0soft Bus




B cote R

® Glueing together components
m [ype-safety issues at “interface”

m The case of distribution and middleware
m  Network inherently untyped
= How to implement “interface”

»  E.g., precompiler, language-integration (compiler), ...

m Don’'t want hardwired abstraction

m General-purpose programming language
features for library implementations of

middleware?




B Roecrop

Context
m Type-based publish/subscribe (TPS)
TPS in a programming language

TPS as a library
A “futuristic” TPS library
Comparison

m Conclusions




" Publish/Subscribe |

m Shared information bus, event channel
m Multicast abstraction
m Distributed components communicate indirectly, by
» Publishing events (messages)
» Subscribing to events (messages)
m Decoupling of components

m Example application
m Stock quote dissemination
» Stock quotes published by stock market
» Stock quotes subscribed to by stock brokers

_istributed Application Development




B TPSinShort N

m Motto

m Events are objects, instances of application-defined types

m Publishing objects

m A copy of a published object is created for each interested
subscriber

m Subscribing to object types
m No explicit ,subject®, the type is the subject
m No explicit ,properties®, the state is the content

- Subscriptions expressed as predicates on public members,
..e., fields and methods

» Subscriptions should be ,migratable”




_Roadmap_

Context
m Type-based publish/subscribe (TPS)

m TPSin aprogramming language
B PSS asallorary
m L Ut

Uristlc UJ}JJJJEFY




. TPSinaProgramming Language |

®m Merging middleware and programming
language
m [nvestigate feasibility of TPS principles

m Java,,

mpublish new StockQuote (..);
m subscribe (StockQuote q) {..}{..};

® I[mplemented with extended compiler
m Heterogenous translation
m Generation of “adapter code” e.g., StockQuoteAdapter
m [Invocations of primitives transformed, performed on adapters




1 Developing with Javaps

public class StockQuote
implements ... {

private String company;
private float value;
private int amount;

public String getCompany () {

return company; }
public float getValue() {...}
public int getAmount () {...}
public StockQuote (String c,
float v,

int a)
{ company = c;
value = v;
amount = a;

}
}

®m Publishing stock quotes

StockQuote g = new
StockQuote ("Telco", 100.0, 25);
publish g;

m Subscribing to stock quotes

Subscription s =
subscribe (StockQuote q)
{

return

g.getCompany () .equals ("Telco") ;

System.out.println(g.getPrice());
}

s.activate ()




_ Roadmap

Context
m Type-based publish/subscribe (TPS)

m TPSin aprogramming language
m TPS as alibrary

m L Ofuturistic” TRS Norary

[]




| TPSasan External Library |

m First-class software bus or event channel

m Distributed Asynchronous Collections (DACs)
= Variant of well-known collection abstraction
interface DAC extends Collection {}
m Intuitive use, integrated with inherent Java collection framework
m Adding an element to a DAC comes to publishing that element

m Browsing a DAC for particular elements expresses an interest in
these elements, and is interpreted as subscription

_afe Distributed Application Development




_ Developing with DACs

®m Publishing stock

quotes
DAC gs =

new DASet ("StockQuote');

StockQuote g =
new StockQuote ("Telco",
100.0,
23);
gs.add (q) ;

B Subscribing to stock quotes
class MySubs

implements Subscriber

public void notify (Object o) {
StockQuote g = (StockQuote)o;
System.out.println(g.getValue())

}
}

Accessor acc =

new Invoke (".getCompany", null);
Condition myCond =

new Equals (acc, "Telco"),;

gs.contains (new MySubs (), myCond),




B Roecrop

Context
m Type-based publish/subscribe (TPS)
TPS in a programming language

TPS as a library
A “futuristic” TPS library

[ ]

o Q)
| O
O
()

_

(/

-

R




' AFuturistic TPS Library |

m Application-defined event types and type safety

m A first-class channel abstraction must comply to the event type

m GDACs are parameterized by event type
interface GDACKT> extends Collection<T> {
volid add (T t);

Subscription<T> contains (Subscriber<T> st);

.}

®m Generic Java (GJ)
m Parametric polymorphism (F-bound polymorphism)
o A ,future® version of the Java language (1.5)

m Subscription enables the expression of predicates

m Behavioral reflection introduced in Java 1.3 (dynamic proxies)




I Developing with GDACs

®m Publishing stock B Subscribing to stock
guotes guotes
GDAC<StockQuote> gs = class MyStockSubs

new GDASet<StockQuote> () ; implements Subscriber<Stockquote>

StockQuote g =

public void notify (Stockquote qg) {
new StockQuote ("Telco",

System.out.println(g.getValue())

100.0, 25); }

gs.add (q) ;

Subscription<StockQuote> s =
gs.contains (new MyStockSubs ()) ;

Stockquote g = s.getProxy():;

g.getCompany () .equals ("Telco") ;

s.activate () ;




B Roecrop

Context
m Type-based publish/subscribe (TPS)
TPS in a programming language

TPS as a library
A “futuristic” TPS library
Comparison

B Conclusions




 Comparison

m Simplicity: programming effort
m 1. Java,g, 2. GDACs, 3. DACs

m Flexibility: extension effort
m 1. GDACs/DACs, 3. JavaPS

m (Type) safety: deployment
m 1. Javayg, 2. GDACs, 3. DACs

m Performance: overhead

m Negligible overhead of reflection
m No overhead for genericity (type casts inserted at compilation)




B Shoricomings

® No runtime support for genericity
GDAC<StockQuote> gs =
new GDASet<StockQuote> (StockQuote.class);

® No dynamic proxies for classes

Stockquote g = s.getProxy();

g.getCompany () .equals ("Telco") ;
® No dynamic proxies for primitive types

Stockquote g = s.getProxy()
g.getValue () < 100.00;

g.getCompany () .equals ("Telco") && ...;




B Roecrop

Context
m Type-based publish/subscribe (TPS)
TPS in a programming language

TPS as a library
A “futuristic” TPS library
Comparison

m Conclusions




I Conclusions TR

m Genericity
m For type-safe ,interface” abiding to applications
m Should include runtime support

m Reflection

m For implementation behind ,jinterface” on top of untyped network
m Should include structural and behavioral reflection

m [ype system

m Should be simple and uniform, e.g., no hybrid type system

m [PS stringent demands
m Requirements include many other abstractions

m NET?
_istributed Application Development







