
Experiences with Object Group Systems:

GARF, Bast and OGS

Rachid Guerraoui, Patrick Eugster, Pascal Felber, Benôıt Garbinato, and Karim Mazouni ∗

Swiss Federal Institute of Technology, Lausanne

CH-1015, Lausanne, Switzerland

1 Introduction

Context

For a couple of decades now, many projects have been devoted to the design and implementa-
tion of object based concurrent and distributed systems, mainly focusing on building support
for object based concurrency control, remote object invocation and object migration [5]. Very
few however have been devoted to building support for replication and object groups. This
is actually not surprising as most object based distributed systems have been experimented
on academic applications for which fault-tolerance is rarely a mandatory feature.

This situation has recently changed when distributed objects became the cornerstone of
industrial standards such as CORBA and DCOM. Applications in various areas are being
developed or ported on object based distributed systems, including those with strong require-
ments for continuous availability such as air traffic control, telecommunication, medical and
financial systems.

By encapsulating a set of entities that cooperate to achieve some common goal, the group
abstraction has proven to be very convenient for distributed programming, particularly for
achieving continuous availability (fault-tolerance) through replication. Although the group
abstraction is intuitive, the underlying techniques required to implement group communi-
cation and group membership pose difficult problems. Furthermore, providing the group
abstraction at the application level is far from being trivial. In short, process group toolk-
its (e.g., Isis) provides the abstraction of group at the process level, whereas programmers
typically compose applications at the ”object” level.

Most of the papers dedicated to object groups mainly describe specific techniques to inte-
grate object group supports in particular systems, e.g., Psync [37], Amoeba [46], Emerald [7],
Arjuna [34], and CORBA [35, 11, 1]. The motivations and limitations of various design and
implementation choices are however rarely discussed.

Motivations

The aim of this paper is to discuss, through two experiences, general issues on (1) how to
build system support for object groups and (2) how to build such support using standard

∗Pascal Felber is currently affiliated with Oracle Corporation (Portland, Oregon). Benôıt Garbinato and
Karim Mazouni are currently affiliated with Union Bank of Switzerland, Zurich.



object mechanisms. The experiences we describe in this paper had two common objectives:

• Object group protocols. The first objective was to build a library of distributed protocols
that support object replication through the use of group mechanisms (group membership
and group communication). The aim here was to ensure object continuous availability
and preserve replica consistency despite concurrency and failures. We considered a
distributed system model where nodes (machines) may crash and recover but do not
behave maliciously. When a node crashes, all its processes stop performing actions.

• Group transparency. Another major objective was to provide the ability to transparently
plug a group protocol underneath object invocations, within an application that was
written without fault-tolerance in mind. This group transparency feature means that one
can view a group of replicas as a single object. The main difference is the ability for the
group to tolerate failures. An experimented programmer should however be capable of
changing the default group protocol with one that better suits the application semantics
(e.g., use passive replication instead of active replication [25]), or even build her/his
own group protocol.

Lessons

This paper does not detail the architectures or the implementations of the systems that
resulted from our experiences, namely GARF, Bast and OGS. Several papers have been pub-
lished on these systems ([17, 18, 26, 12, 21, 14, 15]). Our objective here is rather to point
out general observations that we drew from building those systems. Even though our expe-
riences were mainly directed towards the use of groups for providing continuous availability
(fault-tolerance) through object replication, the observations we point out apply also to other
usages of groups, such as load balancing, on-line software life cycle and cooperative work. In
fact, we believe that most of those observations concern general developments of object based
distributed systems.

1. The mismatch between process groups and object groups applies not only to Isis, but
to all process group toolkits we know about (see [42] for a survey on these toolkits).

2. Separating distributed protocols from the algorithms that implement them within two
inheritance hierarchies is a nice principle to achieve flexible and dynamic composition.
This principle is worth considering in any distributed system of which components
exhibit complex dependencies.

3. The difficulty of implementing reliable distributed protocols using standard remote ob-
ject interaction applies not only to CORBA, but also to other middleware such as Java
RMI [27] or Microsoft DCOM [8].

4. The mailer/encapsulator model we used to separate the concerns of replication from
other application aspects can be viewed as a pragmatic reflective model for general
object based distributed computing.

5. The conclusions we drew about the underlying costs of group transparency and the
major role of marshaling overhead, would apply to many other reliable object based
distributed systems.



Roadmap

The rest of the paper is organised as follows. Section 2 puts our experiences in a historical per-
spective. Section 3 discusses the mismatch between object groups and process groups. Section
4 poses the problem of group protocol composition and sketches the solution we adopted in
our implementations. Section 5 discusses the mismatch between the asynchronous semantics
of group protocols and synchronous standard CORBA invocations. Section 6 describes the
mailer/encapsulator model we used to separate the concerns, and the way we implemented it
in a practical setting. Section 7 presents some performance measures of our implementations
and dissects the cost of object group transparency. Section 8 draws some general remarks
about our experiences and Section 9 summarizes the paper.

2 Historical perspective

The V system was the earliest system to offer an explicit notion of group and broadcast
communication [4]. Its design influenced most group-based systems. The Isis system extended
the group model of the V system by providing support facilities for fault-tolerance such
as process group membership, reliable totally ordered broadcast, reliable causally ordered
broadcast, etc. [6]. The Isis group membership service ensures that every non-faulty process,
member of a group G, receives periodically a view of G, describing G’s current members.
The Isis model, called view synchrony, ensures that all members of a group receive the same
sequence of views and guarantees that messages are totally ordered with respect to view
changes.

The motivation of our research effort was the simple observation that what the program-
mer typically handles are objects, and a high level object group abstraction can be very
desirable for reliable distributed programming.

Our first experience (1992-1996) started in the context of the GARF project, financed by
the Swiss National Science Foundation (SPP IF 5003-034344) and resulted in the development
of two prototype systems, GARF 1 and Bast 2, both providing support for object groups. Our
second experience (1995-1998) was performed in the context of the European Esprit projects
OpenDREAMS (project 20843) and OpenDREAMS II (project 25262), and resulted in the
development of a CORBA Object Group Service.

1. Smalltalk object groups. We started in the first experience by building support for
Smalltalk object replication using the Isis group toolkit [6]. We implemented a full pro-
totype, named GARF and illustrated its use by replicating a distributed diary manager
application in a local area network [17, 18, 26]. The reflective facilities of Smalltalk
made it easy to build a simple two-level mailer/encapsulator model that separates repli-
cation aspects from application functional features, and hences provides an interesting
level of transparency. Relying on an underlying process group communication toolkit
revealed however a fundamental mismatch between the semantics of process groups and
object groups. Roughly speaking, process group toolkits (such as Isis) usually assume
a large grain client/server model, whereas object based programs are usually made of
fine grain dynamic entities that alternatively play the roles of client and server. The
mismatch posed several problems such as mixed scheduling, duplicated invocations and

1GARF is the French acronym for Génération Automatique d’Applications Résistantes aux Fautes.
2In the Egyptian mythology, Bast is a cat-goddess.



group proliferation (which we detail in Section 3). In a first step, we limited the effect
of the mismatch by building a specific adaptor to interface Smalltalk objects and Isis
processes, but we had to make strong assumptions on the nature of the target applica-
tions (e.g., no multi-server request atomicity). In a second step, we built (from scratch)
our own open object oriented distributed protocol framework, named Bast, specifically
adapted to support object groups. Bast is open in the sense that distributed proto-
cols such as failure detection and multicast are considered as first class entities directly
accessible to the programmer, and it is a framework in the sense that most of those
protocols can be customised simply by implementing call-backs. We implemented Bast
in Smalltalk, first using inheritance as the only structuring mechanism and later by
objectifying distributed algorithms through the Strategy Design Pattern [16] to promote
flexible group protocol composition.

2. CORBA object groups. The second experience aimed at supporting CORBA object
groups [39], in a language independent manner. The goal was to support the coexis-
tence of groups of objects written in different languages. We designed and implemented
a CORBA Object Group Service (OGS) along the lines of other CORBA services, such
as the Object Transaction Service and the Event Service [40]. We reused our Smalltalk
experience in OGS by relying on a mailer/encapsulator communication model to achieve
separation of concerns and an object oriented distributed protocol framework to support
object groups. OGS was first implemented in C++ using Orbix [30] and was shown to
be very effective in supporting object replication in a language independent manner. We
later ported OGS on Visibroker [45]. Although OGS was specified following the OMG
guidelines and our target Object Request Brokers (Orbix and VisiBroker) are widely
considered as CORBA compliant, it was not possible to fully port OGS code from one
ORB to another. We thus ended up with slightly different implementations of OGS for
Orbix and Visibroker. The reason of this limited portability was the mismatch between
the asynchrony of group protocols and the synchrony of CORBA basic mechanisms. In-
deed, most of distributed protocols underlying object groups are asynchronous, whereas
CORBA traditionally provided synchronous Object Remote Procedure Calls. Full asyn-
chrony was not guaranteed by the CORBA specification 2.1, and although some form of
asynchrony can be obtained on specific ORB implementations using event handling or
multi-threading, none of these solutions is fully portable. We restricted the impact of
the mismatch by encapsulating asynchrony issues inside a specific messaging sub-service,
which is the only non-portable component of OGS.

Interestingly, in all (non-optimised) implementations that came out of our projects, full
group transparency introduces an overhead factor of around 10, when compared with a remote
invocation of a single object. This overhead can be viewed as the price to pay for encapsulating
plurality [7]. We dissect this overhead by separating the various underlying costs: (1) the
cost of message indirection (i.e., invocation transparency), (2) the cost of marshaling (i.e.,
argument transparency), and (3) the cost of the total order multicast protocol (i.e., behaviour
transparency). We will discuss these costs in Section 7.



3 Object groups vs. process groups

Our first experience consisted in building support for Smalltalk object replication. This
section recalls some major steps in that experience and discusses the major problem we
faced, namely the mismatch between object groups and process groups. We then describe the
way we limited the impact of the mismatch by building an object adaptor on top of Isis and
we point out alternative solutions.

3.1 Background

The two best known replication strategies are active and passive replication [25]. With active
replication, all copies of the replicated object handle each request and return a reply. Active
replication has the advantage that it does not require any specific treatment if a replica
crashes (as long as enough replicas are operational). To ensure replica consistency, a total
order multicast protocol is used to ensure that all replicas receive concurrent requests in
the same order (Figure 1a). With passive replication, only one replica (generally called the
primary) executes the request and updates the other replicas (Figure 1b). A reliable protocol
is used by the primary to update the state of the other replicas and a group membership
protocol is used if a replica crashes or recovers. As shown in [25], both replication strategies
have their pros and cons and a system that is intended for programming general replicated
applications should support both strategies.

We decided to provide a default active replication behaviour and to enable the programmer
to use passive replication instead when desired. While both replication strategies are intuitive,
the distributed protocols (e.g., total order multicast and group membership) required to
implement them are quite complex [25]. Instead of building those protocols from scratch,
we decided to rely on an existing distributed toolkit, namely Isis, which was the only widely
known and available system offering reliable group protocols.

In the following, we point out several effects of the mismatch between the semantics of
Smalltalk object groups and Isis process groups. We faced the mismatch when experimenting
the use of our first prototype (named GARF [17]) through a replicated distributed diary
manager application. Roughly speaking, each member of our group had a (replicated) diary
used to store the list of meetings to which the member participates (the application is detailed
in [17]).

3.2 The mismatch

Group proliferation

Mapping every object group (i.e., group of object replicas) to a group of processes is a natural
way to directly reuse, at the object level, the group mechanisms provided by process group
toolkits (Isis in our case). In particular, process group toolkits provide support for creating
groups, naming groups, maintaining group membership information and multicasting mes-
sages to group members with various delivery guarantees. The direct mapping (one object
group corresponds to one process group 3.) had however two important consequences on our
implementation.

3An alternative mapping is discussed in Sect.2.3



group

request

reply

server process 1

replica 1

server process 2

replica 2

client

client process

object

Active Replication(a)

Total Order
Multicast

machine 1

machine 2

machine 3

client

group

request

reply

client process

server process

server process

state update

(primary)

1

2

object

Passive Replication(b)

machine 1

machine 2

machine 3

replica 1

replica 2
(secondary)

Figure 1: Active and passive replication



process 1

process 2

group 2 group 3

replica 2.1 replica 3.1

replica 3.2replica 2.2

machine 1

machine 2
group 1

replica 1.1

replica 1.2

replicated object 1 replicated object 2 replicated object 3

Figure 2: Group proliferation

1. Overlapping groups. Since objects are usually light-weight entities and several objects
reside within the same process, we came out with the situation where several Isis process
groups were created, even when those groups were actually gathering the same set of
processes (the groups overlapped). In our distributed diary manager application for
instance, we created a replica of each diary, on every machine of our local network.
As a result, several Isis process groups were created: one for each diary. All groups
were actually gathering the same set of processes (i.e., the set of Isis processes of our
network). This is conveyed by Figure 2 for a scenario with three objects replicated on the
same machines: machine 1 and machine 2. Three Isis process groups are created for the
same processes, namely process 1 and process 2. Every Isis group of processes introduces
specific bandwidth and processing overhead due to the group internal management for
group membership and message ordering. In fact, a single group gathering process 1
and process 2 would have been sufficient.

2. Super-groups. The total order multicast primitive provided by Isis ensures strong server
replica consistency in a pure client-server interaction (Figure 1a). Roughly speaking, this
primitive guarantees request atomicity with respect to concurrency and failures. There
are situations however where the client object needs to interact with several servers in
an atomic way. In our distributed diary manager application for instance, “scheduling a
meeting” requires the interaction with several replicated diaries: a meeting is scheduled
if the date is free for all involved persons. Hence, scheduling a meeting implies an
atomic update to several diaries. When every diary is replicated, a meeting implies an
atomic activity that involves several replicated objects. The only way to ensure such a
transactional kind of atomicity is to create, for every multi-server request, a super-group
that contains all replicated diaries 4. Figure 3 shows a scenario involving two replicated
objects. The required semantics is indeed ensured but with a considerable overhead due
to the management of big temporary super-groups.

4Due to the possibility of deadlocks, a locking based solution does not guarantee continuous availability.



client

client process

multi−server request

Total Order
Multicast

duplica 2

replica 1.1

replica 1.2

duplica 2

replica 2.1

replica 2.2

super−group

group 1

group 2

replicated object 1

replicated object 2

Figure 3: A super-group is created for a multi-server request



client

client process

server process

replica 2.2

server process

replica 2.1

3

42server process

server process

replica 1.1

replica 1.2

1

 2

request 1

request 2

request 2

request 2

request 2

request 1

replicated object 1 replicated object 2

Figure 4: Duplicated requests

Request duplication

When a client invokes an actively replicated server, each replica of the server receives the
invocation, performs the requested operation and returns a reply. There is no coordination
among the replicas which behave as if they were independent entities. Active replication
is straightforwardly supported with a total order multicast primitive when the replicated
server plays indeed the strict role of a server. This is not always the case in an object based
application as objects may alternatively play the roles of client and server. If a replicated
object plays the role of a client for another server, the scenario above will come out with
duplicated requests. As shown in Figure 4, request 2 is sent twice to every replica of the second
replicated object. This introduces a considerable overhead and can even cause inconsistencies
with non-idempotent operations.

Although more subtle, this problem actually occurs also with passive replication. The
primary of the first replicated object may issue the request and then crashes and when a new
primary is elected, the latter can in turn issue another request.

We had thus to add, on top of Isis, a specific mechanism to filter every invocation from
a replica in order to discard duplicated requests. The filtering mechanism required a specific
distributed synchronisation protocol between the replicas to ensure that exactly one request
is issued by the replicated object, even in the case of failures. The mechanism, based on
symmetric proxies, is detailed and illustrated on the replicated diary manager in [36].

Mixed scheduling

Isis distributed protocols heavily rely on asynchronous communication. This is crucial for
distributed protocols such as failure detection and group membership. To support asynchrony,



Smalltalk process

object object

ST−threads

Isis−threads

Smalltalk/Isis

Adaptor

Isis process

machine 

Figure 5: Separating processes

Isis relies on its own multi-threading model. Similarly, Smalltalk heavily depends on its multi-
threading facilities (e.g., to run the GUI). The coexistence of the two different threading
models had two important influences on our implementation.

1. There was no way of controlling the concurrency between Smalltalk and Isis threads
within the same Unix process. We had thus to separate the Smalltalk application from
the Isis protocols within two different Unix processes (in every machine). We placed a
specific synchronisation adaptor between every Isis process and its associated Smalltalk
process (Figure 5).

2. Some of Isis distributed protocols provide ordering guarantees for messages exchanged
between the processes. For instance, the Isis total order multicast protocol ensures that
all messages sent to a group of processes g, are delivered in the same order by the
members of g to the associated Smalltalk processes. This however does not guarantee
any ordering between concurrent object invocations inside Smalltalk processes, because
of Smalltalk multi-threading. We had thus to explicitly provide a strong serialisation
mechanism between the Isis and Smalltalk processes (Figure 5) in order to maintain
the message ordering determined by Isis protocols. The serialisation mechanism does
not pass a request to the Smalltalk process unless the reply to the previous request has
been obtained.

3.3 Alternatives

The mismatch between process groups and object groups is not specifically related to Isis.
All process group communication toolkits we know about (e.g., Totem and Horus [42]) were
inspired by Isis and would pose the same problems. Both the object adaptor we had to
add on top of process groups and the restriction we made about replicated objects (there
is no multi-server request atomicity) would have been necessary. At UCSB for instance,
Narasimhan, Moser and Melliar-Smith had to design a similar adaptor, named Eternal [38],
on top of their Totem process group communication system to support object replication. The
same approach was followed by Maffeis (in the Electra system) to support CORBA object
replication with Isis and Horus [35].



Several designers of process group communication toolkits have recognised the mismatch
between object groups and process groups. For instance, some experiments with the notion
of light-weight group have recently been done in Horus [43]. A light-weight process group is
mapped onto an object group, and several light-weight groups are mapped onto one single
process group, amortising the cost of many membership changes (Section 2.2.1). This indeed
limits the impact of the mismatch (namely overlapping groups) but does not solve all the
problems we have faced (e.g., mixed scheduling, request duplication).

Several researchers (e.g., [10]) have argued that group communication toolkits are not ad-
equate to support object replication and that transactional systems provide the ideal support.
Indeed, transactions can ensure the consistency of multiple replicas despite concurrency and
failures. Nevertheless, existing transactional systems rely on the so-called 2PC protocol [2],
which might on one hand block all replicas accessed by a transaction if the transaction co-
ordinator crashes, and on the other hand abort a transaction if a single replica crashes [24].
In the Arjuna project for instance [44], which aimed at supporting object replication using
transactions, Little and Shrivastava had to add group communication to their basic transac-
tional kernel [34]. Hence, unlike [10], we do not claim that group communication primitives
are useless and that one should better use transactions. We rather claim that, to support
object groups, group communication primitives must be build with object semantics in mind.
A transactional mechanism should however be integrated within group communication to
support multi-server request atomicity.

4 Composing group protocols

This section discusses the issue of composing distributed protocols in an object oriented
framework. We had to deal with that issue in a later stage of our first experience, when we
decided to build, from scratch, a protocol framework to support Smalltalk object replication
(instead of relying on a process group toolkit, i.e., Isis). We named that framework Bast. We
first summarise below the main characteristics of Bast. Then we discuss the problem we faced
when relying on inheritance as the only mechanism to structure distributed protocols. Finally
we describe how we by-passed that problem by separating protocols from the algorithms that
implement them (i.e., by objectifying the algorithms).

4.1 Background

To support Smalltalk object replication (without the need for an underlying process group
system), we built, also in Smalltalk, the Bast object oriented distributed protocol
framework. In Bast, we provided group protocols at the object level, together with support
for multi-server atomicity, request filtering, and Smalltalk integrated scheduling. Besides
circumventing the mismatch between object groups and process groups semantics, we wanted
to promote flexible group protocol composition in order to experiment with various replication
implementations.

We built Bast as an open object oriented protocol framework: Bast protocols are designed
as object classes, and structured in a way that a system programmer can customise them by
sub-classing existing protocols and implementing call-backs (see [19] for various examples).
In contrast to group communication toolkits we know about (e.g., Isis), we did not consider
group membership to be a basic protocol on which all replicated applications must rely. We
rather considered lower level abstractions such as consensus and failure detection to be first



class AMCObject

Total order multicast

class CSSObject

Consensus

class GMObject

Group membership

class FDObject

Failure detection

class RMCObject

Reliable multicast

A B
protocol A uses protocol B

class RMPObject

Reliable communication

Figure 6: Bast basic protocols

class citizens as well, directly accessible to the programmer. As a consequence, Bast does not
impose any reliable distributed programming paradigm. A non-blocking atomic commitment
protocol is straightforwardly built using the Bast consensus protocol, and one can mix within
the same application, group communication with transactions [23, 19]. Figure 6 presents some
of the low level protocols of Bast and their dependencies.

4.2 Structuring protocols with inheritance

Reliable distributed protocols are often challenging to build because of their complex depen-
dency relationships. As shown in Figure 6, the group membership protocol is built on top
of consensus and failure detection protocols. Consensus is itself based on failure detection,
reliable multicast, and reliable (point-to-point) communication.

In our first implementation of Bast [19], we relied on inheritance as the only mechanism
for structuring distributed protocols. Every protocol is represented by a class that inherits
from all protocol classes on which it depends. By sub-classing appropriate protocol classes
and implementing their call-back operations according to the desired semantics, programmers
have the ability to tailor protocols to their needs. However, inheritance alone is not sufficient
as far as protocol composition goes, as it does not allow us to easily implement a new algorithm
for some existing protocol and to use it in whatever protocol class we want.

To illustrate this problem, consider Figure 6 and suppose some protocol programmer
wants to change the failure detection algorithm on which consensus and reliable multicast
depend, while leaving it unchanged for group membership. This indeed makes sense as the
optimal failure detection mechanism for group membership is not the same as for consensus
and reliable multicast. In a group membership protocol, a replica that is suspected is excluded
from a group, which is an expensive operation. One should better make sure that the replica
is not just slow (and falsely suspected). Hence, even after a long time-out period, before
a suspicion is indeed raised, it makes sense to first confirm that suspicion by contacting



several replicas (e.g., a majority) and checking the validity of the suspicion. On the contrary,
in consensus or reliable multicast, suspecting a replica leads to electing a new leader or
forwarding missing messages, which can be desirable to fastly terminate the protocols. In
this case, a simple heartbeat protocol (every replica periodically sends an I am alive message
to all) based on a short time-out period failure detection is sufficient.

With inheritance alone as a code reuse mechanism, one has to implement the new failure
detection algorithm both in class CSSObject and class RMCObject, hampering optimal code
reuse.

Assembling the various protocol layers through multiple inheritance can be viewed as
an appealing alternative: each class would implement only one protocol, while accessing
all required underlying protocols through abstract operations. The latter would then be
provided by other protocol classes through multiple inheritance. With this design (sometimes
called mixins), protocol classes would all be abstract. The drawback with this approach is
that classes are not more ready-to-use components: before being able to actually create a
protocol object, one has to build a new class deriving from all the necessary protocol classes.
Furthermore, because protocol layers are assembled through sub-classing, it is very difficult
to compose them at runtime.

4.3 Objectifying the algorithms

To achieve flexible protocol composition, we objectified distributed algorithms, i.e., we sep-
arated protocol layers from their implementations (i.e., the algorithms), themselves manip-
ulated as first-class objects. As we show in [20], objectifying distributed algorithms comes
down to recursively apply the Strategy design pattern introduced by Gamma et al. [16]. Fol-
lowing the terminology of [16], a protocol is a context and an algorithm is a strategy. This
approach makes protocol composition very flexible and even possible at run time. Protocol
dependencies are expressed only at the specification level, through subclass relationships. The
algorithms are structured in a separate inheritance hierarchy. This can lead to choose/build
the algorithm that is best adapted to every protocol. Back to the failure detection example
above, one can have a majority based failure detector algorithm with for the group member-
ship protocol, and a simpler failure detection algorithm (with a short time-out value) for the
consensus and reliable multicast protocols.

Although applied in a different context, this approach is similar to the one followed in the
design of the CONDUIT+ framework of network protocols [28], and the x-Kernel library of
communication protocols [41].

5 Asynchronous protocols vs. synchronous invocations

Our Bast framework enabled us to experiment with various group protocols and algorithms.
The main limitation of Bast however is its restriction to single-language object groups, namely
Smalltalk. We decided to reuse the experience gained from Smalltalk object replication and
build support for general CORBA object replication. In the following we recall the context
of our CORBA experience, then we discuss the difficulty we faced in building (reliable) group
communication protocols using standard CORBA communications, namely the mismatch be-
tween the asynchrony of group protocols and the synchrony of standard remote CORBA object
invocations. We describe the way we dealt with that mismatch and we discuss alternative
approaches.



Object Request Broker

CORBA objects (Application objects)

Messaging Service 

Asynchronous (reliable) invocation

Monitoring Service

Failure detection

Consensus Service

Multicast Service

Object Group Service

Total order / Group membership

CORBA objects (Service objects)

Reliable multicast / Unreliable multicast

Figure 7: OGS and its components as CORBA services

5.1 Background

The Common Object Request Broker Architecture (CORBA), proposed by the Object Manage-
ment Group (OMG) [39], is a middleware specification that defines the basic mechanisms for
remote object invocation through an Object Request Broker (ORB), as well as a set of services
for object management, e.g., Persistence Service, Event Service, and Transaction Service [40].
The basic ORB specification does not contain any aspect related to fault-tolerance and the
only CORBA service which offers some degree of reliability is the Transaction Service. How-
ever, as pointed out in Section 2, the protocols underlying that service preserve consistent
long-term data by using recovery mechanisms upon failures, but do not ensure continuous
availability 5.

Our objective consisted in building support for CORBA object groups following the OMG
guidelines, i.e., we added group support as a new CORBA service, besides existing CORBA
services and without requiring any modification to the ORB specification. This approach
follows the design of the other functionalities that have been added to CORBA through
services, such as persistence and transactions. These services were specified in CORBA
IDL and were adopted as CORBA standards. With this objective in mind and after our
first experience with Smalltalk object replication, we designed a set of IDL interfaces to
describe our Object Group Service (OGS), itself designed as a set of sub-services (Figure 7).
We implemented it in C++ using two commercial off-the-shelf ORBs that comply with the
CORBA 2.1 specification: Orbix and Visibroker.

Although we strictly followed the OMG guidelines in service design and implementation,
it was not possible to obtain a fully portable code for OGS (from Orbix to Visibroker).
The major reason was that distributed group protocols, such as failure detection and group

5OMG explicitly requires the use of the 2PC protocol, which is known to be non-fault-tolerant [2]. In fact,
the OMG is currently issuing a Request For Proposal concerning fault-tolerant CORBA. We will come back to
that in the last section of this paper.



membership, are inherently asynchronous and, as we discuss below, there is no standardised
CORBA support for (reliable) asynchronous communication.

5.2 The mismatch

In the CORBA specification, remote object invocations are by default synchronous. A client
invokes operations on a local stub, which marshals arguments, sends requests over the net-
work, awaits a response, and returns it to the client. The client application code is blocked
on the request until completion. This communication mechanism is sometimes called Ob-
ject Remote Procedure Call (ORPC). It is inspired by the well known RPC paradigm [3],
and is also the basic communication paradigm of distributed middleware like DCOM [8] or
Java RMI [27]. ORPC extends distributed computing in a straightforward manner from non-
distributed object invocation and hence greatly eases distributed application development.
However, there are many situations in which ORPC is not sufficient, including the program-
ming of reliable distributed protocols such as failure detection and consensus, at the heart of
our protocol framework.

CORBA specification allows to declare operations using the oneway IDL keyword. This
keyword identifies an operation as flowing exclusively in one direction, i.e., the operation does
not return any value. The CORBA specification also provides a send now - receive latter
invocation style, called deferred synchronous invocations, through two basic operations: send
and get_response.

The problem with these types of invocations is that their semantics are (intentionally) too
vague in the specification. More precisely, the only guarantee provided is that the requested
operation is performed at most once and the requester never synchronises with the completion,
if any, of the request [39]. This, in fact, does not even prevent a compliant ORB to discard
the invocation message without sending it. Furthermore, the specification does not enforce
request-only operation to be non-blocking. Nothing indeed states that the client will not
wait for the server to acknowledge the reception of the message that transports the remote
invocation; thus, a remote call can block forever at the transport level, which can block in
turn the application. This situation can typically occur in case of a link failure, if the network
is congested, or if the server is extremely busy. For instance, an Internet Inter-ORB Protocol
(IIOP) invocation can block the entire process on a oneway call just because a TCP/IP buffer
fills up. Although the ORB at the client side could detect a possible deadlock when performing
an IIOP call, this behaviour is not guaranteed by the CORBA standard.

As a consequence, in order to avoid having OGS rely on unreliable communication mecha-
nisms, we decided to base our implementations on neither of the above mentioned mechanisms
and we used multi-threading instead.

5.3 Multi-threading

A natural way to provide asynchronous communication on top of synchronous invocation is
to use multi-threading, e.g., by starting threads for outgoing requests. However, in version
2.1 of the CORBA specification, thread support and management is not specified and thus
is not portable. Although both Orbix and VisiBroker support multi-threading, they provide
very different programming models. Both provide object oriented wrappers for threads, locks
and condition variables that ensure platform independence (e.g., between Posix and Windows
NT threads), but these wrapper classes are not compatible.



Application objects

Object Request Broker

Object Group Service

Messaging Service

Asynchronous (reliable) communication

Figure 8: The Messaging Service

Object Request Broker

machine 1 machine 2 machine 3

Asynchronous communication

event channel

supplier consumer 2consumer 1

Figure 9: An event channel is a single point of failure

As a result, our OGS resulting code was not fully portable and we came out with two
slightly different implementations: one for Orbix and one for Visibroker. Fortunately, the
non-portable part of the code was confined within our messaging service: one of the services
underlying OGS (Figure 7). This service relies on multi-threading to provide basic mecha-
nisms for managing reliable asynchronous messages.

An Object Messaging Service will be soon standardised by the OMG, providing various
qualities of service, including reliable asynchronous message passing. Although it might take
some time before commercial ORBs support this service, OGS could be plugged on that
service by simply replacing its messaging service, with minimal impact on other OGS services
(Figure 8).

5.4 Alternatives

CORBA Event Service

Besides the basic CORBA communication mechanism, OMG specifies a publish/subscribe
communication paradigm in the CORBA Event Service. This service decouples the commu-
nication between suppliers and consumers through event channels. Suppliers produce event
data and consumers process event data. An event channel is an intervening CORBA object
that allows suppliers to communicate with consumers asynchronously (Figure 9).



The major problem is that the architectural design of the Event Service is centralised : al-
though consumers and suppliers use different interfaces for pushing/pulling event data to/from
the channel, they have to invoke the same centralised event channel object in order to connect
to an event channel. As shown by Figure 9, the event channel is a CORBA object located at
a given machine and is thus a single point of failure. One might circumvent this problem by
following either of the three following approaches:

• By replicating the event channel. This would lead to a recursive architecture as the aim
of OGS is indeed to support replication.

• By representing an event channel as an IP multicast address (and not as a CORBA ob-
ject). A supplier generates data by sending it to the multicast address. This approach
was adopted by IONA in an Event Service implementation, called OrbixTalk [29]. How-
ever, the use of IP multicast is completely non-interoperable with other event channel
implementations: CORBA IIOP does not support IP multicast and an event channel
must have a unique (centralised) access entry to be designated by an interoperable
object reference.

• By chaining event channels. Several event channels could be located on the client and
on the server site. This model provides two-way communication with no single point of
failure. Distinct clients generate data using distinct request-suppliers and receive replies
through distinct response-consumers. Although complex, this approach is fully CORBA
compliant, does not modify the Event Service specification and does not introduce a
single point of failure [13].

Our modular structuring of OGS would a priori make it easy to change the implementation
of our messaging service and replace it with chained event channels or IP multicast (instead
of multi-threading) without impact on the rest of OGS implementation.

Proprietary communication mechanisms

An alternative approach to the use of CORBA standard communication mechanisms and
services would have been the use of external asynchronous communication primitives. This
approach has been followed in Orbix+Isis [31], Electra [35] and Eternal [38]. Besides the fact
that these systems rely on process group communication toolkits (Isis, Horus and Totem,
respectively), with the inherent limitations that we pointed out in Section 2, they are propri-
etary and do not comply with the OMG architecture.

In Orbix+Isis [31] and Electra [35], new extensions to IDL and ORB architecture are
required. In fact, a proposal to the OMG has been made for those extensions by Isis Dis-
tributed Systems, Inc [32], but the proposal was not adopted. Accepting that proposal would
have meant that all current ORBs should have to be rewritten to include support for group
communication. In Eternal [38], the ORB is not aware of groups. Internet Inter-ORB Pro-
tocol (IIOP) requests are intercepted transparently on client and server sides using low-level
interception mechanisms and passed to a group communication toolkit (Totem) that forwards
them using group multicasts. The interception approach does not require any modification to
the ORB, but it relies on low-level mechanisms specific to Unix platforms and it is not clear
how invocations to replicated and non-replicated objects are distinguished.



m(S)

C

inv

inv

1
e(S)

1
S

replica 1

machine 1

machine 2

mailer

encapsulator

inv

2S

2
e(S)

replica 2

machine 3

encapsulatorinvocation

client

Figure 10: Mailer and encapsulators

6 Separating the concerns

One of the major objectives of our experiences was to achieve clean separation of concerns,
i.e., separation of group communication features from application functional code. The aim
was to hide groups for a programmer that is not experimented in reliable distributed pro-
gramming, but to provide enough flexibility for experimented programmers to customise the
group protocols according to their application needs, without however touching the functional
code of the application. We describe below how we achieved this objective using a simple
two-level reflective model, and how we implemented it both in Smalltalk and C++/CORBA.

6.1 Background

Ensuring separation of concerns in our context means that application objects do not deal with
grouping issues. They virtually communicate in a point-to-point, synchronous, request/reply
manner. Aspects such as multicast invocations are plugged transparently underneath those
invocations. To provide that capability, we have introduced two kinds of “meta-objects” [33]:
encapsulators and mailers. The encapsulator plays the role of a group member administrator
whereas the mailer plays the role of a group accessor (or proxy).

• Encapsulators are used to wrap (encapsulate) replicas by controlling the way they treat
incoming and outgoing requests. An encapsulator contains the replication code that
needs to be executed at the node of the replica, before and/or after the replica executes
any of its operations. Encapsulators are located at the nodes of the replicas (in fact a
replica and its associated encapsulator execute within the same process). Every repli-
cated object class is mapped to a class of encapsulators. The default encapsulator class
implements the active replication strategy: it ensures that all replicas treat an invoca-
tion and return a reply. As long as one replica is alive, a reply is returned. No specific
treatment is needed if a replica crashes (the default strategy assumes perfect failure
detection, e.g., no network partitions). One can however map a replicated objects to an
encapsulator class that implements a different strategy. For instance, one can uses the
passive replication strategy (primary-backup), which consumes less resources as only
one replica, the primary, performs the requests, but requires specific treatment in the
case of the crash of the primary, i.e., a new primary must be elected.



• Mailers act as smart proxies of replicated objects. They are smart in the sense that they
do not only forward communication, but they also transform point-to-point invocations
into multicast invocations to sets of replicas. A mailer of a replicated object is created
at every node where a reference of that object exists (in fact they execute on the same
process). Every replicated object is mapped to a class of mailers. The default mailer
transforms point-to-point invocations into totally ordered multicasts, and waits for the
first reply. One can however map a replicated object to a mailer that provides a weaker
semantic (e.g., reliable but not totally ordered multicast) or does not wait for any reply.

Figure 10 depicts a simple scenario where a client C interacts with a replicated object
S. Object S is bound to an encapsulator e(S) of the default class ActiveReplica (active
replication), and to a mailer m(s) of the default class TOcast (total order multicast). The
replicas of S are S1 and S2, respectively attached to the encapsulators e(S)1 and e(S)2. The
mailer m(S) is located on the node of C and acts as a proxy of S: m(S) transforms a simple
invocation to S into a remote multicast to S1 and S2. The mailer selects one reply among all
(the first one to arrive), and forwards it to the client.

6.2 A pragmatic reflective model

Our mailer/encapsulator model can be viewed as a pragmatic reflective model as it has only
one level of reflection, i.e., there is no meta-meta-level. The mailer/encapsulator model is
flexible enough and promotes an incremental programming methodology. First, the program-
mer describes the functional aspects of the application without considering distribution and
replication issues. At a later stage, the programmer turns to replication features by bind-
ing application objects to adequate encapsulator and mailer classes. The binding step can
actually be performed at run-time, and one can change a replication policy in a dynamic way.

The mailer/encapsulator model is more flexible than the Gaggle model introduced in [7]: a
gaggle can be viewed as a specific abstraction hiding replication from clients. In comparison,
our model goes a step further in separating the concerns by decoupling the client aspect
of the replication code (i.e., multicast) from the server aspect of the replication code (i.e.,
synchronisation). The first is confined within mailers whereas the second is confined within
encapsulators.

6.3 On mailers and encapsulators

In Smalltalk

In our Smalltalk [22] developments, the mailer/encapsulator model was implemented in a
straightforward way using the reflective capabilities of the language. The association between
application objects, mailers, and encapsulators, is handled during object creation and com-
munication. We simply had to replace the names of replicated object classes in the Smalltalk
dictionary, in order to catch replicated object creation through the doesNotUnderstand ex-
ception mechanism. Instead of returning the actual object, we added some specific code in
order to create the replicas, perform the binding to encapsulator and mailer classes, and re-
turn a proxy instead of the actual object. In a similar way, every invocation is intercepted
through the doesNotUnderstand exception mechanism, and redirected through mailers and



Object Request Broker

Object Group Service

Dynamic Invocation InterfaceDynamic Skeleton Interface

Virtual invocation

client CORBA object

mailer encapsulator

Figure 11: Dynamic Invocation/Skeleton Interfaces

encapsulators (the Smalltalk implementation of mailers and encapsulators is fully detailed
in [18]).

In CORBA

Although CORBA does not provide the same level of dynamicity as Smalltalk, it offers some
mechanisms for message interception and redirection. In particular, CORBA 2.1 specifies
a Dynamic Skeleton Interface (DSI) and a Dynamic Invocation Interface (DII). The DSI
locally accepts requests that are actually aimed at the remote server interface, and was used to
redirect message through mailers. The DII constructs the invocations for the server interface,
and is used to redirect messages through encapsulators (Figure 11).

An easy way to implement mailers and encapsulators in our CORBA experience would
have been to use ORB specific mechanisms for message interception and redirection, such
as smart proxies and filters in Orbix. Although most of commercial ORBs we know about
provide similar mechanisms, these are not CORBA compliant features and would have heavily
impacted the portability of our code.

The new CORBA specification introduces the notion of Interceptor object. An inter-
ceptor is an object interposed in the request and response paths between a client and server.
After this notion is introduced into commercial ORBs, it will be a reasonable alternative to
dynamic invocation and skeleton interfaces for implementing mailers and encapsulators.

7 The cost of group transparency

We dissect in this section the global overhead of full group transparency, both in Bast and
OGS. After describing the configuration of our network, we present the global overhead of
group transparency, i.e., we compare the cost of transparently invoking a group of replicas as
if it was a single (fault-tolerant) object, with the cost of a single remote object invocation.
Then we detail the various costs underlying group transparency.

We do not present any measure on GARF/Isis because, at the time when this testing took
place, Isis was no longer supported (by Stratus) and we did not own an Isis licence anymore.
Some older measures of GARF/Isis are given in [18]. Even for Bast and OGS, we do not
present exhaustive performance figures: these can be found in [14, 18, 21].



7.1 System configuration

The performance figures we describe below are obtained from Bast in Smalltalk using Visu-
alWorks 2.x, and OGS in C++ using multi-threaded VisiBroker for C++ 3.0.

Testing took place on a 10Mbit Ethernet interconnecting 13 Sun SPARCstations 20 and
UltraSPARC1 running Solaris 2.5.1 and 2.6. Each workstation was running Xwindows as
well as several interactive applications (e.g., netscape and emacs): network and CPU loads
were medium to high. We considered an object replicated on three Sun UltraSPARC1: each
workstation was hosting one replica, and one client application was located on the same node
as one of the replicas. When receiving the client invocation, every replica immediately sends
back a reply, i.e., it does not perform any specific treatment. All tests consist in invoking an
operation that takes a single parameter, which is a value of a complex type (a sequence of
references). In the case of OGS, the parameter is an inout variable.

Since our objective is to compare the cost of a transparent group invocation with that
of a standard remote invocations (i.e., with the invocation of a non-replicated object), we
measured only failure-free executions.

7.2 The overhead of group transparency

When measuring the cost of group transparency, we considered the case where a client issues a
standard invocation that is intercepted and then transformed into a multicast invocation to all
replicas. The client is not aware of the server being replicated. The invocation is performed
within a total order multicast protocol which guarantees strong replica consistency. The
invocation is terminated when the client receives back the first reply. We compare this cost
with that of an invocation of the same, yet non-replicated, object. For Bast, we considered
a reliable remote invocation, whereas for OGS, we considered a remote invocation over IIOP
(TCP/IP), which is usually considered reliable.

System BAST OGS

Single remote invocation 8 160.923

Transparent group invocation 0.7 17.9

Table 1: The overhead of group transparency - 3 replicas - (invocations/sec)

Performance figures are presented in Table 1. Results are expressed in number of invo-
cations per second (throughput). Interestingly, in both cases, group transparency has an
overhead factor of around 10.

7.3 Dissecting the overhead

As shown by Figure 12, there are various costs underlying group transparency: (1) mes-
sage indirection (i.e., invocation transparency), (2) marshaling/unmarshaling (i.e., argument
transparency), and (3) total order multicast (i.e., behaviour transparency). For OGS, there is
an extra cost, related to the use of an OGS daemon process to achieve language transparency
(this cost is however small when compared to marshaling). In the following, we consider each
of those costs individually.



Total order 
multicast

marshaling

mailer

unmarshaling

unmarshaling

message 
indirection

machine 1

machine 2

machine 3

encapsulator

encapsulator

client
replica 1

replica 2

Figure 12: Dissecting the cost of group transparency

Invocation transparency

In our context, invocation transparency means the ability to reuse an application code written
without replication in mind and plug group protocols underneath object invocations. This is
basically the cost of message indirection.

In Bast, invocation transparency is achieved through the Smalltalk exception doesNotUnderstand.
When bypassing the mailer/encapsulator indirections, the response time of a local invocation
was around 10µs. When intercepted and redirected through mailers and encapsulators, the
same invocation took about 500µs. The reason for the overhead is that during normal opera-
tion execution, the Smalltalk virtual node is partially bypassed, whereas when the exception
is raised, the virtual node reinterprets the method that caused the exception. This is what
happens when the method doesNotUnderstand is called. Other slowdown factors are the
manipulation of stack frames as Smalltalk objects and the cloning of mailers.

In OGS, transparency is achieved through the Dynamic Skeleton Interface (DSI) and the
Dynamic Invocation Interface (DII). Table 2 presents the invocation throughput for both
transparent and non-transparent invocations in OGS. In the latter case (non-transparent),
invocations are performed with stubs and skeletons that are generated at compile time.

Protocol Transparent Non-transparent

Broadcast 36.4 81.4

Reliable multicast 32.5 55.3

Total order multicast 17.9 22.6

Table 2: The overhead of invocation transparency in OGS (invocations/sec)

Not surprisingly, transparent invocations are less efficient that non-transparent ones. The
difference gets however smaller with complex protocols such as total order. This is due to the
fact that the DSI and the DII are used only once per invocation, and add a fixed cost to the
invocation time. If the protocol is complex, more messages are generated, without increasing
the fixed cost of dynamic request processing.



Argument transparency

The protocol frameworks underlying Bast and OGS enable us to perform group invocation,
whatever the types of the invocation arguments are. In Bast, parameters can be of any
subclass of Object, whereas in OGS parameters can be of any subtype of the generic CORBA
type Any. Table 3 presents an approximation of the time percentage spent in marshaling and
unmarshaling. We consider only the case where invocations are performed with a total order
multicast: this is the case where the maximum number of remote messages are exchanged and
where marshaling and unmarshaling consume the highest percentage (see [14, 21] for more
details on alternative multicast protocols).

Implementation Marshaling

BAST 65%

OGS 45%

Table 3: The overhead of marshaling (percentage)

These results clearly convey the fact that marshaling and unmarshaling are important
causes of overhead. BAST implementation is based on VisualWorks Binary Object Storage
Service (BOSS), which is not optimised for remote communication. In the case of OGS, the
cost associated to marshaling and unmarshaling is due to the management of Any values.
Unlike other IDL types, Any values are augmented with type information. Constructing
this information and checking its validity increase message size and slow down the remote
invocation process. For instance, extracting a complex structure from an Any value requires
a time similar to that of performing a remote invocation (in a LAN).

Behaviour transparency

We compare below the costs of various multicast protocols. The first protocol is a simple
multicast that does not guarantee any consistency as the replicas may receive the invocations
in different orders and, even worse, some replicas might receive an invocation while other
might not. This protocol can however be considered sufficient for a read-only invocation.
The second protocol is a reliable multicast which ensures that either all replicas receive the
invocations or none of them does. This protocol does not ensure total order, but is enough
to guarantee consistency if the operations are commutative. Finally, the third protocol is
a total order protocol which always guarantees strong replica consistency (even with non-
commutative operations). It ensures behavioural transparency: all replicas behave the same,
and the replicated object looks like a non-replicated one. The results conveyed by Table 4
clearly confirm the fact that strong consistency (i.e., behavioural transparency) introduces a
considerable overhead.

The algorithms we have used for reliable and total order multicast are similar to those
described in [9]. In particular, the total order multicast protocol ensures that, whatever the
number of crashed nodes, and even if nodes are falsely suspected to have crashed, total order
is never violated. One could consider a weaker, yet more efficient, algorithm that assumes
for instance perfect failure detection and guarantees total order agreement in a probabilistic
manner. Thanks to Bast and OGS open structures, changing the algorithm will not require
any modification to the application.



Implementation BAST OGS

Multicast 7.5 100.1

Reliable multicast 2.2 62.4

Total order multicast 0.7 25.7

Table 4: The overhead of strong consistency - 3 replicas - (invocations/sec)

Language transparency

The OGS implementation considered so far uses a specific daemon process on every node to
run the OGS code at the client side. This approach has the advantage of achieving language
transparency, e.g., a Java client can use the C++ version of OGS. Table 5 compares the cost
of the daemon approach with that of a library approach where OGS is simply linked with
the client. In the second case, the client needs to be written in the same language as OGS
(namely C++).

Protocol Daemon Library

Broadcast 36.47 81.4

Reliable multicast 32.5 55.3

Total order multicast 17.9 22.6

Table 5: The overhead of language transparency (invocations/sec)

Not surprisingly, the daemon solution introduces an overhead of an additional inter-process
communication, i.e., the cost of the indirection through the daemon process. As for invocation
transparency, the overhead gets smaller with complex protocols such as total order multicast.

8 Perspectives

The observations we summarised in this paper can be of valuable help to the designers and
implementors of future reliable object based distributed systems.

We claim for instance that the protocols underlying object groups should be developed
themselves within an object oriented protocol framework. This provides nice flexibility and
modularity features and avoids the mismatch between object group and process group se-
mantics. In the context of CORBA, our claim means that the best way to introduce group
support is to follow a service approach where group communication protocols are themselves
CORBA objects exporting IDL interfaces. We pointed out the fact that group protocols can-
not be easily implemented using standard CORBA synchronous object remote invocations.
One should better rely on a separate asynchronous invocation mechanism, which could be
replaced by a standard one as soon as the CORBA Object Messaging Service announced by
the OMG, is supported by commercial ORBs.

We also argue that a simple reflective mailer/encapsulator model is sufficient to separate
group primitives from other application aspects and there is no need for complex multi-level
reflective models. The mailer/encapsulator model can easily be implemented in a dynamic
environment like Smalltalk and with a reasonable effort in middleware like CORBA or DCOM,
using their dynamic invocation facilities.



Finally, we argue that group transparency should be provided à la carte. It is indeed
important to hide groups from non-experimented programmers and promote code reuse by
separating application functional code from specific calls to group primitives. Nevertheless,
transparency comes in different flavours and an experimented programmer should be able to
switch-off any of those flavours and trade it with better performances. For example, we have
experimented with a Bast scenario where distributed protocol messages with ack and nack
values were not marshaled (i.e., we switched-off argument transparency): the throughput of
group invocation using a total order multicast protocol was doubled. The transparency à la
carte principle has indeed been recognised as important for other distribution aspects, but
we believe that this principle is crucial for object group support because of the cost and
complexity of the underlying protocols.

9 Summary

This paper draws several observations from our experiences in building support for object
groups. These observations go beyond our experiences and apply to many other developments
of object based distributed systems.

Our first experience aimed at building support for Smalltalk object replication using a
process group toolkit. It was quite easy to achieve group transparency but we were confronted
with a strong mismatch between the rigidity of the process group model and the flexible nature
of object interactions. Consequently, we decided to build our own object oriented protocol
framework, specifically dedicated to support object groups (instead of using a process group
toolkit). We built our framework in such a way that basic distributed protocols, such as
failure detection and multicasts, are considered first class entities, directly accessible to the
programmers. To achieve flexible and dynamic protocol composition, we had to go beyond
inheritance and objectify distributed algorithms.

Our second experience consisted in building a CORBA service aimed at managing group
of objects written on different languages and running on different platforms. This experience
revealed a mismatch between the asynchrony of group protocols and the synchrony of standard
CORBA interaction mechanisms, which limited the portability of our CORBA object group
service. We restricted the impact of this mismatch by encapsulating asynchrony issues inside
a specific messaging sub-service.

We dissected the cost of object group transparency in our various implementations,
and we point out the recurrent sources of overheads, namely message indirection, marshal-
ing/unmarshaling and strong consistency.

As already pointed out, the aim of this paper was to draw general observations and not
describe specific aspects of our systems. More information on GARF, Bast and OGS, are
available through lsewww.epfl.ch/ rachid.

References

[1] G. Agha and R. Guerraoui (guest editors). Theory and Practice of Object Systems, John
Wiley and Sons, Inc. Special issue on High Availability in CORBA, 1998, 4 (2).

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison Wesley, 1987.



[3] A. Birell and B. Nelson. Implementing Remote Procedure Calls. ACM Transactions on
Computer Systems, 2 (1), 1984, 39-59.

[4] D. Cherriton and W. Zwaenapoel. Distributed process groups in the V kernel. ACM Trans-
actions on Computer Systems, 3 (2), 1985, 77-107.

[5] J.P. Briot, R. Guerraoui and K.P Lohr. Concurrency and Distribution in Object-Oriented
Programming. ACM Computing Surveys, September 1998.

[6] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1993.

[7] A. Black, and M. Immell. Encapsulating Plurality. European Conference on Object-
Oriented Programming, Springer Verlag (LNCS 707), 1993, 57-79.

[8] N. Brown and C. Kindel. Distributed Component Object Model Protocol. DCOM,
http://www.microsoft.com/oledev/olecom.

[9] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43 (2), 1996, 225-267.

[10] D. Cheriton and D. Skeen, Understanding the Limitations of Causally and Totally Or-
dered Communication. ACM Symposium on Operating Systems Principles, 1993.

[11] E. Elnozahy, V. Ratan, and M. Segal. Experiences Using DCE and CORBA to Build Tools
for Creating Highly-Available Distributed Systems. IEEE Symposium on Fault-Tolerant
Computing Systems, 1996.

[12] P. Felber, B. Garbinato, and R. Guerraoui. The Design of a CORBA Group Communi-
cation Service. IEEE Symposium on Reliable Distributed Systems, 1996, 150-159.

[13] P. Felber, R. Guerraoui, and A. Schiper. Replicating Objects with CORBA Event Chan-
nels. IEEE Workshop on Future Trends of Distributed Computing Systems, 1997, 14-21.

[14] P. Felber, R. Guerraoui, and A. Schiper. The Implementation of a CORBA Object Group
Service. Theory and Practice of Object Systems, John Wiley and Sons, Inc. Special issue
on High Availability in CORBA, 1998, 4 (2), 93-106.

[15] P. Felber and R. Guerraoui. Programming with Object Groups in CORBA. IEEE Con-
currency, to appear, 1999.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[17] B. Garbinato, R. Guerraoui, and K. Mazouni. Distributed Programming in GARF. In
Object-Based Distributed Programming, Springer Verlag (LNCS 791), 1993, 225-240.

[18] B. Garbinato, R. Guerraoui, and K. Mazouni. Implementation of the GARF Replicated
Objects Plateform. Distributed Systems Engineering Journal, 1 (2), 1995, 14-27.

[19] B. Garbinato, P. Felber, and R. Guerraoui. Protocol Classes for Designing Reliable Dis-
tributed Environments. European Conference on Object-Oriented Programming, Springer
Verlag (LNCS 1098), 1996, 316-343.



[20] B. Garbinato and R. Guerraoui. Using the strategy design pattern to compose reliable
distributed protocols. Usenix Conference on Object-Oriented Technologies and Systems,
1997, 221-232.

[21] B. Garbinato and R. Guerraoui. Flexible Protocol Composition in BAST. IEEE Interna-
tional Conference on Distributed Computing Systems, 1998, 22-27.

[22] A.J Goldberg and A.D Robson. SMALLTALK-80: The Language and its Implementa-
tion. Addison Wesley, 1983.

[23] R. Guerraoui and A. Schiper. Transactional model vs Virtual Synchrony model: bridging
the gap. In Theory and Practice in Distributed Systems, Springer Verlag (LNCS 938),
1995, 121-132.

[24] R. Guerraoui, R. Oliveira, and A. Schiper. Atomic updates of replicated data. European
Dependable Computing Conference, Springer Verlag (LNCS 1150), 1996, 365-382.

[25] R. Guerraoui and A. Schiper. Software-Based Replication for Fault-Tolerance. IEEE
Computer, 30 (4), 1997, 68-74.

[26] R. Guerraoui, B. Garbinato and K. Mazouni. GARF: A Tool for Programming Reliable
Distributed Applications. IEEE Concurrency, 5 (4), 1997, 32-39.

[27] E. Harold. Java Network Programming. O’Reilly, 1997.

[28] H. Huni, R. Johnson, and R. Engel. A Framework for network protocol software. ACM
Conference on Object-Oriented Programming Systems, Languages and Applications, 1995.

[29] IONA. OrbixTalk Programming Guide. IONA Technologies Ltd, 1996.

[30] IONA. Orbix 2.2 Programming Guide. IONA Technologies Ltd, 1997.

[31] IONA and Isis. An Introduction to Orbix+Isis. IONA Technologies Ltd. and Isis Dis-
tributed Systems, Inc, 1994.

[32] Isis. Object Groups: A response to the ORB 2.0 RFI. Isis Distributed Systems, Inc, 1993.

[33] G. Kiczales, J. des Rivières, and D. Bobrow. The Art of the Metaobject protocol. The
MIT Press, 1991.

[34] M. Little and S. Shrivastava. Object Replication in Arjuna. Broadcast Project deliverable
report, Vol. 2, 1994 (available from Dept of Computing Science, University of Newcastle
upon Tyne, UK).

[35] S. Maffeis. Run-Time Support for Object-Oriented Distributed Programming. PhD thesis,
University of Zurich, 1995.

[36] K. Mazouni, B. Garbinato, and R. Guerraoui. Filtering Duplicated Invocations Using
Symmetric Proxies. IEEE International Workshop on Object Orientation in Operating
Systems, 1995, 118-126.

[37] S. Mishra, L. Peterson, and R. Schlichting. Implementing Fault-Tolerant Replicated Ob-
jects Using Psync. IEEE Symposium on Reliable Distributed Systems, 1989.



[38] P. Narasimhan, L. Moser, and M. Melliar-Smith. Exploiting the internet inter-ORB pro-
tocol to provide CORBA with fault-tolerance. Usenix Conference on Object-Oriented Tech-
nologies and Systems, 1997, 81-90.

[39] OMG. The Common Object Request Broker Architecture: Architecture and Specification.
OMG.

[40] OMG. CORBAservices: Common Object Services Specifications. OMG.

[41] L. Peterson, N. Hutchinson, S. O’Malley, and M. Abott. Rpc in the x-Kernel: evaluating
new design techniques. ACM Symposium on Operating Systems Principles, 1989, 91-101.

[42] D.Powell (guest editor). Communications of the ACM, 39(4), Special issue on Group
Communication, April 1996.

[43] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P. Verissimo, and K.
Birman. A Transparent Light-Weight Group Service. IEEE Symposium on Reliable Dis-
tributed Systems, 1996, 130-139.

[44] S. Shrivastava, G. Dixon and G. Parrington. An Overview of Arjuna: A Programming
System for Reliable Distributed Computing. IEEE Software, 8 (1), 1991, 63-73.

[45] Visigenic. Visibroker C++ 3.0 Programmer’s Guide. Visigenic Software, Inc., 1997.

[46] M. Wood. Replicated RPC Using Amoeba Closed Group Communication. IEEE Interna-
tional Conference on Distributed Computing Systems, 1993.


