Content-Based
Publish/Subscribe with
Structural Reflection

Patrick Th. Eugster Rachid Guerraoui
Distributed Programming Group
Swiss Federal Institute of Technology
L ausanne

{ Patrick.Eugster, Rachid.Guerraoui} @epfl.ch

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 1

Context

= DACE project: quest for
eParadigms
esAbstractions
&sAnd algorithms for distributed (large-scale) computing
&l.anguage integration

& Distributed interaction

&Publish/subscribe paradigm: information bus
&Decoupling of participants in

=~ Time

= Space

- Flow

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 2

Distr. Asynchronous Collections

&« Generalization of event channels, message queues, ..
&« Accessible from various nodes

= Essentially distributed

N0 centralized component
&slncreased availability

= Notification mechanism
&Subscribing is expressing interest in new elements
&0bserver design pattern: subscriber is observer

= One size fits all
& Different QoS
&sDifferent variants according to different interaction flavors, e.g, push/pull

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 3

Publish/Subscribe

= Topic-based (subject-based)
eNews-like approach
~ Messages are classified according to topic names
- Hierarchies, wildcards, aliases
&sStatic, limited expressiveness

= Content-based (property-based)
eConsumers subscribe by specifying properties of messages
esApplication criteria Is seen as pattern
ePattern translated to filter, also seen as predicate
eDynamic, more difficult to implement

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 4

Approaches

= Properties usually interpreted as attributes

&Subscription pattern is described by attributes and expected
values

= Subscription language

&Specific grammar and parser

eMainly based on attributes
&E.g.,"sender 1 s bob"

= Template objects

Runtime message objects compared to predefined objects
eComparison attribute-wise

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 5

Model

= Looking for a pragmatic approach, respecting

esEncapsulation: description of properties and filtering not
based on attributes

&No subscription language, only language constructs

&Any " serializable" object can be used as message object
(no specific types)
&Subscription pattern must not be opaque to middleware

= QOutline

&Subscription pattern uses method invocations for querying
eDifferent comparison styles
&Nested method calls increase expressiveness

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster .

ACCessors

= Represent a means to query a message object

= Characterized by
&A set of method/arguments pairs (M, P,), .., (M., P,)
&Represents invocation chain to access information
&Sideffects not considered

= Java Accessor Interface

public interface Accessor {
public Cbject get(hject m throws Exception;
}

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 7

= Implemented by application
= General-purpose accessor | nvoke

elmplemented with structural reflection: Java core reflection
&M specified as Met hod (] ava. |l ang. refl ect) objects

- Type of message objects is known
-~ Method object lookup only once (in application)
-~ Explicit use of reflection
&M specified by name (and signature)
-~ Lookup for every message object
~ Structural conformance

.(I)f l- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster

Conditions

= Represents a basic condition on message objects

= Characterized by
&£ An accessor
& A predefined result
&A comparator (comparison function)
- Binary predicate
-~ Can beseenasM,,,

= Evaluation

&The binary predicate compares the predefined result and
&The result of the invocation chain

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster ;

= Condition Interface

public interface Condition {
publ i c bool ean conforns(Cbhject m,; }

= Implemented by application

= Library of conditions, varying by the comparison
eComparator iIs method on one of objects, or st at i ¢ method
ekEqual s: Java equal s()

eConpar e: Java conpar eTo() (Conpar abl e) for ordered
types, e.g., | nt eger

&Shortcuts (M,), e.g., 1 sl nst ance()

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster y

Patterns

= Subscription pattern
&A set of conditions C,, .., C, and a function on those

= Evaluation

esEvery condition is evaluated
&The function is evaluated

= F 1S constructed by combining basic conditions
&1.ogical and: And(m)=C,(m) and C, (m)
&1.ogical or: Or(m)=C, (m) or C, (m)
&Xor, .., and Not
ePatterns are conditions

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 11

Programming Example

= Event class

public class Chat Msg i nplenents java.io. Serializable {
private String sender;
private String text;
public String getSender() { return sender; }
public String getText() { return text; }
public Chat Msg(String sender, String text)
{ this.sender = sender; this.text = text; }

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 12

=« Create a local DAC proxy
DASet nyChat = new DAStrongSet ("/Chat/ | nsomi a");

= Insert new objects (publish)
nmyChat . add(new Chat Msg(" Bob", "H from Bob"));

= Advertise interest in new objects (subscribe)

public class ChatNotifiable inplenments Notifiable {
public void notify(Qoject m String DACNane) {
Systemout.printin(((Chat Msg)m.getText()); }

}
myChat . cont ai ns(new Chat Notifiable());

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster y

Content-Based Subscribing

« Step 1: verify iIf message comes from "Alice"
&Javaequal s() inString

= Construct accessor (explicitly)

Accessor getAlice = new I nvoke("/getSender", null);

= Construct condition
Condition fronmAlice = new Equal s(getAlice, "Alice"),;

= Subscribe
myChat . cont ai ns(new Chat Notifiable(), fronmAlice);

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster y

= Step 2: verify If message text contains "Bob"
&Javal ndexOf () inString: Iif notcontained - 1 returned

& Construct pattern
Ext endedCondition fromAlice =
new Equal s("/get Sender", "Alice");
(hj ect[] args = new hject[]{null, {"Bob"}};
Ext endedCondi ti on noBob =
new Equal s("/get Text/i ndex(th", args, new Integer(-1));
myChat . cont ai ns(new Chat Noti fi abl e(),
fromAl i ce. and(noBob. not()));

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster y

Optimizations

= Application provides method object
&Type of messages is known
#Redundant invocations can be avoided
&Static code can be generated
= lype casts

- Caution: primitive types
-~ Uses sun. tool s. | avac

= Application provides method name

&Type of messages is unknown
&Can be explicitly specified by name
&Type-based subscription scheme implicitly adds knowledge

.(I)fl- Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster y

Thioughp ot Tragzimal

G

E B

B B B o

Performance

Static ——
sk Ty

By narite

Dynaric ——--—-
D}-'ru.l‘rli.-: w E:!ﬁl: up

100 200 200 407 bl o] Ll o] T B agd 1000
Divider b Malching Rate

© P.Th. Eugster

Thioughp ot Tragrmal

—————— e

1

Slatic ——

DPL D}rn.:.m.i.c _—

DE'cl'grrli.c —————
L{LTL

Dy nariic W

T e mm————

Content-Based Publish/Subscribe with Structural Reflection

il Bl

¥ Sobdcribe iR

17

1K

1 T T T T 1 T T T T T T T
Static —— Btatic ——
Opk Dynamic —— Opt Dynardic ——
a8 [~ t D¥MMi-'-'- """ i a4 _ Dﬁfcl::nil.c ————— b
it Dynastic W Lookop - Dynasiic . Look up
:LE | -__‘_‘—\—_________\- - | _\'_"——_._]
— L T —— i —
E 0] E a7l i
5 E asf .
4 05| . . ‘i
= "
. L - .
w ol e] £ e
@ T, &
T e £ a4FfF .
- T - k
02 :""'\1. T e . a3 r T
T— o2
a1r —— . i 7
i) | | | | ﬂ.']. | | | | | | | |
a 2 4 i 8 10 1 2 3 4 5 & 7] g 10
Meting Lewvel [rar] # Diferent Query Methoda
Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 18

Final Comments

=« Java reflection
&Type check arguments
&Does the return type of M, implement M., ?
&Primitive types

= Pragmatic approach

&Proof of feasibility
2zNo extension of Java

&« Language integration

#Requirements for type-safe distributed interaction?
&For pattern expression?

Content-Based Publish/Subscribe with Structural Reflection
© P.Th. Eugster 19

