
Location-based Publish/Subscribe

Patrick Th. Eugster† Benôıt Garbinato‡ Adrian Holzer‡

† Chair of Software Engineering
Swiss Federal Institute of Technology in Zürich

patrick.eugster@inf.ethz.ch

‡ Distributed Object Programming Lab
Universit́e de Lausanne

{benoit.garbinato, adrian.holzer }@unil.ch

Abstract

This paper introduces the concept of location-based
publish/subscribe (LPS), which allows mobile ad hoc ap-
plications to anonymously communicate with each other,
depending on their locations. With this concept, pub-
lish/subscribe topics are typically expressed in a dynamic
manner including proximity criteria, e.g., ”I subscribe to
all events on topicT published within some rangeR”. We
advocate that location-based publish/subscribe is a key pro-
gramming paradigm for building mobile ad hoc applica-
tion, and sketch our current implementation, which is based
on standard APIs of the Java 2 platform, Micro Edition.

1. Introduction

In recent years, several researches have been studying
the next generation of mobile communication and informa-
tion infrastructures, based on self-organisation approaches,
e.g., Terminodes [8], CarNet [11]. In this context, ad hoc
networks are expected to play a key role in the future, al-
though nobody knows which emerging technology will win
(Bluetooth [10], Wi-Fi [2], etc.) and when it will be ready
for prime time. When this will happen however, it seems
reasonable to forecast that adequate programming frame-
works will be necessary to leverage ad hoc networks and
build the next generation of mobile applications.

Many authors have proposedabstractions for program-
ming in mobile ad hoc environments, mostly relying on a
form of tuple space combined with a notion of context (e.g.,
[3]). The tuple space providesanonymouscommunica-
tion between peers, while the context is used to improve
location-awareness. To provideasynchrony, tuple spaces
are extended by callback primitives on the consumer side,
coming close to a publish/subscribe style. To further decou-
ple peers, interacting entities are viewed as agents, which
may roam across several tuple spaces representing transi-
tory communities. One can however argue that it is some-
what misleading to promote tuple spaces in a mobile ad hoc
environment, as the tuple space abstraction originally mod-

elled one global, unique, shared space [6]. We advocate
that the publish/subscribe style leads to a slimmer and more
inherently asynchronous interaction. The key difference
between ourlocation-based publish/subscribe(LPS) and
more classical topic- & content-based variants lies in the ex-
istence of an external context that impacts the matching of
published events and subscriptions. This notion of context,
which is used in addition to the dynamic content of events
for matching them against subscriptions, makes LPS a gen-
eralization of the topic- & content-based publish/subscribe
mixture, which has become thede factostandard in indus-
trial settings. Just like static topic information can be used
to efficiently route and filter events by pre-establishing con-
nections between potential publishers and subscribers, dy-
namic context information can be used for improving effi-
ciency when conveying location information in an ad hoc
application.

The contributions of this paper are the following. In
Section 2, we propose a definition of mobile ad hoc ap-
plications that isindependent of ad hoc networksthrough
Pervaho, a platform providing high-level support for pro-
graming mobile ad hoc applications. Section 3 presents
the LPS paradigm, the cornerstone of the Pervaho platform,
along with the specification of a corresponding service in
Java. Section 4 then provides an overview of our current
implementation of the LPS service in Pervaho. Section 5
concludes with some perspectives for future work. More
details, including two example mobile ad-hoc applications
built on LPS, and a thorough discussion of related work can
be found in [4].

2. The Pervaho platform

Ad hoc networks exhibit an inherenthere & nowna-
ture: at some point in time (now), the network is defined
by all nodes that are both within a given range and on-
line (here). This also characterizes ad hoc applications [5].
However, we believe that defining ad hoc applications sim-
ply aspieces of software that run on ad hoc networksdoes
not adequately capture their essence. By coupling ad hoc



applications to a particular network architecture, one re-
duces the generality and effectiveness of the definition. In
an ad hoc network for instance, the willingness to collabo-
rate directly translates to going online or offline, which does
not allow for finer control over the membership of ad hoc
communities.

2.1. Mobile ad hoc applications

Thus, we define an ad hoc application asa self-
organizing application involving mobile autonomous de-
vices, interacting as peers and whose relationships are
meaningful because they are within some physical range de-
fined by the application semantics. That is, an ad hoc appli-
cation must exhibit three features:(1) a set of autonomous
mobile devices, (2) a peer-to-peer communication model,
and (3) a proximity-based semantics.The peer-to-peer
communication model is by no means limited to ad hoc net-
works. Peer-to-peer communication simply means that col-
laborating entities do not assume predefined client or server
roles but rather interact directly, via some underlying com-
munication layer. The fact that the communication layer
relies on a genuine ad hoc network or not is irrelevant for
ad hoc applications.

By abstracting the network level, we can now imag-
ine mobile ad hoc applications defining proximity criteria
within the range of a Metropolitan Area Network (MAN),
i.e., several kilometers, and communicating in a peer-to-
peer manner across such distances. This is simply impos-
sible with genuine ad hoc network technologies currently
available, yet can be achieved today if we set up mobile
phones to access Internet via some GPRS/UMTS gateway
and to build a peer-to-peer overlay network. The responsi-
bility of building such an overlay network would typically
be that of the LPS service.

2.2. Location-aware communication

Having decoupled mobile ad hoc applications from the
underlying network technology, we still need a way to ex-
press proximity-based semantics. Here, we advocate that
mobile ad hoc applications require some kind oflocation-
aware communication, supporting anonymous and asyn-
chronous interactions, in addition to the obvious location
service. Furthermore, we strongly believe that location-
aware communication should be provided in the form of a
location-based publish/subscribe service. The Pervaho plat-
form precisely aims at offering such programming support
for mobile ad hoc applications. Its architecture consists
of two main layers (see Figure 1): a high-level program-
ming model and an underlying location-aware communica-
tion service.

Connected Limited Device Configuration (CLDC)

Mobile Information Device Profile (MIDP)

Location (JSR 179) Wireless Messaging (JSR 120)

Location-based Publish/Subscribe

The Bystander Programming Model

J2ME Core

J2ME Optional
Packages

The Pervaho
Platform

Focus of
this paper

Figure 1. The Pervaho platform architecture

At the top level, theBystander programming modelal-
lows programmers to express mobile ad hoc applications
via a declarative extensionof the Java 2 platform, Micro
Edition (J2ME). The Bystander model reflects the inherent
”here & now” semantics of ad hoc applications, and is im-
plemented as a lightweight Java language extension offering
the notion of condition-driven methods: a mobile ad hoc
application consists of a set of condition/method pairs as-
sociated declaratively, where the condition expresses what
the context should offer ”right here & right now” for the
corresponding method to be executed.

3. Location-based publish/subscribe (LPS)

The core concept underlying publish/subscribe is to view
interacting entities in two roles: a first role, that ofpub-
lisher, consists in generating events, and a second one, that
of subscriber, consists in advertising interests in particular
kinds of events. The goal of the publish/subscribe service is
to, upon occurrence of an event, trigger notifications on the
subscribers whose interests match the given event.

LPS starts from a generalization of the combination
topic & content-based publish/subscribe. That is, an event
is published in a particulargeographical contextand the
matching process is performed dynamically on this context,
as well as on thecontentof events. The explicit distinction
of content and geographical context is motivated by the na-
ture of mobile ad hoc applications, andlocation information
must clearly be treated as first class object (just like topics),
for the LPS engine to efficiently handle this information.

Location is of course not the only context informa-
tion that could be relevant to mobile ad hoc applications.
Other physical values (e.g., speed, temperature), as well
as resource availability (e.g., battery power, computing re-
sources) could be useful as context information, depending
on the actual application, and on the sensing and monitoring
capabilities of the mobile devices being used.1

1In Pervaho, any context information is made available to the Bystander
model (including location) via predicates controlling method executions.
The corresponding context events might however originate from different
underlying services (one of them being LPS), depending on their types.



3.1. A location-based publish/subscribe service

The LPS service allows mobile ad hoc applications to
transparently and anonymously communicate with each
others via a subscription and publication system,based on
their location. As illustrated in Figure 2, the LPS service
interface proposes four methods, which will be described in
the following.

public interface LPSS extends Connection {
void publish(Event e, long range);
Publication publish(Event e, long range,

long timeToLive);
void unpublish(Publication pub);
Subscription subscribe(Event e, EventHandler hd,

long range);
void unsubscribe(Subscription sub);

}

Figure 2. API of the LPS service in Java

A publicationrepresents an event distributed within a de-
termined geographical range around the publisher, called
the publication space. To create a publication, publishers
use thepublish() method. A publication can beper-
sistentor non-persistent. With a non-persistent publica-
tion, the event is offered for distribution to all subscribers
located in the publication spaceat the time of the publi-
cation. A non-persistent publication is performed thanks
to thepublish() variant taking two arguments, i.e., an
event and a publication range (expressed in meters). With
a persistent publication, the event is offered for distribution
to all interested subscribers located or entering the publi-
cation spacebefore the event is unpublished. A persistent
event can be unpublished either by the publisher or by the
service after a determined period known as itstime-to-live.
The publication space is centered around the publisher, im-
plying that the publication space moves along with the pub-
lisher between the time the event is published and the time
the event is unpublished. A persistent publication is per-
formed thanks to thepublish() variant taking three ar-
guments, i.e., an event, a publication range and a time-to-
live (expressed in milliseconds). This method also returns a
publication object, which can be used to explicitly unpub-
lish the persistent event before its time-to-live expires, using
theunpublish() method.

A subscriptionis a request to receive events published by
producers located within a determined geographical range
around the subscriber – thesubscription space. In addi-
tion, content-based selection of events can be achieved via
anevent template. A subscription is performed thanks to the
subscribe() method, which takes an event template, a
subscription range (in meters) and an event handler as argu-
ments. The event template is an event object used as filter:
this object contains all attributes a published event is re-
quired to have in order to be considered a match. The event

handler is an object implementing thestandUp() call-
back, which is triggeredasynchronouslywhen a matching
event is found (the event being passed as argument). This
method is responsible for handling the matching event. The
subscribe() method also returns a subscription object,
which can be used to cancel the corresponding subscription
via theunsubscribe() method.

In order to be called amatch, a publication/subscription
couple has to meet two conditions: (1) the location match
and (2) the content match. The first condition is met when
the publisher and the subscriber are both located in the in-
tersection of the publication and the subscription spaces,
as illustrated in Figure 3. The content match condition is
met when the published event contains at least all attributes
specified in the subscribed event template. This is similar
to what most content-based publish/subscribe platforms are
offering.

Figure 3. Location-based event matching

4. Implementation overview

Our current implementation of LPS is based on theMo-
bile Information Device Profile(MIDP) of the Java 2 plat-
form, Micro Edition (J2ME) [7, 1]. The MIDP specifi-
cation extends theConnected Limited Device Configura-
tion (CLDC). The CLDC specification defines the base set
of APIs along with the KVM for resource-constrained de-
vices like mobile phones, pagers, and mainstream personal
digital assistants. When coupled with a profile such as
MIDP, it provides a solid Java platform for developing ap-
plications to run on devices with limited memory, process-
ing power, and graphical capabilities.

From the communication viewpoint, LPS relies on
the Generic Connection Framework(GCF), an essential
part of CLDC that provides an extensible, generic I/O
framework for resource constrained devices. A total of
seven interfaces are defined in GCF, withConnection
at the root. While many device vendors only sup-
port HTTP, the GCF foresees support for various proto-
cols. TheConnector class acts as a factory for in-
stantiating such protocols. As illustrated by theLPSS
interface in Figure 2, our LPS implementation inte-
grates in the GCF infrastructure, which supports URL-



based protocol selection, e.g.,http://java.sun.com ,
lpss://trafficJam , etc. As far as location-oriented
support is concerned, LPS relies on the Java Specification
Request (JSR) 179 [9], an APIs for managing location in-
formation in J2ME. More precisely, we have been using the
official reference implementation provided by Nokia to test
our approach.

4.1. LPS architecture

Our current prototype of LPS relies on a web service
accessed via HTTP by clients, i.e., mobile devices; this
web service plays the role of communication backbone
and performs the matching between published events and
subscribers. In addition to the web sercice, our architec-
ture is based on a client module running on each mobile
device; this module is in charge of relaying information
to the web service. This hybrid approach (static back-
bone/dynamic clients) is simple to implement and offers
a high degree of availability and reliability. Furthermore,
given the current uncertainty regarding the future winning
ad hoc network technology, this architecture is well suited
for a realistic and present implementation of LPS, relying
on the mobile telephony infrastructures of GSM operators.
It is important to note that this implementation does not con-
tradict our definition of mobile ad hoc applications (Sec-
tion 2). On the contrary, it illustrates the freedom one ob-
tains when decoupling mobile ad hoc applications from the
notion of ad hoc network.

Theclient moduleis responsible for handling all five in-
coming requests from the ad hoc application, e.g., publish
(persistent and non-persistent), subscribe, unsubscribe and
unpublish. For each request it creates a specific message
containing (1) the client ID, (2) the request type (publish,
subscribe, etc.) and (3) a publication or subscription ID.
In the case of new subscriptions or publications, the mes-
sage also contains the publication/subscription information
(e.g., event, range) and the device’s current geographic lo-
cation, which is obtained thanks to the JSR-179 location
service. The client module also sends a second type of
messages: location update messages. These messages are
sent to the server whenever the module detects a location
change. More precisely, this is only necessary if the corre-
sponding mobile ad hoc application has an active subscrip-
tion or an activepersistentpublication. The stack layer-
ing of the client module is pictured in Figure 1. Contrary
to what this figure suggests, however, the client stack is
not strictly vertically layered. For example, some parts of
the LPS layer directly access the MIDP or the even CLDC
APIs.

The web serviceis responsible for checking potential
event matches each time it receives a relevant update from
some client, i.e., a new publication, a new subscription or

a location change. To achieve this, it keeps track of (1) all
the persistent publications and the location of their publish-
ers and (2) all subscriptions, the location and the address
of their subscribers. When a new match is found, it sends
the matching publication/subscription couple to the con-
cerned subscriber’s client module, using its address. Upon
reception of this message, the client module triggers the
standUp() method on the subscription’s event handler.

5. Concluding remarks

In this paper, we first made an attempt of precisely char-
acterizing applications that are typical of ad hoc networks.
We presented a paradigm for programming such applica-
tions, called location-based publish/subscribe, as well as a
J2ME-based implementation of it. LPS leverages on the
blend of topic- & content-based publish/subscribe, by gen-
eralizing the notion of topic to a that of a context expressing
proximity criteria. Regarding ongoing work, we are cur-
rently investigating a fully decentralized implementation of
LPS, as well as a more flexible way than mere templates to
perform content-based selection of events [?].

References

[1] MIDP APIs for wireless applications (white paper). Sun Mi-
crosystems, 2001.

[2] AirPort Extreme, Technology Overview. Apple Computer,
April 2004.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A Pro-
grammable Coordination Architecture for Mobile Agents.
IEEE Internet Computing, 4(4):26–35, 2000.

[4] P. Eugster, B. Garbinato, and A. Holzer. Location-based
publish/subscribe. Technical Report DOP-20050124, Uni-
versity of Lausanne, DOP Lab, January 2005.

[5] B. Garbinato and P. Rupp. From ad hoc networks to ad hoc
applications. InProceedings of the 7th International Confer-
ence on Telecommunications, pages 145–149, Zagreb (Croa-
tia), June 2003.

[6] D. Gelernter. Generative Communication in Linda.ACM
Trans. Prog. Lang. Syst., 7(1):80–112, Jan. 1985.

[7] http://java.sun.com/j2me. Java 2 Platform, Micro Edition
(J2ME). Sun Microsystems.

[8] J. P. Hubaux, T. Gross, J. Y. L. Boudec, and M. Vetterli. To-
wards self-organized mobile ad hoc networks: the Termin-
odes project.IEEE Communications Magazine, 31(1):118–
124, 2001.

[9] JSR-179 Expert Group.Location API for Java 2 Micro Edi-
tion, Version 1.0, September 2003.

[10] J. Kardash. Bluetooth architecture overview.Intel Technol-
ogy Journal, 2000.

[11] R. Morris, J. Jannotti, F. Kaashoek, J. Li, and D. De
Couto. CarNet: A scalable ad hoc wireless network system.
IEEE Communications Magazine, 31(1):118–124, Septem-
ber 2000.


