
1

On Objects and Events

P. Th. Eugster 1, R. Guerraoui 1, C. H. Damm2

1 Swiss Federal Institute of Technology, Lausanne
2 University of Aarhus, Denmark

© P. Th. Eugster 2

Roadmap
? Introduction
?Context
?Background

?Type-Based Publish/Subscribe
? JavaPS
?Syntax
?Implementation

?Conclusions
?Future Work

© P. Th. Eugster 3

Context
?Large-scale distributed object-based computing
?e-business, banking, finance, telecommunications, ...

?Ubiquitous, pervasive, peer-to-peer, ... computing
?Decentralized
?Decoupling of participants

?Need for
?Algorithms
?Abstractions

© P. Th. Eugster 4

Abstractions for Distr. Programming
?Have been „integrated“ in many languages
?Remote procedure call (RPC) et al.
?Apply nicely to object settings
?Argus, CLU, Modula 3, Obliq, Java RMI, ...
?Type safety and encapsulation (also of distribution details:

transparency)
?Application-defined types

?Distributed shared memory (DSM) et al.
?Tuple space in Linda
?„Object“ spaces in Objective Linda, Smalltalk, C++, Java, ...
?Message queues

© P. Th. Eugster 5

Publish/Subscribe
?Close to shared space
?Global „event bus“
?Publish events
?Subscribe to events

?Decoupling of publishers and subscribers
?In time: do not have to be up at the same time
?In space: do not have to know each other
?In flow: asynchronous sending and receiving of events
?Removes dependencies, thereby enforcing scalability

© P. Th. Eugster 6

Topic-Based and Content-Based
? cf. groups
? Explicit addressing

scheme
?Given by topics
?Motivated by interoperability

? Hierarchical disposition of
topics
?Wildcards
?Aliases

? Predefined event types
?„Self-describing“ events

? Single event space
? Implicit addressing

scheme
?Given by properties of events
?Comes closer to tuple spaces

? Events are viewed as
attribute sets

? Subscriptions expressed
?Necessarily on these attributes
?Query languages, e.g., SQL
?Templates

© P. Th. Eugster 7

Type-Based Publish/Subscribe
?High-level variant of publish/subscribe
?cf. RPC

?Events are objects (obvents)
?Instances of application-defined types

?Publishing obvents
?Similar to a distributed new
?Similar to a distributed clone()

?Subscribing to obvent types
?Including „content“-based queries expressed on public members

?Emphasis: type safety and encapsulation
?„Open“ subscription patterns, QoS

© P. Th. Eugster 8

In Java
?Obvents
?Easily transferrable
?Defined by the application as specific classes (and interfaces)

? Java inherently provides serialization
?Default behavior by subtyping java.io.Serializable
?Obvent extends Serializable

?Generic Distributed Asynchronous Collections
?Library approach
?Genericity for type safety
?Structural reflection for encapsulation-preserving subscriptions

© P. Th. Eugster 9

JavaPS Syntax
?Two primitives added
?Publish statements
?Publishing obvents
?E.g., an obvent t of an arbitrary type T
publish t;

?Subscription expressions
?Subscribing to obvent type

? Including filters
?E.g., an obvent type T
subscribe(T t) { /* filter */ } { /* handler */ }
?Returns a subscription handle

© P. Th. Eugster 10

Subscriptions
?Obvent handlers
?Closures

? Describing the handling of obvents
?Motivation: type safety, regrouping of all code related to a

subscription

?Filters
?Specific closures

? Describing the filtering of obvents
? Deferred evaluation
? Code is potentially transferred to enable optimizations

?Motivation: as above, however by revealing filter semantics at
compilation

© P. Th. Eugster 11

Example: Stock Trade
public class StockQuote ... {
private String company;
private float value;
private int amount;
public String getCompany()
{ return company; }

public float getValue() {...}
public int getAmount() {...}
public StockQuote(String c,

float v,
int a) {

company = c;
value = v;
amount = a;

}
}

? Publishing stock quotes
StockQuote q = new
StockQuote("Telco", 100.0, 25);
publish q;

? Subscribing to stock quotes
Subscription s =
subscribe(StockQuote q)
{
return
q.getCompany().equals("Telco");

}
{
System.out.println(q.getPrice());

}
s.activate();

© P. Th. Eugster 12

Qualities of Service
? Increased importance in a distributed setting
?Local context: usually exactly-once of operations
?Asynchronous distributed systems
?E.g., unreliable, reliable, certified, ...

?Associated with events
?Like a context: ensures a „correct“ handling along path
?Part of events through subtyping : Stockquote extends ...

? E.g., ReliableObvent, CertifiedObvent
? Also more refined properties, e.g., PriorityObvent
? Or more specific algorithms

© P. Th. Eugster 13

Implementation
? „Heterogenous“ translation at compilation
?Type-specific adapters are created for every obvent type

? Adapters are similar in nature to proxies for RPC
? TAdapter for every type T
? Driven by class-based dissemination of events

?Also „homogenous“ translation for „single“ event bus
? ObventAdapter

?Method added to every obvent class for publishing
?publish()method

?Automatically sent to the right adapter, e.g.,
?publish t ? t.publish()? TAdapter.publish(t)

© P. Th. Eugster 14

Implementation (cont´d)
?Subscription to a type T is transformed
?subscribe() method call to TAdapter, e.g.,
?subscribe(T t){...}{...} ? TAdapter.subscribe(..., ...)

?Handlers
?Mapped to Java anonymous classes

?Filters
?If not „easily transferrable“, then mapped to anonymous classes
?Otherwise, intermediate representation is generated

? Method invocation tree
? Predicate tree

© P. Th. Eugster 15

Conclusions
?Object-oriented publish/subscribe does make

sense
?Experiences in telecommunications and banking
?Type-based publish/subscribe represents alternative to RMI, not

replacement

?Type-based publish/subscribe can implement
?Content-based publish/subscribe,
?Topic-based publish/subscribe, or
?any mixture of these

?Type information
?Enables type checks at compilation
?Enables performance optimizations at runtime

© P. Th. Eugster 16

Future Work
? „Language“ issues
?Filter semantics
?Languages (mechanisms) for „clean“ library implementations of

type-based p/s (and other distributed programming abstractions)
?Interoperability

? Language-independent event definition language (EDL), e.g.,
XML, (subset of) IDL, to define events as objects, i.e., with
methods

? cf. CORBA value types
? Structural conformance

? „Implementation“ issues
?Highly scalable multicast algorithms
?Multi-level filtering

© P. Th. Eugster 17

Related Work
?Events + Constraints + Objects (ECO)
?Filters

? Based on event properties, or
? Predicates based on (local) constraints

?Events
? First class, specific constructs, yet
? Viewed as sets of attributes

?Cambridge Event Architecture (CEA)
?Interoperability

? Java, C++
? ODL, XML also mentioned as EDL

?Events are viewed as sets of attributes

