
Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 1

Content-Based 
Publish/Subscribe with 
Structural Reflection

Patrick Th. Eugster Rachid Guerraoui
Distributed Programming Group

Swiss Federal Institute of Technology
Lausanne

{Patrick.Eugster, Rachid.Guerraoui}@epfl.ch



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 2

Context
?DACE project: quest for
?Paradigms
?Abstractions
?And algorithms for distributed (large-scale) computing
?Language integration

?Distributed interaction
?Publish/subscribe paradigm: information bus
?Decoupling of participants in 

? Time
? Space
? Flow



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 3

Distr. Asynchronous Collections
? Generalization of event channels, message queues, …
? Accessible from various nodes
? Essentially distributed
?No centralized component
?Increased availability

? Notification mechanism
?Subscribing is expressing interest in new elements
?Observer design pattern: subscriber is observer

? One size fits all
?Different QoS
?Different variants according to different interaction flavors, e.g, push/pull



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 4

Publish/Subscribe

?Topic-based (subject-based)
?News-like approach

? Messages are classified according to topic names
? Hierarchies, wildcards, aliases

?Static, limited expressiveness

?Content-based (property-based) 
?Consumers subscribe by specifying properties of messages
?Application criteria is seen as pattern
?Pattern translated to filter, also seen as predicate
?Dynamic, more difficult to implement



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 5

Approaches
?Properties usually interpreted as attributes
?Subscription pattern is described by attributes and expected

values

?Subscription language
?Specific grammar and parser
?Mainly based on attributes
?E.g., "sender is bob"

?Template objects
?Runtime message objects compared to predefined objects
?Comparison attribute-wise



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 6

Model
?Looking for a pragmatic approach, respecting
?Encapsulation: description of properties and filtering not

based on attributes
?No subscription language, only language constructs
?Any "serializable" object can be used as message object

(no specific types)
?Subscription pattern must not be opaque to middleware

?Outline
?Subscription pattern uses method invocations for querying
?Different comparison styles
?Nested method calls increase expressiveness



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 7

Accessors

?Represent a means to query a message object
?Characterized by
?A set of method/arguments pairs (M1, P1), …, (Mk, Pk)
?Represents invocation chain to access information
?Sideffects not considered

? Java Accessor interface
public interface Accessor {
public Object get(Object m) throws Exception;

}



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 8

? Implemented by application 
?General-purpose accessor Invoke
?Implemented with structural reflection: Java core reflection
?Mi specified as Method (java.lang.reflect) objects

? Type of message objects is known
? Method object lookup only once (in application)
? Explicit use of reflection

?Mi specified by name (and signature)
? Lookup for every message object
? Structural conformance



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 9

Conditions
? Represents a basic condition on message objects
? Characterized by
?An accessor
?A predefined result
?A comparator (comparison function)

? Binary predicate
? Can be seen as Mk+1

? Evaluation
?The binary predicate compares the predefined result and
?The result of the invocation chain



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 10

?Condition interface
public interface Condition {
public boolean conforms(Object m); }

? Implemented by application
?Library of conditions, varying by the comparison
?Comparator is method on one of objects, or static method
?Equals: Java equals()
?Compare: Java compareTo() (Comparable) for ordered

types, e.g., Integer
?Shortcuts (Mn), e.g., isInstance()



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 11

Patterns
?Subscription pattern
?A set of conditions C1, …, Cn and a function on those

?Evaluation
?Every condition is evaluated
?The function is evaluated

?F is constructed by combining basic conditions
?Logical and: And(m)=C1(m) and C2 (m) 
?Logical or: Or(m)=C1 (m) or C2 (m) 
?Xor, …, and Not
?Patterns are conditions



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 12

Programming Example

?Event class
public class ChatMsg implements java.io.Serializable {
private String sender;
private String text;
public String getSender() { return sender; }
public String getText() { return text; }
public ChatMsg(String sender, String text)
{ this.sender = sender; this.text = text; }

}



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 13

?Create a local DAC proxy
DASet myChat = new DAStrongSet("/Chat/Insomnia");

? Insert new objects (publish)
myChat.add(new ChatMsg("Bob", "Hi from Bob"));

?Advertise interest in new objects (subscribe)
public class ChatNotifiable implements Notifiable {
public void notify(Object m, String DACName) {
System.out.println(((ChatMsg)m).getText()); }

}
myChat.contains(new ChatNotifiable());



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 14

Content-Based Subscribing

?Step 1: verify if message comes from "Alice" 
?Java equals() in String

?Construct accessor (explicitly)
Accessor getAlice = new Invoke("/getSender", null);

?Construct condition
Condition fromAlice = new Equals(getAlice, "Alice");

?Subscribe
myChat.contains(new ChatNotifiable(), fromAlice);



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 15

?Step 2: verify if message text contains "Bob" 
?Java indexOf() in String: if not contained -1 returned

?Construct pattern
ExtendedCondition fromAlice = 
new Equals("/getSender", "Alice");

Object[] args = new Object[]{null, {"Bob"}};
ExtendedCondition noBob = 
new Equals("/getText/indexOf", args, new Integer(-1));

myChat.contains(new ChatNotifiable(),
fromAlice.and(noBob.not()));



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 16

Optimizations
?Application provides method object
?Type of messages is known
?Redundant invocations can be avoided
?Static code can be generated

? Type casts
? Caution: primitive types
? Uses sun.tools.javac

?Application provides method name
?Type of messages is unknown
?Can be explicitly specified by name
?Type-based subscription scheme implicitly adds knowledge



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 17

Performance



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 18



Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 19

Final Comments
? Java reflection
?Type check arguments
?Does the return type of Mi implement Mi+1?
?Primitive types

?Pragmatic approach
?Proof of feasibility
?No extension of Java

?Language integration
?Requirements for type-safe distributed interaction?
?For pattern expression?


