
Lightweight Probabilistic Broadcast
© P. Th. Eugster

1

Lightweight Probabilistic
Broadcast

P. Th. Eugster 1, R. Guerraoui 1, S. B. Handurukande 1,
A.-M. Kermarrec 2, P. Kouznetsov 1

1 Swiss Federal Institute of Technology, Lausanne
2 Microsoft Research Cambridge, UK

© P. Th. Eugster 2

Roadmap
?Context
?Background
? lpbcast
?Analysis
?Practical Results
?Optimizations/Future Work
?Conclusions

© P. Th. Eugster 3

Context
?DACE middleware platform
?Distributed Asynchronous Computing Environment
?Targeted at large scale asynchronous systems

?Event-based interaction
?Publish/subscribe paradigm
?Basic subscription criterion: types

? Implemented as a « pure » library
?Perfectly distributed setting
?No centralized event brokers etc.
?Peer-to-peer computing
?Different primitives for different QoS requirement

© P. Th. Eugster 4

Background
?« Traditional » algorithms
?Reliable Broadcast [HT93]
?Strong reliability
?Scale badly

?Network-level protocols
?Scale better
?Best-effort
?E.g., RMTP (sender-reliable), LBRM (receiver-reliable): ack flow

?Peer-based protocols
?Every process has same « role », can handle retransmission

requests
?E.g., SRM: peer-based, but re-broadcasting

© P. Th. Eugster 5

?Gossip-based (probabilistic) algorithms
?Not deterministic

? No acks/nacks
?There is a probability of (1-x) that all processes deliver a given

message
?And/or there is a probability of (1-y) for any given process to

deliver a given message
?Ideally, x and/or y are quantifiable and << 1

© P. Th. Eugster 6

?Scalability
?Every process sends a limited number of messages

?Reliability
?Every process receives copies of same message from different

processes

?Parameters
?Period T : each process period. gossips
?Fanout F : at each gossip round, a process gossips to several

processes
?Hops/Forwards : same information is forwarded a limited

number of times in total, or by same process
?Adjusted to satisfy scalability and reliability (x, y) requirements

© P. Th. Eugster 7

?Variants
?Push, pull, anti-entropy [Demers et al.87]
?Propagation of payload itself
?Or identifiers (explicit retransmission requests)
?E.g., pbcast (Bimodal Multicast) [Birman et al.99], rpbcast

[SS00]

?Usually based on « complete » views
?Though only weak consistency
?Costly in terms of

? Memory resource consumption
? Message exchanges

© P. Th. Eugster 8

?Scalability
?Every process knows only a limited subset of the system

?Reliability
?Every process is known by several other processes

?Deterministic approaches
?Hierarchy, possibly based on network topology, e.g., [LM99]
?Analysis?

?Probabilistic approach
?Period : each process gossips periodically an exerpt of its view
?Fanout : at each gossip round, a process gossips to several

processes

© P. Th. Eugster 9

lpbcast
?Every process only knows l within n processes
?Probabilistic broadcast and membership

?Gossip messages serve
?Membership information exchange
?Transporting events
?Event knowledge exchange

?A gossip message carries
?A set of subscriptions (not nec. « new » ones)
?A set of unsubscriptions
?A set of events received since the last outgoing gossip
?A digest of received events (ids)

© P. Th. Eugster 10

?Data structures
?Events
?Event ids
?View (+ unsubscriptions)

?Upon receiving a gossip message
?Deliver new events/update event ids
?Add to event buffer/truncate buffer
?Ask for retransmission
?Remote unsubscribed processes from view/add to unsubs
?Add new subscriptions to view/truncate view

?When sending
?Add subset of events, event ids, view, unsubs

© P. Th. Eugster 11

Analysis
? Probability that a given gossip message infects a given

(uninfected) process:
p=(l/n)(F/l)(1-e)(1-f)

=(F/n)(1-e)(1-f)
q=1-p

? Probability of stepping from i infected processes to j
infected processes at the next round:

p i j = B(n-i,j-i) (1-q i) j-i(q i) n-j

? P(j infected at round r) = S i ? j P(i infected at round r-1) pi j

? Throughput independent of l
?Provided that views are uniformly distributed

© P. Th. Eugster 12

?Membership stability
?Probability of creation of a partition of size i > l

B(n,i) (B(i,l) / B(n,l)) i (B(n-i,l) / B(n,l)) n-i

?Upper bound
? Several partitions can be seen as recursive partitions

?Decreases with increasing l, but also n
?Becomes more stable with increasing system size

? Total amount of membership information in the system
increases

© P. Th. Eugster 13

Practical Results
?Simulation/measurements
?Distribution of views
?Throughput does depend (very little) on l
?Dependency

? Gossiping process adds parts of its view
? Receiving process mixes with its view and forwards
? Redundant messages

?Reliability
? Throughput decreases, and buffers are limited
? Probability that a given notification is removed from all buffers

before being delivered by all increases

© P. Th. Eugster 14

? Analysis vs
simulation

? Fanout 3
? 1 msg injected
? Varying system

size

© P. Th. Eugster 15

? View size and
reliability

? System size of
125

? Fanout 3
? 40 msgs/round

are injected
? 60 msgs are in

buffer
? Varying view

size

© P. Th. Eugster 16

? Buffer size and
reliability

? System size of
125

? Fanout 3
? 120 msgs/round

are injected
? Varying buffer

size

© P. Th. Eugster 17

Optimizations / Future Work
?Towards « perfect » views
?Remove dependencies

? By adding weights to subscriptions
? By reducing period for membership gossiping

?Garbage collection
?Remove old messages first

?Add rapid dissemination phase
?à-la pbcast
?Increase throughput
?Use gossip messages solely for digests (ids)

© P. Th. Eugster 18

?Optimal Value for l ?
?Expected value for leff
?Number of processes which know a given process
?Obviously l

?Variance of leff
?l (1-l /n)
?Good for small, and big l
?Maximum (worst) for n /2

?Must be at least F
?Log(n) < n/2

© P. Th. Eugster 19

Conclusions
?Preciser analysis would also depend on
?Concrete compositions of individual views
?Sizes of buffers for events, ids, …

?Membership can be separated from broadcast
?Weaknesses
?Does not exploit locality
?Joining/leaving (failure detection)

?Deterministic schemes (hierarchy)
?Based on (network) topology knowledge
?Better in the case of genuine multicast (filtering)

