 7).

Similarly, the stock market publishes quotes through the
DAC representing the typBtockQuote like this:

DAC stockQuotes
StockQuote q =

new StockQuote("TelcoOps", 80, 10);
stockQuotes.add(q);

new DAS("StockQuote");

3.3. GJimplementation

In the previously described Java implementation of TPS,
a DAC is used to represent a specific type, yet nothing
would prevent, at least at the time of compilation, an at-
tempt of inserting non-conformant events into a DAC. Even
if all published events inserted into a given DAC are of the

interface GDAC<T> {
boolean add(T event);
T get();
boolean contains(T event);
boolean contains(GSubscriber<T> subscriber,
GCondition<T> contentFilter);

interface GSubscriber<T> {
void notify(T event);

interface GCondition<T> {
boolean conforms(T event);
}

Figure 5. API of the GJ implementation

Using this generic version of DACs, stock quotes can be
published like this:
GDAC<StockQuote> stockQuotes =

new GDAS<StockQuote>(StockQuote.class);
StockQuote q =

new StockQuote("TelcoOps", 80, 10);
stockQuotes.add(q);

Subscriptions expressed through GDACs come very close
to subscriptions expressed with DACs, and we will leave it
to the reader to see how the example in Figure 4 can be mod-
ified to use GDACs. Please note that the parameter passed
to the GDAC constructor above is necessary, since GJ does

not provide runtime type information.

4. Simplicity

Simplicityis a (subjective) measure of the effort neces-
sary (1) for a programmer tearn andusethe considered
implementation of TPS, and (2) for third partieséad and
understandTPS-related code. Clearly, distributed applica-
tions can become very complex, and a powerful yet simple
programming abstraction can reduce the burden on the de-
veloper. Simplicity does not necessarily favor a language in-
tegration. Indeed, a programmer acquainted with other pub-
lish/subscribe systems might find it easier to shift from one
Java library to another, than to learn a “new” language.

4.1. Content filters

correct type, the programmer has to manually cast events to

the desired type upon receiving them. Usganericity, il-
legal inserts and manual type casts can be avoided.

The generic library approach is based on GJ [4], which
is an extension of Java with support for genericity through
parametric polymorphismWith parametric polymorphism,
we obtaintyped DACs without generating type-specific

code, and nevertheless avoid explicit type casts. The resultfinal

In our Javas implementation, the content filters are
truly expressed in the programming language at hand, mak-
ing them simple to express for programmers familiar with
that language. There are, however, restrictions on what vari-
ables can be accessed inside content filters. Indeed, to make
filters easily transferable in a distributed environment, only
variables declared outside the filter can be used, and

ing generic DACs (GDACs) and associated types are shownthese can only be of primitive object types, suctiras-

in Figure 5. As a result of the type@Subscriber | there

is no longer a need for a subject name parameter in the call-

back method.

ger orFloat ,includingString (see [6]).
Our Java and GJ implementations on the other hand in-

troduce a form of subscription language, based partly on

an API, and partly on the native invocation semantics of | Verdict: Our TPS-specific language primitives in Jayd
Java. Primitive conditions are reified @ondition ob- offer a very concise syntax: subscription expressions are
jects, and are logically combined through method calls on| compact and use a subset of native Java syntax, which
them. Unfortunately, even simple constraints lead to poorly | makes them easily understandable.
readable code (see thelcoCondition used in Figure The Java and GJ implementations both suffer from pos-
4). In addition, many errors, e.g., a wrong number of pa- | sible mismatches in QoS. In addition, filter expression in

rameters, are only detected at runtime. Clearly, content fil-| these two approaches suffers from a heavy syntax, and in
ters in this subscription scheme enforce encapsulation at aparticular from the lack of custom operator overloading

high price in terms of simplicity. inherent to Java when combining simple conditions.

5. Flexibility
4.2. QoS By the flexibility of an implementation of pub-
lish/subscribe, we mean the extent to which it can be used

The limited form of QoS expressed through the spe- [0 devise applications based on publish/subscribe with var-
cific (G)DAC type, e.g., (G)DAS for reliable communica- 0US requirements. Th'sj aspect Is important, because an
tion (see [7]), enables the use of the same event types witdiMplementation of publish/subscribe which is very spe-
different and maybe even incompatible QoS: a publisher Cific, and hence limited, can quite easily provide good
can publish events of a given type through a (G)DAC offer- Simplicity and readability.
ing best-effort guarantees, while a party subscribed to that
type has expressed its desire for receiving all published in-5.1. Content filters
stances by subscribing to a DAC reflecting reliable deliv-)) o
ery. With the current (G)DAC implementations, developers ~ All three implementations allow for arbitrarily complex
are expected to ensure manually that (G)DACs used withcontent filters. However, the Java and GJ implementations

the same type of events are of the same type as well. have a ra.th.er cumpersome way of expressing content fil-
o)) ters, and it is thus likely that programmers are tempted to

This risk of potential mismatch has been strongly re- ghift ot least parts of the content filters to the event han-
duced in our Javas implementation by expressing the Q0S g5, with serious consequences on performance. This is

through the events themselves. QoS are assc?,ciated Withightly counterbalanced by giving developers the possibil-
event types, which are in fact the only “contract” between ity of writing their own conditions — only slightly — be-

publishers and subscribers. cause such custom conditions must provide several hooks

in order to nevertheless enforce optimizitions.
In our Javar g implementation, it makes no difference to
the programmer if the filtering is done in the content fil-
4.3. Receiving events ter or in the event handler, since these are expressed in the
same language. By the absence of reified conditions, such

. . . as in the Java and GJ approaches, specific conditions can be
In our Java and GJ implementations, a subscriber must. Pb P

implement anotify() method, which is invoked upon gglreon:“e;n:)er%? i/ow(;tsglga;:]qgr:?ew logicinto the events, how
reception of an event. This method is implemented by a

callback object — an event handler — and passed to the
(G)DAC upon subscription. The code for such an event han-
dler, i.e., a class that implement§)Subscriber , is iso-
lated in a specific class, leading to a scattering of the codet
related to single subscriptions.

5.2. QoS

In our Javas implementation, the QoS is specified in
he type of the event. Although this solution would also
have been possible in the other implementations, these as-

In our Javas implementation, the above event handler sociate QoS with the channel abstractions, as it is done in
is viewed as @losure whose signature is implicitly givenas many other publish/subscribe systems. The already men-
part of the syntax of the subscription expression, and all thetioned possible conflicts between QoS of publishers and
code related to a subscription is colocated, making it easy tosubscribers in this case can diminish simplicity, but poten-
understand what the subscription does. Given that the condially increases flexibility.
tent filter and the event handler are two sides of the same The QoS framework used in the Java and GJ implemen-
story, it seems more adequate to concentrate these at th&tions can itself be more easily extended, by adding, de-
same place. riving, and combining new (G)DAC types, since these re-

flect the guarantees they offer. In our Jayaimplemen- 6.2. Content filters
tation, such a customization becomes more difficult. Al-
though new abstract event types similaReliable etc. The content filters in our Jaya implementation are
can be added to the framework to reflect new kinds of ser-completely type-safe, since they are type-checked by the
vices, these types are decoupled from the actual algorithmszompiler. In the other two implementations, content filters
implementing them. Any extension of the QoS framework are expressed partially through strings, putting type-safety
hence currently requires the intervention of one of its devel- at stake. Type checks can however be performed at runtime
opers. in predefined content filters (e.dequals andCompare,
see Section 3.2), through the introspection capabilities of
Java.

Note, however, that the developer, though not using re-
flection explicitly to definavhichmethods (and arguments)

ds at int. which ire chanaing th b are to be used to query events, has to be aware of the fact
NEw needs at Some point, Which require changing t€ pub- ., -+ vefiection is used underneath to find the appropriate
lish/subscribe system, a library in Java or GJ is easier to

h than J il methods: unlike with static invocations in Java, the dynamic
change than Jaya. types of the specified invocation arguments are used to iden-
tify the appropriate methods.

Verdict: A library will always be more flexible than |a
solution integrated in the language, since the latter type
of solution is more tedious to modify. Should there arise

6. Type safety

Verdict: Not surprisingly, type safety increases in the
GJ implementation compared to the Java implementation,
and increases further with Java, where there can be no
“type unsafety” related to TPS.
The GJ implementation ensures type safety when puhblish-
ing and receiving events, yet can not provide such guaran-
tees for content filters. In latter context, type safety wauld
however be more important, as Java programmers are used
to untyped collections.

Most recent object-oriented programming languages are
statically typed, aiding the developer in devising reliable ap-
plications. Distributed applications bring an increased de-
gree of complexity, and it becomes even more important
here to assist developers by providing them with mecha-
nisms to ensure type safety in remote interactions.

We compare here how the different implementations en-
sure type safety, one of the two main driving forces behind
TPS. Obviously, the potential level of type safety that can
be achieved depends on the considered language itself, and
mechanisms such as reflection can be misused to willingly 7. Performance
introduce type errors.

Last but not least, we present the most significant results
o o of our performance measurements realized with the three
6.1. Publishing and receiving events different approaches. We actually measure the overhead of
the GJ and Java approaches with respect torlava
In our Java implementation, publishing an event corre-
sponds to inserting the event into an untyped collection
(DAC). It is impossible to ensure at compilation that an 7.1. Setting
event is published through a DAC that represents the type of
that event (or a subtype), and symmetrically, there is a high We have used the same simple architecture as testbed
risk that a subscriber casts events to a wrong type. Thesdor all three implementations. That architecture is character-
type coercions strongly contradict our requirements for type ized by aclass-basedlissemination, i.e., every event class
safety, since an event consumer might not be able to fore-is mapped to an IP Multicast channel. The test application
see the types of events that it will receive. involved three types; a typEvent , its subtypeStock-
In our Javag implementation, publishing and receiv- Quote , and a subtype of the latter tyggtockRequest
ing events is completely type-safe. In the GJ implementa- Since the filter evaluation seen is essentially the same in all
tion, both publishing and receiving events is type-safe, pro- three approaches, we have focused on type-based filtering.
vided that the involved GDACs have been correctly initial- The measurements presented here concentrate te-the
ized: due to the absence of runtime information on type pa-tencyof publishing events, which refers to the average time
rameters in GJ, a class meta-object is expected by GDAC(ms) that is required to publish an event (perceived by the
constructors (see Section 3), which can lead to possible mispublisher) onto the corresponding channel. [5] provides in-
matches. formation on further measures.

are published through a given (G)DAC. The second set of
measurements relates to the GJ implementation, and intends
to compare the latencies obtained with the various event
types published through a GDAC for the uppermost type.
Figure 6(b) conveys the very fact that the system performs
best for the uppermost type of the hierarcEyént) and

that the performance degrades as we go down this hierar-
chy. This was expected, since publishinG®ckQuote
through a GDAC for typeEvent in our architecture in-
volves a lookup of the corresponding channel in an internal
structure (and possibly the creation of the channel). This
lookup in the case of th&tockRequest type, requires

. o even more effort.
Figure 6(a). Latency of publishing: Java pg vs GJ

Verdict: The latency observed when publishing events
is slightly, but clearly, smaller in the case of Jayg
than with the Java or GJ implementations. This latency
becomes even more important as the events published
through a (G)DAC are of an increasing number of dif-

ferent subtypes of the event type represented by|that
(G)DAC. (Optimizations are of course possible.)

8. Discussion

This section first presents a summary of how the three
implementations perform with respect to the chosen com-
parison aspects, and then, presents an alternative program-

Figure 6(b). Latency with event types ming language mechanism for improving the library imple-
mentation(s).

7.2. Library vs language integration

] | Java| GJ [Javes |

The two library implementations differ from the imple- Simplicity ~ ~ +
mentation of Javag, in that upon publishing an event, the Flexibility T + =
precise channel for the corresponding class has to be found. Type safety = ~ ¥
In the case of Java;, a simplepublish() method is au- Performance| ~ = T

tomatically added to every event class, which automatically
pushes the event onto the fitting channel.

This difference is visible in Figure 6(a), where we com- Table 1. Comparison summary
pare the GJ implementation (the Java implementation (= insufficient, ~ acceptable, + good)
yielded similar results) with our Jawpg implementa-
tion. One can see that the latency of publishing an event
in the case of GJ is increased by runtime type checks per-
formed to obtain the appropriate channel. The latency 8.1. Summary
varies here with the number of events published in a
row (due to a “warm-up” effect observed with IP Mul- Table 1 summarizes the results of the previous sections.
ticast). As the figure conveys, the difference in latency Clearly, our Javas implementation comes off best, with
remains nearly the same with a varying number of pub- the GJ implementation coming in second. The weak points

lished events. of the GJ implementation mainly result from its unsatisfac-
tory expression of content filters. This is not fully surpris-
7.3. The cost of subtyping ing, as Javag was motivated by the obvious lacks mani-

fested by the Java language with respect to TPS, after some
The performance of the library approaches is condi- of those lacks had already been addressed by using a “fu-
tioned by the number of different subtypes whose instancesture” version of Java incorporating genericity.

8.2. Dynamic proxies a form that includes runtime support for type parameters,
and that reflection has to go beyond simple message reifica-

Especially for the library implementations of TPS there tion (considered sufficient in the context of RMI, e.g., [2]).

are many alternative design choices, and many tradeoffswe pointed out the very fact that the current support in Java

involved (see [5]). The weakest point of both these ap- for genericity and reflection, from our perspective, is clearly

proaches, as mentioned above, is related to the unwieldyinsufficient.

content filter expression. Dynamic proxies, a simple mech-

anism for behavioral reflection in Java, can improve type Acknowledgements

safety in filter expression. For instance, the asynchronous

contains() method in DACs can be modifiedtoreturna We are very grateful to Gilad Bracha, Martin Odersky,

dynamic proxy which “registers” the invocations performed and Ole Lehrmann Madsen for commenting on an earlier

onit: version of this paper.
GDAC<StockQuote> stockQuotes = ...;
StockQuote g = stockQuotes.contains(...); References

g.getCompany().equals("TelcoOps");

The expression of interest in stock quotes of a given com- [l M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chan-

pany through a proxy reveils however the weaknesses of dra. Matching Events in a Content-Based Subscription Sys-
; : ; ; tem. InProceedings of the 18th ACM Symposium on Prin-

dynamic proxies. Only strict equality can be expressed, and ; e .)

attributes of primitive types can not be matched. Indeed, as ,C\:EileslgggD istributed Computing (PODC "99)ages 53-62,

L . . : .
opera_tors su<_:h gs or also! = are not reified as methpd in [2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
vocations (this would come with operator overloading, see

)) A. Yonezawa. Abstracting Object Interactions Using Com-
Section 4). Furthermore, the above code would fail at run- position Filters. InProceedings of the 7th European Confer-

time, as dynamic proxies can only be created for interfaces. ence on Object-Oriented Programming (ECOOP '98)ges
152-184, July 1993.

9. Conclusions [3] S.Baehni, P. Eugster, R. Guerraoui, and P.Altherr. Pragmatic
Type Interoperability. IrProceedings of the 23rd IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS '03) May 2003.

[4] G.Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-
ing the Future Safe for the Past: Adding Genericity to the

In the face of today’s heterogenity across platforms, we
believe that designers of future languages should foresee a
general support for distributed programming abstractions.

_Although TPS is surely not the last paradigm for dis- Java Programming Language. Rioceedings of the 13th
tributed programming, the constraints imposed by TPS ACM Conference on Object-Oriented Programming Systems,
should be kept in mind when conceiving such sup- Languages and Applications (OOPSLA '98xges 183—200,
port. As shown by the difficulty in expressing content fil- Oct. 1998.
ters, TPS, as a paradigm emphasizing scalability and [5] C. Damm, P. Eugster, and R. Guerraoui. Abstractions for
performance, requires a strong interaction with the na- Distributed Interaction: Guests or Relatives? Technical Re-
tive programming language. We argue that reflection, just port DSC/2001/052, Swiss Federal Institute of Technology
like genericity, as faces aéxtensibility are the key con- in Lausanne, June 2000.

cepts for a general language support of distributed program- [6] P. Eugster, R. Guerraoui, and C. Damm. On Objects and
ming. With inherent and uniform reflective capabilities gﬂéf’o;gstfgﬁg'grgn %f,rtlges1Sttgm’icl'i/'ar?g°gge;i“;:d?p
and genericity, we believe one could implement asih)- pject-2rl g >y » -angu -
ple to use, (2)flexible (3) type safe and (4)performant plications (OOPSLA 20Q1pages 131-148, O.Ct' 2 001.

. . . . [7] P. Eugster, R. Guerraoui, and J. Sventek. Distributed Asyn-
TPS library in the language itself, and also alternative ab-

. s . chronous Collections: Abstractions for Publish/Subscribe In-
stractions for distributed programming such as tuple spaces teraction. InProceedings of the 14th European Conference

and RMI (see [5]). on Object-Oriented Programming (ECOOP 200@gages
Pointing out the very fact that, to be extensible, an 252-276, June 2000.

object-oriented language should be generic and reflective [8] B. Liskov and R. Sheifler. Guardians and Actions: Linguis-

is not new (e.g., [9]). In this paper we have identified a pre- tic Support for Robust, Distributed Programs.Gonference

cise case for this argument in the area of distributed com- Record of the 9th ACM Symposium on Principles of Pro-

puting, and illustrated how our case poses more stringent ~ gramming Languages (POPL '82)982.

demands than those previously expressed and partially ad-[9] G. Steele. Growing a languageigher-Order and Symbolic
dressed without distribution in mind. We insist on the fact Computation12(3):221-236, Oct. 1999.

that, in the face of modern abstractions for distributed pro- [10] TIBCO. ~ TIB/Rendezvous White Paper
gramming such as TPS, genericity needs to be provided in ~ NttP//www.rv.tibco.com/, 1999.

