
Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 1

Distributed Asynchronous Collections:

Patrick Eugster Rachid Guerraoui
Swiss Federal Institute of Technology

Lausanne

{Patrick.Eugster, Rachid.Guerraoui}@epfl.ch

Joe Sventek
Agilent Laboratories Scotland

Edinburgh

sventek@labs.agilent.com

Abstractions for Publish/Subscribe 
Interaction



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 2

Roadmap
? Distributed Asynchronous Collections (DACs)

Reminder: Collections
Distributed Collections
Distributed Asynchronous Collections

? The DAC Framework
Interfaces
Classes
Characteristics
Implementation

? Programming Example
? Future Work & Conclusions



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 3

Reminder: Collections
? Collection
?A container abstraction used to store, retrieve and manipulate objects
?Represents group of related objects, e.g., set, list, queue

? Commonalities
?Add new elements
?Check if the collection contains specific elements
?Remove elements
?…

? Differences
?Element management
?Size
?…



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 4

Distributed Collections
?Accessible from various nodes
?Pull
?Similar to shared memory
?Participants can share information

?Centralized
?Accessed through remote invocations
?Single point of failure

?Or not centralized: DACs
?Increased availability



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 5

Distributed Asynchronous Collection
?Callback to application: push
?Notification mechanism
?New element
?Element has been removed
?…

?Requires subscription
?Observer design pattern: DAC is subject, client is observer

?Several subscribers and publishers
?Publish/subscribe interaction scheme
?DACs like event channels, topics, message queues, etc.



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 6

DAC Framework
? Collection frameworks
?Unify different semantics
?Integrated with certain languages

? Smalltalk
? Java

?Additional libraries
? E.g. STL for C++

? Java DACs
?Extension of java.util collections
public interface DACollection

extends java.util.Collection {…}



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 7

DAC Interfaces

?Callback interface
public interface Notifiable {
public void notify(Object m, String DACName);

}

?Subscribe (all-of-n)
?Without subtopics: contains(Notifiable n);
?With subtopics: containsAll(Notifiable n);

?Subscribe (one-of-n)
?Without subtopics: remove(Notifiable n);
?With subtopics: removeAll(Notifiable n);



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 8

DAC Classes

?Different DAC types
?Different interaction styles
?Push vs. pull, one-for-each vs. one-for-all

?Different DAC classes
?For semantics not visible in interfaces
?Duplicate elements
?Reliability
?…

?Own classes for specific requirements



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 9

Characteristics of DACs
Collection
? Storage order
?Deterministic
?None

? Duplicates
? Insertion order
?Explicit
?Implicit

? Extraction order

DACollection
? Delivery order
? Delivery semantics
?Unreliable
?Reliable
?Certified

? Duplicates
?Elements
?Delivery

? Extraction order: pull



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 10

DAC Implementation

?Lightweight proxies
?Appear as local collections



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 11

Programming Example

?Create a local DAC proxy
DASet myChat = new DAStrongSet("/Chat/Insomnia");

? Insert new objects (publish)
myChat.add(new String("Hi from Bob"));

?Register interest in new objects (subscribe)
public class ChatNotifiable implements Notifiable {
public void notify(Object m, String DACName) {
System.out.println((String)m); }

}
myChat.contains(new ChatNotifiable());



Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 12

Future Work and Conclusions
? Content-based publish/subscribe with DACs
?Static and dynamic classification schemes
?Reflection for

? Encapsulation
? Avoiding subscription grammar

? Type-based publish/subscribe
?Use type scheme as natural classification scheme of messages
?Integration of language with middleware
?Parametric polymorphism for DACs: generic DACs

? DAC express several messaging styles and QoS
?One basic abstraction, different flavors
?Framework can easily be extended


