Distributed Asynchronous Collections:

ADbstractionsfor Publish/Subscribe
| nter action

Patrick Eugster Rachid Guerraoui Joe Sventek

Swiss Federal Institute of Technology Agilent Laboratories Scotland
L ausanne Edinburgh
{ Patrick.Eugster, Rachid.Guerraoui} @epfl.ch sventek @l abs.agilent.com

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction E
© P. Eugster 1 )



Roadmap

& Distributed Asynchronous Collections (DACS)

Reminder: Collections
Distributed Collections
Distributed Asynchronous Collections

« T he DAC Framework

Interfaces
Classes
Characteristics
|mplementation

= Programming Example
« FutureWork & Conclusions

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster



Reminder: Collections

= Collection

&sA container abstraction used to store, retrieve and manipulate objects
& Represents group of related objects, eg., set, list, queue

= Commonalities
& Add new elements
& Check if the collection contains specific e ements
&z Remove elements
&

=« Differences
&sElement management
& Sze
£

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 3



Distributed Collections

=« Accessible from various nodes
« Pull

= Smilar to shared memory
esParticipants can share information

« Centralized

&sAccessed through remote invocations
&3ingle point of fallure

=« Or not centralized: DACs
&slncreased avallability

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction E
© P. Eugster 4 )



Distributed Asynchronous Collection

=« Callback to application: push

« Notification mechanism
zNew eement
zElement has been removed
& ..

= Reguires subscription
&0bserver design pattern: DAC is subject, client isobserver

= Several subscribersand publishers
&sPublish/subscribe interaction scheme
#DACslike event channels topics message queues, etc.

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction E
© P. Eugster 5 )



DAC Framework

« Collection frameworks

zUnify different semantics
&s|ntegrated with certain languages
- Smalltalk
=~ Java
esAdditional libraries
-~ E.g. STL for C++

= Java DACs

eExtensionof j ava. uti | collections
public interface DACol | ection
extends java. util.Collection {.}

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster



DAC Interfaces

« Callback interface

public interface Notifiable {
public void notify(Qoject m String DACNane);

}

= Subscribe (all-of-n)

\Without subtopics contai ns(Notifiable n);
\With subtopics contai nsAl I (Notifiable n);

= Subscribe (one-of-n)

\Without subtopics renove(Notifiable n);
2\With subtopics renoveAl | (Notifiable n);

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction E
© P. Eugster 7 )



DAC Classes

= Different DAC types

eDifferent interaction styles
&sPush vs. pull, one-for-each vs. one-for-all

« Different DAC classes

&or semantics not visible in interfaces
eDuplicate elements

eReliability

-

= Own classes for specific reguirements

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction E
© P. Eugster 8 )



Characteristics of DACs

Collection

= Storage order
& Deterministic

zNone

= Duplicates
= Insertion order

eExplicit
eslmplicit

« EXtraction order

(Gl

DACollection
= Dellvery order

&« Déllvery semantics
esUnreliable

zReliable
=z Certified

& Duplicates

& Elements
& Delivery

=« EXxtraction order: pull

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction

© P. Eugster



DAC Implementation

=« Lightweight proxies

esAppear aslocal collections

oL@ -

S; Subscriber

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe I nteraction
© P. Eugster 10 i

LABORATOIRE [E SYSTEVES [MEXPLONTATICN



Programming Example

= Createalocal DAC proxy
DASet nyChat = new DAStrongSet ("/Chat/ | nsomi a");

= Insert new objects (publish)
myChat . add(new String("H from Bob"));

= Register interest in new objects (subscribe)

public class ChatNotifiable inplenments Notifiable {
public void notify(Qoject m String DACNane) {
Systemout.printin((String)m; }

}
myChat . cont ai ns(new Chat Notifiable());

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction E
© P. Eugster 11 )



Future Work and Conclusions

= Content-based publish/subscribe with DACs

zsStatic and dynamic classification schemes
zsReflection for

- Encapsulation

- Avoiding subscription grammar

= Type-based publisn/subscribe

&sUse type scheme as natural classification scheme of messages
&sIntegration of language with middleware
&sParametric polymorphism for DACs: generic DACs

= DAC express several messaging stylesand QoS

z0ne badsic abstraction, different flavors
&sFramework can easlly be extended

Distributed Asynchronous Collections: Abstractions for Publish/Subscribe Interaction
© P. Eugster 12



