
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Bounded Variability of Metric Temporal Logic

Carlo A. Furia · Paola Spoletini

Received: date / Accepted: date

Abstract Deciding validity of Metric Temporal Logic (MTL) formulas is generally
very complex and even undecidable over dense time domains; bounded variability
is one of the several restrictions that have been proposed to bring decidability
back. A temporal model has bounded variability if no more than v events occur
over any time interval of length V , for constant parameters v and V . Previous
work has shown that MTL validity over models with bounded variability is less
complex—and often decidable—than MTL validity over unconstrained models.

This paper studies the related problem of deciding whether an MTL formula
has intrinsic bounded variability, that is whether it is satisfied only by models with
bounded variability. The results of the paper are mainly negative: over dense time
domains, the problem is mostly undecidable (even if with an undecidability degree
that is typically lower than deciding validity); over discrete time domains, it is
decidable with the same complexity as deciding validity. As a partial complement
to these negative results, the paper also identifies MTL fragments where deciding
bounded variability is simpler than validity, which may provide for a reduction in
complexity in some practical cases.

Keywords metric temporal logic · bounded variability · decidability and
complexity

The first author’s work was partially done at the Chair of Software Engineering of ETH Zurich,
Switzerland.
A preliminary version of this work appeared in the 21st International Symposium on Temporal
Representation and Reasoning (TIME) in 2014 [23].

Carlo A. Furia
Department of Computer Science and Engineering, Chalmers University of Technology, Sweden
Tel.: +46-73-7341296
Fax.: +46-73-7341296
E-mail: furia@chalmers.se

Paola Spoletini
Department of Software Engineering and Game Development, Kennesaw State University, USA
Tel.: +1-470-578-3811
E-mail: pspoleti@kennesaw.edu

2 Carlo A. Furia, Paola Spoletini

1 Reaping the Benefits of Bounding Variability

In mathematical logic, the fundamental decision problem is validity: establishing
whether an arbitrary formula of the logic is satisfied by all possible models. Ex-
pressive logics whose validity problem is decidable, with tractable complexity, are
powerful tools for the rigorous analysis of systems: verifying that system behavior
satisfies a property amounts to checking the validity of the implication S ⇒ P ,
where S and P are formulas of the logic that formalize system and property.

For the analysis of real-time systems, whose behavior depends on the precise
times in which events occur, real-time logics are the notation of choice. A popu-
lar real-time logic is the Metric Temporal Logic [31,3], which is both expressive
and intuitive. Unfortunately, validity is generally undecidable for MTL over dense
time domains—precisely the most valuable semantics from the point of view of
real-time modeling since a dense time domain can naturally accommodate truly
asynchronous events over time. The only way out of this predicament is restricting
the expressive power of MTL in exchange for a decidable validity problem.

One approach to restricting MTL expressiveness consists in introducing se-

mantic constraints. We pursued this approach in previous work [18,21,22], where
we showed that validity of MTL over dense time becomes decidable under the
restriction of bounded variability. A nonnegative integer v and a time duration V

identify all models with variability bounded by v/V : models where there are no more
than v events (such as change of state) over any interval of length V . Models with
bounded variability can still capture asynchronous behavior (events that are arbi-
trarily close in time) if the time domain remains dense. As we recall in Section 4,
validity for MTL over dense time is fully decidable for models with variability
bounded by v/V . Even over discrete time, where MTL is decidable without re-
strictions, deciding validity over models with bounded variability is often simpler
in practice than the general case.

For an approach based on bounded variability to work satisfactorily in ver-
ification, it remains to be established whether models with bounded variability
provide a sufficiently faithful formalization of system behavior. In some domains
bounded variability naturally emerges as a physical property of the system be-
ing modeled. For example, the behavior of a digital event counter (such as the
counter of ionization events in a Geiger-Müller tube) whose minimum time reso-
lution is 0.01 seconds is captured without loss of precision whatsoever by models
with variability bounded by 100 events over 1 second.

Guaranteeing that bounded variability is intrinsic may not be always feasible.
A more analytical approach turns the issue of determining whether all models of
an MTL formula have bounded variability into a decision problem distinct from
validity. Given v and V , and an MTL formula φ, the bounded variability problem

asks whether every model of φ has variability bounded by v/V . If the bounded
variability problem is decidable, we can approach the study of validity as follows.

1. Build an MTL formula φ that formalizes the intended behavior under analysis.
2. Check whether φ has intrinsic bounded variability—that is, whether every

model of φ has variability bounded by v/V .
3. If the check in 2 is successful, analyze the validity of φ using the decidable

algorithms for models with bounded variability. This is simpler than deciding
validity for general models, and it does not miss any possible behavior.

Bounded Variability of MTL 3

Table 1 Overview of the main results of this paper; all complexity bounds in the table are
tight, that is the problems are complete for the given complexity classes. The bounded vari-
ability problem for MTL is undecidable over dense time (with continuous semantics), but its
complexity (coRE-complete) is lower than the complexity of the validity problem under the
same semantics (Σ1

1 -complete); the bounded variability problem for MTL is decidable over
discrete time, and its complexity (EXPSPACE-complete) is the same as the complexity of the
validity problem under the same semantics. See Table 3 and Table 5 for details.

time domain validity problem bounded variability problem
decidability complexity decidability complexity

discrete decidable EXPSPACE decidable EXPSPACE
dense (continuous) undecidable Σ1

1 undecidable coRE

4. If the check in 2 is unsuccessful, then be aware that the bounded variability
constraint misses some possible behaviors, and hence a different, possibly more
powerful, approach to analyzing φ is needed.

For this approach to work, the bounded variability problem has to be decidable
and has to have a lower complexity than the validity problem for MTL under the
same interpretation.

The main contribution of this paper is an analysis of the decidability and com-
plexity of the bounded variability problem for MTL under various interpretations,
including both discrete and dense time domains. The analysis leverages a con-
nection between the bounded variability problem and various decision problems
involving overflows of counters in a variant of Minsky’s counter machines [38]. The
results, summarized in Table 1, are mainly negative: the bounded variability prob-
lem is generally undecidable over dense time, whereas it is decidable over discrete
time but as complex as validity. These results denote major hurdles to pursuing
the idea of finding formulas with bounded variability in order to use simpler al-
gorithms for validity: the complexity of solving the bounded variability problem
(step 2 above) dominates and nullifies the benefits of using simplified algorithms.

As a partial converse of these negative results, Section 7 identifies two MTL
fragments, one over discrete time and one over dense time, for which the above ap-
proach is feasible. The bounded variability problem is fully decidable for formulas
in such “bounded friendly” fragments, which may provide enough expressiveness
to formalize system behavior in interesting special cases.

Outline. Section 1.1 summarizes related work in real-time formalisms, focusing
on the restrictions—syntactic and semantic—that have been proposed to obtain
a decidable validity problem. Section 2 formally introduces fundamental notions
used throughout the paper, including those of timed word and bounded variabil-
ity. Section 3 presents MTL in detail: its syntax (Section 3.1), its semantics under
different interpretations (Section 3.2), and the decidability and complexity of va-
lidity under each interpretation (Section 3.3). Section 4 summarizes and combines
our previous work on the decidability and complexity of MTL validity over mod-
els with bounded variability—for discrete as well as dense time domain. Section 5
recalls the definition of nondeterministic n-counter machines, introduces three de-
cision problems involving counter overflows (Section 5.1) and studies their com-
plexity, and illustrates the connection between MTL and such counter machines
(Section 5.2). Section 6 presents the main results of the paper. After formally

4 Carlo A. Furia, Paola Spoletini

defining two variants of the bounded variability problem (Section 6.1), it proves
the complexity of the two problems for various MTL semantics over both dense
(Section 6.2) and discrete (Section 6.3) time. Section 7 provides two examples of
MTL fragments, again over both discrete (Section 7.1) and dense (Section 7.2)
time, for which the bounded variability problem is tractable—fragments that we
dub “bounded friendly”. Section 8 concludes with a brief overview of the results
and a summary of open problems that belong to future work.

1.1 Related Work

The amount of work on temporal logic and its decidability problems is staggering,
and stretching back over four decades [15,17]. This section focuses on the research
that is most directly related to the paper’s techniques and results, and in particular
on the logic MTL and its variants.

1.1.1 Linear Temporal Logic

Linear-temporal logic (LTL)—introduced in computer science by Pnueli [50]—is
arguably the most widely known kind of temporal logic. The expressiveness, de-
cidability, and complexity properties of LTL are remarkably robust with respect
to variants in the underlying semantics—in particular whether time is a discrete
or dense set. The bulk of the research has focused on the infinite discrete-time
semantics of LTL, where the expressiveness [25] and PSPACE-completeness [59]
of LTL are well known, and where the correspondence with Büchi automata [61,
60] supported numerous theoretical and practical developments. However, most of
the results over discrete time generalize to other semantics; for example, Kamp’s
seminal work on the expressive completeness of LTL [30] applies to all Dedekind-
complete sets (including the real numbers) as time domain, and Reynolds extended
the PSPACE-completeness result to the reals [54]. The complexity of LTL frag-
ments and variants has also been extensively surveyed [12,33,5]. Some of these
latter results are recalled and used in Section 7.

1.1.2 Metric Temporal Logic

The picture is considerably more fragmented if we consider temporal logics for
real time, that is equipped with a metric on time. Syntactically, the most natural
extension of LTL to real time is the Metric Temporal Logic (MTL), which is the
focus on the present paper. MTL was introduced by Koymans [31] as a metric first-
order temporal logic supporting unrestricted quantification over time variables.
It was Alur and Henzinger’s subsequent work [3], however, that popularized the
propositional subset of Koyman’s MTL; since their seminal work, “MTL” refers to
this propositional subset, where the temporal operators of LTL are decorated with
quantitative bounds on time in the form of intervals. As we recall in Section 3.3,
Alur and Henzinger showed that MTL is fully decidable over discrete time domains,
where it boils down to an exponentially succinct version of LTL. They also showed
that MTL becomes highly undecidable over dense time domains—in particular,
the nonnegative reals.

Bounded Variability of MTL 5

Decidable MTL fragments. The undecidability proof of MTL over dense time opened
a new line of research consisting in devising restrictions that get back decidability
while preserving as much expressive power as possible. A number of works targeted
syntactic restrictions, that is they considered fragments of all MTL formulas. A
notable result in this line of work is the logic MITL [2], which prohibits punc-

tual (or singular) intervals in temporal operators. With this restriction, MITL is
fully decidable and EXPSPACE-complete, matching the complexity of MTL over
discrete time; the original automata-based decision procedure [2] was simplified
in a later series of works [34,35,36,42]. Bouyer et al. showed different syntactic
restrictions to MTL that achieve decidability (typically with EXPSPACE complex-
ity) while allowing punctual intervals [6]; for example, the MTL fragment where
all time intervals are bounded, that is have integer endpoints, is fully decidable.

Hirshfeld and Rabinovich approached the problem of devising decidable dense-
time temporal logics from a different angle. Instead of extending the automata-
theoretic methods that are mostly used over discrete time, they revisited the con-
nection between temporal logic and monadic logic [24] and came up with a fully-
decidable dense-time logic [26] which is as expressive as MITL. Their approach
also paved the way for pushing the expressiveness of the logic while preserving
decidability [51,27].

Ouaknine and Worrell also pushed the limits of MTL decidability over dense
time, by proving that full MTL is decidable under a specific dense-time semantics
known as the finite-word pointwise semantics [45] (see Section 3.2 for a definition).
Their result has little practical impact, since MTL is just “barely” decidable over
this semantics (that is, it is decidable but has daunting non-primitive recursive
complexity), but was quite surprising and convincingly showed that the properties
of MTL over dense time are considerably more complicated than over discrete
time [29].

Decidable semantic restrictions to MTL. Ouaknine and Worrell also considered se-

mantic restrictions to MTL over dense time, most notably the restriction to bounded

time, where there is a finite known upper bound T on the maximum time of oc-
currence of events in any behavior. Time-bounded MTL validity is decidable [43,
47], with the—usual, for dense-time verification—complexity of EXPSPACE.

This paper considers a different kind of semantic restriction, called bounded

variability, which limits the maximum number of events that can occur within a
time unit. Wilke first studied bounded variability for timed automata and monadic
logic [62]; his results imply the decidability of MTL over dense time with bounded
variability. Previous work of ours studied the complexity of MTL with bounded
variability [18,20], and extended some of the techniques to the case of discrete
time [21,22], where we showed how the LTL validity problem can be simplified
under the assumption that only v < V change events happen every V discrete
time steps. Section 4 recalls in detail these works of ours, and connects them to
the present paper’s results.

1.1.3 Other Real-Time Logics

Bounded variability for other notations. Bounded variability can be considered a
natural semantic restriction over dense time, in that it accommodates asynchrony
(events can occur arbitrarily close in time) while constraining the maximum “speed”

6 Carlo A. Furia, Paola Spoletini

or “density” of state-change events. In fact, it has been considered for formalisms
other than MTL, including timed automata [62], duration calculus [16], and dif-
ferent kinds of real-time temporal logics [55,56]

Interval temporal logic. The study of real-time is somewhat less developed in tem-
poral logics not based on LTL, and especially in temporal logics based on intervals
rather than points. In fact, interval temporal logics are highly expressive, often
undecidable formalisms whose detailed classification has occupied researchers up
until recent years [7]. Only recently have real-time interval temporal logics been
studied in some detail [9,39]. Some interval logics, such as propositional neighbor-
hood logic, remain decidable over the reals [41]. Other variants, such as a fragment
of Halpern-Shoham logic that includes the two Allen’s relations “meets” and “be-
gins” is decidable over the rationals but undecidable over the reals [40]. The classic
duration calculus includes fragments that are decidable over dense time [11,53,16,
10].

1.1.4 Background

The undecidability results of Section 6.2 use reductions from undecidable problems
of nondeterministic n-counter machines, which we introduce in Section 5. These
are a kind of Minsky’s counter machines [38]; their connection with MTL was first
exploited by Alur and Henzinger [3].

We assume readers are familiar with fundamental notions of computability and
complexity theory. In particular, the arithmetical hierarchy [57], the complexity
classes NP, EXP, PSPACE, and EXPSPACE, and the notion of (polynomial-time)
reduction between decision problems [48].

2 Timed Words and Bounded Variability

Time domains: discrete and dense. Complexity and other properties of temporal
logics change significantly according to whether the time domain is a discrete or
a dense set. The results of this paper will target both kinds of time domain: the
discrete set of the nonnegative integers N and the dense (and continuous) set of
the nonnegative reals R≥0. Definitions applicable to both domains will use the
symbol T to denote an unspecified time domain that stands for either N or R≥0.
Generalizing the results to so-called bi-infinite [49, Chap. 9] time domains (such as
Z and R) is possible in some cases but is outside the scope of the present paper.

Timed words. Timed words model real-time behavior as sequences of instantaneous
events that occur over time at precise instants. Since they are natural generaliza-
tions of (untimed) words—the canonical models of behavior in qualitative temporal
logic [17,60]—timed words are widely-used models that account for a variety of
real-time formalisms. In particular, they are standard for MTL since Alur and
Henzinger’s work [3,4,2]; for this reason, they are the used throughout the present
paper.

A timed word over propositions P and time domain T is a sequence

w = (P0, t0) (P1, t1) · · · (1)

Bounded Variability of MTL 7

of pairs (Pk, tk) ∈ (2P ×T) such that:

1. Nonnegative integers k ≥ 0 denote position in the timed word w.

(a) Finite word : If w ∈ (2P × T)∗, then there exists a nonnegative integer,
denoted by |w| and called the length of w, such that only positions 0 ≤ k <
|w| are valid.

(b) Infinite word : If w ∈ (2P ×T)ω, then every position 0 ≤ k is valid, and we
let |w| =∞ and t|w|−1 =∞.

2. For each valid position k: Pk is a nonempty1 subset of P denoting the propo-
sitions holding (or events occurring) at position k; and tk ∈ T is a timestamp
denoting the absolute time of occurrence of the events at position k.

3. Monotonicity: the timestamp sequence is strictly monotonic, that is, if h and k

are two valid positions in w such that h < k, then th < tk.
4. Finite variability: the timestamp sequence is finite or divergent, that is, either

w is finite or, for all t ∈ T, there exists a valid position k such that tk > t.
Finite variability (also called non-Zenoness [1,26]) is a customary requirement
for infinite words over dense time domains, where it rules out pathological
behaviors with infinitely many events occurring over a finite amount of time. It
holds trivially over finite words, and it follows from monotonicity over discrete-
time infinite words.

5. Base time: the first timestamp t0, if it exists, is 0. This is merely a technical con-
venience to more reconcile the two MTL semantics (pointwise and continuous)
introduced in Section 3.2.

Bounded variability of timed words. Finite variability prevents timestamps in a
timed word from accumulating at a finite time, but it does not introduce a word-
wide maximum density of timestamps.

Example 1 Consider a timed word u ∈ ({p} × R≥0)ω such that, for all integers
y > 0 and 0 ≤ x < y, y + x/y is a timestamp tk in u for some k > 0; that is, u’s
timestamp sequence is the one shown in Figure 2:

0, 1, 2, 2 +
1

2
, 3, 3 +

1

3
, 3 +

2

3
, 4, 4 +

1

4
, 4 +

2

4
, 4 +

3

4
, 5,

Note that u has n+1 occurrences of p between time n and time n+1 (included). In
fact, Lemma 2 shows that any interval between time t and time t+ 1 in u contains
up to btc+ 1 valid positions (or timestamps), each with an occurrence of p. Thus,
even if u has finite variability (the timestamps grow indefinitely large), there is no
bound on the number of events that occur over a unit time interval.

Lemma 2 For all 0 < t̃ ∈ R≥0, timed word u—defined in Example 1—includes up to

bt̃c+ 1 valid positions with timestamps between t̃ and t̃+ 1 (included).

Proof Without loss of generality, let t̃ be a timestamp in u greater than 1. Such t̃

can be written as y+ x/y for integers 0 ≤ x < y and y = bt̃c; the interval from t̃ to
t̃+ 1 includes all instants up to some (y + 1) + x′/(y + 1), for integers 0 ≤ x′ ≤ y.

1 Without loss of generality, since one can always introduce a special letter ε denoting absence
of events.

8 Carlo A. Furia, Paola Spoletini

1 2 3 4 5 6

p p p p p pp p p p p p p p p p p p

Fig. 2 The timed word u, introduced in Example 1, has finite but unbounded variability.

There are exactly (y + 1− x) + x′ instants over such interval: (y + 1)− x instants
between t̃ (included) and y+1 (included), and x′ instants between y+1 (excluded)
and (y+1)+x′/(y+1) (included). The constraint that t̃+1 ≥ (y+1)+x′/(y+1)—so
that the unit interval is indeed the one including (y+1)+x′/(y+1)—is equivalent
to 0 ≤ x′ ≤ x < y. Thus, picking x = x′ maximizes the number (y + 1− x) + x′ of
instants in the interval, which becomes just y + 1. ut

A timed word w has variability bounded by v/V—read “v over V ”—for 0 < V ∈ T
and v ∈ N, iff it has at most v valid positions within any time interval of length V .
That is, for all positions k such that k + v < |w|,

tk+v − tk > V .

The symbols B∗T[v/V] and BωT[v/V] respectively denote the sets of all finite and
of all infinite timed words over T with variability bounded by v/V . In contrast, the
symbols B∗T[∞] and BωT[∞] respectively denote the sets of all finite and of all infinite
timed words over T without restriction of bounded variability—as emphasized by
the ∞ symbol.

Remark 3 Any given finite timed word w ∈ B∗T[∞] has variability bounded by
some v/V ; precisely by |w| /max(1, (t|w|−1− t0)). However, the notion of bounded
variability can still be nontrivial when applied to infinite sets of finite timed words.

For example, consider the denumerable set U = {un | 1 < n ∈ N}, where
each un is obtained by truncating u in Example 1 up to and including the integer
timestamp with value n. It follows from Lemma 2 that each un ∈ U is bounded
by n/1. However, there is no finite n such that all words in U are bounded by n,
because there is always a longer word in U with more (albeit finitely many) than
n valid positions over a time interval of unit length.

3 Metric Temporal Logic

Metric Temporal Logic (MTL) naturally extends classic Linear Temporal Logic
(LTL) by providing means to express quantitative constraints on the time of oc-
currence of events. This section presents the syntax and semantics of propositional
MTL.

Time intervals. MTL decorates LTL temporal operators with intervals of the time
domain T. An interval is a convex subset of T written as I = 〈a, b〉, where a and
b are elements of T ∪ {∞}, 〈 is one of (and [, and 〉 is one of) and]. Such an
interval I consists of all elements of T between a and b, where a is included iff 〈 is

Bounded Variability of MTL 9

[, and b is included iff 〉 is]. We normally consider intervals with integer endpoints
a and b even if the time domain T is R≥0 (but the interval itself includes all real
numbers between a and b if and only if T = R≥0). For s ∈ T, the pseudo-arithmetic
expressions > s, ≥ s, < s, ≤ s, and = s are abbreviations for the intervals (s,∞),
[s,∞), [0, s), [0, s) and [s, s].

3.1 Syntax of MTL

MTL formulas are built out of one binary temporal operator, the until UJ , and
the usual propositional logic connectives, according to the recursive definition:

φ ::= > | p | ¬φ1 | φ1 ∧ φ2 | UJ (φ1, φ2) ,

where p ranges over the alphabet of propositions P, J is an interval of the time do-
main T with integer endpoints, and > represents the Boolean constant for “true”.

Derived operators. The definitions of ⊥ (the Boolean constant for “false”), ∨, ⇒,
and⇔ are as in standard propositional logic. The symbol α abbreviates the formula∨
p∈P p, which holds iff at least one proposition in P holds. The derived temporal

operators we use in this paper and their definitions are:

symbol definition name

♦J (φ) UJ (>, φ) eventually
�J (φ) ¬♦J (¬φ) globally or always

ÛJ (φ1, φ2) UJ (α⇒ φ1, φ2) action until

©J (φ) ÛJ (⊥, φ) next

All operators are standard except the action until, which is a variant of the usual
until operator where the first argument has to hold only if α hold—that is only
if any proposition holds. The action until is useful to accommodate timed word
semantics, where no proposition holds between consecutive elements in any word.

Operator precedence is as follows: ¬ has the highest precedence, then ∧, then
∨, then ⇒, then all temporal operators, and finally ⇔. We may omit parentheses
around arguments of temporal operators when unambiguous, and drop intervals
of the form [0,∞) to stress the correspondence with LTL (where all temporal
operators have an implicit interval [0,∞)).

Size of formulas. The size |φ| of an MTL formula φ is the size of its encoding as a
string, using a succinct (say, binary) encoding of the constants used as endpoints of
time interval. Since we are going to be concerned only with asymptotic complexity,
the details of the encoding are irrelevant.

3.2 Semantics of MTL

Pointwise vs. continuous semantics. There are two main semantics of MTL [6,13]:
the pointwise semantics and the continuous semantics. If the time domain is the
discrete set N, the differences between the two semantics are practically incon-
sequential. In contrast, whether a pointwise or a continuous semantics is chosen
affects fundamental properties of decidability of MTL over dense time R≥0, and
correspondingly some of the results of the present paper.

10 Carlo A. Furia, Paola Spoletini

Pointwise semantics. Given an MTL formula φ, a timed word w as in (1), and a
position k ∈ N, we write w, k |=p φ to denote that w is a model of φ at position k

under the pointwise semantics. In this context, k is sometimes referred to as the
“current” position or step. The pointwise satisfaction relation |=p is inductively
defined as follows:

w, k |=p > iff k < |w| ;
w, k |=p p iff p ∈ Pk ;
w, k |=p ¬φ1 iff w, k 6|=p φ1 ;
w, k |=p φ1 ∧ φ2 iff w, k |=p φ1 and w, k |=p φ2;
w, k |=p UJ (φ1, φ2) iff there exists a position k < h < |w| such that:

th − tk ∈ J , w, h |=p φ2, and, for all positions k < x < h,
w, x |=p φ1;

w |=p φ iff w, 0 |=p φ .

It is useful to spell out the semantics of the derived next operator:

w, k |=p ©J (φ1) iff k + 1 < |w|, tk+1 − tk ∈ J , and w, k + 1 |=p φ1 .

That is, w, k |=p ©J (φ1) holds iff φ1 holds at the next position in w at a time
whose difference with the current evaluation time tk is in J .

Remark 4 The semantics of U and Û coincide under the pointwise semantics, since
formulas are only evaluated at valid positions, where α invariably holds (as Pk 6= ∅
at all valid positions k).

Continuous semantics. Given an MTL formula φ, a timed word w as in (1), and a
time instant t ∈ T, we write w, t |=c φ to denote that w is a model of φ at time t
under the continuous semantics. In this context, t is sometimes referred to as the
“current” time. The continuous satisfaction relation |=c is inductively defined as
follows:

w, t |=c > iff t ≤ t|w|−1 ;

w, t |=c p iff there exists a position k ∈ N such that:
k < |w|, tk = t, and p ∈ Pk;

w, t |=c ¬φ1 iff w, t 6|=c φ1;
w, t |=c φ1 ∧ φ2 iff w, t |=c φ1 and w, t |=c φ2;
w, t |=c UJ (φ1, φ2) iff there exists u > t such that: u− t ∈ J ,

w, u |=c φ2, and, for all t < v < u, w, v |=c φ1;
w |=c φ iff w, 0 |=c φ .

Remark 5 The continuous semantics of the derived next operator w, t |=c ©J (π),
when π is a purely propositional formula, requires that there exists a valid position
h ∈ N such that t < th, there are no valid positions with timestamp between t and
th, th − t ∈ J , and w, th |=c π. This corresponds closely to the semantics of next

under the pointwise semantics, since the semantics of the action until (on which
next ’s definition relies) forces the evaluation of π in the next valid position from
the current t. We will make use of this correspondence to match results in the
pointwise and in the continuous semantics.

Bounded Variability of MTL 11

Example 6 The MTL formulas φ1+1 = ♦=1♦=1 p and φ2 = ♦=2 p are equivalent un-
der the continuous semantics but not under the pointwise semantics. To illustrate
the difference, consider the finite word w2 = ({p}, 0) ({p}, 2). Clearly, w2 |=c φ2 and
w2 |=c φ1+1—w2 is a model of both φ2 and φ1+1 under the continuous semantics,
where both formulas only require p to occur at time 2. In contrast, w2 |=p φ2 but
w2 6|=p φ1+1—w2 is a model of φ2 but not of φ1+1 under the pointwise seman-
tics, where φ1+1 requires an intermediate position with timestamp 1 to satisfy its
nested eventually operators.

3.3 Decidability and Complexity of MTL

Interpretations. An interpretation I is defined by a quadruple

I = 〈T, ◦,V, s〉 , (2)

consisting of a time domain T, a choice ◦ of finite (∗) or infinite (ω) words, a choice
V of bounded (v/V) or finite but possibly unbounded (∞) variability, and a choice s

of pointwise (p) or continuous (c) semantics. We use symbols of the form B◦T[V](φ)s
to denote sets of timed words that satisfy φ under a certain interpretation. For
example, B∗T[∞](φ)p is the set of all finite timed words over T that satisfy φ under
the pointwise semantics; and B∗T[v/V](φ)c is the set of all timed words over T with
variability bounded by v/V that satisfy φ under the continuous semantics.

Validity and satisfiability. An MTL formula φ is satisfiable under an interpretation
I = 〈T, ◦,V, s〉 if B◦T[V](φ)s 6= ∅; otherwise φ is unsatisfiable. It is valid if B◦T[V](φ)s =
B◦T[V]; otherwise φ is invalid. Since MTL formulas are closed under complement,
satisfiability and validity are dual under complement: φ is valid if and only if ¬φ
is unsatisfiable.

MTL decidability. MTL is decidable under an interpretation I if deciding whether an
arbitrary formula φ is satisfiable under I is a decidable problem. The “complexity
of MTL under interpretation I” refers to the complexity of satisfiability or validity
under I.2 The central columns of Table 3 recall the known complexity results for
MTL validity under different interpretations, without the assumption of bounded
variability.

MTL is decidable over discrete time over both finite and infinite words [3],
and under both the pointwise and the continuous semantics (even if most au-
thors use infinite words and pointwise semantics [4], extending their results to
the other interpretations is straightforward). In all cases, satisfiability is com-
plete for EXPSPACE, which in practice determines algorithms that run in doubly-
exponential time in the worst case. This is an exponential more than LTL, which is
PSPACE-complete; the succinct binary encoding of interval endpoints in MTL en-
tirely accounts for this exponential blow-up—a manifestation of the “succinctness
phenomenon” [48, Chap. 20].

2 If satisfiability (resp. validity) belongs to a complexity class that is closed under comple-
ment, validity (resp. satisfiability) belongs to the same complexity class, and hence we can
speak generically of “complexity of MTL” without specifying whether we refer to satisfiability
or validity. In the general case, satisfiability is in some complexity class C iff validity is in the

complement class C.

12 Carlo A. Furia, Paola Spoletini

Table 3 Known complexity results for MTL validity under different interpretations. For each
choice of time domain T, finite (∗) or infinite (ω) timed words, and pointwise or continuous
semantics, the table shows whether MTL is decidable (yes or no) under that interpretation
and the complexity of deciding validity, both for models with finite variability and for models
with variability bounded by v/V . Blank cells correspond to parameters whose choice does not
affect the result of the row. Next to each complexity result there is a reference—to another
paper or to a section of the present paper—where it is proved.

T ◦ s w/ finite variability w/ v/V bounded variability
N/R≥0 ∗/ω p/c dec? complexity dec? complexity
N y EXPSPACE-complete [3] y EXPSPACE-complete §4.2
R≥0 ∗ p y non-primitive recursive [45] y EXPSPACE-complete §4.3
R≥0 ω p n coRE-complete [44] y EXPSPACE-complete §4.3
R≥0 c n Σ1

1 -complete [3] y EXPSPACE-complete §4.3

MTL is invariably more complex over dense time, but the exact complexity de-
pends on the specific interpretation chosen. Under the continuous semantics, MTL
is highly undecidable—precisely, validity is Σ1

1 -complete [3]. Under the pointwise
semantics, it is still undecidable over infinite words [44]—albeit with a lower un-
decidability degree than over infinite words—whereas it becomes decidable over
finite words [45]. However, its astronomical complexity (non-primitive recursive)
makes this decidability result of little practical significance. A related result is
that, over dense time, the continuous semantics is strictly more expressive than
the pointwise semantics [14].

4 Metric Temporal Logic with Bounded Variability

The decidability and complexity of MTL under different interpretations change
significantly if one considers models with bounded variability, as can be seen by
comparing the central to the rightmost columns in Table 3.

4.1 Expressing Bounded Variability in Temporal Logic

Some of the constructions in this paper—and, in particular, the proofs of the upper
bounds of deciding MTL over models with bounded variability—rely on being able
to express that a model has bounded variability syntactically by means of MTL
formulas. Precisely, expressing bounded variability succinctly requires two variants
of MTL that we call MTL+ and MITL+.

MTL+ augments MTL with the temporal operators BnT , for n ∈ N and a
positive V ∈ T. BnT holds iff there are at most n valid positions within the next T
time units; that is:3

w, k |=p BnT iff k + n ≥ |w| or tk+n − tk > T ;
w, t |=c B

n
T iff k + n ≥ |w| or tk+n − tk > T ,

where k is the smallest position such that t ≤ tk.

3 Note that “the smallest position k such that t ≤ tk” is well defined over words with finite
variability [17, Sec. 9.4.1].

Bounded Variability of MTL 13

MITL+ is MTL+ where all intervals appearing in temporal operators are non-
singular (that is, include more than one element); equivalently, MITL+ is MITL [2]
augmented with the temporal operators BnT .

Based on previous results, it is possible to establish tight bounds on the com-
plexity of MTL+ and MITL+.

Proposition 7 Satisfiability of MTL+ over discrete-time models is EXPSPACE-com-

plete.

Proof (idea) For the upper bound, it is possible to minimally modify the decision
procedure for TPTL [4] so that operators with the semantics of BnT are handled
natively without complexity penalty. This is enough since TPTL is as complex,
and as expressive, as MTL over discrete time [3].

For the lower bound, note that every MTL formula is also an MTL+ formula,
and MTL satisfiability is EXPSPACE-hard over discrete time [3]. ut

Proposition 8 Satisfiability of MITL+ over dense-time models is EXPSPACE-com-

plete.

Proof (idea) For the upper bound, it is possible to encode BnT in Hirshfeld and

Rabinovich’s TLCI [51,52,27] as �(¬C[0,T]
n+1 >), where C

[a,b]
k φ is TLCI’s counting

operator—which expresses that φ holds at least k times over interval [a, b]. (While
Hirshfeld and Rabinovich [51,52,27] define the counting operators only for open
intervals, closed intervals can be indirectly encoded along the lines of our previous
work [18].) Satisfiability for TLCI is PSPACE-complete under unary encoding [52];
hence MITL+ is in EXPSPACE assuming a succinct encoding of constants.

For the lower bound, note that every MITL formula is also an MITL+ formula,
and MITL satisfiability is EXPSPACE-hard over dense time [2]. ut

Expressing bounded variability syntactically is straightforward using MITL+.

Lemma 9 Given an interpretation 〈T, ◦, v/V, s〉, one can build, in polynomial time,

an MITL+ formula Vv,V such that: (1) B◦T[v/V](Vv,V)s = B◦T[∞](Vv,V)s (that is,

Vv,V is satisfied precisely by all words with variability bounded by v/V under the given

interpretation); and (2) Vv,V has size polynomial in log v and log V .

Proof It is clear that MITL+ formula Vv,V = �(BvV) satisfies the lemma’s state-
ment. ut

Remark 10 Adding the operators BnT does not affect expressiveness or complex-
ity, but provides additional succinctness. In fact, it is possible to build an MTL
formula whose models are the same as the models of Vv,V (defined in Lemma 9)
modulo projection of extra propositions; however, since MTL does not have com-
pact operators such as BvV , this would introduce an exponential blow-up in log v.
To demonstrate, assume a discrete time model, and consider v > 0 propositions
pi, for i = 1, . . . , v. Proposition p1 has to hold initially, followed by p2, . . . , pv in
sequence; the sequence repeats indefinitely:

Bv = p1 ∧
∧

1≤k≤v

�(p1 ⇔© pk⊕1) ∧�

pk ⇒ ∧
1≤h6=k≤v

¬ph

 ,

14 Carlo A. Furia, Paola Spoletini

where a⊕b is a shorthand for 1+((a+b) mod v). Since every pk holds in a different
position, we can express bounded variability by requiring that the timestamp of
the next (v + 1)-th position in the future be greater than V with respect to the
current position’s (and note that k ⊕ v = k):

Bv,V =
∧

1≤k≤v
�(pk ⇒ U>V (¬pk, pk)) .

Thus, Bv∧Bv,V is satisfied only by models with variability bounded by v/V . How-
ever, Bv,V has size exponential in the size of the instance of BVv/V 〈N, ω, p〉(φ), pre-
cisely because BVv/V 〈N, ω, p〉(φ) encodes v succinctly whereas Bv,V enumerates
v propositions. Encoding the modulo-v counter in binary (using n = blog2 vc + 1
propositions) does not seem to help: while updates to the counter itself can be
done with formulas of size polynomial in n, expressing in MTL the fact that the
timestamp of the “next” occurrence is greater than V (with respect to the current
position’s) seems to require enumerating all 2n = v values for the counter. Similar
considerations would demonstrate that MITL+ is more succinct than MITL.

4.2 Bounded Variability over Discrete Time

The asymptotic complexity of deciding MTL is the same over models with bounded
variability as it is over finitely variable ones, that is satisfiability is EXPSPACE-
complete.

The lower bound is easy to prove because every word over discrete time has vari-
ability trivially bounded by 2/1—which is tantamount to monotonicity of times-
tamps. Therefore, satisfiability over discrete-time models trivially reduces to satis-
fiability over discrete-time models with bounded variability, which establishes that
the latter problem is EXPSPACE-hard.

The upper bound follows from Lemma 9.

Lemma 11 The satisfiability problem for MTL over discrete-time words with variabil-

ity bounded by v/V is in EXPSPACE.

Proof Given any MTL formula φ, build MTL+ formula φ′ = φ∧Vv,V , where Vv,V is
defined in Lemma 9. Then, φ′ is satisfiable (over generic models) iff φ is satisfiable
over models with variability bounded by v/V . Since

∣∣φ′∣∣ is polynomial in |φ|, log v,

and log V , and MTL+ is decidable in EXPSPACE (Proposition 7), we have proved
that the satisfiability problem for MTL over discrete-time words with variability
bounded by v/V is in EXPSPACE. ut

By combining the previous lemma with the trivial matching lower bound over
discrete time we have a tight bound.

Corollary 12 The satisfiability problem for MTL over discrete-time words with vari-

ability bounded by v/V is EXPSPACE-complete.

Bounded Variability of MTL 15

Complexity in special cases. Even if the asymptotic worst-case complexity of MTL
over discrete time does not change with bounded variability, our previous work [21,
22] indicates that the complexity decreases in practice for MTL formulas that can
be expressed with certain syntactic restrictions, where the exponential blow-up
due to succinct encoding of constants is essentially avoided. Therefore, we can
still assert that bounded variability may help simplify MTL decidability in some
specific cases.

4.3 Bounded Variability over Dense Time

The asymptotic complexity of deciding MTL is significantly lower over models
with bounded variability; whereas MTL is normally undecidable over dense time,
it is fully decidable and as complex as its discrete-time counterpart if variability
is bounded.

We studied the complexity of MTL over models with bounded variability in
previous work [18];4 in this section we outline how some of those results apply to
the present paper’s setting.

The lower bound follows the hardness proofs of Theorem 19 in [19].

Lemma 13 The satisfiability problem for MTL over dense-time words with variability

bounded by v/V is EXPSPACE-hard.

Proof (idea) The proof reduces MTL satisfiability of discrete-time words, which is
EXPSPACE-complete, to MTL satisfiability over dense-time words with bounded
variability, by associating discrete instants of time to positions in the word. Bound-
ed variability ensures that there is a maximum number of instants over each time
unit, which matches the discrete-time semantics. ut

The upper bound can be derived along the lines of Corollary 12 in [19].

Lemma 14 The satisfiability problem for MTL over dense-time words with variability

bounded by v/V is in EXPSPACE.

Proof (idea) Given any MTL formula φ, consider MTL+ formula φ′ = φ ∧ Vv,V ,
where Vv,V is defined in Lemma 9. Then, φ′ is satisfiable (over generic models) iff
φ is satisfiable over models with variability bounded by v/V .

φ′ is in general undecidable over dense time since MTL+ is a superset of the
undecidable MTL. However, it is possible to build a formula ψ in a decidable logic
such that, over words with variability bounded by v/V , ψ is satisfiable iff φ is.
Constructing ψ uses similar techniques as the proof of Corollary 12 in [19]. The
basic idea is to use a QITL-like decidable logic [18] to succinctly describe sequences
of events over consecutive time intervals of length V . Bounded variability ensures
that this can be done by enumeration since there are at most v events over any
such interval.

The key point is expressing subformulas such as ♦=d(p) without using singular
intervals, since these are not expressible directly in QITL-like logics or in MITL.

4 Also see the extended version of that work [19], which deals with the interpretations that
are applicable to the present paper.

16 Carlo A. Furia, Paola Spoletini

For example, if d < V and there are exactly v events within time V , the formula
is equivalent to ∆ = p ∨©(p ∨©(p ∨ · · ·)), with v − 1 nested occurrences of ©.

Then, ∆—and similar formulas for other cases—can be expressed in a QITL-
like logic succinctly, that is avoiding the explicit unrolling of v unary operators.
This is because QITL-like logics includes operators that can express “counting”
properties—such as “p occurs in one of the next v positions”—with a formula of
size logarithmic in v. The same operators can also express Vv,V succinctly as V ′v,V ,
as the negation of “there are v + 1 valid positions over the next V time units”.
We omit the details, which are somewhat fastidious—because they require dealing
with numerous special cases—but straightforward after [18].

In all, we build a formula ψ′ = ψ∧V ′v,V that has size polynomial in |φ|, log v, and
log V ; is satisfiable (over finitely-variable dense-time models) iff φ is satisfiable over
dense-time models with variability bounded by v/V ; and uses a QITL-like logic
that is decidable in EXPSPACE [18]. ut

Corollary 15 The satisfiability problem for MTL over dense-time words with vari-

ability bounded by v/V is EXPSPACE-complete.

The following result will also be useful in the rest of the paper.

Corollary 16 Given integers v and v′, 0 < V ∈ R≥0, and an MTL formula φ, it is

decidable whether there exists a timed word w over R≥0 such that w satisfies φ, and w

has variability bounded by v′/V but not by v/V .

Proof Consider the formulas Vv,V and Vv′,V , built according to Lemma 9. The
proof of Lemma 14 outlines how to build formulas ψ′, V ′v,V , and V ′v′,V such that

V ′v,V ∧¬V
′
v′,V ∧ψ

′ is satisfiable if and only if an w such as in the corollary’s statement
exists, which can be decided in EXPSPACE by Lemma 14. ut

5 Counter Machines

Counter machines [38,58] are powerful computational devices, widely used in for-
mal language theory. Following an approach pioneered by Alur and Henzinger [3,4]
which relates them to MTL, we use counter machines to establish the complexity
of deciding bounded variability over dense time. This section introduces a non-
deterministic version of counter machines,5 and derives some complexity results
about them that will be extensively used in Section 6.

Definition 17 An n-counter machine executes programs consisting of a finite list
of instructions with locations labeled `0, `1, . . . and operating on n integer counter
variables v0, . . . , vn−1. An instruction is one of the following:

halt terminate computation
if vk > 0 goto `i, `j conditional branch
inc vk increment counter
dec vk decrement counter

5 Our version of counter machines (Definition 17) uses nondeterministic jump instructions
conditional on testing a counter for being non-zero (greater than zero); while Alur and Hen-
zinger’s work [4] uses the more common version that tests a counter for being zero, the two
versions are known to be equivalent [58, Appendix A].

Bounded Variability of MTL 17

Table 4 The complexity of halting, non-halting, and recurring computation for n-counter
machines, n ≥ 2.

problem description complexity
halting Is the location with halt visited in

some computation?
Σ0

1 = RE-complete

non-halting Is the location with halt never visited
in some computation?

Σ0
2 -complete

recurring computation Is location `0 is visited infinitely often
in some computation?

Σ1
1 -complete

where the conditional branch consists in jumping to `i or `j nondeterministically
if counter vk is non-zero (when `i = `j we only write goto `i for brevity); and
decrementing a counter with value equal to 0 is undefined. Computations start at
location `0 with all counters equal to 0 and proceed according to the obvious se-
mantics of instructions. Without loss of generality, assume that, in every program,
instruction halt occurs exactly once and the last instruction in the program’s list
is either halt or a branch.

For n-counter machines, with n ≥ 2, consider the classic problems of halting,
non-halting, and recurring computation, which are described in Table 4. The com-
plexity of halting and non-halting is an immediate consequence of the well-known
complexity of the same problems for Turing machine computations [57] and the
fact that n-counter machines and Turing machines can simulate each other [38,
58]; the complexity of recurring computation is known for 2-counter machines [4],
which immediately generalizes to n-counter machines as well. Throughout the
paper, we only consider counter machines with at least two counters (the compu-
tational power of 1-counter machines is strictly lower, as their halting problem is
decidable).

5.1 Bounded and Unbounded Counters

We introduce three new decision problems for counter machines that involve the
value of the counters.

bounded counter: given an integer β, decide whether counter v0 overflows β in
some computation;

finite counter: decide whether there exists β such that counter v0 ≤ β in all

computations;
unbounded counter: decide whether counter v0 is incremented infinitely often in

some computation.

We can prove that the complexity of these decision problems matches that of
halting, non-halting, and recurring computation.

Theorem 18 For n-counter machines with n ≥ 3 counters: the bounded counter prob-

lem is Σ0
1 -complete; the finite counter problem is Σ0

2 -complete; the unbounded counter

problem is Σ1
1 -hard.

18 Carlo A. Furia, Paola Spoletini

Proof We prove hardness by reduction from, respectively, the halting, non-halting,
and recurring computation problems of n-counter machines, with n ≥ 2. Then,
we prove completeness by providing matching upper bounds. Since the reductions
that prove hardness introduce a fresh counter v0 with constrained behavior, the
theorem holds for machines with at least three counters.

Hardness of the bounded counter problem. Given a generic n-counter ma-
chine M , we reduce halting to bounded counter for β = 0 by modifying M into M ′

as follows. Add one counter and injectively rename all counters in the instruction
list so that the new counter is called v0; thus, v0 is not mentioned in the renamed
instructions. Then, replace the unique halting instruction appearing at some `h in
M by two instructions: `h: inc v0 followed by `+h : halt.

Since we only added deterministic instructions, there is a one-to-one corre-
spondence between computations of M and computations of M ′. A generic nonde-
terministic computation χ of M reaches location `h iff the unique corresponding
computation χ′ of M ′ also reaches `h. In such computations χ′, v0 overflows β
before halting at `+h . In all, some computation of M halts iff v0 overflows in some
computation of M ′. Thus, the bounded counter problem is Σ0

1 -hard.
Hardness of the finite counter problem. Given a generic n-counter machine

M , we reduce from the non-halting problem.
Consider another counter machine Md that consists of a deterministic simu-

lation of M . Md keeps track of the path taken in the computation tree that M ’s
computations determine, so that it can enumerate M ’s computations sequentially.
Whenever Md is simulating a computation of M that halts, it backtracks the
simulation to the most recent unexplored branch and makes a different nondeter-
ministic choice; that is Md enumerates M ’s computations depth-first. Let `d the
location in Md where the simulation starts over with a new computation—or halts
if all computations of M have been exhaustively simulated. The full details of Md

are quite complicated, as they involve keeping track of intermediate computation
states (needed) using only the simple memory offered by counter machine; how-
ever, it can be done because counter-machines have the same computational power
as Turing machines. Furthermore, we can assume that Md uses the same number
of n ≥ 2 counters as M .

Let us now modify Md into M ′ by adding a fresh counter v0. Then, add
the instruction inc v0 just before `d; and replace the unique halting instruction
appearing at some `h in Md by two instructions in M ′: `h: inc v0 followed by
`+h : if v0 > 0 goto `h. Let us show that M ′ has only one non-halting computation.
Either (a) M has only finitely many computations, all halting; or (b) M has in-
finitely many computations, or at least one computation that does not halt. If (a)
is the case, after Md is done simulating all halting computations it halts, whereby
M ′ enters the infinite loop at `h that makes v0 diverge. If (b) is the case, Md’s
simulation never halts, and neither does M ′, whereby v0 is incremented once for
every halting computation of M .

Consider now the finite counter problem. If the answer to the finite counter
problem for M ′ is yes, it means that (b) is the case (otherwise, M ′ would enter the
infinite loop that makes v0 diverge), and, furthermore, that v0 is incremented a
finite number of times; therefore, M had at least one non-halting computation (if
M had infinitely many halting computations v0 would diverge). Thus, the answer
to the non-halting problem for M is also yes. If the answer to the finite counter
problem for M ′ is no, it means that v0 diverges; this can only happen if all com-

Bounded Variability of MTL 19

putations in M are halting. Thus, the answer to the non-halting problem for M is
also no. In all, the non-halting problem for M has answer yes iff the finite counter
problem for M ′ has answer yes. Thus, the finite counter problem is Σ0

2 -hard.

Hardness of the unbounded counter problem. Given a generic n-counter
machine M , we reduce recurring computation to unbounded counter by modifying
M into M ′ as follows. M ′ has a fresh counter called v0. The first instruction of M ′

is `0: inc v0, followed by M ’s program without modifications.

Since we only added one deterministic instruction, there is a one-two-one cor-
respondence between computations of M and computations of M ′. A generic non-
deterministic computation χ of M visits location `0 infinitely often iff the unique
corresponding computation χ′ of M ′ also reaches the new `0 infinitely often; such
computations χ′ increment v0 infinitely often when executing `0. In all, some com-
putation of M visits `0 infinitely often iff v0 is incremented infinitely often in some
computation of M ′. Thus, the unbounded counter problem is Σ1

1 -hard.

Completeness of the bounded counter problem. We reduce the bounded
counter problem (for any β) to halting, thus showing that the former is in Σ0

1 (and
hence, by combining it with the hardness result, Σ0

1 -complete). Given a counter
machine M , we modify it into another machine M ′ as follows. Let `′h be the new
halting location in M ′; instead, M ’s halting location `h becomes an unconditional
branch `h : goto `h that produces an infinite loop in M ′; therefore, computations
that halt in M become non-halting computations in M ′. Furthermore, every in-
crement to v0 is guarded in M ′ by a conditional:6 if v0 ≥ β goto `′h else inc v0.
Since v0 is initially zero, a computation of M ′ halts iff the corresponding compu-
tation in M overflowed; hence, a semi-decision procedure for halting produces a
semi-decision procedure for bounded counter.

Completeness of the finite counter problem. We show that the finite counter
problem is in Σ0

2 (and hence, by combining it with the hardness result, Σ0
2 -

complete) according to the definition of Σ0
2 in the arithmetical hierarchy [57].

Let Oβ be the set of all counter machines where v0 overflows β in some com-
putation. We have shown that Oβ is Σ0

1 for each β; hence its complement set
Oβ—all counter machines where v0 ≤ β in all computations—is Π0

1 . The set F of
all counter machines for which the finite counter problem has answer yes is defined
by M ∈ F ⇐⇒ ∃β : Oβ , and hence it is Σ0

2 .

Completeness of the unbounded counter problem. We reduce the un-
bounded counter problem to the recurring computation problem, thus showing
that the former is in Σ1

1 (and hence, by combining it with the hardness result,
Σ1

1 -complete). Given a counter machine M , we modify it into another machine
M ′ as follows. Add a fresh counter vj to M ′; as first instruction in M ′, add `0:
goto `vj+1, that is a jump7 to the location that corresponds to the (vj + 2)-th

instruction, where vj is the value of counter vj ; replace every increment instruction
`k: inc v0 in M by `k: vj := k followed by `k+1: goto `0 and then by `k+2: inc

v0—relabeling all other instructions by shifting. The overall behavior of M ′ is the
same as M , except that every time M ′ increments v0 it first jumps to location
`0 and back. Since `0 is visited only upon incrementing v0, some computation of

6 The details of how to encode an if-then-else using counter machine instructions are stan-
dard.

7 Again, the details of how to encode this jump and the other derived instructions using
basic counter machine instructions are standard.

20 Carlo A. Furia, Paola Spoletini

M increments v0 infinitely often (unbounded counter) iff some computation of M ′

visits `0 infinitely often (recurring computation). ut

5.2 MTL and Counter Machines

Real-time logics such as MTL over R≥0 have enough expressive power to encode
arbitrary computations of counter machines, as first shown by Alur and Hen-
zinger [3]. We recall their techniques and cast them in our framework, using the
continuous semantics of MTL over infinite words.

The idea is that, given an arbitrary n-counter machine M , we can build an MTL
formula ΓM such that there is a one-to-one correspondence between the words that
satisfy ΓM and the computations of M : each word represents the sequence of values
taken by counters in the corresponding computation of M .

Consider an n-counter machine M with m+1 instructions `0, . . . , `m, such that
`h is the location of the unique halt instruction. A computation of M is entirely de-
scribed by a sequence c0, c1, . . . of configurations, each ci a tuple 〈`k, x0, . . . , xn−1〉
denoting that M is at location `k, about to execute the corresponding instruction,
with the counters storing the values x0, . . . , xn−1. A computation c0, c1, . . . is en-
coded over a timed word as a sequence of adjacent intervals of unit length: each
time interval [i, i+ 1) with integer endpoints i ∈ N encodes configuration ci. That
is, the propositions holding over [i, i + 1) encode the value of counters and the
current location in ci.

In order to encode such information, let us introduce the following propositions:
pk, for 0 ≤ k ≤ m, which holds at the left endpoint of unit intervals [i, i+ 1) that
encode configurations ci where M is at location `k; and zk, for 0 ≤ k < n, which
represents the value of counter vk as follows: there are as many distinct occurrences
of proposition zk inside a unit interval (i, i + 1) as the value of counter vk in the
corresponding configuration ci.

To define such an encoding in MTL, let us first constrain what happens at
integer times. Exactly one of the propositions pk’s holds (the current location),
with p0 holding initially at time 0 (the initial location is `0). Since we want the
propositions zd’s to only occur inside the unit intervals (i.e., not at the endpoints),
they are all false at integer times; conversely, the pk’s are all false at non-integer
times. These constraints become:

p0 ∧

∧0≤k≤m�
(
pk ⇒

∧
0≤j 6=k≤m ¬pj ∧

∧
0≤d<n ¬zd

)
∧∧

0≤k≤m�
(
pk ⇒

∨
0≤j≤m U=1

(∧
0≤i≤m ¬pi, pj

)) .
With similar formulas, we constrain the zk’s to occur at distinct instants: whenever
zk then ¬zh also holds simultaneously, for all h 6= k.

The initial configuration 〈`0, 0, . . . , 0〉 is encoded by∧
0≤j<n

�[0,1](¬zj) .

The encoding of any instruction refers to a current time t ∈ N and defines
the state over [t+ 1, t+ 2) as a modification of the state over [t, t+ 1). The most
significant operation is the increment: `k: inc vc: the next interval [t + 1, t + 2)

Bounded Variability of MTL 21

includes exactly one more occurrence of zc than there are in the current interval
[t, t+ 1):

�

pk ⇒


♦=1 pk+1

∧
∧

0≤d6=c<n�(0,1)(zd ⇔ ♦=1 zd)

∧ �(0,1)(zc ⇒ ♦=1 zc)

∧U(0,1)

♦=1 zc ⇒ zc,

¬zc ∧ ♦=1zc ∧
U>0(¬zc ∧ ♦=1(¬zc) , pk+1)





 . (3)

In (3)’s consequent, the first conjunct states that `k+1 is the next location visited,
since the instruction at `k is not a branching instruction. The second conjunct
states that the values of all counters other than vc are unchanged: for every occur-
rence of some zd in the current interval, there is an occurrence exactly one time
unit later in the next interval and vice versa; hence occurrences of zd are “copied”
from the current to the next interval. Similarly, the third conjunct declares that
vc does not decrease (all occurrences of zc in the current interval are copied into
the next one). The fourth conjunct asserts that there exists an instant x in the
current interval, after the last occurrence of zc in the current interval and before
the next occurrence of pk+1 at the beginning of the next interval, such that zc
occurs exactly once at x+ 1 in the next interval; that is zc holds at x+ 1 but not
at zc. This new distinct occurrence of zc is always possible thanks to the density
of the temporal domain; thus any value of counters can be stored in a unit time
interval. The encoding of other instructions is similar, with the halting instruction
determining an indefinite repetition of the final configuration in the future.

Remark 19 The construction shown above that encodes counter-machine computa-
tions by means of MTL formulas requires dense time and the continuous semantics
to work. Specifically, encoding counter increment (3) requires the continuous se-
mantics to be able to match an instant x in the current interval where no events

occur (hence, x does not correspond to a valid position in the timed word) but
where an event occur one time unit later.

Under the pointwise semantics, expressing (3) requires using past operators.
The key observation in this case [45] is that the copy of a counter vd can be

expressed as �(0,1)(zd ⇒ ♦=1 zd) and �(1,2)(zd ⇒
←−
♦=1 zd), where

←−
♦=1(φ) holds

iff its arguments held one time unit in the past.

6 The Complexity of Bounded Variability

We are ready to prove the main result of the paper: the complexity of deciding
whether an MTL formula is satisfied only by models with bounded variability. Sec-
tion 6.1 rigorously defines two variants of this decision problem; Section 6.2 proves
the undecidability of the problems for MTL over dense timed words under the
continuous semantics; Section 6.3 proves the complexity of the problems for MTL
over discrete timed words under the pointwise semantics; Section 6.4 discusses the
complexity of the problems in variants of the two main interpretations.

22 Carlo A. Furia, Paola Spoletini

6.1 Bounded Variability Problems

The main results of this paper concern the complexity of deciding whether an
arbitrary MTL formula is satisfied only by words with bounded variability; we
now formally define two variants of this decision problem.

Given an interpretation I = 〈T, ◦, v/V, s〉 and an MTL formula φ, the decision
problems bounded variability BVv/V 〈T, ◦, s〉(φ) and existential bounded variability

BV∃〈T, ◦, s〉(φ) are defined as:

Bounded variability BVv/V 〈T, ◦, s〉(φ): Does every model of φ under interpreta-
tion 〈T, ◦,∞, s〉 have variability bounded by v/V ? That is, does B◦T[∞](φ)s ⊆
B◦T[v/V](φ)s?

Existential bounded variability BV∃〈T, ◦, s〉(φ): Do there exist v ∈ N and 0 <
V ∈ T such that the answer to BVv/V 〈T, ◦, s〉(φ) is yes? That is, does ∃ v, V :
B◦T[∞](φ)s ⊆ B◦T[v/V](φ)s?

A bar denotes the corresponding complement problems:

BVv/V 〈T, ◦, s〉(φ): Does some model of φ under interpretation 〈T, ◦,∞, s〉 have

variability not bounded by v/V (that is, bounded by v′/V for some v′ > v, or
unbounded)?

BV∃〈T, ◦, s〉(φ): Does there exist, for every v ∈ N and 0 < V ∈ T, a model of φ
under interpretation 〈T, ◦,∞, s〉 that has variability not bounded by v/V ?

Remark 20 Problem BVv/V 〈T, ◦, s〉(φ) has answer yes if some model of φ under

interpretation 〈T, ◦,∞, s〉 has: (a) variability bounded by v′/V for some v′ > v; or
(b) unbounded variability.

Problem BV∃〈T, ◦, s〉(φ) has answer yes if: (a) some model of φ under inter-
pretation 〈T, ◦,∞, s〉 has unbounded variability; or (b) every model w of φ un-
der interpretation 〈T, ◦,∞, s〉 has variability bounded by some vw/V , but the set
{vw | w ∈ B◦T[∞](φ)s} does not have a finite upper bound (that is, each model has
bounded variability, but no variability bounds all models).

As for MTL formulas, the size of a problem instance is the size of its encoding
as a string, which includes a succinct encoding of v and V in the case of the
bounded variability problems.

Now that we have defined the two bounded variability problems, we prove their
complexity and decidability for different interpretations in the following sections;
Table 5 summarizes the results.

6.2 Complexity of Bounded Variability over Dense Time

The decision problems BVv/V 〈R≥0, ω, c〉(φ) and BV∃〈R≥0, ω, c〉(φ) correspond to
those of Section 6.1 for MTL interpretations over infinite words ω, dense time
domain R≥0, and the continuous semantics c. Both problems are undecidable;
their undecidability degrees in the arithmetical hierarchy are different and both
lower than MTL satisfiability (which is Σ1

1 -hard [3], see Section 3.3).

Theorem 21 BVv/V 〈R≥0, ω, c〉(φ) is Π0
1 = coRE-complete; BV∃〈R≥0, ω, c〉(φ) is

Σ0
2 -complete.

Bounded Variability of MTL 23

Table 5 Summary of the main results of this paper: complexity of deciding bounded variability
and existential bounded variability of MTL formulas under different interpretations. For each
choice of time domain T, finite (∗) or infinite (ω) timed words, and pointwise or continuous
semantics, the table shows whether bounded variability BVv/V 〈T, ◦, s〉(φ) and existential
bounded variability BV∃〈T, ◦, s〉(φ) is decidable (yes or no) under that interpretation and
the complexity of the problem.

T ◦ s bounded var. existential bounded var.
N/R≥0 ∗/ω p/c dec? complexity dec? complexity
N y EXPSPACE-complete y trivial
R≥0 ∗ p y non-primitive recursive RE
R≥0 ω p n Π0

1 = coRE-complete Σ0
2

R≥0 c n Π0
1 = coRE-complete n Σ0

2 -complete

We split the proof of Theorem 21 in four lemmas, which separately establish
lower and upper bounds for each problem.

Lemma 22 BVv/V 〈R≥0, ω, c〉(φ) is in Π0
1 = coRE.

Proof We give a procedure to semi-decide BVv/V 〈R≥0, ω, c〉(φ); this establishes

that BVv/V 〈R≥0, ω, c〉(φ) ∈ RE and thus BVv/V 〈R≥0, ω, c〉(φ) ∈ coRE by comple-
ment.

As pointed out in Remark 20, some model of φ has variability not bounded by
v/V iff: (a) it has variability bounded by v′/V but not by v/V , for some v′ > v; or
(b) it has unbounded variability. Since timestamps are diverging (according to the
definition of timed words in Section 2), (b) can only occur if, for any finite time t,
the variability is bounded by some vt, but such vt diverges as t goes to infinity.8

For any finite time T , let φ[T] denote an MTL formula that restricts the eval-
uation of φ to the finite time interval [0, T]. This can be constructed as follows:
add a fresh proposition e constrained by φe = U=T (e, e ∧�>0¬e). Rewrite φ in
negation normal form, and replace every atom q by e ⇒ q. Postulate that, if e is
false, all other propositions in P are false as well: φP = �(¬e⇒

∧
p∈P ¬p). Finally,

φ[T] is φe ∧ φ ∧ φP . Since no event occurs after finite time T , all models of φ[T]
have variability bounded by x/T , for some finite (possibly very large) x. Therefore,
the only way in which φ[T] can have some model with variability not bounded by
some x′/T is if x′ < x.

We can now describe a procedure P1 that semi-decides BVv/V 〈R≥0, ω, c〉(φ);
it consists of the following steps:

1. Initially, δ := v + 1 and ∆ := V + 1;
2. Using Corollary 16, decide whether φ[∆] has some model with variability

bounded by δ/V but not by v/V ;
3. If it does, stop and return yes;
4. Otherwise δ := δ + 1, ∆ := ∆+ 1, and go to (2).

If the answer to BVv/V 〈R≥0, ω, c〉(φ) is yes, then either (a) or (b) above holds;
let us show that, in both cases, P1 terminates with the correct answer.

If (a) is the case, let wa be a model with variability bounded by v′/V but
not by v/V for some v′ > v; that is, wa has v events, for v < v ≤ v′, over some

8 In related work, we called similar behaviors “Berkeley” [20,17].

24 Carlo A. Furia, Paola Spoletini

time interval [y, y + V]. In this case, P1 terminates with yes as soon as δ ≥ v and
∆ ≥ y + V .

If (b) is the case, let wb be a model with unbounded variability; since variability
is unbounded, there exists a time T such that: wb has v′ > v events over some time
window [y, y + V], for 0 ≤ y < y + V ≤ T . In this case, P1 terminates with yes as
soon as δ ≥ v′ and ∆ ≥ T . ut

Lemma 23 BVv/V 〈R≥0, ω, c〉(φ) is coRE-hard.

Proof We reduce the bounded counter problem of n-counter machines, n ≥ 3,
(Section 5.1) to BVv/V 〈R≥0, ω, c〉(φ); the lemma follows by Theorem 18 through
complement problems.

Consider a generic n-counter machine M with counters v0, . . . , vn−1. We con-
struct an MTL formula ΓM that encodes the computations of M along the lines
of Section 5.2, but with some modifications. For t ∈ N, the t-th configuration
〈`k, x0, . . . , xn−1〉 is encoded over the time interval [2nt, 2nt + 2n) as follows: pk
holds at 2nt; for k = 0, . . . , n−1, zk holds xk times over (2nt+2k+1, 2nt+2k+2);
and no propositions hold elsewhere over the whole [2nt, 2nt+ 2n). With this spac-
ing of counter events, the models of ΓM are such that any interval of length 1
includes at most as many events as the largest value held by a counter during
some computation of M . Thus, ΓM has some model with variability not bounded
by β/1—problem BVβ/1〈R≥0, ω, c〉(ΓM)—iff a counter overflows β in some com-
putation of M .

Now we have only established whether some counter overflows in M , whereas
the bounded counter problem specifically targets overflows of v0. To close the gap,
we encode the overflowing of v0 in M as an MTL formula:

Ξv0β = ♦


 ∨

0≤k≤m
pk

 ∧ β+1 nested diamonds︷ ︸︸ ︷
♦(0,1)

(
z0 ∧ ♦(0,1)(z0 ∧ · · ·)

) .

Thanks to the padding, the nested diamonds in Ξv0β evaluate to true iff there are at
least β+1 distinct occurrences of z0 in the slot corresponding to one configuration.
Thus, v0 overflows β in M iff ΓM∧Ξv0β has some model with variability not bounded
by β/1. ut

Lemma 24 BV∃〈R≥0, ω, c〉(φ) is in Σ0
2 .

Proof Given the definition of Σ0
2 in the arithmetical hierarchy [57], it is suffi-

cient to provide an enumeration of all MTL formulas φ for which the answer to
BV∃〈R≥0, ω, c〉(φ) is yes, relative to an oracle for BVv/V 〈R≥0, ω, c〉(φ), which is

in Π0
1 by Lemma 22. To this end, we dovetail [48, Chap. 3] through all pairs

(v, φ) of nonnegative integers v ∈ N and MTL formulas φ. For each pair, if the
answer to BVv/1〈R≥0, ω, c〉(φ) is yes, then the answer to BV∃〈R≥0, ω, c〉(φ) also
is yes. This enumeration eventually finds all formulas φ for which the answer to
BV∃〈R≥0, ω, c〉(φ) is yes. ut

Lemma 25 BV∃〈R≥0, ω, c〉(φ) is Σ0
2 -hard.

Bounded Variability of MTL 25

Proof We reduce the finite counter problem of counter machines (Section 5.1) to
BV∃〈R≥0, ω, c〉(φ); the lemma follows by Theorem 18.

Let M be a generic n-counter machine M , with n ≥ 3. Consider another counter
machine Mb that performs a deterministic simulation of M . Mb keeps track of the
path taken in the computation tree that M ’s computations determine, so that it
can enumerate M ’s computations sequentially. Unlike Md in the hardness proof of
the finite counter problem (Theorem 18), Mb uses dovetailing [48, Chap. 3] to enu-
merate M ’s computation breadth-first: whenever Mb reaches an unexplored branch
in the simulation of a computation of M , it performs one step into one unexplored
branch, and then backtracks and performs one step into the alternative choice. We
further require that Mb does not directly use counter v0 for the simulation (and
adds fresh counters as needed); instead, it enforces the invariant that v0 always
stores the current value of v0 in the computation that is being simulated.

Next, modify Mb into M ′ as follows. The unique halting location `h in Mb

becomes an infinite idle loop in M ′: `h: goto `h. Add a fresh counter vx; before
beginning the main computation, M ′ initializes vx with a nondeterministically
chosen positive integer value x by performing the instructions:

`0 : inc vx

`1 : if vx > 0 goto `0, `2
(4)

where `2 corresponds to Mb’s initial location after shifting all location labels by
two positions. Furthermore, every increment inc v0 of v0 in Mb becomes a guarded
increment if v0 = vx − 1 goto `s else inc v0 in M ′, where `s: halt is a fresh halting
location only used by these guarded increments. Except for the nondeterministic
initialization of vx,M ′ only adds deterministic instructions to the deterministicMb;
hence, for every positive value x that may initialize vx, there exists a computation
of M ′ where vx = x; let cx denote such a computation of M ′ that initializes vx to
x and then proceeds with the deterministic simulation (where vx remains constant
to x). Computation cx halts iff there exists a computation of M where v0 overflows
x− 1.

Let Γ = ΓM ′ ∧ ♦ ps, where ΓM ′ is an MTL formula that encodes the compu-
tations of M ′ as described in Section 5.2, and `s is the unique halting location of
M ′. The models of Γ describe all valid computations of M ′ that halt; that is, in
particular, all computations that do not get stuck forever in the initial loop (4)
that increments vx.9

Finally consider the decision problem BV∃〈R≥0, ω, c〉(Γ). If its answer is yes,
we claim that there are finitely many models that satisfy Γ .10 To the contrary,
assume that Γ has infinitely many models; then, a counting argument indicates
that, for every positive y, there exists x > y such that wx |= Γ , where wx is a
model of the halting computation cx. But v0 overflows x− 1, and hence y ≤ x− 1
too, in cx; this contradicts the hypothesis that the answer to BV∃〈R≥0, ω, c〉(Γ) is
yes (i.e., there is a finite bound on v0’s values shared by all computations of M).

Conversely, if the answer to BV∃〈R≥0, ω, c〉(Γ) is no, then there are infinitely
many models that satisfy Γ , which implies, using a dual argument as the yes case,
that the finite counter problem for M has answer no. ut

9 We can specify and reason about progress because we are reducing between undecidable
problems.
10 In the special case in which M has finitely many halting computations, Γ has no models.

26 Carlo A. Furia, Paola Spoletini

Remark 26 As a comment on the proof of Lemma 25, its reduction’s trickiest part
lied in the fact that, while the finite counter problem refers a specific counter v0,
BV∃〈R≥0, ω, c〉(φ) considers variability of all propositions. The proof of Lemma 23
involves a similar mismatch, but things are simpler there thanks to the existence
of a known bound β, which can be monitored explicitly (formula Ξv0β); in the finite
variability problem, instead, the bound is existentially quantified. An obvious so-
lution would have been to avoid the problem altogether by changing the definition
of BV∃〈R≥0, ω, c〉(φ) so that it referred to a specific proposition whose variability
should be bounded; doing this, however, would provide a weaker result about a
definition that is possibly less natural. Instead, we leveraged nondeterminism to
“guess” the existentially quantified bound x.

6.3 Complexity of Bounded Variability over Discrete Time

The decision problems BVv/V 〈N, ω, p〉(φ) and BV∃〈N, ω, p〉(φ) correspond to those
of Section 6.1 for MTL interpretations over infinite words ω, discrete time domain
N, and the pointwise semantics p. Both problems are decidable; the complexity
of the former is the same as MTL satisfiability under the same interpretation,
whereas the latter is trivial given that the time domain is discrete.

Theorem 27 BVv/V 〈N, ω, p〉(φ) is EXPSPACE-complete; BV∃〈N, ω, p〉(φ) is triv-

ially decidable (constant answer yes).

Proof For any integer x > 0, every word w ∈ BωN[∞] has variability trivially
bounded by (x + 1)/x because the time domain is discrete and the timestamps
are monotonically increasing, and hence the difference between a timestamp tk
and its next tk+1 is at least one unit. This shows that BV∃〈N, ω, p〉(φ) has answer
yes for every φ.

The first part of the theorem is proved in Lemma 28 and Lemma 29. ut

Lemma 28 BVv/V 〈N, ω, p〉(φ) is EXPSPACE-hard.

Proof It suffices to note that BV2/1〈N, ω, p〉(φ) has answer yes iff φ is satisfiable
over infinite words with monotonic integer timestamps. This provides a constant-
time reduction from an EXPSPACE-complete problem to BVv/V 〈N, ω, p〉(φ). ut

Lemma 29 BVv/V 〈N, ω, p〉(φ) is in EXPSPACE.

Proof To prove the lemma, we follow Lemma 9 and express bounded variability
in the MTL+ extension of MTL. Given an MTL formula φ, the MTL+ formula
φ′ = φ ⇒ Vv,V is valid iff BVv/V 〈N, ω, p〉(φ) has answer yes. This proves the

lemma since MTL+ validity is in EXPSPACE.

6.4 Complexity of Bounded Variability under Other Interpretations

In the previous sections, we studied the complexity of bounded variability and
existential bounded variability for certain standard choices of interpretation: infi-
nite words, the pointwise semantics in discrete time, and the continuous semantics
in dense time. We now discuss to what extent those results generalize to other
interpretations; Table 5 summarizes the results.

Bounded Variability of MTL 27

6.4.1 Discrete Time

In Section 3.3, we remarked how the decidability of MTL is very robust over
discrete time, in that complexity is not affected by choices of interpretation such
as pointwise vs. continuous semantics and finite vs. infinite words.

We observe a similar robustness regarding the complexity of the bounded vari-
ability and existential bounded variability problems over discrete timeN. It should
be clear that the proofs of Section 6.3 can be adapted to work for the other discrete-
time interpretations with minimal modifications. Accommodating finite-word in-
terpretations requires a bit of attention to the “border effects” that occur when
reaching the last positions in a word; accommodating the continuous semantics
requires handling the case where there is a valid position k for every nonnegative
integer timestamp tk = k, similarly to what is done when bridging the gap between
MTL and LTL (see Section 7.1 for some details of how this simple idea works).

Theorem 30 BVv/V 〈N, ω, c〉(φ), BVv/V 〈N, ∗, p〉(φ), and BVv/V 〈N, ∗, c〉(φ) are

EXPSPACE-complete; BV∃〈N, ω, c〉(φ), BV∃〈N, ∗, p〉(φ), and BV∃〈N, ∗, c〉(φ) are

trivially decidable (constant answer yes).

6.4.2 Dense Time

As recalled in Table 3, the complexity of MTL changes significantly under different
dense-time interpretations. This affects the complexity of bounded variability and
existential bounded variability over dense time.

Continuous semantics. The results of Section 6.2 still hold over finite words under
the continuous semantics: the proofs of Lemma 22, Lemma 23, Lemma 24, and
Lemma 25 go through also for finite-word interpretations. The intuitive reason
is that the counter machine problems we reduce from (the bounded counter and
finite counter problems) only involve finite behaviors: overflow of a counter is an
event that occurs at some finite time, that is bounded counter and finite counter
are safety properties [32,37]. This is a sufficient condition for the lower bounds to
hold for finite words as well (Lemma 23 and Lemma 25); the upper bounds follow
a fortiori since finite words can be seen as a restriction of infinite words.

Theorem 31 BVv/V 〈R≥0, ∗, c〉(φ) is Π0
1 = coRE-complete; BV∃〈R≥0, ∗, c〉(φ) is

Σ0
2 -complete.

Pointwise semantics: bounded variability. Let us now consider interpretations over
dense time with the pointwise semantics. Notice that Lemma 9 provides a way of
showing that, for every dense-time interpretation I = 〈R≥0, ◦, v/V, s〉, the complex-
ity of the bounded variability problem BVv/V 〈R≥0, ◦, s〉(φ) is not higher than the
complexity of validity for MTL under the same interpretation I. In fact, given an
MTL formula φ, BVv/V 〈R≥0, ◦, s〉(φ) has answer yes iff the MTL formula φ⇒ Vv,V
is valid under interpretation I, where Vv,V is described in Lemma 9. In particu-
lar, the bounded variability problem is non-primitive recursive for finite words
(BVv/V 〈R≥0, ∗, p〉(φ)) and in coRE for infinite words (BVv/V 〈R≥0, ω, p〉(φ) ∈
coRE).

28 Carlo A. Furia, Paola Spoletini

To establish matching lower bounds, we rely on a property Sδ of MTL over
the pointwise interpretation: a formula φ is satisfiable if and only if it is satisfied
by a word w such that, for every valid position k in w, tk+1 − tk ≤ δ, where δ is a
constant that depends only on φ. This property depends on the abstraction of clock
valuations into clock regions [45]: roughly speaking, the number of regions that can
be reached in a computation corresponding to a word satisfying φ is finite, which
implies that, if φ is satisfiable, one can construct a word w that satisfies φ with
time differences bounded by some finite δ. Therefore, we can reduce satisfiability to
BV1/δ〈R≥0, ◦, p〉(φ), for both ◦ = ∗ and ◦ = ω. If BV1/δ〈R≥0, ◦, p〉(φ) has answer
no, then every word w that satisfies φ is such that, for all valid positions k in w,
tk+1 − tk > δ; therefore, the above property Sδ does not hold, and hence φ is not
satisfiable. If BV1/δ〈R≥0, ◦, p〉(φ) has answer yes, then there exists a word w that
satisfies φ and such that, for some valid position k in w, tk+1 − tk ≤ δ; therefore φ
is satisfiable a fortiori.

Theorem 32 BVv/V 〈R≥0, ∗, p〉(φ) is complete for non-primitive recursive problems;

BVv/V 〈R≥0, ω, p〉(φ) is coRE-complete.11

Pointwise semantics: existential bounded variability. It is easy to show that the ex-
istential bounded variability problems BV∃〈R≥0, ∗, p〉(φ) and BV∃〈R≥0, ω, p〉(φ)
are one level up in the arithmetical hierarchy with respect to the corresponding
bounded variability problems.

For the finite word interpretation, let us describe an enumeration of formulas
φ for which the answer to problem BV∃〈R≥0, ∗, p〉(φ) is yes. This proves that the
problem is in RE. Here is the enumeration: (1) initially, δ := 1; (2) check whether
φ⇒ Vδ,1 (where Vδ,1 encodes the bounded variability requirement as per Lemma 9)
is valid; (3) if it is, stop and return yes; (4) otherwise, δ := δ + 1 and go to (2).
Setting V = 1 is without loss of generality, because any dense-time word that has
variability bounded by v/V also has variability bounded by (v (1 + b1/V c)/1.

Theorem 33 BV∃〈R≥0, ∗, p〉(φ) is in RE.

For the infinite word interpretation, we apply the definition of Σ0
2 in the arith-

metical hierarchy [57]. We have just shown that the set Ov,V of all MTL formulas φ
such that problem BVv/V 〈R≥0, ω, p〉(φ) has answer yes is coRE (or Π0

1). Therefore

the set {φ | ∃v, V : φ ∈ Ov,V } is Σ0
2 by definition.

Theorem 34 BV∃〈R≥0, ω, p〉(φ) is in Σ0
2 .12

Finding matching lower bounds for BV∃〈R≥0, ∗, p〉(φ) and BV∃〈R≥0, ω, p〉(φ)
requires novel techniques, which belongs to future work. We remark that one can-
not use reductions from n-counter machine problems, because the correspondence
between counter-machine computations and MTL formulas breaks down under the
pointwise semantics (see Remark 19). Instead, one could try to exploit the con-
nection between MTL under the pointwise semantics and channel machines with
insertion errors [44,45].

11 The preliminary version of this paper [23, Sec. VII] is incorrect when it suggests that
BVv/V 〈R≥0, ω, p〉(φ) is complete for RE.
12 The preliminary version of this paper [23, Sec. VII] is incorrect when it suggests that
BV∃〈R≥0, ω, p〉(φ) is in RE.

Bounded Variability of MTL 29

Past operators. Remark 19 outlined how dense-time MTL with past operators can
encode counter-machine computations even under the pointwise semantics. This
implies that the constructions for continuous-semantics MTL used in the proofs of
Lemmas 22–25 work, mutatis mutandis, for pointwise-semantics MTL with past
operators. More precisely, the proofs of Lemma 22 and Lemma 24—which establish
upper bounds—do not involve counter-machines, and hence carry over to the point-
wise semantics without modifications. The proofs of Lemma 23 and Lemma 25—
which establish lower bounds—depend on being able to construct an MTL for-
mula ΓM that encodes the computations of an arbitrary counter machine M ; if we
replace the encoding of ΓM described in Section 5.2—using continuous-semantics
MTL—with the encoding outlined in Remark 19—using pointwise-semantics MTL
with past operators—the proofs carry over to the pointwise semantics as well. In
all, the complexities of the bounded variability problem and of the existential
bounded variability problem for dense-time MTL with past operators under the
pointwise semantics are the same as for dense-time MTL under the continuous
semantics.

7 Bounded Variability in Simple Cases

The complexity results of Section 6 pose some major limitations to deciding
bounded variability for MTL formulas. However, there is still the possibility of
identifying syntactic fragments of MTL that are still reasonably expressive but for
which reasoning about bounded variability is simpler than in the general case. We
refer to such MTL fragments as “bounded friendly”.

The idea is that a bounded friendly MTL fragment F is one for which the
problem BVv/V 〈T, ◦, s〉(ψ), for ψ ∈ F , is simpler than the more general problem
BVv/V 〈T, ◦, s〉(φ), for φ ∈ MTL. If we are studying the satisfiability of an MTL

formula φ that can be written as φ′∧ψ, for ψ ∈ F , we can proceed as follows. First,
we determine if BVv/V 〈T, ◦, s〉(ψ) has answer yes. If it does, then φ has variability
bounded by v/V a fortiori; hence, we can use the simpler algorithms of Section 4
to study the satisfiability of φ. This approach is best effort, in that φ may not be
expressible as φ′ ∧ ψ or ψ may not have variability bounded by v/V , but it has a
chance of leading to an overall simpler decision procedure in practical cases.

We give two examples of non-trivial bounded-friendly fragments, one for dis-
crete and one for dense time.

7.1 Simpler Bounded Variability over Discrete Time

As recalled in Section 4.2, MTL over discrete time boils down to an exponentially
succinct version of LTL. Therefore, we can lift some complexity results about
simpler fragments of LTL [59,12,5] to MTL over N, and use them to identify
bounded-friendly fragments. As customary over discrete time, we consider inter-
pretations with infinite words and the pointwise semantics, although extending
the results to the case of finite words is possible (and not particularly interesting).

To this end, we have to recall a few fundamental definitions of LTL and explic-
itly connect them to MTL. In keeping with the standard LTL models, we assume
that words have one valid position per integer time: tk = k for all k ∈ N; this is

30 Carlo A. Furia, Paola Spoletini

merely a representational convention that does not affect the properties of MTL
over discrete time, since one can always convert a generic word into one with one
valid position per integer time by adding a silent padding event ε at all positions
corresponding to timestamps that did not appear in the generic word.

Linear temporal logic (LTL). Linear Temporal Logic (LTL) formulas ψ are recur-
sively defined by:

ψ ::= > | p | ¬ψ1 | ψ1 ∧ ψ2 | ψ1 U ψ2 | X ψ1 ,

where the qualitative until and next operator’s semantics is given in MTL by:

symbol definition name

ψ1 U ψ2 ψ2 ∨
(
ψ1 ∧ U[0,∞)(ψ1, ψ2)

)
qualitative until

X ψ1 ©=1(ψ1) LTL next

Two dual MTL fragments. Consider the two dual MTL fragmentsM+
♦,© andM+

�,©:

M+
♦,© (respectively,M+

�,©) denotes the MTL fragment using only the ♦J (respec-

tively, �J) and ©J temporal operators (which we now regard as primitive), the
propositional connectives ∧ and ∨, and where negations only appear on atomic
propositions. We can prove that satisfiability for these fragments is decidable in
exponential time.

Lemma 35 Satisfiability of M+
♦,© and of M+

�,© over N is EXP-complete.

Proof Consider the LTL fragment L+
F ,X

which only uses the LTL operators eventu-

ally F and next X, the propositional connectives ∧ and ∨, and where negations only
appear on atomic propositions. The LTL operator F is defined as F ψ1 = > U ψ1.
A classic result is that satisfiability for L+

F ,X
is NP-complete [59, Th. 3.7].

We now outline how to transform a generic µ ∈ M+
♦,© into a λ ∈ L+

F ,X
such

that µ and λ are equisatisfiable; the converse transformation (from L+
F ,X

toM+
♦,©

formulas) is trivial given that MTL is a superset of LTL the way we have defined
it. In general, the size of λ will be exponential in the size of µ due to the fact that
metric constraints are encoded in binary in µ. The lemma follows as a manifestation
of the “succinctness phenomenon” [48, Chap. 20]—from NP to EXP.

Recall that we assume, without loss of generality over discrete time, words
where each valid position k has a timestamp tk equal to k itself; this way, a step
always corresponds to one discrete time instant. A special proposition ε holds
when no significant event takes place. A translation τ from M+

♦,© to L+
F ,X

works

inductively as follows, for a, b ∈ N, c ∈ N ∪ {∞}, and p ∈ P:

τ
(
♦[a,b](p)

)
= Xa(p ∨

b−a nested X︷ ︸︸ ︷
X (p ∨ · · ·)) ,

τ
(
♦[a,∞)(p)

)
= XaF (p) ,

τ
(
©[a,c](p)

)
=

a−1 nested X︷ ︸︸ ︷
X (ε ∧ X (ε ∧ · · ·)) ∧ τ

(
♦[a,c](p)

)
,

Bounded Variability of MTL 31

where Xk is a shorthand for k nested applications of X . Translation τ does not
otherwise change the propositional structure of formulas.

With this translation, it should be clear that µ is satisfiable over timed words
over N iff τ(µ) is satisfiable. The size of τ(µ) is O(2|µ|), since τ unrolls the con-
stants, succinctly represented in µ, which results in worst-case exponential blow-
up. This establishes the lemma for M+

♦,©.

The same complexity result for M+
�,© follows by duality of � and ♦. ut

We can leverage Lemma 35 to show that M+
♦,© is bounded friendly.13 Let v, V

be variability bounds; without loss of generality, let v > 0. First, note that the
M+

�,© formula Bv,V = ��(0,ν](⊥),14 where ν = dV/ve, holds only for models

with variability bounded by v/V (specifically, it is stricter than the requirement
of bounded variability). Consider now a generic MTL formula φ written as φ′ ∧ψ,
where ψ ∈ M+

♦,©. The implication ψ ⇒ Bv,V ≡ ¬ψ ∨ Bv,V is an M+
�,© formula:

push in the outermost negation ¬ψ, and use the duality between ♦ and �. Thus,
validity of ψ ⇒ Bv,V can be decided in singly exponential time (Lemma 35),
which is better than deciding BVv/V 〈N, ω, p〉(φ) or the validity of φ for general
models (both are EXPSPACE-complete problems, and hence solving them takes
time doubly exponential in |φ| in the worst case).

7.2 Simpler Bounded Variability over Dense Time

While full MTL is highly undecidable over dense time, a number of expressive yet
decidable fragments thereof have been identified. MITL is the fragment of MTL
where intervals that decorate time operators are not singular; MITL is fully decid-
able with EXPSPACE-complete complexity [2,28]. More recently, other decidable
expressive fragments have been identified that allow singular intervals [46] in MTL;
BMTL and SMTL, in particular, are interesting because their expressive power is
incomparable with MITL’s. As in the previous section, we consider interpretations
with infinite words and the continuous semantics.

From the point of view of identifying bounded friendly fragments of MTL, how-
ever, MITL seems the most promising choice. SMTL validity is non-elementary;
while this is still better than the undecidable problem BVv/V 〈R≥0, ω, c〉(φ), it
remains impractical. BMTL validity, in contrast, is decidable in EXPSPACE; how-
ever, BMTL cannot express invariance properties since only finite intervals are
allowed, and it is clear that bounded variability is a form of invariance since it has
to hold over every position in a timed word.

We are left with MITL, which we can show to be bounded friendly. Let v, V
be variability bounds; without loss of generality, let v > 0. First, note that the
MITL formula Bv,V = ��(0,ν](⊥), where ν = dV/ve, holds only for models with
variability bounded by v/V (specifically, it is stricter than then requirement of
bounded variability). Consider now a generic MTL formula φ written as φ′ ∧ ψ,
where ψ ∈ MITL. The implication ψ ⇒ Bv,V is obviously also an MITL formula.
Thus, validity of ψ ⇒ Bv,V can be decided in EXPSPACE, whereas deciding both
BVv/V 〈R≥0, ω, c〉(φ) and the validity of φ is undecidable in general. If ψ ⇒ Bv,V

13 By duality, one could show that M+
♦,© is bounded friendly too.

14 Or, equivalently, �©>ν(>).

32 Carlo A. Furia, Paola Spoletini

is valid, φ has bounded variability a fortiori, and hence its validity can be decided
in EXPSPACE too.

8 Conclusion

The original motivation for this paper’s study was leveraging bounded variability
to simplify reasoning with metric temporal logic. From this perspective, the re-
sults we presented are a mixed bag. Over discrete time models, deciding whether
an MTL formula has intrinsic bounded variability is not simpler than deciding
validity. Over dense time models, deciding whether an MTL formula has intrin-
sic bounded variability generally has complexity lower than deciding validity, but
unfortunately remains undecidable or intractable. This means that checking for
intrinsic bounded variability first, and then applying the simpler algorithms for
validity, is not feasible in practice. Nevertheless, we can still expect that some con-
straints that determine bounded variability may occur naturally as a consequence
of the physical requirements of real systems being modeled. Specifically, bounded
variability seems to naturally embody a notion of bounded speed of transition be-
tween states, to which most physical processes would comply.

From the different perspective of scientific interest, there remain a number
of open problems consisting in transposing some of the techniques and results of
the paper to other semantics and logics. Finding matching lower bound in some
uncommon semantic interpretations of MTL over dense time (Section 6.4) would
require using novel techniques involving channel machines with insertion errors [44,
45]. Other, broader and hence potentially more interesting, open questions involve
studying bounded variability for different kinds of metric temporal logics, including
recent proposals for classic [55,56,17] or interval-based [8,39] real-time notations.

Acknowledgements We thank the editors for organizing this special issue; the attendees
and reviewers of TIME 2014 for their suggestions about a preliminary version of this work;
and the anonymous referees of AMAI for their scrupulous work and valuable comments.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real-time. ACM Trans. Program.
Lang. Syst. 16(5), 1543–1571 (1994)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the
ACM 43(1), 116–146 (1996)

3. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comp.
104(1), 35–77 (1993)

4. Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the ACM 41(1), 181–204
(1994)

5. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of
generalized satisfiability for linear temporal logic. Logical Methods in Computer Science
5(1) (2009)

6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: ACM/IEEE
Symposium on Logic in Computer Science, pp. 109–120 (2007)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side
of interval temporal logic: Sharpening the undecidability border. In: International Sym-
posium on Temporal Representation and Reasoning, pp. 131–138. IEEE (2011)

Bounded Variability of MTL 33

8. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propo-
sitional neighborhood logics on natural numbers. Software and System Modeling 12(2),
245–264 (2013)

9. Bresolin, D., Monica, D.D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal logics
over strongly discrete linear orders: Expressiveness and complexity. Theor. Comput. Sci.
560, 269–291 (2014)

10. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal decision procedures for MPNL
over finite structures, the natural numbers, and the integers. Theor. Comput. Sci. 493,
98–115 (2013)

11. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for Du-
ration Calculus. In: P. Enjalbert, A. Finkel, K.W. Wagner (eds.) STACS 93, 10th Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Sci-
ence, vol. 665, pp. 58–68. Springer (1993)

12. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple
cases. Inf. Comput. 174(1), 84–103 (2002)

13. D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous
semantics. STTT 9(1), 1–4 (2007)

14. D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous
semantics. STTT 9(1), 1–4 (2007)

15. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
vol. B, pp. 996–1072. Elsevier Science (1990)

16. Fränzle, M.: Model-checking dense-time duration calculus. Formal Asp. Comput. 16(2),
121–139 (2004)

17. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing. Mono-
graphs in Theoretical Computer Science. An EATCS series. Springer (2012)

18. Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. In:
FORMATS, LNCS, vol. 5215, pp. 109–123. Springer (2008). Extended version in [19]

19. Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. Tech.
Rep. 2008.10, Dipartimento di Elettronica e Informazione, Politecnico di Milano (2008).
Available at http://bugcounting.net/publications.html#MTLwBoundedVar-TR08

20. Furia, C.A., Rossi, M.: A theory of sampling for continuous-time metric temporal logic.
ACM Transactions on Computational Logic 12(1), 1–40 (2010). Article 8

21. Furia, C.A., Spoletini, P.: On relaxing metric information in linear temporal logic. In:
International Symposium on Temporal Representation and Reasoning, pp. 72–79. IEEE
(2011)

22. Furia, C.A., Spoletini, P.: Automata-based verification of linear temporal logic models
with bounded variability. In: International Symposium on Temporal Representation and
Reasoning, pp. 89–96. IEEE (2012)

23. Furia, C.A., Spoletini, P.: Bounded variability of metric temporal logic. In: A. Cesta,
C. Combi, F. Laroussinie (eds.) Proceedings of the 21st International Symposium on
Temporal Representation and Reasoning (TIME’14), pp. 155–163. IEEE Computer So-
ciety (2014)

24. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic (vol. 1): mathematical foun-
dations and computational aspects, Oxford Logic Guides, vol. 28. Oxford University Press
(1994)

25. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal basis of fairness. In:
Conference Record of the 7th Annual ACM Symposium on Principles of Programming
Languages (POPL’80), pp. 163–173 (1980)

26. Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam.
Inf. 62(1), 1–28 (2004)

27. Hirshfeld, Y., Rabinovich, A.: Continuous time temporal logic with counting. Inf. Comput.
214, 1–9 (2012)

28. Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity. Fun-
dam. Inform. 62(1), 1–28 (2004)

29. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal logic.
In: LICS, pp. 349–357. IEEE (2013)

30. Kamp, J.A.W.: Tense logic and the theory of linear order. Ph.D. thesis, University of
California, Los Angeles (1968)

31. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

http://bugcounting.net/publications.html#MTLwBoundedVar-TR08

34 Carlo A. Furia, Paola Spoletini

32. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering SE-3(2), 125–143 (1977)

33. Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE
and below. Inf. Comput. 205(1), 99–123 (2007)

34. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, future. In:
P. Petterson, W. Yi (eds.) Proceedings of the 3rd International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’05), Lecture Notes in Computer
Science, vol. 3829, pp. 2–16. Springer-Verlag (2005)

35. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: E. Asarin,
P. Bouyer (eds.) Proceedings of the 4th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS’06), Lecture Notes in Computer Science, vol.
4202, pp. 274–289. Springer-Verlag (2006)

36. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and
continuous behaviors. In: Pillars of Computer Science, Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, Lecture Notes in Computer Science,
vol. 4800, pp. 475–505. Springer (2008)

37. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proceedings of the 9th
Annual ACM Symposium on Principles of Distributed Computing, pp. 377–410. ACM
(1990)

38. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall (1967)
39. Montanari, A., Pazzaglia, M., Sala, P.: Metric propositional neighborhood logic with an

equivalence relation. In: 21st International Symposium on Temporal Representation and
Reasoning, (TIME), pp. 49–58. IEEE Computer Society (2014)

40. Montanari, A., Puppis, G., Sala, P.: Decidability of the interval temporal logic
$\mathsf{A\bar{A}B\bar{B}}$ over the rationals. In: Mathematical Foundations of
Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hun-
gary, August 25-29, 2014. Proceedings, Part I, pp. 451–463 (2014)

41. Montanari, A., Sala, P.: An optimal tableau system for the logic of temporal neighbor-
hood over the reals. In: 19th International Symposium on Temporal Representation and
Reasoning, TIME 2012, Leicester, United Kingdom, September 12-14, 2012, pp. 39–46
(2012)

42. Nickovic, D., Piterman, N.: From MTL to deterministic timed automata. In: K. Chatterjee,
T.A. Henzinger (eds.) Formal Modeling and Analysis of Timed Systems – 8th International
Conference, FORMATS 2010, Lecture Notes in Computer Science, vol. 6246, pp. 152–167.
Springer (2010)

43. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: M. Bravetti,
G. Zavattaro (eds.) CONCUR 2009 – Concurrency Theory, 20th International Conference,
Lecture Notes in Computer Science, vol. 5710, pp. 496–510. Springer (2009)

44. Ouaknine, J., Worrell, J.: On metric temporal logic and faulty Turing machines. In:
FoSSaCS, LNCS, vol. 3921, pp. 217–230. Springer (2006)

45. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic
over finite words. Logical Methods in Computer Science 3(1) (2007)

46. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: FORMATS,
LNCS, vol. 5215, pp. 1–13. Springer (2008)

47. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: S. Abramsky,
C. Gavoille, C. Kirchner, F.M. auf der Heide, P.G. Spirakis (eds.) Automata, Languages
and Programming, 37th International Colloquium, ICALP 2010, Lecture Notes in Com-
puter Science, vol. 6199, pp. 22–37. Springer (2010)

48. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)

49. Perrin, D., Pin, J.É.: Infinite Words, Pure and Applied Mathematics, vol. 141. Elsevier
(2004)

50. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pp. 46–57. IEEE Computer Society (1977)

51. Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modal-
ities. In: FORMATS, Lecture Notes in Computer Science, vol. 5215, pp. 93–108. Springer
(2008)

52. Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modal-
ities. Theor. Comput. Sci. 411(22-24), 2331–2342 (2010)

53. Rabinovich, A.M.: Expressive completeness of Duration Calculus. Inf. Comput. 156(1-2),
320–344 (2000)

Bounded Variability of MTL 35

54. Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl. Logic
161(8), 1063–1096 (2010)

55. Reynolds, M.: Metric temporal reasoning with less than two clocks. Journal of Applied
Non-Classical Logics 20(4), 437–455 (2010)

56. Reynolds, M.: A new metric temporal logic for hybrid systems. In: 20th International Sym-
posium on Temporal Representation and Reasoning (TIME), pp. 73–80. IEEE Computer
Society (2013)

57. Rogers, Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press
(1987)

58. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. ACM 10(2)
(1963)

59. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal
of the ACM 32(3), 733–749 (1985)

60. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics for
Concurrency – Structure versus Automata (8th Banff Higher Order Workshop), Lecture
Notes in Computer Science, vol. 1043, pp. 238–266. Springer (1995)

61. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verifica-
tion. In: LICS, pp. 332–344. IEEE (1986)

62. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed au-
tomata. In: FTRTFT, LNCS, vol. 863, pp. 694–715. Springer (1994)

	Reaping the Benefits of Bounding Variability
	Timed Words and Bounded Variability
	Metric Temporal Logic
	Metric Temporal Logic with Bounded Variability
	Counter Machines
	The Complexity of Bounded Variability
	Bounded Variability in Simple Cases
	Conclusion

