
Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 1

Linguistic Support for Large
Scale Distributed Programming

Patrick Th. Eugster Rachid Guerraoui
Swiss Federal Institute of Technology

Lausanne

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 2

Lessons Learned
?Publish/subscribe paradigm
?Decoupling of information producers/consumers in

? Time
? Space
? Flow

?Enforces scalability by removing direct dependencies
?Static vs. dynamic schemes

? Both advantages and shortcomings
? Combination most effective

?Not a solution to everything
? But more effective in many cases than RMI

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 3

?Can be implemented in OO such that
?Type safety is ensured
?Encapsulation is preserved
?Efficient

?Generic Distributed Asynchronous Collections
?Type-based publish/subscribe enforces type safety
?« Reflection-based » publish/subscribe enforces

encapsulation, optimizations without subscription language
?Combination enforces ease of use, efficiency

?

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 4

Language Integration

? Paradigms/abstractions
1. Libraries
2. Libraries become part of language environment
3. Integrated into language semantics

? E.g., monitor
1. As external concurrency control library
2. Added as control structure to Portal
3. Every object is monitor in Java

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 5

?Requirements to ensure
?Type safety avoiding type checks and casts
?Accessibility of subscription patterns and encapsulation of

message objects in content-based subscription without
subscription language
?Expressing different QoS

?

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 6

P/SLang

?Publishing?
?Language primitive, e.g., new
publish p;
?Creates instance (copy) of p in every subscribed process

?Subscribing?
?Language primitive, e.g., instanceof
s subscribe T;
?Subscribes s to type T

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 7

?Callback?
?Every object s can override a method, e.g, equals()
notify(Object o)

?Strong typing?
?Every object can implement several notify() clauses

?With different argument types: dynamic overriding

?Dispatching types?
?Every incoming object is an Object
?Requires dynamic dispatching

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 8

?Expressing content-based subscription?
?Such that

? Encapsulation is preserved
? Pattern is transparent
? No subscription language is required

?Use language to express query
?Defer code evaluation

? Multistage programming (two levels are sufficient)
s subscribe T [T t ¦ return t.equals(t1)];

? Anonymous classes (methods)?

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 9

?Anonymous methods (functions)
?Similar to Smalltalk blocks
?Deferred evaluation
?No name
?Not associated with a type
?Parameters
?Exceptions
?Poss. return value

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 10

? Of type java.lang.reflect.Method, e.g.
Method m =

void (String s, int i) throws Exception {…};

? General
s subscribe T boolean (T t) {…return …; };

? Or abbreviation
s subscribe (T t) {return …; };

? Similar constraints as anonymous classes
?Only final or block-local variables are used: shipping of code possible
?Otherwise no shipping of code (local filtering)

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 11

?QoS?
?Messages use multiple subtyping to inherit behavior of

predefined message classes, e.g,
? Unreliable/reliable/certified…
? Priorities
? Persistence
? …

?Removes ambiguities possible with DACs
?If different objects connect to the same type, but with

different QoS, e.g., «unreliable» publisher - «reliable»
subscriber?

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 12

RMI-Based Programming
? Two types of objects

1. Remotely accessible objects
? Have remote interface, can be remotely invoked
? Passed by reference

2. Local objects
? No remote interface
? Can be used as invocation arguments/return values
? Passed by value

? One interaction style
? Objects interact locally and remotely through invocations

Linguistic Support for Large Scale Distributed Programming
© P. Th. Eugster 13

Message-Oriented Distr. Progr.

?One type of objects
?Pass by value
?No remote interfaces

?Two interaction styles
?Locally through method invocations
?Remotely/locally by exchanging (message) objects

? Objects are published
? Subscribing to types of objects (with predicates)

