OS Support for P2P Programming: a Case for TPS

Sébastien Baehni, Patrick Th. Eugster, Rachid Guerraoui
Swiss Federal Institute of Technology
Distributed Programming Laboratory
IN-R, 1015 Lausanne, Switzerland
{Sebastien.Baehni, Patrick.Eugster, Rachid.Guerraoui} @epfl.ch

Abstract

Just like Remote Procedure Call (RPC) turned out to be
a very effective OS abstraction in building client-server
applications over LANs, Type-based Publish-Subscribe
(TPS) can be viewed as a high-level candidate abstraction
for building Peer-to-Peer (P2P) applications over WAN .

This paper relates our preliminary, though positive, ex-
perience of implementing and using TPS over JXTA, which
can be viewed as the P2P counterpart to sockets. We show
that, at least for P2P applications with the Java type mod-
el, TPS provides a high-level programming support that
ensures type safety and encapsulation, without hampering
the decoupled nature of these applications. Furthermore,
the loss of flexibility (inherent to the use of any high level
abstraction) and the performance overhead, are negligible
with respect to the simplicity gained by using TPS.

1. Introduction

Remote Procedure Call (RPC) was first proposed by
Birrel and Nelson [1] as a simple abstraction that conceals
interactions between remote components beneath tradi-
tional procedural interfaces. Partly because of its simplic-
ity and the very facts that it preserves object encapsulation
and ensures type safety, and partly because RPC’s over-
head was very acceptable over sockets, RPC became a
dominant paradigm for programming distributed applica-
tions over client/server architectures. In these architec-
tures, clients typically communicate with one or several
servers following a strongly-coupled request/reply
scheme.

With the emergence of Peer-to-Peer (P2P) infrastruc-
tures, new forms of decoupled (i.e., anonymous and asyn-
chronous) interactions are needed. One can indeed extend
RPC with decoupling flavours. Nevertheless, regardless of

the fact that adding layers over RPC would certainly ham-
per performance, it is challenging to devise a simple ab-
straction that could directly fit these architectures and
potentially be supported by future Internet-wide operating
systems.

So far, P2P developers have generally gravitated to-
wards a few application types: instant messaging (ICQ,
AOL’s Instant Messenger); collaboration (Aimster,
Groove Networks); searching and file sharing (Morpheus,
AudioGalaxy); distributed computation (Seti@Home, Pa-
rabon). Going beyond these simple applications, and de-
veloping more advanced ones, goes through developing
basic abstractions for P2P programming.

Some initiatives were recently made towards building
libraries or frameworks for deploying P2P applications. A
seminal example is the JXTA [2] specification whose im-
plementations provide, for example, protocols for service
discovery and many-to-many communication. This speci-
fication is rather low level and its protocols can be viewed
as the analogous of the basic TCP or UDP protocols [3] for
client/server programming over sockets: one needs to ex-
plicitly cast types and control encapsulation.

Just like RPC typically hides the underlying mecha-
nisms of sockets and preserves type safety and encapsula-
tion, Type-Based Publish/Subscribe (TPS) [4], a variant of
Publish/Subscribe [5], can be viewed as a reasonable can-
didate abstraction to hide the mechanisms of a low-level
P2P library, like JXTA. The distributed event-based inter-
action scheme promoted by TPS enables the preservation
of the decoupled flavor of P2P applications.

This paper presents an implementation of TPS over
JXTA and compares the programming and the perform-
ance of TPS in writing a typical P2P application with the
programming and the performance of using directly JXTA
in writing the very same P2P application. Our implemen-
tation of TPS over JXTA together with our performance
comparisons provide a preliminary, yet interesting, expe-
rience towards evaluating the feasibility of equipping fu-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

ture Internet-wide operating systems with abstractions like
TPS.

Like any high level abstraction, TPS does not apply to
all kinds of applications and is obviously less flexible than
a lower level library like JXTA. In particular, JXTA sim-
ply assumes a common XML knowledge among peers, de-
noting a very high interoperability, whereas the current
implementation of TPS restricts to applications that share
the common Java type model. We show that for these ap-
plications, the inherent benefits of the use of our TPS li-
brary, namely type-safety, encapsulation of application
defined event types and code reusability, can be provided
without hampering the decoupled nature of P2P comput-
ing.

This paper is organized as follows. Section 2 is a brief
tutorial on JXTA. Section 3 describes a TPS API and an
implementation of this API over JXTA. Section 4 com-
pares the programming of an application using TPS and di-
rectly using JXTA (note that the last part of this section has
been sketched for limitation purpose, have a look at [6] for
the complete version). Section 5 compares the perform-
ance of these two implementations. Section 6 summarizes
and concludes our experience.

For presentation simplicity and space limitations, we
only give excerpts of the interfaces and classes of our im-
plementations. The complete code of our TPS implemen-
tation and our testbed applications (both using TPS and
directly using JXTA) are available at: http://lpdwww.ep-
fl.ch [7]. Please note that this paper relates our experience
with the build 29i of IXTA (22" August). Since then, a lot
of changes have been made in the API. We invite you to
have a look at our web site to see the latest changes.

2. Background: JXTA

We recall here the basics of JXTA, on top of which we
build our TPS abstraction layer. JXTA is a library specifi-
cation for P2P computing, defining three layers: a core
layer, a service layer and an application layer. The appli-
cation layer wraps all the applications that are developed
by JXTA programmers. The service layer is made up of
services simplifying the development of the programmer.
Various services are currently being implemented by the
JXTA community; the best known are the monitoring
service, the cms (content management system) service and
the wire service (responsible for providing many-to-many
communication). The core JXTA layer consists of several
protocols ensuring basic communication between the
peers, message routing or peer group creation.

2.1. The concepts

The JXTA protocols rely on six concepts: ID, Peer,
Pipe, PeerGroup, Advertisement and Message. An ID

identifies any JXTA resource, which can be a peer, a pipe,
a peergroup or a codat (code and data). The peer concept
points out all networked devices using JXTA. Any device
with an electronic pulse could be a JXTA peer (refrigera-
tor, PDA, computer, ...). There are different kinds of peers:
“normal” ones and ones that have additional functionali-
ties. Rendez-vous (rdv) are specific peers that keep track
of information about peers that are connected. Rendez-
vous allow to make the bridge between two different sub-
networks. They are mainly used to dispatch information
and discovery queries between peers. The second kind of
special peers are routers. These are used to route the infor-
mation from one peer to another if they cannot communi-
cate directly. Peers may have multiple network interfaces.

In order for the peers to communicate, they need a
mechanism that does not depend on their network. This
mechanism is the pipe. A pipe is a virtual communication
channel used to send messages. The basic pipes are asyn-
chronous and uni-directionnal but some other variants are
available (e.g., the very new bidirectional pipes or the
many-to-many pipes (called wire)). Pipes are not bound to
any physical address (like IP ones). Hence if a peer chang-
es its address, it can continue to use the same pipe for send-
ing or receiving messages. PeerGroups are collections of
peers. A peer may join multiple peergroups to share differ-
ent resources and services. There is no hierarchy inside the
groups. A peergroup creates a scoped and monitored envi-
ronment.

When a new resource (peer, pipe, peergroup, service) is
available, a new advertisement is published in order for the
other peers to know this ressource. An advertisement is a
XML message that provides information about the re-
source. A typical peer advertisement would give informa-
tion about the network interfaces it provides, about which
groups it belongs to, about its name and ID. Each adver-
tisement encompasses an age to distinguish stale adver-
tisements from new ones.

2.2. The protocols

Implementing the JXTA specification consists in im-
plementing the following protocols: Peer Discovery Proto-
col (PDP, Figure 1), Peer Resolver Protocol (PRP,
Figure 2), Peer Information Protocol (PIP, Figure 3), Pipe
Binding Protocol (PBP, Figure 4), Endpoint Routing Pro-
tocol (ERP, Figure 5) and the RendezVous Protocol (RVP,
Figure 6).

The PDP allows different peers to find each other. In
fact, this protocol allows to find any kind of published ad-
vertisements. Without this protocol, a peer remains alone
unless it knows in advance the peers it wants to connect to.
This protocol uses the rdv/router peers to improve its per-
formance and the PRP to achieve different discoveries.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Peer A
id: 694..004 g PDP query
PDP query 4

PDP answer N

PDP answer
Peer C

id: 754..987

5 Peer B

id: 128..012

Fig. 1: Basic view of the PDP

The PRP is a protocol just above the transport layer.
This protocol dispatches each JXTA message to the right
services. The more handlers are registered with PRP, the
more peers a given peer is potentially able to communicate
with.

— —
Ve PBPmsg

~
R TN N
PIP ms;
Peer A ST - \

id: 694..004 N
ERP ‘ \

PRP

T

PDP

'
'
'
'
I

PDP msg PBP msg
A

PIP msg |
PDP msg
Azp msg N\ pbpumse 14
N

Fig. 2: Basic view of the PRP

The PIP is used to know the status of a peer. This pro-
tocol is responsible for finding and dispatching informa-
tion about a peer, like the time the peer was up, the
different incoming and outgoing channels, the traffic on
them, and the different target and source IDs.

Peer A
id: 694..004 Peer B
id: 128.012

Fig. 3: Basic view of the PIP

—
» PIP answer

The PBP is responsible for keeping the different peers
of a pipe bound together. Even if the peers are moving in
the network (i.e., if their IP addresses do not remain the
same), they can continue to use the same pipes to send/re-
ceive messages (to achieve that goal, the protocol uses the
UUID (Universal Unique IDentifier) of the peers).

Peer A
id: 694..004

IP: 128.178.113.2,
A

jxtamsg

Pipe
0 id: 431..
n
"8, Peer B
id: 128..012

IP: 128.178.115.6,

Fig. 4: Basic view of the PBP

Peer A
id: 694..004

IP: 241.138.13.21
A

JP: 228.128.1.113,

The ERP is used to route the different messages be-
tween the different peers. This allows different peers to ex-
change messages even when they do not know how to
connect to each other (because of a firewall for example).

Peer A
id: 694..004

Relay/Router

& id: 128..012

jxta msg
via http jxta msg
via tep

6 Peer C
id: 754..987

Fig. 5: Basic view of the ERP

jxta msg
via http

Finally, the RVP is used by the rdv peers to dispatch the
information (or queries) between the connected peers of
the rdv. The RVP uses a cache for performance purpose,
implying that a rdv peer must have some additionnal res-
sources.

4

" anSwer

I

id: 754..987

Fig. 6: Basic view of the RVP

3. TPS over JXTA

This section overviews the design and implementation
of our TPS abstraction over JXTA.

3.1. TPS: Overview

The publish/subscribe paradigm is a communication
pattern that provides time, space and flow decoupling
among communicating entities. More precisely, the pub-
lishers and the subscribers (a) do not need to be up at the
same time (time decoupling), (b) do not need to know each
other (space decoupling) and (c) the sending/receiving of
messages does not block the participants (flow decou-
pling). This paradigm perfectly suits decoupled networks
and serverless architectures. In the original pattern (e.g.,
[8]), publishers publish information on a subject and sub-
scribers subscribe to subjects . These different subjects are
often arranged in hierarchies (specified by a URL-like no-
tation). More advanced communication schemes can be
obtained through content-based subscribing, where sub-
scribers express interests in events with particular native
properties (e.g., [9]). In our Type-based Publish/Subscribe
(TPS) scheme (see Figure 7), the subject is the event ob-
ject type and the content is the state of instances of that
type. Moreover, TPS ensures type safety and preserves
event encapsulation with application-defined event types:

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

the subscriber knows in advance the type of events it re-
ceives (type-safety) and subscriptions operations of the
type can be used for content-based filtering (encapsula-
tion). So one can easily implement content-based publish/
subscribe (hence subject-based) using TPS.

P1, S, P2
Subtyping hierarchy
h A0
A L=
VRN =

B

E 4%%% *%h
C)
fifp A yi
@
P3, éD
Fig. 7: Type-Based Publish/Subscribe (TPS)

‘ Publish, Deliver

\J

fT Flow of Objects of Type T

ST Subscribe to Type T

3.2. Generic Java

Our TPS implementation we relate in this paper is
based on genericity. Using TPS for a specific type T can
be viewed as using instances of generic classes with a type
parameter instantiated with T. Such generic classes are
supported by several languages like C++ (template)
and Ada (generic), while Java supports generics by the
idiom of replacing variable types by the top of the type hi-
erarchy. For such languages lacking generic types and
methods, adequate extensions have been widely studied.
In the case of Java, several solutions have been proposed
like Generic Java (GJ) [10] which we have used for our
implementation.

Our implementation uses the 1.3 version of the 14th
Java Specification Request (JSR), based on GJ, which is
expected to be included in the 1.5 version of Java (The 1.3
version of the 14th JSR is a fully Java compatible compiler
and enables the use of the original Java Virtual Machine
JVM)).

3.3. The TPS API

The different methods a programmer can use to express
a TPS interaction are regrouped within our TPSInter-
face. The corresponding source code is given in
Figure 8.

We briefly describe below each of these methods:

(1) : This method is used to publish an instance of a
type (Type) which can be any application-defined type.
This instance is sent as an event to the subscribers.

(2) : This method (as the next one, i.e., (3)) is used to
subscribe to the events of a specific Type. Two parame-
ters must be provided: (a) a call-back object which is used
to handle received events and (b) a handler for the excep-
tions that may be raised while handling the received
events.

(3): This alternative subscription method is used to
register several call-back objects to handle the events in
different ways. It is very useful, for instance, if we want to
display the complete description of the events in a console
and have a sketch of them in a GUI at the same time (for
example, see Figure 11).

(4): This method is used to unsubscribe a specified
call-back object and its associated exception handler. By
doing so, only the specified call-back object is removed.

(5) : This method is used to remove all the call-back
objects registered so far. After this call, no event is re-
ceived anymore.

(6, 7): The last two methods are used to obtain the
entire set of events received or sent so far.

The other type of the API that the programmer needs to
handle is TPSEngine. This class gives a reference to the
TPSInterface. Here is the sketched source code of the
TPSEngine class:

public class TPSEngine<Type> {

public TPSEngine() {...}
public TPSInterface

newInterface (String n,Criteria c,
Type t, Stringl] arg) {

}
}

The programmer uses this class in the initialization
phase to get the TPSInterface.

public interface TPSInterface<Type> {
public void publish(Type type) throws PSException; // (1)
public void subscribe (TPSCallBackInterface<Type> tpsCBI,
TPSExceptionHandler<Types> tpsExH)
throws PSException; /7 (2)
public void subscribe (TPSCallBackInterface<Type>[] tpsCBI,
TPSExceptionHandler<Types>[] tpsExH)
throws PSException; /7 (3)
public void unsubscribe (TPSCallBackInterface<Type> tpsCBI,
TPSExceptionHandler<Type> tpsExH)
throws PSException; /] (4)
public void unsubscribe () ; // (5)
public Vector objectsReceived(); // (6)
public Vector objectsSent () ; /7 (1)
}

Fig. 8: The TPSInterface

3.4. Architecture

The TPS layer fits between the “standard” application
layer and JXTA'’s one. In our architecture (Figure 9 and
Figure 10), one type is represented by one advertisement.
When a subscriber subscribes to a type, it must specify an
object implementing the TPSCallBackInterface for
that type to handle the events and an TPSException-
Handler (see Section 4.3.3 for an implementation exam-
ple) responsible for handling the exceptions that may
occur while dispatching the events. Our TPS layer is made
up of four building blocks (see Figure 10):

* TPSEngine: This block is the core of our service. It
collects and dispatches the subscriptions and publica-
tions.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

* Advertisements (Advs): This block is responsible for
creating a new advertisement for the type we are inter-
ested in as well as for finding and collecting the mul-
tiple advertisements that are in relation with our type.

» Interface Repository (IR): This block stores all the
call-back interfaces and exception handlers. It also
starts and stops the subscriptions

e Connections: This block creates readers, input pipes
and output pipes from an advertisement. It sends and
receives new messages with the underlying JXTA-
WIRE service.

You can see several things that are missing in this typ-
ical pub/sub architecture. We do not have a module that do
the routing mechanisms [11] and we neither have one for
the filtering of events problem [12]. In fact, we rely only
on JXTA for doing the routing of events (and it is one of
our main goal, to test what JXTA can do for us). We do not
take into account the filtering problem as we want to re-
main concise in building the first blocks of our TPS archi-
tecture (moreover, this problem has been studied in [4]).

Do not considering those aspects can lead to severe per-
formance leaks and problems, especially for large-scale
distributed systems and that is definetely what we will im-
plement next in our TPS APIL.

]] Iy
publish(Type) (un-)subscribe(tpsCBI, tpsExH) handle(Type)
v 2 (

TYPE-BASE PUBLISH-SUBSCRIBE LAYER

| A
Find and create new advs send(Msg) recv(Msg)
v v |

JXTA CORE LAYER

Fig. 9: General architecture

T I [
publish(Type) (un-)subscribe(tpsCBI, tpsExH) handle(Type)

‘ TPSEngine

Connections

Find and create new advs send(Msg) recv(Msg)
v v (-

JXTA CORE LAYER

Fig. 10: General architecture (details of the
TPS layer)

4. The programming experience
We compare here the programming of a typical P2P ap-

plication using our TPS abstraction with the programming
of the very same application using JXTA directly.

4.1. Ski-Rental Application

If you want to go skiing, you need skis. If you do not
have any, you have two possibilities, either you buy them
or you rent them. In the latter case, you will typically go to
different shops in order to see what kind of skis you want
and also to compare the different prices. Of course, nowa-
days, you could also do that online, by visiting differents
web-sites. However, you must spend time doing that: you
must stay behind your computer trying to find the best
skis. A more comfortable way to do that is to use the TPS
paradigm over a P2P infrastructure. You would then sub-
scribe to the ski-rental type and wait for the answers. The
infrastructure will be responsible for sending the subscrip-
tion to the other peers and also getting the responses. You
can now do something else during the search phase of the
program and come back later to get the answers when they
are available. Figure 11 depict two GUISs that a publisher
and a subscriber have with our ski-rental application.

When the publisher (a shop for example) starts, a
search for a SkiRental advertisement is first launched.
If the application does not find such advertisement in a
specific amount of time, it creates its own one, but keeps
trying to find others in order to send messages to the max-
imum number of interested subscribers. After that, an out-
put pipe is created to send messages, and the window is
displayed (see Figure 11).

In Figure 11, we can see that the shop seller can set the
different options for the kinds of skis he wants to offer for
rent (the brand, the duration of the rental, the price, ...). Af-
ter setting these parameters, he just has to click on the pub-
lish button and the proposition is sent to all the interested
subscribers via the output wire pipe.

For the subscriber, the same kind of initialization is
done as for the publisher. Once this initialization has been
accomplished, the window is displayed. In this interface,
the subscriber can see the different propositions from pub-
lishers of ski-rental advertisements. After some time, the
subscriber can choose the best propositions and, maybe,
send a message to the shop (in hitting the answer button).

e

received:

Date ofpublie..{ Nurnber o sl | Shop na..} Skis brangiRental du.f __Price i Date ofp_ iPublisher.|. Replied |
Wed Mar 27 1... 0 SremSh.. Salomon 150 3660 Mar .. umjdau.]
Wed Mar 27 1... 0 Mtremsh. Head 100 500

Skis brand._| Rental duration)

. Pite
Salomon 15 ELli
Hea 10 50

Mar .. umjdau,

Fig. 11: GUI of a ski-rental publisher and
subscriber

4.2. Programming Phases

Programming a TPS application, like the ski-rental, can
be divided into four main phases, as depicted in Figure 12
(the arrows conveys the causality). In our implementation,
we associate one instance of a publish/subscribe engine
per type. If a publisher (or a subscriber) is interested in

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

several “unrelated” types (i.e., different types that do not
belong to the same type hierarchy), several instances of the
publish/subscribe engine for each type of interest must be
created (leading to a loss of ressources, but some optimi-
sations can be made to reuse the modules of a former pub/
sub engine). In Figure 12, this is conveyed by the fact that
the type definition phase preceeds the initialization phase.

TYPE DEFINITION PHASE

1

INITIALIZATION PHASE

v v

SUBSCRIPTION PUBLICATION
PHASE PHASE

Fig. 12: The 4 different phases

In the following, we overview the two different ways of
developing the ski-rental application according to the four
phases, first using our TPS API and second using directly
JXTA.

4.3. Renting skis with TPS

We present here the different phases shown in
Figure 12 to create a simple application using our TPS ar-
chitecture.

4.3.1. Type definition phase: the SkiRental type. We
give here the basic type used in our application. This type
contains the name of the renter, the price, the brand of the
skis and the number of days the skis need to be rented.
Here is the sketched source code of our simple type:

public class SkiRental implements
Serializable {
public SkiRental (String shop, float price,
String brand, float days)

(...}
}

4.3.2. Initialization phase. When a user wants to use the
TPS API, he must first write few lines to initiliaze the pub-
lish/subscribe engine:
TPSEngine<SkiRental> tpse =
new TPSEngine<SkiRentals> () ;
TPSInterface tpsInt =

tpse.newInterface (“JXTA” ,null,
new SkiRental (),argv) ;

In the first line, we create the publish/subscribe engine
and specify the type of interest. In the second line, the sec-
ond parameter specifies a criteria we want for filtering ad-
vertisements (may be null). The third parameter is an
instance of the type of the events we are interested in. We
must provide this instance because GJ does not provide

runtime information about (actual) type parameters. The
last parameter denotes the arguments of the main class
(may be null).

4.3.3. Subscription phase. To subscribe to events, one
must create two objects (as described when presenting the
subscribe () method, Figure 8): one implementing the
TPSCallBackInterface interface and another one
implementing the TPSExceptionHandler interface.
Here is an implementation of the first interface:

public class MyCBInterface implements
TPSCallBackInterface<SkiRentals {
public void handle (SkiRental skiR)
throws CallBackException {
System.out.println (skiR) ;
}
}

This class defines what needs to be done when new
events are received. In this case, we just print the events
into the console. Here is a sketched implementation for the

second interface:
public class MyExHandler implements
TPSExceptionHandler<SkiRentals> {
public void handle (Throwable th) {...}

}

Besides these two classes, here are the lines one must
add to subscribe to the type (SkiRental) specified be-
fore:

MyCBInterface mCBInt = new MyCBInterface() ;

MyExHandler mExH = new MyExHandler () ;

tpsInt.subscribe (mCBInt, mExH) ;

4.3.4. Publication phase. Up to now, we have only seen
the subscriber perspective. If a publisher wants to publish
an instance of the SkiRental type, here is the line he
must add after the initialization phase:

tpsInt.publish(

new SkiRental (“*XTremShop”,
14f, 100f);

“Salomon”,

4.4. Renting skis with JXTA

Our aim here is to create the very same application than
the one with TPS, i.e., an application with the same func-
tionalities' as TPS. Unfortunately, for limitation purpose,
we are not able to give you the class files mandatory for
developping the architecture presented in Figure 9,
Figure 10.

These classes should have convinced you that TPS
hides a lot of programming details. For example, writing
the very same application with JXTA implies writing, at

1. (1) Minimization of the number of advertisements for the
same type, (2) management of multiple advertisements at
the same time and (3) handling of duplicate messages.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

least, about 4000 lines of code more than using directly
TPS. Moreover, TPS allows the programmer to focus only
on the portion of the code he is interested in. This prevents
from spending time learning the underlying JXTA con-
cepts. Finally, TPS prevents the programmer from per-
forming wrong type casts at runtime, and hence saves
precious debugging time. If you want to see this classes,
either have a look at [6] or at [7].

5. The performance experience

This section presents the performance results of both
our ski-rental application based on our TPS layer (SR-
TPS), and implemented directly with JXTA (SR-JXTA).
Even if JXTA-WIRE alone is not comparable with SR-
TPS and SR-JXTA (since it does not insure the properties
described in Section 4.4), we use it here as a (lower bound)
reference point.

We used the following computer configurations: Sun
Ultra 10 (CPU 440 MHz, RAM 256 MB) on Solaris 7;
FastEthernet (100 Mbits/s); JXTA version 1.0 (build 29i,
08-22-2001); Java version "1.4.0-beta" (Java(TM) 2 Runt-
ime Environment, Standard Edition (build 1.4.0-beta-
b65), Java HotSpot(TM) Client VM (build 1.4.0-beta-b65,
mixed mode)); messages size: 1910 bytes.

We give here the throughput for a limited number of
participants (at the time of our implementation, JXTA was
not able to handle connections between more than 5 peers
sending a lot of messages). These tests aim at giving a hint
about the differences between the three implementations.
Again for a more complete set of results, see [6].

5.1. Throughput: the publisher viewpoint

Nb meg snal

Epoch

Fig. 13: Publisher’s throughput

We consider here a set of 100 published events and we
measure the time for the publisher to deliver those events
to the subscriber(s). Again, the values for SR-JXTA and
SR-TPS are very close. We can also notice that our differ-

ent layers are slightly slower than JXTA-WIRE itself (e.g.,
about two events per second for one subscriber) (see
Figure 13). When the number of subscribers increases, the
differences between the layers become insignificant (e.g.,
with four connected subscribers, only 0.3 events per sec-
ond between JXTA-WIRE and SR-JXTA and 0.5 events
per second between JXTA-WIRE and SR-TPS).

5.2. Throughput: the subscriber viewpoint

Here the publishers try to flood the subscriber (10000
events published per each publisher). Every second, we
measure the number of events that are received; during 50
seconds. The results are given in Figure 14. Once again,
we have a quite big standard deviation and the number of
events received per second is not really stable. For exam-
ple, with a single publisher, the average throughput for
JXTA-WIRE is about 7.8 events per second and, for SR-
JXTA and SR-TPS, the values are 6.1 and 6.0 respectively.
If we compare these results with the ones from Figure 13,
we can see that, for one publisher, JXTA-WIRE saturates.
JXTA-WIRE can simply not handle all published events
(e.g., about nine per second for one subscriber (see
Figure 13)).

When we increase the number of publishers, the aver-
age number of events received per second remains quite
the same for the different layers. Again, the average drops
by a factor of about three (because the subscriber must
handle more connections (as there are more publishers)).

10

——SATPS 1 pub

Nb msg revisec

IXTA-WIRE 4

pubs
®--SRXTA dpubs

% --SRTPS 4 pubs

Fig. 14: Subscriber’s throughput

6. Concluding Remarks

This experience paper makes a case for TPS (Type-
Based Publish-Subscribe) as a viable abstraction for future
Internet-wide operating systems to support P2P applica-
tions. TPS fits particularly well the decoupled nature of
server-less P2P applications. In short, TPS is simple to
use, ensures type-safety and encapsulation and yet pre-
serves the decoupled nature of P2P applications. This pa-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

per describes a TPS API and an implementation of TPS
over JXTA, and then compares the programming and per-
formance of a testbed application over TPS and directly
over JXTA. Roughly speaking, (1) TPS makes the pro-
gramming of a P2P application significantly easier than
using directly a library like JXTA and (2) does not intro-
duce a significant overhead with respect to JXTA.

Our current TPS prototype is based on the JXTA re-
lease of August 22, 2001. New implementations of JXTA
will obviously impact our prototype but we do not believe
they will fundamentally impact the nature of the results
drawn from the present experience.

Of course, more programming and implementation
testbeds need to be performed before TPS can be realisti-
cally viewed as a reasonable general abstraction for P2P
applications. In particular, measuring the lack of program-
ming flexibility that our abstraction involves is not clear.
We can for example easily see through our ski-rental ap-
plication that our TPS API does not enable a subscriber to
immediately reply to a publisher that posted an interesting
event. This would require a combination with a more tra-
ditional RPC kind of interaction or directly using the un-
derlying P2P library. Another loss of flexibility is our
assumption that the different peers must a priori agree on
the Java type system which is not the case when using
JXTA directly. Figuring out “loose” ways of achieving
such common knowledge at run-time (e.g., by represent-
ing types through XML data structures) is the subject of
ongoing investigations.

Finally, we are thinking of a new architecture allowing
us to use your own network and routing protocols improv-
ing the reliability and performance of TPS. One possibility
would be to implement a hierarchical probabilistic multi-
cast algorithm [4] between a low-level network protocol
(like UDP) and our high-level TPS abstraction.

References

[1] Andrew D. Birrell and Bruce Jay Nelson. Implementing
Remote Procedure Calls. In Proceedings of the 9th ACM
Symposium on Operating Systems Principles (SOSP’83).
October 1983.

[2] Project JXTA web site. http://www.jxta.org. Sun Micro-
systems. 2001.

[31 A. S. Tanenbaum. Computer Networks. Prentice-Hall,
third edition. January 1996.

[4] P. Th. Eugster. Type-based publish/subscribe. PhD thesis.
Swiss Federal Institute of Technology, Lausanne. Decem-
ber 2001.

(5]

(6]

(7]
(8]
(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

B. Oki, M. Pfluegl, A. Siegel et al. The Information Bus -
An Architecture for Extensible Distributed Systems. In
Proceedings of the 14th ACM Symposium on Operating
System Principles (SOSP '93). December 1993.

S. Baehni, P. Th. Eugster, and R. Guerraoui. OS Support
for P2P Programming: a Case for TPS. Technical Report.
February 2002.

LPD web site. http://l]pdwww.epfl.ch. For the full source
codes, follow People / Sebastien Baehni / Current work.
TIBCO. TIB/Rendezvous White Paper. http://www.rv.tib-
co.com. 1999.

Gryphon: Publish/Subscribe over public networks. IBM
T.J. Watson Research Center.
http://researchweb.watson.ibm.com/gryphon/Gryphon/
gryphon.html. February 2001.

G. Bracha, M. Odersky, D. Stoutamire and Ph. Wadler.
Making the future safe for the past: Adding genericity to
the Java programming language. In Proceedings of the
13th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ‘98), pag-
es 183-200. October 1998.

A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-
Peer Systems. In Proceedings of the 3rd Middleware con-
ference (Middleware 2001). November 2001.

M. Aguilera, R. Strom, D.Sturman, M.Astley and T. Chan-
dra. Matching events in a content-based subscription sys-
tem. In Proceedings of the 2nd ACM Special Interest
Group on Management Of Data (SIGMOD’99). May 1999.
A. Carzaniga, D.S. Rosenblum and A.L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. on Computer Systems, 19(3):332-383. August 2001.
I. Clarke, O. Sandberg, B. Wiley et al. Freenet: A Distrib-
uted Anonymous Information Storage and Retrieval Sys-
tem. In Proceedings of the International Computer
Scientist Institute Workshop on Design Issues in Anonym-
ity and Unobservability (ICSI’2000). July 2000.

A. Carzaniga, D. S. Rosenblum and A. L. Wolf. Achieving
Scalability and Expressiveness in an Internet-Scale Event
Notification Service. In Proceedings of the 19th ACM Sym-
posium on Principles of Distributed Computing
(PODC’00). July 2000.

D. Heimbigner. Adapting Publish/Subscribe Middleware
to Achieve Gnutella-like Functionality. In Proceedings of
the 16th ACM Symposium on Applied Computing
(SAC’2001), pages 176-181. 2001.

John A. Zinky, Linsey O’Brien, David E. Bakken, Vijayku-
mar Krishnaswamy, Mustaque Ahamad. Pass-A service for
Efficient Large Scale Dissemination of Time Varying Data
Using CORBA. In Proceedings of the 19th International
Conference on Distributed Computing Systems (ICD-
CS’99). May 1999.

YF]',F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

