
Robustness Testing of Intermediate Verifiers

YuTing Chen and Carlo A. Furia

Chalmers University of Technology, Sweden
yutingc@chalmers.se bugcounting.net

Abstract. Program verifiers are not exempt from the bugs that affect nearly ev-
ery piece of software. In addition, they often exhibit brittle behavior: their perfor-
mance changes considerably with details of how the input program is expressed—
details that should be irrelevant, such as the order of independent declarations.
Such a lack of robustness frustrates users who have to spend considerable time
figuring out a tool’s idiosyncrasies before they can use it effectively.
This paper introduces a technique to detect lack of robustness of program veri-
fiers; the technique is lightweight and fully automated, as it is based on testing
methods (such as mutation testing and metamorphic testing). The key idea is to
generate many simple variants of a program that initially passes verification. All
variants are, by construction, equivalent to the original program; thus, any variant
that fails verification indicates lack of robustness in the verifier.
We implemented our technique in a tool called µgie, which operates on programs
written in the popular Boogie language for verification—used as intermediate
representation in numerous program verifiers. Experiments targeting 135 Boogie
programs indicate that brittle behavior occurs fairly frequently (16 programs) and
is not hard to trigger. Based on these results, the paper discusses the main sources
of brittle behavior and suggests means of improving robustness.

1 Introduction

Automated program verifiers have become complex pieces of software; inevitably, they
contain bugs that make them misbehave in certain conditions. Verification tools need
verification too.

In order to apply verification techniques to program verifiers, we have to settle on
the kind of (correctness) properties to be verified. If we simply want to look for basic
programming errors—such as memory allocation errors, or parsing failures—the usual
verification1 techniques designed for generic software—from random testing to static
analysis—will work as well on program verifiers. Alternatively, we may treat a program
verifier as a translator that encodes the semantics of a program and specification lan-
guage into purely logic constraints—which can be fed to a generic theorem prover. In
this case, we may pursue a correct-by-construction approach that checks that the trans-
lation preserves the intended semantics—as it has been done in few milestone research
achievements [20].

There is a third kind of analysis, however, which is peculiar to automated program
verifiers that aim at being sound. Such tools input a program complete with specifica-
tion and other auxiliary annotations, and output either “Ë SUCCESS” or “é FAILURE”.

1 In this paper, the term “verification” also designates validation techniques such as testing.

bugcounting.net

Success means that the verifier proved that the input program is correct; but failure may
mean that the program is incorrect or, more commonly, that the verifier needs more in-
formation to verify the program—such as more detailed annotations. This asymmetry
between “verified” and “don’t know” is a form of incompleteness, which is inevitable
for sound verifiers that target expressive, undecidable program logics. Indeed, using
such tools often requires users to become acquainted with the tools’ idiosyncrasies,
developing an intuition for what kind of information, and in what form, is required for
verification to succeed. To put it in another way, program verifiers may exhibit brittle, or
unstable, behavior: tiny changes of the input program that ought to be inconsequential
have a major impact on the effectiveness achieved by the program verifier. For instance,
Sec. 2 details the example of a small program that passes or fails verification just ac-
cording to the relative order of two unrelated declarations. Brittle behavior of this kind
compromises the usability of verification tools.

In this work, we target this kind of robustness (stability) analysis of program ver-
ifiers. We call an automated verifier robust if its behavior is not significantly affected
by small changes in the input that should be immaterial. A verifier that is not robust is
brittle (unstable): it depends on idiosyncratic features of the input. Using brittle veri-
fiers can be extremely frustrating: the feedback we get as we try to develop a verified
program incrementally is inconsistent, and we end up running in circles—trying to fix
nonexistent errors or adding unnecessary annotations. Besides being a novel research
direction for the verification of verifiers, identifying brittle behavior has the potential of
helping develop more robust tools that are ultimately more usable.

More precisely, we apply lightweight verification techniques based on testing. Test-
ing is a widely used technique that cannot establish correctness but is quite effective
at findings bugs. The goal of our work is to automatically generate tests that reveal
brittleness. Using the approach described in detail in Sec. 3, we start from a seed: a
program that is correct and can be verified by an automated verifier. We mutate the seed
by applying random sequences of predefined mutation operators. Each mutation opera-
tor captures a simple variation of the way a program is written that does not change its
semantics; for example, it changes the order of independent declarations. Thus, every
mutant is a metamorphic transformation [4] of the seed—and equivalent to it. If the
verifier fails to verify a mutant we found a bug that exposes brittle behavior: seed and
mutant differ only by small syntactic details that should be immaterial, but such tiny
details impact the verifier’s effectiveness in checking a correct program.

While our approach to robustness testing is applicable in principle to any automated
program verifier, the mutation operators depend to some extent on the semantics of
the verifier’s input language, as they have to be semantic preserving. To demonstrate
robustness testing in practice, we focus on the Boogie language [17]. Boogie is a so-
called intermediate verification language, combining an expressive program logic and a
simple procedural programming language, which is commonly used as an intermediate
layer in many verification tools. Boogie’s popularity2 makes our technique (and our
implementation) immediately useful to a variety of researchers and practitioners.

As we describe in Sec. 3, we implemented robustness testing for Boogie in a tool
called µgie. In experiments described in Sec. 4, we ran µgie on 135 seed Boogie

2 http://boogie-docs.readthedocs.io/en/latest/#front-ends-that-emit-boogie-ivl

2

http://boogie-docs.readthedocs.io/en/latest/#front-ends-that-emit-boogie-ivl

programs, generating and verifying over 87 000 mutants. The mutants triggered brittle
behavior in 16 of the seed programs; large, feature-rich programs turned out to be par-
ticularly brittle, to the point where several different mutations were capable of making
Boogie misbehave. As we reflect in Sec. 6, our technique for robustness testing can
be a useful complement to traditional testing techniques, and it can help buttress the
construction of more robust, and thus ultimately more effective and usable, program
verifiers.

Tool availability. The tool µgie, as well as all the artifacts related to its experimental
evaluation, are publicly available [23]. A few additional details about the experiments
are available in a longer version of this paper [6].

2 Motivating Example

Let’s see a concrete example of how verifiers can behave brittlely. Fig. 1 shows a simple
Boogie program consisting of five declarations, each listed on a separate numbered line.

1 function h(int) returns (int);

2 axiom (∀ x, y : int • x> y =⇒ h(x)> y);

3 const a : [int] int;

4 axiom (∀ i : int • 0≤ i =⇒ a[i]< a [i+ 1]);

5 procedure p(i : int) returns (o : int)

requires i≥ 0; ensures o>a[i]; { o :=h(a[i+ 1]); }

Fig. 1: A correct Boogie program that exposes the brittleness of verifiers: changing the
order of declarations may make the program fail verification.

The program introduces an integer function h (ln. 1), whose semantics is partially
axiomatized (ln. 2); a constant integer map a (ln. 3), whose elements at nonnegative
indexes are sorted (ln. 4); and a procedure p (ln. 5, spanning two physical lines in
the figure)—complete with signature, specification, and implementation—which re-
turns the result of applying h to an element of a. Never mind about the specific na-
ture of the program; we can see that procedure p is correct with respect to its spec-
ification: a[i+ 1]> a[i] from the axiom about a and p’s precondition, and thus
h(a[i+ 1])> a[i] = o from the axiom about h. Indeed, Boogie successfully checks
that p is correct.

There is nothing special about the order of declarations in Fig. 1—after all, “the
order of the declarations in a [Boogie] program is immaterial” [17, Sec. 1]. A different
programmer may, for example, put a’s declarations before h’s. In this case, surprisingly,
Boogie fails verification warning the user that p’s postcondition may not hold.

A few more experiments show that there’s a fair chance of running into this kind
of brittle behavior. Out of the 5! = 120 possible permutations of the 5 declarations in
Fig. 1—each an equivalent version of the program—Boogie verifies exactly half, and
fails verification of the other half. We could not find any simple pattern in the order
of declarations (such as “line x before line y”) that predicts whether a permutation
corresponds to a program Boogie can verify.

To better understand whether other tools’ SMT encodings may be less brittle than
Boogie’s, we used b2w [1] to translate all 120 permutations of Fig. 1 to WhyML—the

3

input language of the Why3 intermediate verifier [9]. Why3 successfully verified all of
them—using Z3 as SMT solver, like Boogie does—which suggests that some features
of Boogie’s encoding (as opposed to Z3’s capabilities) are responsible for the brittle
behavior on the example.

Such kinds of brittleness—a program switching from verified to unverified based on
changes that should be inconsequential—can greatly frustrate users, and in particular
novices who are learning the ropes and may get stuck looking for an error in a program
that is actually correct—and could be proved so if definitions were arranged in a slightly
different way. Since brittleness hinders scalability to projects of realistic size, it can also
be a significant problem for advanced users; for example, the developers behind the
Ironclad Apps [14] and IronFleet [13] projects reported3 that “solvers’ instability was a
major issue” in their verification efforts.

Mutant m1 Verifier t Ë

Mutant m2 Verifier t Ë

Seed: program s:
t(s) = Ë

Mutation
generator µgie

...
...

...

Mutant mk Verifier t é
Brittle behavior of t:
t(mk) 6= t(s)

· · · · · · Ë

Mutant mN Verifier t Ë

Fig. 2: How robustness testing of Boogie programs works. We start with a correct program s
that some Boogie tool t can successfully verify; mutation generator µgie mutates s in several
different ways, generating many different mutants mk equivalent to s; each mutant undergoes
verification with tool t; a mutant mk that fails verification with t exposes brittle behavior of t on
the two equivalent correct programs s ≡ mk.

3 How Robustness Testing Works

Robustness testing is a technique that “perturbs” a correct and verified program by
introducing small changes, and observes whether the changes affect the program’s ver-
ifiability. The changes should be inconsequential, because they are designed not to alter
the program’s behavior or specification; if they do change the verifier’s outcome, we
found lack of robustness. While robustness testing is applicable to any automated pro-
gram verifier, we focus the presentation on the popular Boogie intermediate verification
language. Henceforth, a “program” is a program (complete with specification and other
annotations) written in the Boogie language. Fig. 2 illustrates how robustness testing
works at a high level; the rest of the section provides details.

3 By an anonymous reviewer of FM 2018.

4

In general terms, testing requires to build a valid input, feed it to the system under
test, and compare the system’s output with the expected output—given by a testing ora-
cle. Testing the behavior of a verifier according to this paradigm brings challenges that
go beyond those involved in generating tests for general programs. First, a verifier’s
input is a whole program, complete with specification and other annotations (such as
lemmas and auxiliary functions) for verification. Second, robustness testing aims at ex-
posing subtle inconsistencies in a verifier’s output, and not basic programming errors—
such as memory access errors, parsing errors, or input/output errors—that every piece
of software might be subject to. Therefore, we need to devise suitable strategies for
input generation and oracle generation.

3.1 Mutation Operators

Input generation. In order to expose brittleness of verifiers, we need to build com-
plex input programs of significant size, complete with rich specifications and all the
annotations that are necessary to perform automated verification. While we may use
grammar-based generation techniques [28] to automatically build syntactically correct
Boogie programs, the generated programs would either have trivial specifications or
not be semantically correct—that is, they would not pass verification. Instead, robust-
ness testing starts from a collection of verified programs—the seeds—and automati-
cally generates simple, semantically equivalent variants of those programs.4 This way,
we can seed robustness testing with a variety of sophisticated verification benchmarks,
and assess robustness on realistic programs of considerable complexity.

Mutation operators. Given a seed s, robustness testing generates many variants
M(s) of s by “perturbing” s. Building on the basic concepts and terminology of mu-
tation testing [16],5 we call mutant each variant m of a seed s obtained by applying a
random sequence of mutation operators.

A mutation operator captures a simple syntactic transformation of a Boogie pro-
gram; crucially, mutation operators should not change a program’s semantics but only
introduce equivalent or redundant information. Under this fundamental condition, every
mutant m of a seed s is equivalent to s in the sense that s and m should both pass (or
both fail) verification. This is an instance of metamorphic testing, where we transform
between equivalent inputs so that the seed serves as an oracle to check the expected
verifier output on all of the seed’s mutants.

Based on our experience using Boogie and working around its brittle behavior, we
designed the mutation operators in Tab. 3, which exercise different language features:

Structural mutation operators change the overall structure of top-level declarations—
by changing their relative order (S1), separating declarations and implementations
(S2), and splitting into multiple files (S3).

4 [6] describes some experiments with seeds that fail verification. Unsurprisingly, random muta-
tions are unlikely to turn an unverified program into a verified one—therefore, the main paper
focuses on using verified programs as seeds.

5 See Sec. 5 for a discussion of how robustness testing differs from traditional mutation testing.

5

STRUCTURAL LOCAL GENERATIVE

S1 Swap any two declarations
S2 Split a procedure definition into

declaration and implementation
S3 Move any declaration into a sepa-

rate file (and call Boogie on both
files)

L1 Swap any two local variable dec-
larations

L2 Split a declaration of multiple
variables into multiple declara-
tions

L3 Join any two preconditions into a
conjunctive one

L4 Join any two postconditions into a
conjunctive one

L5 Swap any two pre-/postcondition,
intermediate assertion, or loop in-
variant clauses

L6 Complement an if condition and
switch its then and else branches

G1 Add true as pre-/postcondition,
intermediate assertion, or loop in-
variant clause

G2 Remove a trigger annotation

Table 3: Mutation operators of Boogie code in categories structural, local, and gener-
ative. Operators do not change the semantics of the code they are applied to (except
possibly G2, which is used separately).

Local mutation operators work at the level of procedure bodies—by changing the rel-
ative order of or splitting on multiple lines local variable declarations (L1 and L2),
merging two pre- or postcondition clauses x and y into a conjunctive clause x ∧ y

(L3 and L4), changing the relative order of assertions of the same program element
(L5), and permuting the then and else branches of a conditional (L6).

Generative mutation operators alter redundant information—by adding trivial asser-
tions (G1), and removing quantifier instantiation suggestions (“triggers” in G2).

We stress that our mutation operators do not alter the semantics of a Boogie program
according to the language’s specification [17]: in Boogie, the order of declarations is
immaterial (S1, L1, L2); a procedure’s implementation may be with its declaration or
be separate from it (S2); multiple input files are processed as if they were one (S3);
multiple specification elements are implicitly conjoined, and their relative order does
not matter (L3, L4, L5); a conditional’s branches are mutually exclusive (L6); and true

assertions are irrelevant since Boogie only checks partial correctness (G1).
Triggers. G2 is the only mutation operator that may alter the semantics of a Boogie

program in practice: while triggers are suggestions on how to instantiate quantifiers,
they are crucial to guide SMT solvers and increase stability in practice [19,5]. There-
fore, we do not consider G2 semantics-preserving; our experiments only apply G2 in
a separate experimental run to give an idea of its impact in isolation.

More mutation operators are possible, but the selection in Tab. 3 should strike a good
balance between effectiveness in setting off brittle behavior and feasibility of studying
the effect of each individual operator in isolation.

3.2 Mutation Generation

Given a seed s, the generation of mutants repeatedly draws random mutation operators
and applies them to s, or to a previously generated mutant of s, until the desired number
NM of mutants is reached.

6

input : seed program s
input : weight w(o) for each mutation operator o
input : number of mutants NM

output: set of mutants M of s

M ← {s} // initialize pool of mutants to seed
attempts← 0 // number of main loop iterations
while |M | < NM do // repeat until NM mutants are generated

if attempts > MAX_ATTEMPTS then
break

end
p← any program in M
o← any mutation operator // draw with probability w(o)
m← o(p) // apply mutation operator o to p
M ←M ∪ {m} // add m to pool M
attempts← attempts + 1

end
return M

Algorithm 1: Mutant generation algorithm

Alg. 1 shows the algorithm to generate mutants. The algorithm maintains a pool M
of mutants, which initially only includes the seed s. Each iteration of the main gener-
ation loop proceeds as follows: 1. pick a random program p in the pool M ; 2. select a
random mutation operator o; 3. apply o to p, giving mutant m; 4. add m to pool M (if
it is not already there).

Users can bias the random selection of mutation operators by assigning a weight
w(o) to each mutation operator o in Tab. 3: the algorithm draws an operator with prob-
ability proportional to its weight, and operators with zero weight are never drawn.

Besides the mutation operator selection, there are two other passages of the algo-
rithm where random selection is involved: a program p is drawn uniformly at random
from M ; and applying an operator o selects uniformly at random program locations
where o can be applied. For example, if o is S1 (swap two top-level declarations), ap-
plying o to p involves randomly selecting two top level declarations in p to be swapped.

Any mutation operator can generate only finitely many mutants; since the genera-
tion is random, it is possible that a newly generated mutant is identical to one that is
already in the pool. In practice, this is not a problem as long as the seed s is not too
small or the enabled operators too restrictive (for example, S2 can only generate 2D

mutants, where D is the number of procedure definitions in s). The generation loop has
an alternative stopping conditions that gives up after MAX_ATTEMPTS iterations that
have failed to generate enough distinct mutants.

Robustness testing. After generating a set M(s) of mutants of a seed s, robustness
testing runs the Boogie tool on each mutant in M(s). If Boogie can verify s but fails to
verify any mutant m ∈ M(s), we have found an instance of brittle behavior: s and m
are equivalent by construction, but the different form in which m is expressed trips up
Boogie and makes verification fail on an otherwise correct program.

7

3.3 Implementation

We implemented robustness testing as a commandline tool µgie (pronounced “moo-
gie”). µgie implements in Haskell the mutation generation Alg. 1, and extends parts of
Boogaloo’s front-end [25] for parsing and typechecking Boogie programs.

4 Experimental Evaluation

Robustness testing was initially motivated by our anecdotal experience using interme-
diate verifiers. To rigorously assess to what extent they are indeed brittle, and whether
robustness testing can expose their brittleness, we conducted an experimental evaluation
using µgie. This section describes design and results of these experiments.

4.1 Experimental Design

A run of µgie inputs a seed program s and outputs a number of metamorphic mutants
of s, which are then verified with some tool t (see Fig. 2).

Seed selection. We prepared a curated collection of seeds by selecting Boogie pro-
grams from several different sources, with the goal of having a diverse representation
of how Boogie may be used in practice. Each example belongs to one of six groups
according to its origin and characteristics; Tab. 4a displays basic statistics about them.
Group A contains basic Algorithms (search in an array, binary search trees, etc.) im-
plemented directly in Boogie in our previous work [10]; these are relatively simple, but
non-trivial, verification benchmarks. Group T is a different selection of mainly algo-
rithmic problems (bubble sort, Dutch flag, etc.) included in Boogie’s distribution Tests.
Group E consists of small Examples from our previous work [5] that target the im-
pact of different trigger annotations in Boogie. Group S collects large Boogie programs
that we generated automatically from fixed, repetitive structures (for example, nested
conditionals); in previous work [5] we used these programs to evaluate Scalability.
Groups D and P contain Boogie programs automatically generated by the Dafny [18]
and AutoProof [11] verifiers (which use Boogie as intermediate representation). The
Dafny and Eiffel programs they translate come from the tools’ galleries of verification
benchmarks [8,2]. As we see from the substantial size of the Boogie programs they gen-
erate, Dafny and AutoProof introduce a significant overhead as they include axiomatic
definitions of heap memory and complex types. In all, we collected 135 seeds of size
ranging from just 6 to over 8 500 lines of Boogie code for a total of nearly 260 000 lines
of programs and specifications.

Tool selection. In principle, µgie can be used to test the robustness of any verifier
that can input Boogie programs: besides Boogie, tools such as Boogaloo [25], Sym-
booglix [21], and blt [5]. However, different tools target different kinds of analyses,
and thus typically require different kinds of seeds to be tested properly and meaning-
fully compared. To our knowledge, no tools other than Boogie itself support the full
Boogie language, or are as mature and as effective as Boogie for sound verification (as
opposed to other analyses, such as the symbolic execution performed by Boogaloo and

8

LOC
GROUP # SEEDS MIN MEDIAN MEAN MAX TOTAL

A 10 17 34 44 152 439
D 26 2 000 4 076 4 465 8 533 116 101
E 10 13 18 23 49 230
P 30 986 1 665 1 911 5 737 57 330
S 51 6 126 1 047 7 286 67 006
T 8 11 41 1 662 7 378 18 283

all 135 6 642 1 718 8 533 259 389

(a) Selection of Boogie programs used as seeds: for each
GROUP, the number of programs in that group (# SEEDS), and
their MINimum, MEDIAN, MEAN, MAXimum, and TOTAL size
in non-blank non-comment lines of code. Row all summarizes
measures over all groups.

TOOL COMMIT DATE Z3

BOOGIE 4.1.1 b2d448 2012-09-18 4.1.1
BOOGIE 4.3.2 97fde1 2015-03-10 4.3.2
BOOGIE 4.4.1 75b5be 2015-11-19 4.4.1
BOOGIE 4.5.0 63b360 2017-07-06 4.5.0

(b) Selection of Boogie versions used in the
experiments. For every version of the Boogie
TOOL, the corresponding COMMIT hash in Boo-
gie’s Git repository, the DATE of the commit, and
the matching Z3 version.

Table 4: Boogie programs (“seeds”) and Boogie tool versions used in the experiments.

Symbooglix) on the kinds of examples we selected. We intend to perform a different
evaluation of these tools using µgie in the future, but for consistency and clarity we
focus on the Boogie tool in this paper.

In order to understand whether Boogie’s robustness has changed over its develop-
ment history, our experiments include different versions of Boogie. The Boogie repos-
itory is not very consistent in assigning new version numbers, nor does it tag specific
commits to this effect. As a proxy for that, we searched through the logs of Boogie’s
repository for commit messages that indicate updates to accommodate new features of
the Z3 SMT solver—Boogie’s standard and main backend. For each of four major ver-
sions of Z3 (4.1.1, 4.3.2, 4.4.1, and 4.5.0), we identified the most recent commit that
refers explicitly to that version (see Tab. 4b); for example, commit 63b360 says “Cali-
brated test output to Z3 version 4.5.0”. Then, we call “Boogie v” the version of Boogie
at the commit mentioning Z3 version v, running Z3 version v as backend.

To better assess whether brittle behavior is attributable to Boogie’s encoding or to
Z3’s behavior, we included two other tools in our experiments: CVC4 refers to the
SMT solver CVC4 v. 1.5 inputting Boogie’s SMT2 encoding of verification condition
(the same input that is normally fed to Z3); Why3 refers to the intermediate verifier
Why3 v. 0.86.3 using Z3 4.3.2 as backend, and inputting WhyML translations of Boogie
programs automatically generated by b2w [1].

Experimental setup. Each experiment has two phases: first, generate mutants for
every seed; then, run Boogie on the mutants and check which mutants still verify.

For every seed s ∈ S (where S includes all 135 programs summarized in Tab. 4a),
we generate different batches MO(s) of mutants of s by enabling specific mutation
operators O in µgie. Precisely, we generate 12 different batches for every seed:

M∗(s) consists of 100 different mutants of s, generated by picking uniformly at ran-
dom among all mutation operators in Tab. 3 except G2 (that is, each mutation
operator gets the same positive weight, and G2 gets weight zero);

MJ(s), for J one of the 11 operators in Tab. 3, consists of 50 different mutants of s
generated by only applying mutation operator J (that is, J gets a positive weight,
and all other operators get weight zero).

9

DEFINITION DESCRIPTION

S set of all seeds
MO(s) set of all mutants of seed s (generated with mutation operatorsO)

SË
t {s ∈ S | t(s)} seeds that pass verification with tool t

MO(s)ét {m ∈MO(s) | ¬t(m)} mutants of seed s that fail verification with tool t
SË é
t {s ∈ SË

t | |MO(s)ét | > 0} passing seeds with at least one mutant failing with tool t
MO(s)∞t {m ∈MO(s)ét | t(m) times out} failing mutants of seed s that time out with tool t

PASS |SË
t | number of seeds that pass verification with tool t

∃FAIL |SË é
t | number of verified seeds with at least one failing mutant with tool t

% ∃FAIL 100 · |SË é
t |/|SË

t | percentage of verified seeds with at least one failing mutant with tool t
% FAIL 100 · mean

s∈SË
t
|MO(s)ét |/|MO(s)| average percentage of failing mutants per verified seed with tool t

% TIMEOUT 100 · mean
s∈SË

t
|MO(s)∞t |/|MO(s)| average percentage of timed out mutants per verified seed with tool t

% ∃FAIL 100 · mean
s∈SË é

t
|MO(s)ét |/|MO(s)| average percentage of failing mutants per verified seed with some failing mutants

Table 5: Definitions and descriptions of the experimental measures reported in Tab. 6.

Batch M∗ demonstrates the effectiveness of robustness testing with general settings;
then, the smaller batches MJ focus on the individual effectiveness of one mutation
operator at a time. Operator G2 is only used in isolation (and not at all in M∗) since it
may change the semantics of programs indirectly by guiding quantifier instantiation.

Let t be a tool (a Boogie version in Tab. 4b, or another verifier). For every seed
s ∈ S, we run t on s and on all mutantsMO(s) in each batch. For a run of t on program
p (seed or mutant), we write t(p) if t verifies p successfully; and ¬t(p) if t fails to verify
p (because it times out, or returns with failure). Based on this basic data, we measure
robustness by counting the number of verified seeds whose mutants fail verification: see
the measures defined in Tab. 5 and the results described in detail in Sec. 4.2.

Running times. The experiments ran on a Ubuntu 16.04 LTS GNU/Linux box with
Intel 8-core i7-4790 CPU at 3.6 GHz and 16 GB of RAM. Generating the mutants took
about 15 minutes for the batchM∗ and 10 minutes for each batchMJ . Each verification
run was given a timeout of 20 seconds, after which it was forcefully terminated by the
scheduler of GNU parallel [27].

4.2 Experimental Results

Overall results: batchM∗. Our experiments, whose detailed results are in Tab. 6, show
that robustness testing is effective in exposing brittle behavior, which is recurrent in
Boogie: for 12% of the seeds that pass verification,6 there is at least one mutant in batch
M∗ that fails verification.

Not all seeds are equally prone to brittleness: while on average only 3% of one
seed’s mutants fail verification, it is considerably easier to trip up seeds that are suscep-
tible to brittle behavior (that is such that at least one mutant fails verification): 27% of
mutants per such seeds fail verification.

When the verifier times out on a mutant, it may be because: i) the timeout is it-
self unstable and due to random noise in the runtime environment; ii) the mutant takes

6 For clarity, we initially focus on Boogie 4.5.0, and later discuss differences with other versions.

10

BATCH M∗ # ∃FAIL OF MJ

GROUP TOOL # PASS # ∃FAIL % ∃FAIL % FAIL % TIMEOUT % ∃FAIL S1 S2 S3 L1 L2 L3 L4 L5 L6 G1 G2

A 4.1.1 10 2 20% 9% 5% 45% 1 0 1 0 0 0 1 1 0 0 0
4.3.2 10 1 10% 4% 0% 42% 0 0 0 0 0 0 1 1 0 0 0
4.4.1 10 1 10% 4% 0% 42% 0 0 0 0 0 0 1 1 0 0 0
4.5.0 10 1 10% 4% 0% 42% 0 0 0 0 0 0 1 1 0 0 0
CVC4 6 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 0
WHY3 7 0 0% 0% 0% –

D 4.1.1 0 0 – – – – 0 0 0 0 0 0 0 0 0 0 0
4.3.2 24 7 29% 7% 4% 23% 6 0 5 0 0 5 4 4 0 3 17
4.4.1 24 7 29% 7% 5% 23% 6 0 5 0 0 5 4 4 0 3 17
4.5.0 24 6 25% 8% 6% 33% 5 0 5 0 0 8 4 4 0 1 17
CVC4 0 0 – – – – 0 0 0 0 0 0 0 0 0 0 0
WHY3 0 0 – – – –

E 4.1.1 5 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 3
4.3.2 7 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 3
4.4.1 7 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 3
4.5.0 7 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 3
CVC4 4 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 3
WHY3 7 0 0% 0% 0% –

P 4.1.1 0 0 – – – – 0 0 0 0 0 0 0 0 0 0 0
4.3.2 14 6 43% 1% 0% 2% 4 0 7 0 0 1 1 0 0 0 10
4.4.1 13 5 38% 1% 0% 2% 3 0 6 0 0 0 0 0 0 0 9
4.5.0 13 5 38% 1% 0% 2% 4 0 6 0 0 0 0 0 0 0 9
CVC4 0 0 – – – – 0 0 0 0 0 0 0 0 0 0 0
WHY3 0 0 – – – –

S 4.1.1 51 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 0
4.3.2 51 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 0
4.4.1 51 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 0
4.5.0 51 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 0
CVC4 51 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 0
WHY3 40 2 5% 1% 1% 25%

T 4.1.1 8 1 12% 5% 5% 39% 1 0 1 0 0 1 1 1 0 1 1
4.3.2 8 1 12% 8% 8% 62% 1 0 1 0 0 1 1 1 0 1 1
4.4.1 8 1 12% 8% 8% 60% 1 0 1 0 0 1 1 1 0 1 1
4.5.0 8 1 12% 12% 12% 96% 1 0 1 0 0 1 1 1 0 1 1
CVC4 4 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 1
WHY3 3 0 0% 0% 0% –

all 4.1.1 74 3 4% 2% 1% 43% 2 0 2 0 0 1 2 2 0 1 4
4.3.2 114 15 13% 2% 2% 18% 11 0 13 0 0 7 7 6 0 4 31
4.4.1 113 14 12% 2% 2% 20% 10 0 12 0 0 6 6 6 0 4 30
4.5.0 113 13 12% 3% 2% 27% 10 0 12 0 0 9 6 6 0 2 30
CVC4 65 0 0% 0% 0% – 0 0 0 0 0 0 0 0 0 0 4
WHY3 57 2 4% 1% 1% 25%

Table 6: Experimental results of robustness testing with µgie. For each GROUP of seeds, for each TOOL: number of
seeds passing verification (# PASS), number and percentage of passing seeds for which at least one mutant fails verification
(# ∃FAIL and % ∃FAIL), average percentage of mutants per passing seed that fail verification (% FAIL), average percentage
of mutants per passing seed that time out (% TIMEOUT), average percentage of mutants that fail verification per passing seed
with at least one failing mutant (% ∃FAIL). The middle section of the table records experiments with batch M∗; each of the
11 rightmost columns records experiments with batchMJ , for J one of the mutation operators in Tab. 3.

longer to verify than the seed, but may still be verified given longer time; iii) verification
time diverges.

We ruled out i) by repeating experiments 10 times, and reporting a timeout only
if all 10 repetitions time out. Thus, we can generally consider the timeouts in Tab. 6
indicative of a genuine degrading of performance in verification—which affected 3%
of one seed’s mutants on average.

Boogie versions. There is little difference between Boogie versions, with the ex-
ception of Boogie 4.1.1. This older version does not support some language features

11

used extensively in many larger examples that also tend to be more brittle (groups D
and P). As a result, the percentage of verified seeds with mutants that fail verification is
spuriously lower (4%) but only because the experiments with Boogie 4.1.1 dodged the
harder problems and performed similarly to the other Boogie versions on the simpler
ones.

Intermediate verifier vs. backend. Is the brittleness we observed in our experi-
ments imputable to Boogie or really to Z3? To shed light on this question, we tried to
verify every seed and mutant using CVC4 instead of Z3 with Boogie’s encoding; and
using Why3 on a translation [1] of Boogie’s input. Since the seeds are programs opti-
mized for Boogie verification, CVC4 and Why3 can correctly process only about half
of the seeds that Boogie can. This gives us too little evidence to answer the question
conclusively: while both CVC4 and Why3 behaved robustly, they could verify none of
the brittle seeds (that is, verified seeds with at least one failing mutant), and thus be-
haved as robustly as Boogie on the programs that both tools can process.7 In cases such
as the simple example of Sec. 2 (where Why3 was indeed more robust than Boogie),
it is really the interplay of Boogie and Z3 that determines brittle behavior. While SMT
solvers have their own quirks, Boogie is meant to provide a stable intermediate layer;
in all, it seems fair to say that Boogie is at least partly responsible for the brittleness.

Program groups. Robustness varies greatly across groups, according to features
and complexity of the seeds that are mutated. Groups D and P are the most brittle:
about 1/3 of passing seeds in D, and about 2/5 of passing seeds in P, have at least
one mutant that fails verification. Seeds in D and P are large and complex programs
generated by Dafny and AutoProof; they include extensive definitions with plenty of
generic types, complex axioms, and instantiations. The brittleness of these programs
reflects the hardness of verifying strong specifications and feature-rich programming
languages: the Boogie encoding must be optimized in every aspect if it has to be auto-
matically verifiable; even a modicum of clutter—introduced by µgie—may jeopardize
successful verification.

By the same token, groups A, E, and T’s programs are more robust because they
have a smaller impact surface in terms of features and size. Group S’s programs are
uniformly robust because they have simple, repetitive structure and weak specifications
despite their significant size; Boogie scales effortlessly on such examples.

Mutation operators and batches MJ . Fig. 7 and the rightmost columns of Tab. 6
explore the relative effectiveness of each mutation operator. S2, L1, L2, and L6 could
not generate any failing mutant—suggesting that Boogie’s encoding of procedure dec-
larations, of local variables, and of conditionals is fairly robust. In contrast, all other
operators could generate at least one failing mutant; Fig. 7 indicates that L3 and S3 gen-
erated failing mutants for respectively 2 seeds and 1 seed that were robust in batch M∗
(using all mutation operators with the same frequency)—indicating that mutation oper-
ators are complementary to a certain extent in the kind of brittleness they can expose.

Failures. Overall, 13 brittle seeds are revealed by 350 failing mutants in M∗ with
Boogie 4.5.0. Failures are of three kinds: a) timeouts (6 seeds, 252 mutants); b) type

7 Additionally, Why3 times out on 51 mutants of 2 seeds in group S; this seems to reflect an
ineffective translation performed by b2w [1] rather than brittleness of Why3.

12

5

1

4

1 1 1
2

1

0

2

4

∩
#
∃F

A
IL

M∗

MS3

MS1

ML3

ML5

0510

∃FAIL

Fig. 7: For each of 16 verified seeds with at least one failing mutant with Boogie 4.5.0, which
batches all exclusively include a failing mutant of those seeds. G2 is excluded and analyzed
separately; S2, L1, L2, L6 could not generate any failing mutant; L4 generated failing mutants for
a strict subset of those in M∗; G1 generated failing mutants for a strict subset of those in ML5 .

errors (5 seeds, 10 mutants); c) explicit verification failures (2 seeds, 88 mutants). Time-
outs mainly occur in group D (5 seeds), where size and complexity of the code are such
that any mutation that slows down verification may hit the timeout limit; verification
of some mutants seems to be non-terminating, whereas others are just slowed down by
some tens of seconds. Type errors all occur in group P and only when mutation S3 splits
the seed in a way that procedure update_heap (part of AutoProof’s heap axiomatiza-
tion) ends up being declared after its first usage; in this case, Boogie cannot correctly
instantiate the procedure’s generic type, which triggers a type error even before Z3 is
involved. Verification failures occur in seeds of group A and D. In particular, a binary
search tree implementation in group A fails verification when the relative order of two
postconditions is swapped by L5; while Why3 cannot prove the whole example, it can
prove the brittle procedure alone regardless of the postcondition order. In all, it is clear
that Boogie’s encoding is quite sensitive to the order of declarations and assertions even
when it should not matter.

Triggers. Remember that mutation operator G2 is the only one that modifies trig-
gers, and was only applied in isolation in a separate set of experiments. As we expected
from previous work [19], altering triggers is likely to make verification fail (30 seeds
and 276 mutants overall; 20 seeds are only brittle if triggers are modified); most of these
failures (26 seeds and 250 mutants) are timeouts, since removing triggers is likely to at
least slow down verification—if not make it diverge. Operator G2 is very effective at ex-
posing brittleness mainly with the complex examples in groups D and P, which include
numerous axioms and extensive quantification patterns. Group E’s programs are a bit
special because they are brittle—they are designed to be so—but are only affected by
mutation operators that remove the trigger annotations on which they strongly depend;
in contrast, they are robust against all other mutation operators.

13

5 Related Work

Robustness. This paper’s robustness testing aims at detecting so-called butterfly ef-
fects [19]—macroscopic changes in a verifier’s output in response to minor modifi-
cations of its input. Program provers often incur volatile behavior because they use
automated theorem provers—such as SMT solvers—which in turn rely on heuristics to
handle efficiently, in many practical cases, complex proofs in undecidable logics.

Random testing. Our approach uses testing to expose brittle behavior of verifiers.
By automatically generating test inputs, random testing has proved to be extremely
effective at detecting subtle errors in programs completely automatically. Random test-
ing can generate instances of complex data types by recursively building them ac-
cording to their inductive structure—as it has been done for functional [7]and object-
oriented [24]programming languages. Random testing has also been successfully ap-
plied to security testing—where it is normally called “fuzzing” [12]—as well as to
compiler testing [28]—where well-formed programs are randomly generated according
to the input language’s grammar.

Mutation testing. This paper’s robustness testing is a form of random testing, in
that it applies random mutation operators to transform a program into an equivalent one.
The terminology and the idea of applying mutation operators to transform between vari-
ants of a program come from mutation testing [16]. However, the goals of traditional
mutation testing and of this paper’s robustness testing are specular. Mutation testing
is normally used to assess the robustness of a test suite—by applying error-inducing
mutations to correct programs, and ascertaining whether the tests fail on the mutated
programs. In contrast, we use mutation testing to assess the robustness of a verifier—by
applying semantic-preserving mutations to correct (verified) programs, and ascertaining
whether the mutated programs still verify. Therefore, the mutation operators of standard
mutation testing introduce bugs in a way that is representative of common programming
mistakes; the mutation operators of robustness testing (see Tab. 3) do not alter correct-
ness but merely represent alternative syntax expressing the same behavior in a way that
is representative of different styles of programming.

Metamorphic testing. In testing, generating inputs is only half of the work; one
also has to compare the system’s output with the expected output to determine whether
a test is passing or failing. The definition of correct expected output is given by an
oracle [3]. The more complex the properties we are testing for, the more complex the
oracle: a crash oracle (did the program crash?) is sufficient to test for simple errors such
as out-of-bound memory access; finding more complex errors requires some form of
specification [15] of expected behavior.

Even when directly building an oracle is as complex as writing a correct program,
there are still indirect ways of extrapolating whether an output is correct. In differen-
tial testing [22], there are variants of the program under test; under the assumption that
not all variants have the same bugs, one can feed the same input to every variant, and
stipulate that the output returned by the majority is the expected one—and any outlier
is likely buggy. In metamorphic testing [26], an input is transformed into an equiva-
lent one according to metamorphic relations; equivalent inputs that determine different
outputs are indicative of error. Our robustness testing applies mutation operators that

14

determine identity metamorphic relations between Boogie programs, since they only
change syntactic details and not the semantics of programs.

6 Discussion and Future Work

Our experiments with µgie confirm the intuition—bred by frequently using it in our
work—that Boogie is prone to brittle behavior. How can we shield users from this
brittle behavior, thus improving the usability of verification technology?

Program verifiers that use Boogie as an intermediate representation achieve this
goal to some extent: the researchers who built the verifiers have developed an intuitive
understanding of Boogie’s idiosyncrasies, and have encoded this informal knowledge
into their tools. End users do not have to worry about Boogie’s brittleness but can count
on the tools to provide an encoding of their input programs that has a good chance of
being effective.

In contrast, developers of program verifiers still have to know how to interact with
Boogie and be aware of its peculiarities.

Robustness testing may play a role not only in exposing brittle behavior—the focus
of this paper—but in precisely tracking down the sources of brittleness, thus helping
to debug them. To this end, we plan to address minimization and equivalency detection
of mutants in future work. The idea is that the number of failing mutants that we get
by running µgie are not directly effective as debugging aids, because it takes a good
deal of manual analysis to pinpoint the precise sources of failure in large programs with
several mutations. Instead, we will apply techniques such as delta debugging [29] to
reduce the size of a failing mutant as much as possible while still triggering failing
behavior in Boogie. Failing mutants of minimal size will be easier to inspect by hand,
and thus will point to concrete aspects of the Boogie translation that could be made
more robust.

To further investigate to what extent it is Z3 that is brittle, and to what extent it is
Boogie’s encoding of verification condition—an aspect only partially addressed by this
paper’s experiments—we will apply robustness testing directly to SMT problems, also
to understand how Boogie’s encoding can be made more robust.

Robustness testing could become a useful help to developers of program and inter-
mediate verifiers, to help them track down sources of brittleness during development,
ultimately making verification technology easier to use and more broadly applicable.

References

1. Ameri, M., Furia, C.A.: Why just Boogie? Translating between intermediate verification
languages. In: iFM. Volume 9681 of LNCS., Springer (2016) 1–17

2. AutoProof verified code repository http://tiny.cc/autoproof-repo.
3. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software

testing: A survey. IEEE Transactions on Software Engineering 41(5) (2015) 507–525
4. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for generating

next test cases. Technical Report HKUST-CS98-01, Department of Computer Science, Hong
Kong University of Science and Technology (1998)

15

http://tiny.cc/autoproof-repo

5. Chen, Y., Furia, C.A.: Triggerless happy – intermediate verification with a first-order prover.
In: iFM. Volume 10510 of LNCS., Springer (2017) 295–311

6. Chen, Y., Furia, C.A.: Robustness testing of intermediate verifiers. http://arxiv.org/abs/
1805.03296 (May 2018)

7. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of Haskell
programs. In: ICFP, ACM (2000) 268–279

8. Dafny examples and tests https://github.com/Microsoft/dafny/tree/master/Test.
9. Filliâtre, J., Paskevich, A.: Why3 – where programs meet provers. In: ESOP. Volume 7792

of LNCS., Springer (2013) 125–128
10. Furia, C.A., Meyer, B., Velder, S.: Loop invariants: Analysis, classification, and examples.

ACM Computing Surveys 46(3) (2014)
11. Furia, C.A., Nordio, M., Polikarpova, N., Tschannen, J.: AutoProof: Auto-active functional

verification of object-oriented programs. STTT 19(6) (2016) 697–716
12. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security testing.

Communications of the ACM 55(3) (2012) 40–44
13. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L., Setty, S.T.V.,

Zill, B.: IronFleet: proving practical distributed systems correct. In: SOSP, ACM (2015) 1–
17

14. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.: Iron-
clad Apps: End-to-end security via automated full-system verification. In: USENIX OSDI,
USENIX Association (2014) 165–181

15. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe,
M., Harman, M., Kapoor, K., Krause, P.J., Lüttgen, G., Simons, A.J.H., Vilkomir, S.A.,
Woodward, M.R., Zedan, H.: Using formal specifications to support testing. ACM Com-
puting Surveys 41(2) (2009) 9:1–9:76

16. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering 37(5) (2011) 649–678

17. Leino, K.R.M.: This is Boogie 2 (2008) http://goo.gl/QsH6g.
18. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: LPAR.

Volume 6355 of LNCS., Springer (2010) 348–370
19. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program verifiers.

In: CAV, Springer (2016) 361–381
20. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7)

(2009) 107–115
21. Liew, D., Cadar, C., Donaldson, A.F.: Symbooglix: A symbolic execution engine for boogie

programs. In: ICST, IEEE Computer Society (2016) 45–56
22. McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10(1) (1998)

100–107
23. µgie repository https://emptylambda.github.io/mu-gie/.
24. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.

In: ICSE, IEEE Computer Society (2007) 75–84
25. Polikarpova, N., Furia, C.A., West, S.: To run what no one has run before. In: RV. Volume

8174 of LNCS., Springer (2013) 251–268
26. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic testing.

IEEE Transactions on Software Engineering 42(9) (2016) 805–824
27. Tange, O.: GNU parallel—the command-line power tool. login: The USENIX Magazine 36

(2011) 42–47
28. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C compilers. In:

ACM SIGPLAN Notices. Volume 46., ACM (2011) 283–294
29. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE Transac-

tions on Software Engineering 28(2) (2002) 183–200

16

http://arxiv.org/abs/1805.03296
http://arxiv.org/abs/1805.03296
https://github.com/Microsoft/dafny/tree/master/Test
http://goo.gl/QsH6g
https://emptylambda.github.io/mu-gie/

	Robustness Testing of Intermediate Verifiers

