On Objects and Events

P. Th. Eugster 1, R. Guerraoui 1, C. H. Damm?

1 Swiss Federal Institute of Technology, Lausanne
2 University of Aarhus, Denmark

O 1

Roadmap

& Introduction

zContext
eBackground

=« Type-Based Publish/Subscribe

e Javapg

&Syntax
elmplementation

= Conclusions
= Future Work

-(Pfl- © P. Th. Eugster

Context

=« Large-scale distributed object-based computing
&se-business, banking, finance, telecommunications, ...

= Ubiquitous, pervasive, peer-to-peer, ... computing
&Decentralized
&Decoupling of participants

« Need for

&sAlgorithms
zAbstractions

-(Pfl- © P. Th. Eugster 3

Abstractions for Distr. Programming

= Have been ,integrated” in many languages

= Remote procedure call (RPC) et al.
zsApply nicely to object settings
&sArgus, CLU, Modula 3, Oblig, Java RMI, ...

&Type safety and encapsulation (also of distribution detalils:
transparency)

esApplication-defined types
= Distributed shared memory (DSM) et al.

&Tuple space in Linda
5,,0bject” spaces in Objective Linda, Smalltalk, C++, Java, ...
&Message queues

-(Pfl- © P. Th. Eugster 4

Publish/Subscribe

= Close to shared space

#Global ,event bus”
zPublish events
&Subscribe to events

= Decoupling of publishers and subscribers
&1n time: do not have to be up at the same time
&1n space: do not have to know each other
&1n flow: asynchronous sending and receiving of events
#Removes dependencies, thereby enforcing scalability

-(Pfl- © P. Th. Eugster

Topic-Based and Content-Based

& Cf. groups & Single event space
& Explicit addressing & Implicit addressing
scheme scheme
& Given by topics & Given by properties of events
zsMotivated by interoperability & Comes closer to tuple spaces
& Hierarchical disposition of & Events are viewed as
topics attribute sets
zWildcards

= Subscriptions expressed

zsAliases : -
_ zNecessarily on these attributes
« Predefined event types #Query languages, e.g., SQL
5 ,Self-describing” events e Templates

-(Pfl- © P. Th. Eugster 6

Type-Based Publish/Subscribe

« High-level variant of publish/subscribe
&cf. RPC

= Events are objects (obvents)
&instances of application-defined types

= Publishing obvents
&Similar to a distributed new
&Similar to a distributed cl one()

= Subscribing to obvent types
&including ,,content“-based queries expressed on public members

= Emphasis: type safety and encapsulation
&5,0pen® subscription patterns, QoS

-(Pfl- © P. Th. Eugster 7

In Java

=« Obvents

eskaslily transferrable
&Defined by the application as specific classes (and interfaces)

=« Java inherently provides serialization
eDefault behavior by subtyping | ava. 1 0. Seri al i zabl e
eCbvent extends Serializable

= Generic Distributed Asynchronous Collections

&Library approach
&senericity for type safety
&Structural reflection for encapsulation-preserving subscriptions

-(Pfl- © P. Th. Eugster 8

Javapg Syntax

= TWO primitives added

« Publish statements

&Publishing obvents
&E.g., an obventt of an arbitrary type T

publish t;

= Subscription expressions

&Subscribing to obvent type

- Including filters
&E.g., an obvent type T

subscribe(Tt) { /* filter */ } { /* handler */ }
&Returns a subscription handle

-(Pfl- © P. Th. Eugster 9

Subscriptions

« Obvent handlers

&Closures
- Describing the handling of obvents

esMotivation: type safety, regrouping of all code related to a
subscription

= Fllters
&Specific closures
- Describing the filtering of obvents
- Deferred evaluation
-~ Code Is potentially transferred to enable optimizations

eMotivation: as above, however by revealing filter semantics at
compilation

-(Pfl- © P. Th. Eugster 10

Example: Stock Trade

public class StockQuote ... { & Publishing stock quotes

private String conpany; St ockQuote q = new
private float val ue; St ockQuote(" Tel co", 100.0, 25);
private int anount; publish q;

public String get Conpany()
{ return conpany; }

oublic float getvalue() {...} = Subscribing to stock quotes

public int getAmount() {...} Subscription s =

publ i c StockQuote(String c, subscri be(St ockQuote q)
float v, {
int a) { return
conpany = c: g. get Conpany() . equal s("Tel co");
val ue = v: }
amount = a; {
} Systemout.printlin(q.getPrice());
} }

s.activate();

-(Pfl- © P. Th. Eugster 11

Qualities of Service

= Increased importance Iin a distributed setting

&d1.ocal context: usually exactly-once of operations
esAsynchronous distributed systems
&E.g., unreliable, reliable, certified, ...

= Associated with events
&l ike a context: ensures a ,,correct* handling along path

ePart of events through subtyping : St ockquot e extends ...

-~ E.g., Rel 1 abl eCovent, Certifi edCovent
-~ Also more refined properties, e.g., Priorit yOovent
= Or more specific algorithms

-(Pfl- © P. Th. Eugster 12

Implementation

= ,Heterogenous” translation at compilation

& Type-specific adapters are created for every obvent type

-~ Adapters are similar in nature to proxies for RPC
~ TAdapt er for everytype T

= Driven by class-based dissemination of events

&Also ,,homogenous* translation for ,single* event bus
~ Cbvent Adapt er

= Method added to every obvent class for publishing
&publ 1 sh() method

esAutomatically sent to the right adapter, e.g.,
epublish t 1 t.publish() 1l TAdapter. publish(t)

-(Pfl- © P. Th. Eugster 13

Implementation (cont d)

= Subscription to a type T Is transformed
&subscri be() method call to TAdapt er, e.q.,

esubscribe(T t){..}{...} 1 TAdapter.subscribe(..., ..)
= Handlers

eMapped to Java anonymous classes
= Filters

&If not ,,easily transferrable”, then mapped to anonymous classes
&0Otherwise, intermediate representation is generated

-~ Method invocation tree

- Predicate tree

-(Pfl- © P. Th. Eugster 14

Conclusions

« Object-oriented publish/subscribe does make
sense

esEXxperiences in telecommunications and banking

&Type-based publish/subscribe represents alternative to RMI, not
replacement

=« Type-based publish/subscribe can implement

&Content-based publish/subscribe,
&Topic-based publish/subscribe, or
&any mixture of these

&« Type information

esEnables type checks at compilation
esEnables performance optimizations at runtime

-(Pfl- © P. Th. Eugster 15

Future Work

« ,Language” issues
&Filter semantics

el.anguages (mechanisms) for ,clean” library implementations of
type-based p/s (and other distributed programming abstractions)

&lnteroperability

-~ Language-independent event definition language (EDL), e.g.,
XML, (subset of) IDL, to define events as objects, i.e., with
methods

- cf. CORBA value types
= Structural conformance

= ,Implementation” issues

&Highly scalable multicast algorithms
eMulti-level filtering

-(Pfl- © P. Th. Eugster 16

Related Work

« Events + Constraints + Objects (ECO)
efFilters
-~ Based on event properties, or
- Predicates based on (local) constraints
&Events
~ First class, specific constructs, yet
-~ Viewed as sets of attributes

= Cambridge Event Architecture (CEA)

&lnteroperability

- Java, C++

-~ ODL, XML also mentioned as EDL
&Events are viewed as sets of attributes

-(Pfl- © P. Th. Eugster

17

