
Contract-Based Program Repair
without the Contracts
Liushan Chen∗ · Yu Pei∗ · Carlo A. Furia†

∗Department of Computing, The Hong Kong Polytechnic University {cslschen,csypei}@comp.polyu.edu.hk
†Department of Computer Science and Engineering, Chalmers University of Technology, Sweden bugcounting.net

Abstract—Automated program repair (APR) is a promising
approach to automatically fixing software bugs. Most APR
techniques use tests to drive the repair process; this makes them
readily applicable to realistic code bases, but also brings the
risk of generating spurious repairs that overfit the available
tests. Some techniques addressed the overfitting problem by
targeting code using contracts (such as pre- and postconditions),
which provide additional information helpful to characterize
the states of correct and faulty computations; unfortunately,
mainstream programming languages do not normally include
contract annotations, which severely limits the applicability of
such contract-based techniques.

This paper presents JAID, a novel APR technique for
Java programs, which is capable of constructing detailed
state abstractions—similar to those employed by contract-based
techniques—that are derived from regular Java code without any
special annotations. Grounding the repair generation and valida-
tion processes on rich state abstractions mitigates the overfitting
problem, and helps extend APR’s applicability: in experiments
with the DEFECTS4J benchmark, a prototype implementation of
JAID produced genuinely correct repairs, equivalent to those
written by programmers, for 25 bugs—improving over the state
of the art of comparable Java APR techniques in the number
and kinds of correct fixes.

I. INTRODUCTION

Every general software analysis technique based on a finite
collection of tests is prone to overfitting them. Automated
program repair (APR) is no exception; in particular, overfitting
is likely to cripple the performance of APR tools following
the generate-then-validate paradigm that was pioneered by
GenProg [33], where each heuristically generated candidate
repair—a source code patch—undergoes testing, and only the
candidates that pass all available tests for the method being
repaired are classified as valid and returned as fix suggestions.
Since validation is against a finite—often small—number of
tests, there is no guarantee that a valid repair is genuinely
correct against a complete, and implicit, specification of the
method. Indeed, experiments have repeatedly confirmed [19],
[28], [29] that automated program repair techniques are prone
to producing a significant fraction of valid but incorrect
repairs, which merely happen to pass all available tests but
are clearly inadequate from a programmer’s perspective.

The AutoFix technique for APR [31] mitigated the overfit-
ting problem by using contracts, made of assertions such as
pre- and postconditions, as additional information to improve
the precision of repair generation and validation. Even if the
contracts used by AutoFix are far from being detailed, let
alone complete, method specifications, they significantly help

increase the fraction of correct fixes that can be generated [25].
Unfortunately, even such simple contracts are hardly ever
available in the most widely used programming languages.1

Can we still generalize some of the techniques used for
contract-based program repair to work effectively without user-
written contracts?

In this paper we describe JAID: a technique and tool
for automated program repair of Java programs that is
based on detailed, state-based dynamic program analyses—
akin those employed by contract-based techniques such as
AutoFix, but working on regular Java code (without any
contracts). State abstractions drive both the generation and the
validation stages of JAID, and help construct high-quality fixes:
in experiments targeting bugs from the DEFECTS4J curated
collection, JAID produced repairs passing all available tests
for 31 of the bugs, and correct repairs—equivalent to those
written by programmers—for 25 of the bugs. These results
are close to, or outperform, other comparable tools for the
automated program repair of Java programs in terms of total
number of correct repairs and precision, and include the
first automatically produced correct repairs for 14 bugs of
DEFECTS4J that were previously outside the capabilities of
APR. JAID is also the first APR technique that achieves high
levels of precision without relying on additional input other
than tests and faulty code; in contrast, other recent high-
precision APR techniques [13], [35] analyze a large number
of project repositories to collect additional information that
guides fixing.

This paper’s key contributions, which bolster JAID’s perfor-
mance, include techniques to build a rich abstraction of object
state. In turn, the state abstraction relies on a purity analysis
of functions—only functions that are pure, that is without
side effects, can be safely used to characterize state. Whereas
techniques, such as AutoFix, that use programmer-written
contracts can easily rely on the functions used as predicates
in the contracts, JAID has to extract similar information from
regular code without annotations. To curb the number of
candidate fixes that are generated and validated, JAID relies on
fault localization and ranking heuristics, which help identify
program states that are likely to be implicated with faulty
behavior; both fault localization and ranking are crucially
informed by JAID’s detailed state-based abstractions. Thanks

1AutoFix targets the Eiffel programming language, where contracts are
embedded in the program code and routinely written by programmers.

mailto:cslschen@comp.polyu.edu.hk
mailto:csypei@comp.polyu.edu.hk
http://bugcounting.net

to these techniques, JAID can generate correct fixes that are
based on a more “semantic” analysis of how to modify the
object state to avoid a failure—beyond just working around
the existing implementation by syntactically modifying it, as
most other APR tools do.

Terminology. In this paper we use the nouns “defect”,
“bug”, “fault”, and “error” as synonyms to indicate errors in
a program’s source code; and the nouns “fix”, “patch”, and
“repair” as synonyms to indicate source-code modifications
that ought to correct errors. For simplicity, JAID denotes both
the APR technique and the tool implementing it.

Availability. JAID and all the material of the experiments
described in this paper is available as open source at:

https://bitbucket.org/maxpei/jaid

II. AN EXAMPLE OF JAID IN ACTION

Apache Commons is a widely used Java library that extends
Java’s standard API with a rich collection of utilities. Class
WordUtil of package org.apache.commons.lang includes a
method abbreviate to simplify strings with spaces: given
a string str, lower and upper indexes lower and upper,
and another string appendToEnd, the method returns a string
obtained by truncating str at the first index between lower

and upper where a space occurs, and replacing (or abbre-
viating) the truncated suffix with appendToEnd. For exam-
ple, abbreviate("Apache Commons library", 9, 18, "+")

returns the string "Apache Commons+".
Lst. 1 shows the implementation of abbreviate at commit

#cfff06bead of the library, which is also part of DEFECTS4J’s
curated collection of defects (bug Lang-45). The implemen-
tation begins by handling a number of special cases but,
unfortunately, it misses the case when lower is greater than
str’s length: the index of the first occurrence of a space from
lower will then be -1 (corresponding to a failing search for
such a space in the call at line 16), and upper will be greater
than or equal to lower (possibly after being adjusted at lines
12–13), and thus also greater than str.length(); in these
conditions, the call to method substring at line 19 throws an
IndexOutOfBoundsException.

The maintainers of Apache Commons fixed this fault in a
later version of the library by resetting lower to str.length()

to ensure that the case lower > str.length() never occurs,
as shown in the patch of Lst. 2, to be inserted right before
line 9 in Lst. 1. DEFECTS4J includes a test that triggers this
fault in abbreviate, to avoid reintroducing the same mistake
in future revisions of the code.

After running for about 70 minutes, JAID produces a number
of fix suggestions for the fault of abbreviate, including
the fix in Lst. 3; this fix is equivalent (nearly identical) to
the programmer-written fix, and thus completely removes the
source of error by handling the special case correctly. To
generate fixes for abbreviate, JAID only needs the source
code of the faulty implementation, as well as the programmer-
written tests that exercise the method. DEFECTS4J actually
includes only one test—the test triggering the fault—for this

1 public static String abbreviate
2 (String str, int lower, int upper, String appendToEnd) {
3 if (str == null) {
4 return null;
5 }
6 if (str.length() == 0) {
7 return StringUtils.EMPTY;
8 }
9 if (upper == -1 || upper > str.length()) {

10 upper = str.length();
11 }
12 if (upper < lower) {
13 upper = lower;
14 }
15 StringBuffer result = new StringBuffer();
16 int index = StringUtils.indexOf(str, " ", lower);
17 if (index == -1) {
18 // throws IndexOutOfBoundsException if lower > str.length()
19 result.append(str.substring(0, upper));
20 if (upper != str.length()) {
21 result.append(StringUtils.defaultString(appendToEnd));
22 }
23 } else if (index > upper) {
24 result.append(str.substring(0, upper));
25 result.append(StringUtils.defaultString(appendToEnd));
26 } else {
27 result.append(str.substring(0, index));
28 result.append(StringUtils.defaultString(appendToEnd));
29 }
30 return result.toString();
31 }

Listing 1. Faulty method abbreviate from class StringUtils in
package org.apache.commons.lang.

8a10,12
> if (lower > str.length()) {
> lower = str.length();
> }

Listing 2. Programmer-written fix
to the fault in abbreviate.

8a10,12
> if (lower >= str.length()) {
> lower = str.length();
> }

Listing 3. JAID’s correct fix
to the fault in abbreviate.

bug; JAID can produce a correct fix even with such limited
information.

To our knowledge, JAID is the first APR tool that can
correctly repair the fault of abbreviate; no other existing
tools even provided so-called test-suite adequate fixes, which
spuriously pass all available tests avoiding the failure, but
do not correctly fix the behavior in the same way that
the developers did. Key to JAID’s success is its capability
of constructing rich state-based abstractions of a program’s
behavior, which improves the accuracy of fault localization
and guides the creation of state-modifying fixes in response
to failing conditions.

III. HOW JAID WORKS

JAID follows the popular “generate-then-validate” approach,
which first generates a number of candidate fixes, and then
validates them using the available test cases; Fig. 1 gives
an overview of the overall process. Inputs to JAID are a
Java program, consisting of a collection of classes, and test
cases that exercise the program and expose some failures.
One key feature of JAID is how it abstracts and monitors
program state in terms of program expressions; all stages of
JAID’s workflow rely on the abstraction derived as described
in Sec. III-A. Fault localization (Sec. III-B) identifies states
and locations (snapshots) that are suspect of being implicated

2

https://bitbucket.org/maxpei/jaid

in the failure under repair. Fix generation (Sec. III-C and
Sec. III-D) builds code snippets that avoid reaching such
suspicious states and locations by modifying the program state,
the control flow, or by other simple heuristics. Generated fixes
are validated against the available tests (Sec. III-E); the fixes
that pass validation are presented to the user, heuristically
ranked according to how likely they are correct (Sec. III-F).

The rest of this section describes how JAID repairs a generic
method fixMe of class FC, with tests T that exercise fixMe in
a way that at least one test in T is failing.

Java program Test cases

Fault localization

Fix generation

Fix validation

Fix ranking

Ranked valid fixes

Suspicious snapshots

Candidate fixes

Valid fixes

JAID

Fig. 1. An overview of how JAID works. Given a Java program and a set
of test cases, including at least one failing test, JAID identifies a number of
suspicious snapshots, each indicating a location and an abstraction of the
program state at that location that may be implicated in the failure; based on
the snapshot information, JAID generates a number of candidate fixes, which
undergo validation against all available tests for the method under repair; fixes
that pass all available tests are considered valid; JAID finally heuristically ranks
the valid fixes, and presents the valid fixes to the user in ranking order.

A. Program State Abstraction

JAID bases its program analysis and fix generation processes
on a detailed state-based abstraction of the behavior of method
fixMe. For every location ` in fixMe, uniquely identifying a
statement in the source code, the JAID records the values of a
set M` of expressions during each test execution: 1) the exact
value of expressions of numeric and Boolean types; 2) the
object identifier (or null) of expressions of reference types,
so that it can detect when a reference is aliased, or is null.
JAID selects the expressions in M` as follows.

Expressions. A type is monitorable if it is a reference
type or a primitive type (numeric types such as int, and
boolean). E` denotes the set of all basic expressions of
monitorable types at `, namely 1) local variables (including
fixMe’s arguments) declared inside fixMe that are visible at
`; 2) attributes of class FC that are visible at `; 3) expressions
anywhere inside fixMe that can be evaluated at ` (that is,
they only involve items visible at `), and that don’t obviously

have side effects (namely, we exclude assignments used as
expressions, self increment and decrement expressions, and
creation expressions using new). X` denotes the set of all
extended expressions of monitorable types at `: for each basic
expression of reference type r ∈ E`, X` includes: 1) r.f()
for every argumentless function f of the class corresponding
to r’s type that returns a monitorable type and is callable at
`; 2) only if r is this, r.a, for every attribute a of the class
corresponding to r’s type that is readable at `.

For example, the extended expressions X9 at line 9 in
method abbreviate of Lst. 1 include lower (an argument
of abbreviate), str.length() (a call of function length()

on abbreviate’s argument str), and upper < lower and
str == null (both appearing in abbreviate).

Purity analysis. One lesson that we can draw from the
experience of contract-based APR [25] is that constructing a
rich set of expressions that abstract the program state can help
support more accurate fault localization and fix generation, and
ultimately the construction of higher-quality “semantic” fixes
that are less prone to overfitting. However, monitoring a rich
set of expressions extracted from the program text does not
work as well in languages such as Java as it does in languages
that support contracts. In the latter, programmers specifically
equip classes with public query methods that are pure—they
are functions that return a value without changing the state of
their target objects—and can be used in the contracts to char-
acterize the program state in response to method calls; these
methods are thus easily identifiable and natural candidates
to construct state abstractions reliably. In Java, in contrast,
programmers need not follow such a discipline of separating
pure functions from state-changing procedures, and methods
that return a value but have side effects are indeed common.
Clearly, a function that is not pure is unsuitable for abstracting
and monitoring an object’s state.

To identify which expressions can reliably be used for
state monitoring, JAID performs a dynamic purity analysis
on all expressions that include method invocations. Given
an expression r of reference type, the set Wr of r’s watch
expressions consists of: 1) all subexpressions Sr of r that
do not include method invocations; 2) for each subexpression
s ∈ Sr, s.a for every attribute a of the class corresponding to
s’s type. Note that watch expressions are constructed so that
they are syntactically free from side effects.

An expression r of reference type is then considered pure if
evaluating it does not alter the value of its watch expressions.
Precisely, at every location ` in the method fixMe under
repair, 1) first, JAID records the value σ = 〈σ1, . . . , σm〉 of
all watch expressions, where σk is the value of wk ∈Wr, for
1 ≤ k ≤ m, before evaluating r; 2) then, JAID evaluates r;
3) finally, JAID records again the value σ′ = 〈σ′1, . . . , σ′m〉 of
all watch expressions, where σ′k is the value of wk ∈Wr, for
1 ≤ k ≤ m, after evaluating r. If σ = σ′ at every ` in every
test exercising fixMe, we call r pure.

State monitoring. JAID collects in M` all extended expres-
sions in X` that are pure according to this analysis.

3

B. Fault Localization

The goal of fault localization is to identify suspicious
snapshots indicating locations and states that are likely to be
implicated with a fault. A snapshot is a triple 〈`, b, ?〉, where
` is a location in method fixMe under repair, b is a Boolean
expression, and ? is the value (true or false) of b at `.

Boolean abstractions. The set B` includes all Boolean
expressions that may appear in a snapshot at `; it is constructed
by combining the monitored expressions M` to create Boolean
expressions as follows: 1) for each pair m1,m2 ∈ M` of
expressions of the same type, B` includes m1 == m2 and
m1 != m2; 2) for each pair k1, k2 ∈ M` of expressions of
integer type, B` includes k1 ./ k2, for ./ ∈ {<, <=, >=, >};
3) for each expression b ∈M` of Boolean type, B` includes b
and !b; 4) for each pair b1, b2 ∈M` of expressions of Boolean
type, B` includes b1 && b2 and b1 || b2.

Continuing the example of method abbreviate in Lst. 1,
B9 includes expressions such as lower >= str.length() and
!(str == null).

Snapshot suspiciousness. JAID computes the suspiciousness
of every snapshot s = 〈`, b, ?〉 based on Wong at al.’s
fault localization techniques [34]. The basic idea is that the
suspiciousness of s combines two sources of information:
1) a syntactic analysis of expression dependence, which gives
a higher value eds to s the more subexpressions b shares
with those used in the statements immediately before and
immediately after ` (this estimates how much s is relevant
to capture the state change at `); 2) a dynamic analysis, which
gives a higher value dys to s the more often b evaluates to ?

at ` in a failing test, and a lower value to s the more often b
evaluates to ? at ` in a passing test (this collects the evidence
that comes from monitoring the program during passing and
failing tests). The overall suspiciousness 2/(ed−1s + dy−1s) is
the harmonic mean of these two sources, but the dynamic
analysis has the biggest impact—because eds is set up to be a
value between zero and one, whereas dys is at least one and
grows with the number of passing tests.

This approach is similar to AutoFix’s [25, Sec. 4.2]—which
is also based on [34]—but conspicuously excludes information
about the distance between ` and the location of failure on the
control flow graph of the faulty method. AutoFix identifies
failures as contract violations, which tend to be happen closer
to where the program state becomes corrupted; by contrast, in
JAID’s setting—using tests without contracts in Java—failures
normally happen when evaluating an assert statement inside
a test method, and thus the distance to the location of failure
within the faulty method is immaterial, and hardly a reliable
indication of suspiciousness.

In the running example of method abbreviate in Lst. 1,
the snapshot 〈9, lower >= str.length(), true〉 receives a
high suspiciousness score because low and str.length()

appear prominently in the statements around line 9, and, most
important, lower >= str.length() holds in all failing and in
no passing tests.

C. Fix Generation: Fix Actions

A snapshot s = 〈`, b, ?〉 with high suspiciousness indicates
that the program is prone to triggering a failure when the
program state in some execution is such that b evaluates to ?

at `; correspondingly, JAID builds a number of candidate fixes
that try to steer away from the suspicious state in the hope
of avoiding the failure. To this effect, JAID enumerates four
kinds of fix actions: 1) modify the state directly by assignment;
2) affect the state that is used in an expression; 3) mutate a
statement; 4) redirect the control flow. Each fix action is a (pos-
sibly compound) statement that can replace the statement at
`. Actions of kinds 1 and 2 are semantic—they directly target
the program state; actions of kind 3 are syntactic—they tinker
with existing code expressions according to simple heuristics;
actions of kind 4 are the simplest—they are independent of
the snapshot’s information. We outline how JAID builds fix
actions in the following paragraphs, based on a definition of
derived expressions. Sec. IV discusses which fix actions were
the most effective in the experimental evaluation.

Derived expression. Given an expression e, ∆`,e denotes
all derived expressions built from e as follows: 1) if e has
integer type, ∆`,e includes e, e + 1, and e - 1; 2) if e has
Boolean type, ∆`,e includes e and !e; 3) ∆`,e also includes t
and t.f(· · ·), for every t ∈ M` of reference type, where
f is a function of the class t belongs to—possibly called
with actual arguments chosen from the monitored expressions
M` of suitable type. Given an expression e, its top-level
subexpressions Se are the expressions corresponding to the
nodes at depth 1 in e’s abstract syntax tree—namely, the
root’s immediate children. For example, the top-level subex-
pressions of (a + b) < c.d() are a + b and c.d(). Then,
∆′`,e =

⋃
s∈Se ∆`,e denotes all expressions derived from e’s

top-level subexpressions.
Modifying the state. For every top-level subexpression e

of b, if e is assignable to, JAID generates the fix action e = δ
for each δ ∈ ∆′`,b whose type is compatible with e’s.

In the running example of method abbreviate in Lst. 1,
JAID includes the assignment lower = str.length() among
the fix actions that modify the state at line 9.

Modifying an expression. For every top-level subexpres-
sion e of b that is not assignable to, but appears in the statement
S at `, JAID generates the fix action tmp_e = δ; S[e 7→ tmp_e]
for each δ ∈ ∆′`,b whose type is compatible with e’s; tpm_e
is a fresh variable with the same type as e, and S[e 7→ tmp_e]
is the statement at ` with every occurrence of e replaced by
tmp_e—which has just been assigned a modified value.

Mutating a statement. “Semantic” fix actions—based on
the information captured by the state in suspicious snapshots—
are usefully complemented by a few “syntactic” fix actions—
based on simple mutation operators that capture common
sources of programming mistakes such as off-by-one errors.
Following an approach adopted by other APR techniques [13],
[36], JAID generates mutations mainly targeting conditional
expressions. Precisely, if the statement S at ` is a conditional
or a loop, JAID generates fix actions for every Boolean subex-

4

pression e of b that appears in the conditional’s condition
or in the loop’s exit condition: 1) if e is a comparison
x1 ./ x2, for ./ ∈ {<, <=, >=, >}, JAID generates the fix
action S[e 7→ (x1 ./′ x2)], for every comparison operator
./′ 6= ./; 2) JAID also generates the fix actions S[e 7→ true]
and S[e 7→ false], where e is replaced by a Boolean constant.
In addition to targeting Boolean expressions, if the statement
S at ` includes a method call t.m(a1, . . . , an), JAID generates
the fix action S[m 7→ x], which calls any applicable method x

on the same target and with the same actual arguments as m

in s.
Modifying the control flow. Even though fix actions may

indirectly change the control flow by modifying the state or a
branching condition, a number of bugs require abruptly redi-
recting the control flow. To achieve this, JAID also generates the
following fix actions independent of the snapshot information:
1) if method fixMe is a procedure (its return type is void),
JAID generates the fix action return; 2) if method fixMe is
a function, JAID generates the fix action return e, for every
basic expression of suitable type available at `; 3) if ` is a
location inside a loop’s body, JAID generates the fix action
continue.

D. Fix Generation: Candidate Fixes

Each fix action—built by JAID as described in the previous
section—is a statement that modifies the program behavior
at location ` in a way that avoids the state implicated by
some suspicious snapshot s = 〈`, b, ?〉. In most cases, a fix
action should not be injected into the program under repair
unconditionally, but only when state b is actually reached
during a computation. A conditional execution would leave
program behavior unchanged in most cases, and only address
the failing behavior when it is about to happen.

To implement such conditional change of behavior, JAID

uses the schemas in Fig. 2 to insert fix actions into the method
fixMe under repair at location `. First, JAID instantiates every
applicable schema with each fix action action; in addition to
the fix action, schemas include the statement oldStatement at
location ` in the faulty fixMe, and the condition suspicious,
which is b == ? as determined by the snapshot’s abstract state.
Then, JAID builds fix candidates by replacing the statement at
` in fixMe by each instantiated schema.2

Continuing the running example of method abbreviate in
Lst. 1, one of the fix candidates consists of the fix action
lower = str.length() instantiating schema B: the action is
executed only if lower >= str.length() (from the suspicious
snapshot), whereas the existing statement at line 9, as well as
the rest of method fixMe, is unchanged by the fix.

Two of the five schemas currently used by JAID to build
fix candidates inject the fix action unconditionally. On the
other hand, different fix actions may determine semantically
equivalent fixes when instantiated. JAID performs a lightweight
redundancy elimination, based on simple syntactic rules such

2Since each fix generated by JAID combines one fix action and one schema,
it adds at most 5 new lines of codes to a patched method.

action;
oldStatement;

Listing 4. Schema A

if (suspicious) {
action;

}
oldStatement;

Listing 5. Schema B

if (!suspicious) {
oldStatement;

}

Listing 6. Schema C

if (suspicious) {
action;

} else {
oldStatement;

}

Listing 7. Schema D

// oldStatement
action;

Listing 8. Schema E

Fig. 2. Schemas used by JAID to build candidate fixes

// class being repaired
class FC {

U fixMe_(T1 a1, T2 a2, . . .) throws IllegalStateException {
switch (Session.getActiveFixId()) {

case 0: return fixMe(a1, a2, . . .); // call faulty method
case 1: return fixMe_1(a1, a2, . . .); // call fix candidate 1

.

.

.
case n: return fixMe_n(a1, a2, . . .); // call fix candidate n
default: throw new IllegalStateException();

}
}

}

Listing 9. How multiple fix candidates are woven into a single class.

as that x == y is equivalent to !(x != y). In future work, we
plan to introduce a more aggressive redundancy elimination,
for example as done in related work [32].

E. Fix Validation

Even if JAID builds candidate fixes based on a semantic
analysis of the program state during passing vs. failing tests,
the candidate fixes come with no guarantee of satisfying
the tests. To ascertain which candidates are suitable, a fix
validation process, which follows fix generation, runs all tests
T that exercise the faulty method fixMe against each generated
candidate fix. Candidate fixes that pass all tests T are classified
as valid (also “test-suite adequate” [19]) and retained; other
candidates, which fail some tests, are discarded—as they do
not fix the fault, they introduce a regression, or both.

In the example of method abbreviate in Lst. 1, the fix can-
didates if (lower >= str.length) lower = str.length()

passes validation, since it fixes the fault and introduces no
regression error.

Since JAID commonly generates a large number of candidate
fixes for each fault, validation can take up a very large time
spent compiling and executing tests, which may ultimately
impair the scalability of JAID’s APR. To curtail the time spent
compiling, JAID deploys a simple form of dependency injec-
tion. All candidate fixes for a method fixMe become members
of fixMe’s enclosing class FC: candidate fix number k becomes
a method fixMe_k with signature the same as fixMe’s. Then,
as shown in Lst. 9, a method fixMe_—also with the same
signature—dispatches calls to any of the candidate fixes based
on the value returned by static method getActiveFixId() of

5

class Session, which supplies the dependency. This scheme
only requires one compilation per method under repair, thus
significantly cutting down validation time.

F. Fix Ranking

Like most APR techniques, JAID’s process is based on
heuristics and driven by a finite collection of tests, and thus is
ultimately best effort: a valid fix may still be incorrect, passing
all available tests only because the tests are incomplete pieces
of specification. JAID addresses this problem by ranking valid
fixes using the same heuristics that underlies fault localization.
Every fix includes one fix action, which was derived from a
snapshot s; the higher the suspiciousness of s, the higher the
fix is ranked; fixes derived from the same snapshot are ranked
in order of generation, which means that “semantic” fixes
(modifying state or expressions) appear before “syntactic”
fixes (mutating statements or modifying the control flow),
and fixes of the same kind are enumerated starting from the
syntactically simpler ones.

When the ranking heuristics works, the user only inspects
few top-ranked fixes to assess their correctness and whether
they can be deployed into the codebase. The experimental
evaluation in Sec. IV comments on the effectiveness of JAID’s
ranking heuristics.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of JAID on DEFECTS4J [9], a
large curated collection of faults and programmer-written fixes
from real-world Java projects. This choice also enables us to
quantitatively compare the results of JAID’s evaluation to most
state-of-the-art tools for APR of Java programs—which have
also targeted DEFECTS4J in their experiments.

TABLE I

The bugs in DEFECTS4J: for each PROJECT in DEFECTS4J, how many thousands
of lines of code (KLOC) and tests (TESTS) it includes, how many BUGS it
includes in total, and how many were SELECTED for our experiments.

PROJECT KLOC TESTS BUGS SELECTED

Chart JFreechart 96 2205 26 12
Closure Closure Compiler 90 7927 133 56
Lang Apache Commons-Lang 22 2245 65 22
Math Apache Commons-Math 85 3602 106 42
Time Joda-Time 27 4130 27 6

TOTAL 320 20109 357 138

A. Subjects

Our experiments target revision #a910322b of DEFECTS4J,
which includes 357 bugs in 5 projects: Chart (26 bugs),
Closure (133 bugs), Lang (65 bugs), Math (106 bugs), and
Time (27 bugs). Each bug in DEFECTS4J has a unique iden-
tifier, corresponds to two versions—buggy and fixed (by a
programmer)—of the code (which may span multiple meth-
ods or even multiple files), and is accompanied by some
programmer-written unit tests that exercise the code—in par-
ticular, at least one test triggers a failure on the buggy version.

In the following, if k is the identifier of a bug in DEFECTS4J,
βk denotes the buggy version of the code corresponding to
bug k, φk denotes the code of the programmer-fixed version
of βk, and Tk denotes the tests accompanying k.

The bugs included in DEFECTS4J are a representative sample
of real-world bugs, and as such they include several that admit
simple fixes, as well as several others that require sweeping
changes to different parts of a project. In order to focus
the experiments on the bugs that have a chance of being in
JAID’s purview, we selected a subset of all bugs k that satisfy
the following criteria: 1) the programmer-written fix φk only
modifies Java executable code—no other artifacts like config-
uration files or compilation scripts; 2) the programmer-written
fix φk modifies no more than 5 consecutive lines of code and
no more than 4 statements with respect to βk (as reported by
the ChangeDistiller tool [8]); 3) the bug is reproducible: at
least one test in Tk fails on βk, and all tests in Tk pass on
φk. A total of 138 bugs satisfy these criteria; these are the
subjects of our experiments with JAID. Tab. I shows the size
of and the number of bugs in each DEFECTS4J project among
our experimental subjects.

B. Research Questions

Our evaluation addresses research questions in different
areas:
Effectiveness: How many bugs can JAID fix?
Performance: How much time does JAID take?
Design: Which components of JAID’s are the most important

for effectiveness?
Comparison: How does JAID compare to other APR tech-

niques for Java?

C. Setup

Since JAID ranks all generated snapshots according to their
suspiciousness (see Sec. III-B), and depends on the ranking to
guide the following stages, setting an arbitrary cutoff time may
prevent from generating a complete ranking. Instead, we limit
the search space in our experiments by configuring JAID so
that it uses at most 1500 snapshots in order of suspiciousness;3

then, the following stages (Fig. 1) all run to completion.
Each experiment targets one bug k in DEFECTS4J, and runs

JAID on buggy code βk using the tests Tk; the output is a
ranked list of valid fixes for the bug. We manually inspect the
top 50 fixes in order of ranking to determine which are correct;
if all 50 fixes are incorrect, we continue the manual inspection
of the other fixes and stop when we find a correct one, or no
more valid fixes are available. We classify a fix as correct only
if it is semantically equivalent to the programmer-written fix
φk in DEFECTS4J. This is a high bar for correctness, which
provides strong confidence that a fix is high-quality enough to
be deployable.

All the experiments ran on a cloud infrastructure, with each
run of JAID using exclusively one virtual machine instance,
configured to use one core of an Intel Xeon Processor E5-
2630 v2, 8 GB of RAM, Ubuntu 14.04, and Oracle’s Java

3The number 1500 was chosen heuristically.

6

JDK 1.8. In this section, averages are measured using the
median by default, with exceptions explicitly pointed out.

Other tools for Java APR. We quantitatively compare JAID

to all other available tools for APR of Java programs that
have also used DEFECTS4J in their evaluations:4 1) jGenProg
is the implementation of GenProg [14], [33]—which works
on C—for Java programs; we refer to jGenProg’s evaluation
in [19]; 2) jKali is the implementation of Kali [28]—which
works on C—for Java programs; we refer to jKali’s evalu-
ation in [19]; 3) Nopol focuses on fixing Java conditional
expression; we refer to Nopol’s evaluation in [19]; 4) xPAR
is a reimplementation of PAR [12]—which is not publicly
available—discussed in [13] and [35]; 5) HDA implements
the “history-driven” technique of [13]; 6) ACS implements the
“precise condition synthesis” of [35].

Experiments with APR tools often target a different subset
of DEFECTS4J that is amenable to the technique being evalu-
ated. Comparing the number and kinds of fixed bugs among
tools remains meaningful, because bugs that are excluded a
priori from an evaluation can normally be considered beyond
a tool’s current capabilities.

D. Results

Effectiveness. JAID was able to produce valid fixes for the
31 bugs of DEFECTS4J listed in Tab. II. More significant,
it produced correct fixes—equivalent to those written by
programmers—for 25 of these bugs (integer RANK in Tab. II).
This indicates that JAID is applicable to realistic code and,
when it runs successfully, it often produces fixes of high
quality. As we discuss in more detail below, the number of
correctly fixed bugs is on par with, or above, the state of the
art of Java APR techniques.

Unsurprisingly, JAID produces fixes that tend to be small
in size: 1.7 lines of code changes per valid fix on average.
This is a result of its fix generation process, which is based
on state-based information, targets simple fix actions, and then
sharpens their precision by injecting them into the code using
conditional schemas.

When it is successful, JAID often produces a significant
number of valid fixes—39 per fixed bug on average in our
experiments—and a much smaller number of correct fixes—1
per fixed bug on average in our experiments—which all are
semantically equivalent. In JAID’s output for the 25 bugs that
were correctly fixed, the median position of the first correct
fix in the list of all valid fixes was 6 (from the top); for 15
bugs that JAID correctly fixed, a correct fix appears among the
top-10 valid ones in order of ranking; for 9 bugs it appears
at the top position. These results indicate the importance of
ranking to ensure that the correct fixes are easier to spot among
several valid but incorrect ones. For 10 bugs, the correct fix
appears further down in the output list; in 6 of these cases, the
correct fix turns out to be a “syntactic” one, but several valid,
incorrect “semantic” fixes are generated and ranked higher.

4We ascertained that the version of DEFECTS4J used in our experiments
does not differ substantially from those used in the other tools’ experiments;
in particular, all bugs analyzed by JAID were also available to the other tools.

This suggests that improving the precision of ranking may
benefit from mining additional information about common
features of programmer-written fixes, as done by HDA and
ACS.

JAID can correctly fix even 4 bugs that include only one
failing test (and no passing tests), ranking the correct fix first in
two cases. These results showcase how JAID can be successful
at mitigating the baneful problem of overfitting.

Performance. As shown in Tab. II, JAID runs in 119.5
minutes per bug on average (median, whereas the mean
running time is 355.1 minutes). JAID is unsurprisingly sig-
nificantly slower than tools based on constraint solving and
other symbolic techniques; for example, Nopol takes around
22 minutes per bug on average—on what, we assume, is
comparable hardware. They are, however, in line with other
APR techniques mainly based on dynamic analysis, such as
jGenProg which takes about one hour per bug.

Looking more closely into how much time each stage of
JAID takes, it is clear that validation is by far the most time
consuming: fault localization takes 2.7% of the median time
per bug, fix generation takes 0.5%, and fix validation takes
92.8%. Validation time tends to be proportional to the number
of available tests, and to the number of fix candidates—which,
in turn, is proportional to the number of snapshots that are
actually analyzed. The approach outlined in Sec. III-E still
helps save a significant amount of compilation time; as future
work, we plan to further improve the performance of validation
by running multiple concurrent instances on the same JVM.

Design. Which of the fix actions and schemas are the
most useful to build correct fixes? Regarding fix actions,
we distinguish three kinds: 1) s for actions modifying the
state or an expression—“semantic” actions that are built on
JAID’s rich state-based abstractions; 2) m for actions mutating
a statement—“syntactic” actions that correct common errors
and are commonly used in APR systems; 3) c for actions
modifying the control-flow—“terminating” actions that can
still have a significant impact on program behavior. JAID uses
all three kinds of actions, with similar frequencies, in correct
fixes, which indicates that they are largely complementary and
all contribute to JAID’s effectiveness.

The five fix schemas of Fig. 2, which JAID uses to inject a fix
action into the method under repair, also all feature in correct
fixes. This suggests that both conditional and unconditional
applications are required to target a wide choice of bugs.

JAID HDA

ACS

14 13

15

8

2
1 0

Fig. 3. Number of bugs correctly fixed by each of the main APR tool.

Comparison: correct fixes. Tab. III compares JAID to

7

TABLE II

Summary of the experimental results. For every bug (BUG ID k) that JAID fixed with a valid fix: the lines of code (LOC) of the method under repair; how many
tests (TESTS), Passing and Failing, exercise the method under repair; the number of suspicious SNAPshots that are analyzed (capped at 1500); the number of
CANDidate fixes that undergo validation; the mean SIZE, in lines of code changes, of a valid fix; the total number of VALID fixes; the number of CORRECT
fixes among the top 50 valid fixes; the position of the first correct fix in ranking order (RANK); the TOTAL running time in minutes, and the breakdown into
time for fault Localization, fix Generation, and fix Validation; the kinds of ACTIONS (s for state- and expression-modifying actions, m for mutation actions,
and c for control-flow actions, see Sec. III-C), and the kinds of SCHEMAS (see Fig. 2) used in correct fixes.

TESTS GENERATION FIXES TIME
BUG ID k LOC P F SNAP CAND SIZE VALID CORRECT RANK TOTAL L G V ACTIONS SCHEMAS

Chart 1 32 37 1 791 3762 1.5 536 0 84 54.1 1.0 1.5 51.6 m E
Chart 24 6 0 1 813 2476 1.5 2 2 1 16.8 0.3 0.2 16.3 s A,B
Chart 26 108 23 22 1500 2018 1.7 82 3 1 53.6 10.3 4.7 38.6 c, s B,E
Chart 9 38 1 1 1500 5991 1.8 52 2 43 72.2 2.6 0.8 68.8 s E

Closure 125 15 538 1 154 517 1.9 98 0 – 131.3 9.7 0.0 121.6 – –
Closure 126 95 71 2 1500 4583 1.9 425 0 93 601.4 6.0 0.5 594.9 m E
Closure 18 122 2096 1 1000 9215 1.0 9 1 1 1367.1 449.5 5.8 911.8 m E
Closure 31 122 2037 1 1500 14464 1.0 9 1 8 1440.1 448.4 6.9 984.7 m E
Closure 33 27 259 1 1500 4484 1.5 2720 2 1 258.0 6.5 0.1 251.4 c B
Closure 40 46 305 2 871 5243 1.0 4 4 1 119.5 8.1 0.6 110.9 m E
Closure 5 98 56 1 1500 25816 1.5 2 0 – 975.9 6.0 3.7 966.2 – –
Closure 62 45 45 2 1500 7138 1.0 87 1 31 126.7 6.8 1.1 118.8 m E
Closure 63 45 45 2 1500 7138 1.0 87 1 31 127.1 6.7 1.1 119.3 m E
Closure 70 19 2337 5 393 2359 1.0 5 5 1 70.4 31.1 0.2 39.1 m E
Closure 73 70 482 1 1500 11472 1.0 1 1 1 473.4 165.1 2.5 305.8 m E

Lang 24 102 0 1 1500 51872 1.0 2 0 – 2228.6 1.2 7.2 2220.1 – –
Lang 33 11 0 1 150 792 2.1 7 7 1 11.0 3.3 0.1 7.7 c, s C,D,B
Lang 38 6 33 1 328 1363 1.7 28 4 4 10.7 1.0 0.1 9.6 s A,B
Lang 39 126 1 1 1500 11702 2.1 39 0 – 408.2 10.7 3.7 393.9 – –
Lang 45 37 0 1 1500 7173 1.9 68 2 34 105.1 0.7 0.6 103.9 s B
Lang 51 51 0 1 959 8514 1.7 424 1 46 188.4 0.3 0.8 187.3 c B
Lang 55 6 4 1 21 170 2.0 15 1 6 3.6 0.4 0.0 3.2 s C
Lang 61 27 7 2 1500 18289 1.0 4 0 – 327.0 0.5 1.7 324.7 – –
Math 105 2 8 1 64 1478 2.0 139 0 – 9.2 0.2 0.1 9.0 – –
Math 32 52 6 1 1500 2997 1.0 5 1 4 37.5 1.7 0.4 35.4 s E
Math 5 22 5 1 162 1426 2.0 61 3 1 11.3 0.5 0.1 10.8 c B
Math 50 125 3 1 1500 37848 1.5 1101 3 28 1502.6 23.4 7.6 1471.5 s, c,m E,C,D
Math 53 5 19 1 246 2010 2.0 10 2 6 19.0 3.2 0.1 15.7 c B
Math 80 15 16 1 1500 9526 1.9 3877 0 1366 156.7 0.5 0.9 155.2 s B,A
Math 82 15 13 1 436 1707 1.9 13 1 9 33.1 3.0 0.1 30.0 m E
Math 85 43 12 1 1500 2922 1.7 709 0 247 68.3 1.2 0.2 66.9 m E

MEDIAN 38 16 1 1500 4583 1.7 39 1 6 119.5 3.2 0.6 110.9

TABLE III

A comparison of APR techniques on bugs in DEFECTS4J. This paper’s JAID is compared to ACS, HDA, xPAR, jGenProg, and jKali. For each tool, the table
reports the number of bugs that were fixed with a VALID fix; the number of bugs that were fixed with a CORRECT fix (among ANY of those outputed by the
tool, only among the TOP-10 POSITIONS in the output, and only in the FIRST POSITION in the output); and the resulting PRECISION (CORRECT/VALID) and
RECALL (CORRECT/357, where 357 is the total number of bugs in DEFECTS4J). Question marks represent data not available for a tool.

ANY POSITION TOP-10 POSITIONS FIRST POSITION
TOOL VALID CORRECT PRECISION RECALL CORRECT PRECISION RECALL CORRECT PRECISION RECALL

JAID 31 25 80.6 7.0 15 48.4 4.2 9 29.0 2.5
ACS 23 18 78.3 5.0 18 78.3 5.0 18 78.3 5.0
HDA ? 23 ? 6.4 23 ? 6.4 13 ? 3.6
Nopol 35 5 14.3 1.4 5 14.3 1.4 5 14.3 1.4
xPAR ? 4 ? 1.1 4 ? 1.1 ? ? ?
jGenProg 27 5 18.5 1.4 5 18.5 1.4 5 18.5 1.4
jKali 22 1 4.6 0.3 1 4.6 0.3 1 4.6 0.3

six other APR tools for Java. In terms of number of bugs
fixed with a correct fix, JAID outperforms all other tools.
Note that both runners-up, HDA and ACS, crucially rely
on mining additional information from other sources: HDA
mines frequency information about 3000 bug fixes from 800
popular GitHub projects, whereas ACS searches for predicates
in “all open-source projects in GitHub” [35, Sec.III-E]. The
implementation of HDA additionally requires fault localization
information as part of the input. Thus, both tools use a

richer input than just a buggy program and its accompanying
unit tests, which indicates that JAID’s performance is highly
competitive, and arguably improving the state-of-the-art in its
own league.

JAID fares very well also in terms of precision (fraction
of bugs with a valid fix that have a correct fix) and recall
(percentage of all bugs in DEFECTS4J that have a correct
fix). Since different approaches, and different experimental
evaluations, deal differently with bugs that admit multiple

8

valid fixes, we measure three variants of precision and recall:
1) relative to the number of bugs that were correctly fixed
by any of the valid fixes, regardless of the correct fix’s rank;
2) relative to the number of bugs that were correctly fixed by
a fix ranked among the top 10 in a tool’s output; 3) relative to
the number of bugs that were correctly fixed by a fix ranked
first in a tool’s output. JAID achieve the best precision5 and
recall if we disregard ranking; and the second-best precision
and third-best recall in the other two cases. Again, note that
the only tools that outperform JAID rely on additional input
information to sharpen their precision and recall.

Comparison: kinds of fixes. Fig. 3 zooms in on the bugs
that are correctly fixed by JAID, HDA, and ACS, and shows
how many bugs each tool can fix that the others cannot. The
tools are mainly complementary in the specific bugs they are
successful on: JAID fixes 14 bugs that no other tool can fix;
HDA fixes 13; and ACS fixes 15.

Among the tools not in Fig. 3: Nopol fixes 2 bugs that no
other tool can fix (plus 2 bug also fixed by JAID, and 1 of
which also fixed by HDA); jGenProg fixes 1 bug that no other
tool can fix (plus 4 bugs also fixed by HDA, 3 of which JAID

can also fix); jKali fixes 1 bug that jGenProg, Nopol, HDA and
JAID can also fix. These numbers indicate that each technique
is successful in its own domain. The complementarity also
suggests that combining techniques based on mining (such as
HDA and ACS) with JAID’s techniques is likely to yield further
improvements in terms of precision and effectiveness.

Comparison: other tools. We refrain from quantita-
tively comparing APR tools that target other programming
languages—and thus were evaluated on different bench-
marks [15]. Nevertheless, just to give an idea, Angelix [22]
and Prophet [17]6 achieve a precision of 35.7% and 42.9%,
and a recall of 9.5% and 17%, on 105 bugs in the C GenProg
benchmark [14]; AutoFix [25]7 achieves a precision of 59.3%
and a recall of 25% on 204 bugs from various Eiffel projects
with contracts.

E. Threats to Validity

Construct validity indicates whether the measures used in
the experiments are suitable. We classify a fix as correct if it is
semantically equivalent to a programmer-written fix. Since we
assess semantic equivalence manually, different programmers
may provide different assessments; to mitigate this threat, we
were conservative in evaluating equivalence—if a fix does not
clearly produce the same behavior as the fix in DEFECTS4J
for the same bug, we classify it as incorrect. This approach
is consistent with what done by other researchers. A more
detailed analysis of patch correctness belongs to future work.

We measured, and compared, precision and recall relative
to all bugs in DEFECTS4J, even if most APR techniques—
including JAID—only run experiments on a subset of the
bugs whose features have a chance of being fixable. Using
the largest possible denominator ensures that measures are

5The precision of HDA is not reported in [13].
6Valid fixes are called “plausible” in [17].
7Correct fixes are called “proper” in [25], [26].

comparable between different tools, and is consistent with the
ultimate ambition of developing APR techniques that are as
widely applicable as possible.

Tools, and their experimental evaluations, often differ in
how they deal with multiple valid fixes for the same bugs. In
the tool comparison, we counted all correct fixes generated
by each tool that were reported in the experiments, and we
reported separate measures of precision according to how
many valid fixes are inspected. This gives a nuanced picture
of the results, which must however be taken—as usual—with
a grain of salt: different tools may focus on achieving a better
ranking vs. correctly fixing more bugs, and we do not imply
that there is one universal measure of effectiveness. Anyway,
our evaluation is widely applicable—including to papers that
may not detail this aspect—and is in line with what done in
other evaluations [14], [17], [25], [28], [29].

Internal validity indicates whether the experimental results
soundly support the findings. Comparing the performance—
running time, in particular—of different APR techniques is a
particularly delicate matter because of a number of confound-
ing factors. First of all, the experiments should all run on the
same hardware and runtime environment, using comparable
configurations (e.g., in terms of timeouts). Techniques using
randomization, such as jGenProg, require several repeated
runs to get to quantitative results that are representative of
a typical run [1]. Some techniques, such as ACS and HDA,
rely on a time-consuming preprocessing stage that mines code
repositories (and is crucial for effectiveness), and hence it is
unclear how to appropriately compare them to techniques, such
as JAID, that do not depend on this auxiliary information. Fault
localization is also an input to HDA’s main algorithm. In all,
we used standard, clearly specified settings for the experiments
with JAID, and we relied on the overall results—in terms of
correct fixes—reported in other tools’ experiments. In contrast,
we refrained from qualitatively compare tools in measures
of performance, which depend more sensitively on having a
controlled experimental setup, and which we therefore leave
to future work.

External validity indicates whether the experimental find-
ings generalize. The DEFECTS4J dataset is a varied collection
of bugs, carefully designed and maintained to support realistic
and sound comparisons of the effectiveness of all sorts of
analyses based on testing and test-case generation; it has also
become a de facto standard to evaluate APR techniques for
Java. These characteristics mitigate the risk that our exper-
iments overfit the subjects. As future work, we plan to run
JAID on other open-source Java projects; we see no intrinsic
limitations that would prevent JAID from working reliably on
different projects as well.

V. RELATED WORK

Automated program repair has become a bustling research
area in the course of just a few years. The first APR tech-
niques [2], [33] used genetic algorithms to search the space
of possible fixes for a valid one. GenProg [33] pioneered
the “generate-and-validate” approach, where many plausible

9

fixes are generated based on heuristics, and then are validated
against the available tests. More recently, others [5], [21],
[22], [24], [36] have pursued the “constraint-based” approach,
where fixes are constructed to satisfy suitable constraints
that correspond to their validity. The two approaches are
not sharply distinct, in that fixes generated by constraint-
based techniques may still require validation if the constraints
they satisfy by construction are not sufficiently precise to
ensure that they are correct—as it often happens when dealing
with incomplete specifications. Nevertheless, the categoriza-
tion remains useful; we devote more attention to generate-and-
validate techniques, since JAID belongs to this category, and
thus is more directly comparable to them. For a broader list of
APR techniques, see Monperrus’s annotated bibliography [23].

Generate-and-validate. GenProg [33] is based on a genetic
algorithm that mutates the code of a faulty C function by delet-
ing, adding, or replacing code taken from other portions of the
codebase—following the intuition [20] that existing code is
also applicable to patch incorrect functionality. GenProg’s al-
gorithm and implementation were substantially extended [14]
to scale to code bases of realistic code sizes—producing valid
fixes for 52% of 105 bugs.

Encouraged by GenProg’s promising results, various ap-
proaches tried to make the mutation of candidate fixes more
effective, or the search in the space of possible fixes more
directed and thus more efficient. For example, MutRepair [4]
only modifies operators appearing in expressions (such as
comparison operators and Boolean connectives), since these
tend to be a common source of programming mistakes.
PAR [12] bases the generation of fixes on ten patterns, selected
based on a manual analysis of programmer-written fixes,
which helps generate fixes that are more readable, and possibly
easier to understand. A complementary approach [30] suggests
to use anti-patterns, trying to capture fixes that are likely to
be incorrect but still pass validation.

The overfitting problem. A more detailed analysis [28]
of the fixes produced by GenProg and similar techniques has
shown that only a small fraction of them is genuinely correct;
for example, less than 2% of the bugs of [14] are correctly
fixed. [28]’s analysis has pushed the research in APR to
addressing this manifestation of the overfitting problem [29].

Most techniques for APR are based on tests, which are
necessarily incomplete characterization of correct behavior.
By also relying on contracts (specifications embedded in the
program text) AutoFix [25], [26], [31] was the first general-
purpose APR technique to substantially increase the number
of correct fixes—for 25% of 204 bugs in [25]. JAID generalizes
AutoFix’s state-based analysis to work on Java code without
contracts, so as to improve the quality of the generated fixes
without sacrificing applicability.

Code mining. SearchRepair [11] is one of few other
approaches based on semantic analysis—as opposed to the
more commonly used syntactic analysis. SearchRepair relies
on preprocessing a large dataset of programmer-written code
snippets, and encoding their behavior as input/output relational
constraints; it then generates fixes by searching the dataset

for snippets that capture the desired input/output behavior.
HDA [13] also leverages a model of programmer-written code
built by mining software repositories, but combines it with
a mutation-based syntax-driven analysis similar to GenProg:
mutants that are “more similar” to what the learned model
prescribes are preferred in the search for a repair. The idea of
mining programmer-written code is applicable to other APR
approaches, including JAID, as a way to provide additional
information that reduces the chance of overfitting.

Condition synthesis. Constraint-based approaches often
target the synthesis of conditions in if statements or loops,
since changing those conditions often affects the control flow
in decisive ways. SemFix [24] is one of the early examples;
it relies on symbolic execution to summarize tests and on
location-based fault localization, and it synthesizes expressions
in conditionals and in assignments that try to avoid triggering
failures. DirectFix [21] expresses the repair problem as a
MaxSMT constraint, and supports generating multi-line fixes.
Both SemFix and DirectFix, however, have limited scalability.
Angelix [22] addresses this problem by introducing an efficient
representation of constraints, and by combining it with a
symbolic execution analysis similar to SemFix’s.

Nopol [36] only targets conditional expressions, and uses
a form of angelic debugging [3], [37] to reconstruct the
expected value of a condition in passing vs. failing runs;
based on it, it synthesizes a new conditional expression using
an SMT solver. SPR [16] also combines condition synthesis
with a dynamic analysis of the value each abstract conditional
expression should take to make all tests pass, which helps
aggressively prune the search space when no plausible repair
exists. Prophet [17] improves SPR with a probabilistic model
learned by mining programmer-written fixes. MintHint [10]
also builds a statistical model to generate repair suggestions
consisting of expressions that may be useful in a complete
fix. ACS [35] is a recent technique that significantly improves
the precision of condition synthesis based on a combination
of data- and control-dependency analysis, and mining API
documentation and Boolean predicates in existing projects.
JAID also relies on data- and control-dependency analysis, and
can guess modifications to conditional expressions, but it does
not need any additional source of information other than the
project being fixed.

Runtime patching. Runtime patching [6], [7], [18] denotes
approaches that operate at runtime as fallback measures in
response to triggered failures—in contrast to APR techniques
that modify source code. Under the hood, runtime patching
often uses program analysis techniques similar to those of
APR systems; ClearView [27], for instance, dynamically infer
state invariants like JAID does, but does so at runtime on
instrumented binaries with the goal of preventing problems
such as buffer overflows.

ACKNOWLEDGMENTS

This work was partially supported by Hong Kong RGC
General Research Fund (GRF) PolyU 152703/16E and the
Hong Kong Polytechnic University internal fund 1-ZVJ1.

10

REFERENCES

[1] A. Arcuri and L. C. Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Softw. Test.,
Verif. Reliab., 24(3):219–250, 2014.

[2] A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic
software bug fixing. In Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC), pages 162–168. IEEE, 2008.

[3] S. Chandra, E. Torlak, S. Barman, and R. Bodík. Angelic debugging.
In Proceedings of the 33rd International Conference on Software Engi-
neering (ICSE), pages 121–130. ACM, 2011.

[4] V. Debroy and W. E. Wong. Using mutation to automatically suggest
fixes for faulty programs. In 3rd International Conference on Software
Testing, Verification and Validation (ICST), pages 65–74. IEEE, 2010.

[5] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with SMT.
In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, pages 30–39. ACM, 2014.

[6] B. Demsky and M. Rinard. Automatic detection and repair of errors in
data structures. ACM SIGPLAN Notices, 38(11):78–95, 2003.

[7] B. Elkarablieh and S. Khurshid. Juzi: a tool for repairing complex
data structures. In Proceedings of the 30th International Conference on
Software Engineering, pages 855–858. ACM, 2008.

[8] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743, Nov. 2007.

[9] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 437–440. ACM, 2014. http://defects4j.org.

[10] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso. MintHint:
automated synthesis of repair hints. In 36th International Conference
on Software Engineering (ICSE), pages 266–276. ACM, 2014.

[11] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing programs with
semantic code search. In 30th IEEE/ACM International Conference on
Automated Software Engineering, (ASE), pages 295–306. IEEE, 2015.

[12] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 802–811. IEEE,
2013.

[13] X. B. D. Le, D. Lo, and C. Le Goues. History driven program repair.
In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 1, pages 213–224.
IEEE, 2016.

[14] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In 34th International Conference on Software Engineering (ICSE),
pages 3–13. IEEE, 2012.

[15] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer. The ManyBugs and IntroClass benchmarks
for automated repair of C programs. IEEE Trans. Software Eng.,
41(12):1236–1256, 2015.

[16] F. Long and M. Rinard. Staged program repair with condition synthesis.
In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 166–178. ACM, 2015.

[17] F. Long and M. Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
298–312. ACM, 2016.

[18] M. Z. Malik and K. Ghori. A case for automated debugging using
data structure repair. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, pages 620–624. IEEE,
2009.

[19] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus.
Automatic repair of real bugs in Java: A large-scale experiment on the
Defects4J dataset. Empirical Software Engineering, 2016.

[20] M. Martinez, W. Weimer, and M. Monperrus. Do the fix ingredients
already exist? An empirical inquiry into the redundancy assumptions

of program repair approaches. In 36th International Conference on
Software Engineering (ICSE), pages 492–495. ACM, 2014.

[21] S. Mechtaev, J. Yi, and A. Roychoudhury. DirectFix: Looking for
simple program repairs. In 37th International Conference on Software
Engineering (ICSE), volume 1, pages 448–458. IEEE, 2015.

[22] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, pages 691–701.
ACM, 2016.

[23] M. Monperrus. Automatic software repair: a bibliography. Technical
Report hal-01206501, University of Lille, 2015.

[24] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix:
program repair via semantic analysis. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 772–781. IEEE,
2013.

[25] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. IEEE Transactions on
Software Engineering, 40(5):427–449, 2014.

[26] Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. Code-based
automated program fixing. In 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 392–395. IEEE, 2011.

[27] J. H. Perkins, G. Sullivan, W. Wong, Y. Zibin, M. D. Ernst, M. Rinard,
S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, and S. Sidiroglou. Automatically patching errors in
deployed software. In Proceedings of the ACM SIGOPS Symposium
on Operating Systems Principles, pages 87–102, 2009.

[28] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA), pages 24–36. ACM, 2015.

[29] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the cure worse than
the disease? Overfitting in automated program repair. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pages 532–543. ACM, 2015.

[30] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury. Anti-
patterns in search-based program repair. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pages 727–738. ACM, 2016.

[31] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller. Automated fixing of programs with contracts. In Proceedings
of the 19th International Symposium on Software Testing and Analysis
(ISSTA), pages 61–72. ACM, 2010.

[32] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 356–366. IEEE, 2013.

[33] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In 31st International
Conference on Software Engineering (ICSE), pages 364–374. IEEE,
2009.

[34] W. E. Wong, V. Debroy, and B. Choi. A family of code coverage-
based heuristics for effective fault localization. Journal of Systems and
Software, 83(2):188–208, 2010.

[35] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang.
Precise condition synthesis for program repair. In Proceedings of the
39th International Conference on Software Engineering (ICSE). ACM,
Aug. 2017.

[36] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus. Nopol: Automatic repair
of conditional statement bugs in Java programs. IEEE Transactions on
Software Engineering, 43(1):34–55, 2017.

[37] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. In Proceedings of the 28th International Conference

on Software Engineering (ICSE), pages 272–281. ACM, 2006.

11

http://defects4j.org

	Introduction
	An Example of [0.5]Jaid in Action
	How [0.5]Jaid Works
	Program State Abstraction
	Fault Localization
	Fix Generation: Fix Actions
	Fix Generation: Candidate Fixes
	Fix Validation
	Fix Ranking

	Experimental Evaluation
	Subjects
	Research Questions
	Setup
	Results
	Threats to Validity

	Related Work
	References

