
Linguistic Support for 
Distributed Programming 

Abstractions
Christian H. Damm

Microsoft Business 
Solutions

Vedb, Denmark

Patrick Th. Eugster

Sun Microsystems

Volketswil, 
Switzerland

Rachid Guerraoui

Swiss Federal 
Institute of Techn.

Lausanne, 
Switzerland



P. Eugster - Linguistic Support for Distributed Programming Abstractions 2

Context

Distributed applications
Built on top of “middleware” 

Implementing (type safe) middleware
What abstraction?

❏ E.g., remote procedure call, messaging, …

How to implement the “interface” between middleware and 
applications (depending on application types)?

❏ I.e., stubs, proxies, adapters, connectors, …
❏ E.g., precompiler, language-integration (compiler), library, … 

General-purpose programming language 
features for library implementation?



P. Eugster - Linguistic Support for Distributed Programming Abstractions 3

Roadmap

Context

Type-based publish/subscribe (TPS)

TPS in a programming language

TPS as a library

A “futuristic” TPS library

Comparison

Conclusions



P. Eugster - Linguistic Support for Distributed Programming Abstractions 4

Publish/Subscribe
Shared information bus, event channel

Multicast abstraction

Distributed components communicate indirectly, by
❏ Publishing events (messages)
❏ Subscribing  to events (messages)

Decoupling of components



P. Eugster - Linguistic Support for Distributed Programming Abstractions 5

TPS in Short
Motto

Events are objects, instances of application-defined types

Publishing objects
A copy of a published object is created for each interested 
subscriber

Subscribing to object types
No explicit „subject“, the type is the subject 

No explicit „properties“, the state is the content
❏ Subscriptions expressed as predicates on public members, 

i.e., fields and methods
❏ Subscriptions should be „migratable“



P. Eugster - Linguistic Support for Distributed Programming Abstractions 6

Roadmap

Context

Type-based publish/subscribe (TPS)

TPS in a programming language

TPS as a libraryTPS as a library

A “futuristic” TPS libraryA “futuristic” TPS library

ComparisonComparison

ConclusionsConclusions



P. Eugster - Linguistic Support for Distributed Programming Abstractions 7

TPS in a Programming Language

Merging middleware and programming 
language

Investigate feasibility of TPS principles

JavaPS

publish new StockQuote(…);
subscribe (StockQuote q){…}{…};

Implemented with extended compiler
Heterogenous translation

Generation of “adapter code” e.g., StockQuoteAdapter
Invocations of primitives transformed, performed on adapters 



P. Eugster - Linguistic Support for Distributed Programming Abstractions 8

Programming with JavaPS

public class StockQuote 
implements ... {

 private String company;
 private float value;
 private int amount;
 public String getCompany()  { 

return company; }
 public float getValue() {...}
 public int getAmount() {...}
 public StockQuote(String c,
                   float v, 
                   int a) 

{ company = c;           
value = v;               
amount = a;

 }
}

Publishing stock quotes
 StockQuote q = new
  StockQuote("Telco", 100.0, 25);
 publish q;

Subscribing to stock quotes
 Subscription s =
  subscribe(StockQuote q)
 {
  return
   q.getCompany().equals("Telco");
 } 
 {
   System.out.println(q.getPrice());
 }
 s.activate();



P. Eugster - Linguistic Support for Distributed Programming Abstractions 9

Roadmap

Context

Type-based publish/subscribe (TPS)

TPS in a programming language

TPS as a library

A “futuristic” TPS libraryA “futuristic” TPS library

ComparisonComparison

ConclusionsConclusions



P. Eugster - Linguistic Support for Distributed Programming Abstractions 10

TPS as an External Library

First-class software bus or event channel

Distributed Asynchronous Collections (DACs)
Variant of well-known collection abstraction

    interface DAC extends Collection {}
Intuitive use, integrated with inherent Java collection framework

Adding an element to a DAC comes to publishing that element

Browsing a DAC for particular elements expresses an interest in 
these elements, and is interpreted as subscription



P. Eugster - Linguistic Support for Distributed Programming Abstractions 11

Programming with DACs
Publishing stock 
quotes

DAC qs =
  new DASet("StockQuote");
StockQuote q = 
  new StockQuote("Telco", 
                 100.0,
                 25);
qs.add(q);

Subscribing to stock quotes
class MySubs 
  implements Subscriber {
 public void notify(Object o) {
  StockQuote q = (StockQuote)o;
  System.out.println(q.getValue());
 }
}

Accessor acc = 
  new Invoke(".getCompany", null);
Condition myCond = 
  new Equals(acc, "Telco");
qs.contains(new MySubs(), myCond), 



P. Eugster - Linguistic Support for Distributed Programming Abstractions 12

Roadmap

Context

Type-based publish/subscribe (TPS)

TPS in a programming language

TPS as a library

A “futuristic” TPS library

ComparisonComparison

ConclusionsConclusions



P. Eugster - Linguistic Support for Distributed Programming Abstractions 13

A Futuristic TPS Library
Application-defined event types and type safety

A first-class channel abstraction must comply to the event type

GDACs are parameterized by event type
interface GDAC<T> extends Collection<T> {

    void add(T t);
    Subscription<T> contains(Subscriber<T> st);
    ...}

Generic Java (GJ)
Parametric polymorphism (F-bound polymorphism)

❏ A „future“ version of the Java language (1.5)

Subscription enables the expression of predicates
Behavioral reflection introduced in Java 1.3 (dynamic proxies)



P. Eugster - Linguistic Support for Distributed Programming Abstractions 14

Programming with GDACs
Publishing stock 
quotes

GDAC<StockQuote> qs = 
  new GDASet<StockQuote>();
StockQuote q = 
  new StockQuote("Telco",    

  
                 100.0, 25);
qs.add(q);

Subscribing to stock 
quotes

class MyStockSubs
  implements Subscriber<Stockquote>
{
  public void notify(Stockquote q) {
   System.out.println(q.getValue());
  }
}

Subscription<StockQuote> s = 
qs.contains(new MyStockSubs());

Stockquote q = s.getProxy();
q.getCompany().equals("Telco");
s.activate();



P. Eugster - Linguistic Support for Distributed Programming Abstractions 15

Roadmap

Context

Type-based publish/subscribe (TPS)

TPS in a programming language

TPS as a library

A “futuristic” TPS library

Comparison

ConclusionsConclusions



P. Eugster - Linguistic Support for Distributed Programming Abstractions 16

Comparison
Simplicity: programming effort

1. JavaPS, 2. GDACs, 3. DACs

Flexibility: extension effort
1. GDACs/DACs, 3. JavaPS

Type safety: deployment
1. JavaPS/GDACs, 3. DACs

Performance: overhead
Negligible overhead of reflection

No overhead for genericity (type casts inserted at compilation)



P. Eugster - Linguistic Support for Distributed Programming Abstractions 17

Shortcomings
No runtime support for genericity
GDAC<StockQuote> qs =
  new GDASet<StockQuote>(StockQuote.class);
No dynamic proxies for classes

Stockquote q = s.getProxy();
q.getCompany().equals("Telco");
No dynamic proxies for primitive types

Stockquote q = s.getProxy();
q.getValue() < 100.00;
q.getCompany().equals("Telco") && ...;



P. Eugster - Linguistic Support for Distributed Programming Abstractions 18

Roadmap

Context

Type-based publish/subscribe (TPS)

TPS in a programming language

TPS as a library

A “futuristic” TPS library

Comparison

Conclusions



P. Eugster - Linguistic Support for Distributed Programming Abstractions 19

Conclusions
Genericity

For type safe „interface“ abiding to applications
Should include runtime support

Reflection
For implementation behind „interface“ on top of untyped network
Should include structural and behavioral reflection

Type system
Should be simple and uniform, e.g., no hybrid type system

TPS stringent demands
Requirements include many other abstractions

.NET?



P. Eugster - Linguistic Support for Distributed Programming Abstractions 20

Questions


