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Abstract. The comprehensive functionality and nontrivial design of realistic gen-
eral-purpose container libraries pose challenges to formal verification that go be-
yond those of individual benchmark problems mainly targeted by the state of the
art. We present our experience verifying the full functional correctness of Eiffel-
Base2: a container library offering all the features customary in modern language
frameworks, such as external iterators, and hash tables with generic mutable keys
and load balancing. Verification uses the automated deductive verifier AutoProof,
which we extended as part of the present work. Our results indicate that verifica-
tion of a realistic container library (135 public methods, 8,400 LOC) is possible
with moderate annotation overhead (1.4 lines of specification per LOC) and good
performance (0.2 seconds per method on average).

1 Introduction

The moment of truth for software verification technology comes when it is applied to
realistic programs in practically relevant domains. Libraries of general-purpose data
structures—called containers—are a prime example of such domains, given their per-
vasive usage as fundamental software components. Data structures are also “natural
candidates for full functional verification” [63] since they have well-understood seman-
tics and typify challenges in automated reasoning such as dealing with aliasing and the
heap. This paper presents our work on verifying full functional correctness of a realistic,
object-oriented container library.

Challenges. Realistic software has nontrivial size, a design that promotes flexibil-
ity and reuse, and an implementation that offers competitive performance. General-
purpose software includes all the functionalities that users can reasonably expect, ac-
cessible through uniform and rich interfaces. Full specifications completely capture the
behavior of a software component relative to the level of abstraction given by its inter-
face. Notwithstanding the vast amount of research on functional verification of heap-
manipulating programs and its applications to data structure implementations, to our
knowledge, no previous work has tackled all these challenges in combination.

Rather, the focus has previously been on verifying individually chosen data structure
operations, often stripped or tailored to particular reasoning techniques. Some concrete
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examples from recent work in this area (see Sec. 5 for more): Zee et al. [63] verify
a significant selection of complex linked data structures but not a complete container
library, and they do no include certain features expected of general-purpose implemen-
tations, such as iterators or user-defined key equivalence in hash tables. Pek et al. [47]
analyze realistic implementations of linked lists and trees but do not always verify full
functional correctness (for example, they do not prove that reversal procedures actually
reverse the elements in a list), nor can their technique handle arbitrary heap structures.
Kawaguchi et al. [29] verify complex functional properties but their approach targets
functional languages, where the abstraction gap between specification and implemen-
tation is narrow; hence, their specifications have a different flavor and their techniques
are inapplicable to object-oriented designs. These observations do not detract from the
value of these works; in fact, each challenge is formidable enough in its own right to re-
quire dedicated focused research, and all are necessary steps towards verifying realistic
implementations—which has remained, however, an outstanding challenge.

Result. Going beyond the state of the art in this area, we completely verified a re-
alistic container library, called EiffelBase2, against full functional specifications. The
library, described in Sec. 4, consists of over 8,000 lines of Eiffel code in 46 classes, and
offers arrays, lists, stacks, queues, sets, and tables (dictionaries). EiffelBase2’s interface
specifications are written in first-order logic and characterize the abstract object state
using mathematical entities, such as sets and sequences. To demonstrate the useful-
ness of these specifications for clients, we also verified correctness properties of around
2,000 lines of client code that uses some of EiffelBase2’s containers.

Techniques. A crucial feature of any verification technique is the amount of au-
tomation it provides. While some approaches, such as abstract interpretation, can offer
complete “push button” automation by focusing on restricted properties, full functional
verification of realistic software still largely relies on interactive theorem provers, which
require massive amounts of effort from highly-trained experts [30,40]. Even data struc-
ture verification uses interactive provers, such as in [63], to discharge the most complex
verification conditions. Advances in verification technology that target this class of tools
have little chance of directly improving usability for serious yet non-expert users—as
opposed to verification mavens.

In response to these concerns, an important line of research has developed veri-
fication tools that target expressive functional correctness properties, yet provide more
automation and do not require interacting with back-end provers directly. Since their de-
gree of automation is intermediate between fully automatic and interactive, such tools
are called auto-active [36]; examples are Dafny [35], VCC [12], and VeriFast [24],
as well as AutoProof, which we developed in previous work [52,56] and significantly
extended as part of the work presented here.

At the core of AutoProof’s verification methodology for heap-manipulating pro-
grams is semantic collaboration [52]: a flexible approach to reasoning about class in-
variants in the presence of complex inter-object dependencies. Previously, we applied
the methodology only to a selection of stand-alone benchmarks; in the present work,
to enable the verification of a realistic library, we extended it with support for math-
ematical types, abstract interface specifications, and inheritance. We also redesigned
AutoProof’s encoding of verification conditions in order to achieve predictable perfor-
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mance on larger problems. These improvements directly benefit serious users of the tool
by providing more automation, better user experience, and all-out support of object-
oriented features as used in practice.

Contributions. This paper’s work makes the following contributions:

– The first verification of full functional correctness of a realistic general-purpose
data-structure library in a heap-based object-oriented language.

– The first verification of a significant collection of data structures carried out entirely
using an auto-active verifier.

– The first full-fledged verification of several advanced object-oriented patterns that
involve complex inter-object dependencies but are widely used in realistic imple-
mentations (see Sec. 2).

– A practical verification methodology and the supporting AutoProof verifier, which
are suitable to reason, with moderate annotation overhead and predictable perfor-
mance, about the full gamut of object-oriented language constructs.

The fully annotated source code of the EiffelBase2 container library and a web interface
for the AutoProof verifier are available at:

https://github.com/nadia-polikarpova/eiffelbase2 (cite as [50])

For brevity, the paper focuses on presenting EiffelBase2’s verification effort and the
new features of AutoProof that we introduced to this end; our previous work [51,52,56]
supplies complementary and background technical details.

2 Illustrative Examples

Using excerpts from two data structures in EiffelBase2—a linked list and a hash table—
we demonstrate our approach to specifying and verifying full functional correctness of
containers, and illustrate some challenges specific to realistic container libraries.

2.1 Linked List

Interface specifications. Each class in EiffelBase2 declares its abstract state through a
set of model attributes. As shown in Fig. 1, the model of class LINKED_LIST is a sequence

of list elements. Its type MML_SEQUENCE is from the Mathematical Model Library (MML);
instances of MML model classes are mathematical values that have custom logical rep-
resentations in the underlying prover.

Commands—methods with observable side effects, such as extend_back—modify
the abstract state of objects listed in their frame specification (modify clause), according
to their postcondition (ensure clause). Queries—methods that return a result and have
no observable side effect, such as first—express, in their postcondition, the return
value as a function of the abstract state, which they do not modify. By referring to an
explicitly declared model, interface specifications are concise, have a consistent level of
abstraction, and can be checked for completeness (whether they uniquely characterize
the results of queries and the effect of commands on the model state [51]).
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class LINKED_LIST [G] inherit LIST [G]
model sequence

feature {public}
ghost sequence: MML_SEQUENCE [G]
ghost bag: MML_BAG [G] -- inherited from CONTAINER

first: G -- First element.
require not sequence.is_empty
do
assert inv
Result := first_cell.item

ensure Result = sequence.first

extend_back (v: G) -- Insert ‘v’ at the back.
require all o ∈ observers : not o.closed
modify model Current [sequence]
local cell: LINKABLE [G]
do
create cell.put (v)
if first_cell = Void then
first_cell := cell

else
last_cell.put_right (cell)

end
last_cell := cell
cells := cells + 〈cell〉
sequence := sequence + 〈v〉

ensure sequence = old sequence + 〈v〉

feature {private}
first_cell: LINKABLE [G]
last_cell: LINKABLE [G]
ghost cells: MML_SEQUENCE [LINKABLE [G]]

invariant
cells_domain: sequence.count = cells.count
first_cell_empty: cells.is_empty =

(first_cell = Void)
last_cell_empty: cells.is_empty =

(last_cell = Void)
owns_definition: owns = cells.range
cells_exist: cells.non_void
sequence_implementation: all i ∈ 1 .. cells.count :
sequence [i] = cells [i].item

cells_linked: all i, j ∈ 1 .. cells.count :
i + 1 = j implies cells [i].right = cells [j]

cells_first: cells.count > 0 implies
first_cell = cells.first

cells_last: cells.count > 0 implies
last_cell = cells.last and last_cell.right = Void

seq_refines_bag: bag = sequence.to_bag
end

class LINKED_LIST_ITERATOR [G] inherit LIST_ITERATOR [G]
model target, index

feature {public}
target: LINKED_LIST [G]
ghost index: INTEGER

make (list: LINKED_LIST [G]) -- Constructor.
modify Current
modify field list [observers, closed]
do
target := list
target.add_iterator (Current)
assert target.inv_only (seq_refines_bag)

ensure
target = list
index = 0
list.observers = old list.observers + {Current}

item: G -- Item at current position.
require not off and all s ∈ subjects : s.closed
do
assert inv and target.inv
Result := active.item

ensure Result = target.sequence [index]

forth -- Move one position forward.
require not off and all s ∈ subjects : s.closed
modify model Current [index]
do . . .
ensure index = old index + 1

remove_right -- Remove element after the current.
require

1≤ index≤ target.sequence.count− 1
target.is_wrapped -- closed and owner = Void
all o ∈ target.observers :
o 6= Current implies not o.closed

modify model target [sequence]
do . . .
ensure target.sequence =
old target.sequence.removed_at (index + 1)

feature {private}
active: LINKABLE [G]

invariant
target_exists: target 6= Void
subjects_definition: subjects = {target}
index_range: 0≤ index≤ target.sequence.count + 1
cell_off: (index <1 or target.sequence.count <index)
= (active = Void)

cell_not_off: 1≤ index≤ target.sequence.count
implies active = target.cells [index]

end

Fig. 1. Excerpt from EiffelBase2 classes LINKED_LIST and LINKED_LIST_ITERATOR.

Abstract specifications are convenient for clients, which can reason about the effect
of method calls in terms of the model while ignoring implementation details. Indeed,
LINKED_LIST’s public specification is the same as LIST’s—its abstract ancestor class—
and is oblivious to the fact that the sequence of elements is stored in linked nodes on
the heap. While clients have it easy, verifying different implementations of the same
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abstract interface poses additional challenges in ensuring consistency without compro-
mising on individual implementation features.

Connecting abstract and concrete state. Verifying the implementation of first in
Fig. 1 requires relating the model of the list to its concrete representation. We accom-
plish this through the class invariant: the clause named sequence_implementation as-
serts that model attribute sequence lists the items stored in the chain of LINKABLE nodes
denoted as cells; cells, in turn, is related to the concrete heap representation by invari-
ant clauses cells_first and cells_linked.

Invariant methodology. Reasoning based on class invariants is germane to object-
oriented programming, yet the semantics of invariants is tricky. A fundamental issue
is when (at what program points) invariants should hold. Simple syntactic approaches,
which require invariants to hold at predefined points (for example, before and after every
public call), are not flexible enough to reason about complex object structures. Follow-
ing the approach introduced with Spec# [37,2], our methodology equips every object
with a built-in ghost3 Boolean attribute closed. Whenever an object is closed (closed
is true), its invariant must hold; but when it is open (closed is false), its invariant may
not hold. Built-in ghost methods unwrap and wrap mediate opening and closing objects:
unwrap opens a closed object, which becomes available for modification; wrap closes an
open object provided its invariant holds. To reduce manual annotations, AutoProof adds
a call Current.unwrap4at the beginning of every public command; a call Current.wrap at
the end of the command; and an assertion Current.closed to the command’s pre- and
postcondition; defaults can be overridden to implement more complex behavior.

Ownership. LINKED_LIST’s invariant relies on the content of its cells. This might
threaten modularity of reasoning, since an independent modification of a cell by an un-
known client may break consistency of the list object. In practice, however, the cells are
part of the list’s internal representation, and should not be directly accessible to other
clients. For such hierarchical object dependencies, AutoProof implements an owner-
ship scheme [37,12]: each object x includes a ghost set owns of “owned” objects on
which x may depend. AutoProof prevents objects in x.owns from being opened (and
hence, modified) as long as x is closed; thus, x’s consistency cannot be indirectly bro-
ken. LINKED_LIST’s invariant clause owns_definition asserts that the list owns precisely
its cells, thus allowing the following clauses to depend on the state of the cells.

Safe iterators. Like other container libraries, EiffelBase2 offers iterator classes,
which provide the most idiomatic and uniform way of manipulating containers (in par-
ticular, lists). When multiple iterators are active on the same list, consistency problems
may arise: modifying the list, through its own interface or one of the iterators, may
invalidate the other iterators. This is not only a challenge to verification but a practi-
cal programming problem. To address it, Java’s java.util iterators implement fail-safe
behavior, which amounts to checking for validity at every iterator usage, raising an
exception whenever the check fails. This is not a robust solution, since “the fail-fast
behavior of an iterator cannot be guaranteed”, and hence one cannot “write a program
that [depends] on this exception for its correctness” [26]. In contrast, through complete
specifications, EiffelBase2 offers robust safe iterators: clients reason precisely about

3 Ghost code only belongs to specifications; see Sec. 3.2 for details.
4 In Eiffel, Current denotes the receiver object (this in Java).
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class HASH_TABLE [K, V]
model map, lock

feature {public}
ghost map: MML_MAP [K, V]
ghost lock: LOCK [K]

extend (k: K; v: V) -- Add key-value pair.
require
k ∈ lock.owns
all x ∈ map.domain : not x.is_equal (k)
lock.is_wrapped
observers = {}

modify model Current [map]
do . . .
ensure map = old map.updated (k, v)

feature {private}
buckets: ARRAY [LINKED_LIST [PAIR [K, V]]]

invariant
subjects_definition: subjects = {lock}
keys_locked: map.domain≤ lock.owns
no_duplicates: all x, y ∈ map.domain :
x 6= y implies not lock.eq [x, y]

keys_in_buckets: all x ∈ map.domain :
buckets [index (lock.hash [x])].has (x)

end

ghost class LOCK [K]
model eq, hash

feature {public}
eq: MML_RELATION [K, K]
hash: MML_MAP [K, INTEGER]

lock (key: K) -- Acquire ownership of ‘key’.
require key.is_wrapped
modify Current
modify field key [owner]
do . . .
ensure owns = old owns + {key}

unlock (key: K) -- Relinquish ownership of ‘key’.
require
key ∈ owns
all o ∈ observers : not key ∈ o.map.domain

modify Current
do . . .
ensure
owns = old owns− {key}
key.is_wrapped

invariant
eq_definition: all x, y ∈ owns : eq [x, y] = x.is_equal (y)
hash_definition: all x ∈ owns : hash [x] = x.hash_code

end

Fig. 2. Excerpts from classes HASH_TABLE and LOCK.

correct usage statically, so that safe behavior will follow without runtime overhead.
Fig. 1 shows excerpts from EiffelBase2’s linked list iterators.

Collaborative invariants. Object dependencies such as those arising between a list
and its iterators do not quite fit hierarchical ownership schemes: an iterator’s consis-
tency depends on the list, but any one iterator cannot own the list—simply because
other iterators may be active on the same list. In such cases we rely on collaborative in-
variants, introduced in our previous work [52]. In AutoProof, each object x is equipped
with the ghost sets subjects and observers: x.subjects contains the objects x may de-
pend on (such as an iterator’s target list); x.observers contains the objects that may
depend on x. AutoProof verifies that subjects and observers are consistent between
dependent objects (any subject of x has x as an observer), and that any update to a
subject does not affect the consistency of its observers. LINKED_LIST_ITERATOR’s invari-
ant clause subjects_definition asserts that the iterator might depend on its target list;
correspondingly, the list has to include all active iterators among its observers, which is
established in the iterator’s constructor by calling target.add_iterator. The precondi-
tion of LINKED_LIST.extend_back requires that all the list’s observers be open: this way,
the list can be updated without running the risk of breaking invariants of closed iterators.

2.2 Hash Table

Custom mutable keys. As in any realistic container library, EiffelBase2’s hash tables
support arbitrary objects as keys, with user-defined equivalence relations and hash func-
tions. For example, a class BOOK might override the is_equal method (equals in Java)
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to compare two books by their ISBN, and define hash_code accordingly. When a ta-
ble compares keys by object content rather than by reference, changing the state of an
object used as key may break the table’s consistency. Libraries without full formal spec-
ifications cannot precisely characterize such unsafe key modifications; Java’s java.util
maps, for example, generically recommend “great care [if] mutable objects are used as
map keys”, since “the behavior of a map is not specified if the value of an object is
changed in a manner that affects equals comparisons while the object is a key in the
map” [27]. In contrast, EiffelBase2’s specification precisely captures which key modi-
fications affect consistency, ensuring safe behavior without restricting usage scenarios.
Fig. 2 shows excerpts from EiffelBase2’s hash table and key management classes.

Shared ownership. A table’s consistency depends on its keys, but this dependency
fits neither ownership nor collaboration: keys may be shared between tables, and hence
any one table cannot own its keys; collaboration would require key objects to regis-
ter their host tables as observers, thus preventing the use of independently developed
classes as keys. In EiffelBase2, we address these challenges by means of a shared own-
ership specification pattern that combines ownership and collaboration. A class LOCK

(outlined in Fig. 2) acts as an intermediary between tables and keys: it owns keys and
maintains a summary of their properties (their hash codes and the equivalence relation
induced by is_equal); multiple tables observe a single LOCK object and rely on its sum-
mary, instead of directly observing keys. Clients can also modify keys as long as the
invariant of the keys’ lock is maintained. Note that LOCK is a ghost class: its state and
operations are absent from the compiled code, and thus incur no runtime overhead.

3 Verification Approach

AutoProof works by translating annotated Eiffel code into the Boogie intermediate ver-
ification language [1], and uses the Boogie verifier to generate verification conditions,
which are then discharged by the SMT solver Z3. As part of verifying EiffelBase2 we
extended the verification methodology of AutoProof (the tool’s underlying logic) and
substantially redesigned its Boogie encoding. This section presents the main new (with
respect to our previous work [52]) features of both the methodology and the tool.

3.1 Specification Types

AutoProof offers a Mathematical Model Library (MML) of specification types: sets,
bags (multisets), pairs, relations, maps, and sequences. Each type corresponds to a
model class [8]: a purely applicative class whose semantics for verification is given
by a collection of axioms in Boogie. Unlike verifiers that use built-in syntax for spec-
ification types, AutoProof is extensible with new types by providing an Eiffel wrapper
class and a matching Boogie theory, which can be used like any existing MML type.
The MML implementation used in EiffelBase2 relies on 228 Boogie axioms (see [49,
Ch. 6] for details); most of them have been borrowed from Dafny’s background theory,
whose broad usage supports confidence in their consistency.
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3.2 Ghost State

Auto-active verification commonly relies on ghost state—variables that are only men-
tioned in specifications and do not affect executable code—as its main mechanism
for abstraction. Ghost state has to be updated inside method bodies; the overhead of
such updates becomes burdensome in realistic code as ghost variables proliferate, even
though their relation to physical program state mostly remains straightforward. To as-
suage this common problem, AutoProof offers implicit updates for ghost attributes:
for every class invariant clause ga = expr that relates a ghost attribute ga to an ex-
pression expr, AutoProof implicitly adds the assignment ga := expr before every call to
Current.wrap. In Fig. 1, for example, invariant clause seq_refines_bag gives rise to the
assignment bag := sequence.to_bag at the end of extend_back; this has the effect of auto-
matically keeping the inherited attribute bag in sync with its refined version, sequence.

3.3 Model-Based Specifications

As illustrated in Sec. 2, each class specification includes a model clause, which des-
ignates a subset of attributes of the class as the class model. The model precisely de-
fines the publicly observable abstract state of the class, on which clients solely rely.
Model attributes play a special role in frame specifications: a method annotated with
the clause modify model s[m1,. . .,mn] can only modify attributes m1,. . .,mn in the abstract
state of s, but has no direct restrictions on modifying the concrete state of s (for exam-
ple, method forth of LINKED_LIST_ITERATOR in Fig. 1 can modify Current.active but not
Current.target). This construct enables fine-grained, yet abstract, frame specifications,
similar to data groups [38].

Declaring a model also makes it possible to reason about the completeness of in-
terface specifications [51]. Informally, a command’s postcondition is complete if it
uniquely defines the effect of the command on the model; a query’s postcondition is
complete if it defines the returned result as a function of the model; the model of a class
C is complete if it supports complete specifications of all public methods in C, such that
different abstract states are distinguishable by public method calls. For example, a set is
not a complete model for LINKED_LIST in Fig. 1 because the precise result of first can-
not be defined as a function of a set; conversely, a sequence is not a complete model for
a class SET because its interface provides no methods that discriminate element order-
ing. AutoProof currently does not support mechanized completeness proofs; however,
we found that even reasoning informally about completeness—as we did in the design
of EiffelBase2—helps provide clear guidelines for writing interface specifications and
substantiates the notion of “full functional correctness”.

3.4 Inheritance

Postconditions and invariants can be strengthened in descendant classes; hence, any
verifier that supports inheritance has to ensure that inherited methods do not violate
strengthened invariants, or are appropriately overridden [43,46].

In AutoProof, method implementations can be declared covariant or nonvariant.
A nonvariant implementation cannot depend on the dynamic type of the receiver, and
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hence on the precise definition of its invariant; therefore, a correct nonvariant imple-
mentation remains correct in descendant classes with stronger invariants, and need not
be re-verified. In contrast, a covariant implementation may depend on the dynamic type
of the receiver, and hence must be re-verified when inherited. In practice, method im-
plementations have to be covariant only if they call Current.wrap, which is the case for
commands that directly modify attributes of Current (such as extend_back in Fig. 1):
wrap checks that the invariant holds, a condition that may become stronger along the
inheritance hierarchy. Otherwise, queries and commands that modify Current indirectly
by calling other commands can be declared nonvariant: method append in LINKED_LIST

(not shown in Fig. 1) calls extend_back in a loop; it then only needs to know that Current
is closed but not any details of the actual invariant.

Nonvariant implementations are a prime example of how decoupling the knowledge
that an object is consistent from the details of its invariant promotes modular verifica-
tion. This feature is a boon of invariant-based reasoning; while a similar decoupling is
achievable in separation logic through abstract predicates and predicate families [45], it
is missing in other approaches such as dynamic frames [28].

3.5 Effective Boogie Encoding

The single biggest obstacle to completing the verification of EiffelBase2 has been poor
verification performance on large problems: making AutoProof scale required tuning
several low-level details of the Boogie translation, following a trial-and-error process.
We summarize some finicky features of the translation that are crucial for performance.

Invariant reasoning. Class invariants tend to be the most complex part of specifi-
cations in EiffelBase2; thus, their translation must avoid bogging down the prover with
too much information at a time. One crucial point is when x.wrap is called and all of
x’s invariant clauses I1,. . ., In are checked; the naive encoding assert I1; . . .; assert In

does not work well for complex invariants: for j < k, Ik normally does not depend on
Ij , and hence the previously established fact that Ij holds just clutters the proof space.
Instead, we adopt Dafny’s calculational proof approach [39] and use nondeterministic
branching to check each clause independently of the others.

At any program point where the scope includes a closed object x, the proof might
need to make use of its invariant. AutoProof’s default behavior (assume the invariants
of all closed objects in scope) doesn’t scale to EiffelBase2’s complex specifications. In-
stead, we leverage once again the decoupling between the generic notion of consistency
and the specifics of invariant definitions, and make the latter available to the prover se-
lectively, by asserting AutoProof’s built-in predicates: x.inv refers to x’s whole invari-
ant; x.inv_only (k) refers to x’s invariant clause named k; and x.inv_without (k) refers to
x’s invariant without clause named k (for example, see make’s body in Fig. 1).

Opaque functions are pure functions whose axiomatic definitions can be selectively
introduced only when needed.5 A function f declared as opaque is normally uninter-
preted; but using a built-in predicate def(f(args)) introduces f(args)’s definition into the
proof environment. In EiffelBase2, we use opaque functions to handle complex invari-
ant clauses that are rarely needed in proofs.

5 A similar concept was independently developed for Dafny at around the same time [11].
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Modular translation. AutoProof offers the choice of creating a Boogie file per class
or per method to be verified. Besides the annotated implementation of the verification
module, the file only includes those Boogie theories and specifications that are refer-
enced in the module. We found that minimizing the Boogie input file can significantly
impact performance, avoiding fruitless instantiations of superfluous axioms.

4 The Verified Library

EiffelBase2 was initially designed to replace EiffelBase—Eiffel’s standard container
library—by providing similar functionalities, a better, more modern design, and as-
sured reliability. It originated as a case study in software development driven by strong
interface specifications [51]. Library versions predating our verification effort have been
used in introductory programming courses since 2011, and have been distributed with
the EiffelStudio compiler since 2012.

4.1 Setup

Pre-verification EiffelBase2 included complete implementations and strong public func-
tional specifications. Following the approach outlined in Sec. 2, we provided additional
public specifications for dependent invariants (ownership and collaboration schemes),
as well as private specifications for verification (representation invariants, ghost state
and updates, loop invariants, intermediate assertions, lemmas, and so on). This effort
took about 7 person-months, including extending AutoProof to support special annota-
tions and the efficient encoding of Sec. 3.5. The most time-consuming task—making
the tool scale to large examples—was a largely domain-independent, one-time effort;
hence, using AutoProof in its present state to verify other similar code bases should
require significantly less effort.6

Verified EiffelBase2 consists of 46 classes offering an API with 135 public methods;
its implementation has over 8,000 lines of code and annotations in 79 abstract and 378
concrete methods. The bulk of the classes belong to one of two hierarchies: containers
(Fig. 3) and iterators. Extensive usage of inheritance (including multiple inheritance)
makes for uniform abstract APIs and reusable implementations.

Completeness. All 135 public methods have complete functional specifications ac-
cording to the definition given in Sec. 3.3. Specifications treat integers as mathematical
integers to offer nicer abstractions to clients. Pre-verification EiffelBase2 supports both
object-oriented style (abstract classes) and functional style (closures or agents) defi-
nitions of object equality and hashing operators; verified EiffelBase2 covers only the
object-oriented style. The library has no concurrency-related features: verification as-
sumes sequential execution.

6 We also have some evidence that AutoProof’s usability for non-experts improved after extend-
ing it as described in this paper. Students in our “Software Verification” course used AutoProof
in 2013 (pre EiffelBase2 verification) and in 2014 (post EiffelBase2 verification); working on
similar projects, the students in 2014 were able to complete the verification of more advanced
features and generally found the tool reasonably stable and responsive.
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Fig. 3. EiffelBase2 containers: arrows denote inheritance; abstract classes have a lighter back-
ground (white for classes with immutable interfaces).

4.2 Verification Results

Given suitable annotations (described below), AutoProof verifies all 378 method imple-
mentations automatically.

Bugs found. A byproduct of verification was exposing 3 subtle bugs: a division
by zero resulting from conversions between machine integers of different sizes; wrong
results when moving, in the same array, a range of elements to an overlapping range
with a smaller offset; an incorrect implementation of subrange equality in a low-level
array service class (wrapping native C arrays) used by EiffelBase2. We attribute the
low number of defects in EiffelBase2 to its rigorous, specification-driven development
process: designing from the start with complete model-based interface specifications
forces developers to carefully consider the abstractions underlying the implementation.
An earlier version of EiffelBase2 has been tested automatically against its interface
specifications used as test oracles, which revealed 7 bugs [49, Ch. 4] corrected before
starting the verification effort. These results confirm the intuition that lightweight for-
mal methods, such as contract-based design and testing, can go a long way towards
detecting and preventing software defects; however, full formal verification is still re-
quired to get rid of the most subtle few.

Specification succinctness. Tab. 1 details the size of EiffelBase2’s specifications:
overall, 1.4 lines of annotations per line of executable code. The same overhead in
tokens—a more robust measure—is 2.7 tokens of annotation per token of executable
code. The overhead is not uniform across classes: abstract classes tend to accumulate a
lot of annotations which are then amortized over multiple implementations of the same
abstract specification.

EiffelBase2’s overhead compares favorably to the state of the art in full functional
verification of heap-based data structure implementations. Pek et al’s [47] verified list
implementations have overheads of 0.6 (LOC) and 2.6 (tokens)7; given that their tech-
nique specifically targets inferring low-level annotations, EiffelBase2’s specifications
are generally succinct. In fact, approaches without inference or complete automation

7 We counted specifications used by multiple procedures only once.
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Table 1. EiffelBase2 verification statistics: for every CLASS, the number of ABStract and CONCrete methods, and the
methods and well-formedness constraints that have to be VERified; the TOTAL number of non-empty non-comment lines of
code, broken down into EXECutable code and SPECifications; the latter are further split into REQuirements and AUXiliary
annotations; the overhead SPEC

EXEC in both LOC (lines) and TOKens; and the verification TIME in seconds: TOTAL time per class,
TRANSlation (to Boogie) time per class, and MEDian and MAXimum Boogie running times of the class’s methods.

METHODS LOC TOK TIME (SEC)
CLASS ABS CONC VER TOTAL EXEC SPEC REQ AUX SPEC

EXEC
SPEC
EXEC TOTAL TRANS MED MAX

CONTAINER 2 3 6 124 39 85 34 51 2.2 3.1 3.5 2.6 0.1 0.3
INPUT_STREAM 3 1 2 59 22 37 32 5 1.7 4.3 2.6 2.0 0.3 0.5
OUTPUT_STREAM 2 2 3 90 34 56 42 14 1.6 4.0 2.9 2.2 0.3 0.3
ITERATOR 12 4 6 241 106 135 106 29 1.3 3.6 3.8 2.6 0.2 0.3
SEQUENCE 4 9 14 182 69 113 102 11 1.6 2.5 4.8 3.0 0.1 0.3
SEQUENCE_ITERATOR 0 1 3 36 15 21 19 2 1.4 2.2 3.1 2.2 0.2 0.4
MUTABLE_SEQUENCE 3 5 8 191 83 108 74 34 1.3 3.5 7.6 3.0 0.2 2.9
IO_ITERATOR 1 1 2 58 15 43 33 10 2.9 4.9 3.1 2.2 0.4 0.5
MUTABLE_SEQUENCE_ITERATOR 1 0 1 41 19 22 11 11 1.2 1.5 2.9 2.2 0.7 0.7
ARRAY 0 16 21 275 149 126 107 19 0.8 1.6 12.5 3.4 0.2 2.1
INDEX_ITERATOR 0 13 14 91 64 27 18 9 0.4 0.3 5.0 2.9 0.1 0.2
ARRAY_ITERATOR 0 3 11 97 43 54 34 20 1.3 2.3 6.2 3.0 0.2 0.6
ARRAYED_LIST 0 20 27 389 196 193 127 66 1.0 1.9 19.5 4.5 0.2 4.3
ARRAYED_LIST_ITERATOR 0 10 18 144 81 63 34 29 0.8 1.2 9.9 3.4 0.3 1.0
ARRAY2 0 16 20 199 101 98 79 19 1.0 1.1 7.4 3.3 0.1 1.0
LIST 11 5 11 268 85 183 129 54 2.2 6.1 6.1 3.1 0.1 1.3
LIST_ITERATOR 7 0 1 118 32 86 86 0 2.7 10.2 3.0 2.3 0.7 0.7
CELL 0 1 3 23 12 11 8 3 0.9 1.1 2.7 2.1 0.1 0.3
LINKABLE 0 1 4 25 14 11 11 0 0.8 0.9 2.8 2.1 0.2 0.2
LINKED_LIST 0 23 30 558 271 287 125 162 1.1 2.1 22.3 4.2 0.3 3.3
LINKED_LIST_ITERATOR 0 28 29 402 205 197 84 113 1.0 2.0 13.6 3.9 0.2 1.4
DOUBLY_LINKABLE 0 5 10 136 37 99 85 14 2.7 3.8 4.2 2.6 0.1 0.8
DOUBLY_LINKED_LIST 0 23 30 641 291 350 147 203 1.2 2.3 31.3 4.3 0.3 10.7
DOUBLY_LINKED_LIST_ITERATOR 0 27 28 379 207 172 66 106 0.8 1.7 13.5 3.9 0.3 1.4
DISPENSER 6 0 3 68 27 41 40 1 1.5 2.9 3.0 2.4 0.1 0.4
STACK 1 0 4 25 12 13 12 1 1.1 2.1 3.2 2.3 0.2 0.3
LINKED_STACK 0 9 12 100 51 49 23 26 1.0 1.5 5.5 3.1 0.2 0.3
LINKED_STACK_ITERATOR 0 16 18 221 94 127 59 68 1.4 2.2 8.6 3.5 0.2 1.0
QUEUE 1 0 4 25 12 13 12 1 1.1 2.0 3.2 2.3 0.2 0.3
LINKED_QUEUE 0 9 12 100 51 49 23 26 1.0 1.5 5.5 3.2 0.2 0.3
LINKED_QUEUE_ITERATOR 0 16 18 221 94 127 59 68 1.4 2.2 8.6 3.5 0.2 1.0
LOCK 0 8 9 176 0 176 176 0 4.2 2.8 0.1 0.6
LOCKER 0 1 2 30 0 30 30 0 2.8 2.1 0.3 0.4
MAP 6 1 8 128 32 96 90 6 3.0 5.0 4.1 3.0 0.1 0.2
MAP_ITERATOR 2 0 4 81 19 62 44 18 3.3 7.4 3.5 2.6 0.2 0.3
TABLE 5 2 5 97 39 58 51 7 1.5 2.4 4.3 2.6 0.3 0.6
TABLE_ITERATOR 2 0 1 43 17 26 26 0 1.5 4.1 3.2 2.4 0.7 0.7
HASHABLE 1 0 1 35 9 26 21 5 2.5 1.9 0.5 0.5
HASH_LOCK 0 2 6 41 0 41 41 0 5.2 2.9 0.2 1.4
HASH_TABLE 0 26 31 695 236 459 208 251 1.9 3.6 61.4 6.5 0.4 8.7
HASH_TABLE_ITERATOR 0 23 29 572 198 374 104 270 1.9 4.1 46.9 5.8 0.8 6.3
SET 7 10 17 503 163 340 217 123 2.1 4.4 28.4 3.3 0.2 11.8
SET_ITERATOR 2 0 2 50 17 33 32 1 1.9 6.2 3.1 2.3 0.4 0.5
HASH_SET 0 10 13 146 59 87 43 44 1.5 1.9 11.1 4.1 0.4 1.1
HASH_SET_ITERATOR 0 17 18 216 91 125 42 83 1.4 2.8 18.8 4.5 0.6 2.7
RANDOM 0 11 12 100 78 22 21 1 0.3 0.3 3.4 2.6 0.1 0.1

Total 79 378 531 8440 3489 4951 2967 1984 1.4 2.7 434.7 140.9 0.2 11.8

tend to require significantly more verbose annotations. Zee et al.’s [63] linked structures
have overheads of 2.3 (LOC) and 8.2 (tokens); their interactive proof scripts aggravate
the annotation burden. Java’s ArrayList verified with separation logic and VeriFast [58]
has overheads of 4.4 (LOC) and 10.1 (tokens).

Kinds of specifications. [47] suggests classifying specifications according to their
level of abstraction with respect to the underlying verification process. A natural classi-
fication for EiffelBase2 specifications is into requirements (model attributes, method
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pre/post/frame specifications, class invariants, and ghost functions directly used by
them) and auxiliary annotations (loop invariants and variants, intermediate assertions,
lemmas, and ghost code not directly used in requirements). Requirements are higher
level in that they must be provided independent of the verification methodology, whereas
auxiliary annotations are a pure burden which could be reduced by inference. Eiffel-
Base2 includes 3 lines of requirements for every 2 lines of auxiliary annotations. In
terms of API specification, clients have to deal with 6 invariant clauses per class and 4
pre/post/frame clauses per method on average.

Auxiliary annotations can be further split into suggestions (inv, inv_only, and
inv_without and opaque functions, all described in Sec. 3.5) and structural annotations
(all other auxiliary annotations). Suggestions roughly correspond to “level-C annota-
tions” in [47], in that they are hints to help AutoProof verify more quickly. 12% of all
EiffelBase2’s specifications are suggestions (mostly inv assertions); among structural
annotations, ghost code (11%) and loop invariants (7%) are the most significant kinds.
The 3/2 requirements to auxiliary annotation ratio indicates that high-level specifica-
tions prevail in EiffelBase2. The non-negligible fraction of auxiliary annotations moti-
vates future work to automatically infer them (in particular, suggestions) when possible.

Default annotations help curb the annotation overhead. Default wrapping calls
(Sec. 2.1) work for 83% of method bodies, and default closed pre-/postconditions work
for 95% of method specifications; we overrode the default in the remaining cases. Im-
plicit ghost attribute updates (Sec. 3.2) always work.

Client reasoning. To demonstrate that EiffelBase2’s interface specifications enable
client reasoning, we verified parts of three gaming applications (a transportation system
simulator and two board games) that were implemented to support teaching computer
science courses and were written before verifying EiffelBase2. The applications total
37 classes and 2,040 lines of code. Their program logics rely on arrays, lists, streams,
and tables from EiffelBase2; we focused on verifying correctness of the interactions be-
tween library and applications (for example, iterator safety). Annotating the clients re-
quired relatively little effort—roughly three person-days to produce around 1,700 lines
of annotations—and only trifling modifications to the code. Verification of 84% of over
200 methods succeeded; the exceptions were in large classes that use up to 7 complex
data structures simultaneously, where accumulated specification complexity bogs down
AutoProof, which times out; verifying these complex parts would require restructuring
the code to improve its modularity.

Verification performance. In our experiments, AutoProof ran on a single core of a
Windows 7 machine with a 3.5 GHz Intel i7-core CPU and 16 GB of memory, using
Boogie v. 2.2.30705.1126 and Z3 v. 4.3.2 as backends. To account for noise, we ran
each verification 30 times and report the mean value of the 95th percentile.

The total verification time is under 8 minutes, during which AutoProof verified 531
method implementations and well-formedness conditions, including the 378 concrete
methods listed in Tab. 1, 47 ghost methods and lemmas, well-formedness of each class
invariant, and 56 inherited methods that are covariant (Sec. 3.4) and hence must be re-
verified; on the other hand, nonvariant annotations avoid re-verification of 343 bodies,
and hence save about 30% of the total verification time.

13



AutoProof’s behavior is not only well-performing on the whole EiffelBase2; it is
also predictable: over 99% of the methods verify in under 10 seconds; over 89% in
under 1 second; the most complex method verifies in under 12 seconds. These uniform,
short verification times are a direct result of AutoProof’s flexible approach to verifica-
tion, and specifically of our effort to provide an effective Boogie encoding; for example,
independent checking of invariant clauses (Sec. 3.5) halves the verification time of some
of the most complex methods.

4.3 Challenges

Sec. 2 outlined two challenging features of realistic, general-purpose libraries (safe
iterators and custom mutable keys); we now discuss other general challenging aspects.

General-purpose APIs. To be general-purpose, EiffelBase2 offers feature-rich pub-
lic interfaces, which amplify verification complexity. For example, lists support search-
ing, inserting and removing elements, and merging container’s content, at arbitrary po-
sitions, replacing and removing elements by value, reversing in place. Sets provide
operations for subset, join, meet, (symmetric) difference, and disjointness check. All
EiffelBase2’s containers also offer copy constructors and object comparison—standard
features in object-oriented design but routinely evaded in verification.

Object-oriented design. Abstract classes provide uniform, general interfaces to cli-
ents, and to this end are extensively used in EiffelBase2, but also complicate verification
in different ways. First, the generality of abstract specifications may determine a wider
gap between specification and implementation than if we defined specifications to indi-
vidually fit each concrete implementation. For example, ITERATOR.forth’s precondition
all s ∈ subjects : s.closed involves a quantification that could be avoided by replacing
it with the equivalent target.closed. However, the quantified precondition is inherited
from INPUT_STREAM, where target is not yet defined. Second, model attributes may be
refined with inheritance, which requires extra invariant clauses to connect the new and
the inherited specifications (e.g., seq_refines_bag in Fig. 1).

Realistic implementations. Implementations in EiffelBase2 offer realistic perfor-
mance, in line with standard container libraries in terms of running time and memory
usage, which adds algorithmic verification complexity atop structural verification com-
plexity. For example, ARRAYED_LIST’s implementation uses, like C++ STL’s Vector, a
ring buffer to offer efficient insertions and deletions at both list ends. Ring buffers were
a verification challenge in a recent competition [17]; EiffelBase2’s ring buffers are even
more complicated as they have to support insertions and deletions inside a list, which
requires a circular copy. Another example is HASH_TABLE, which implements transparent
resizing of the bucket array to maintain a near-optimal load factor—one more feature
of realistic libraries that is normally ignored in verification work.

5 Related Work

Well-defined interfaces make verifying client code using containers somewhat simpler
than verifying container implementations. Techniques used to this end include symbolic
execution [20], model checking [5], interactive provers [16], and static analysis [15].
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Verification of individual data structures demonstrates that a tool or technique can
address fundamental challenges; but also normally abstracts away details that are cru-
cial in realistic general-purpose implementations such as EiffelBase2. Individual data
structure challenges have been tackled using several of the major functional verification
tools out there, including Why3 [59], Pangolin [53], VeriFast [58], GRASShoper [48],
ACL2 [18], Dafny [14], KeY [6,19], Coq [42], and other approaches based on direct
constraint solving such as [33].

Data structure collections in functional languages. Functional languages provide
a higher level of abstraction than heap-based (object-oriented) ones, and their pow-
erful type systems can naturally capture nontrivial correctness properties. Therefore,
verifying data structures implemented in functional languages poses challenges largely
different from those of the implementations we target in this paper. Refinement ap-
proaches [22,41] verify the correctness of a high level abstract model, which is then
extended into correct-by-construction executable code. The rich type systems of func-
tional languages support mechanisms such as recursive and polymorphic type refine-
ments [57], which naturally capture functional correctness invariant properties of data
structures. [29] applied them to verify ML implementations of lists, vectors, maps, and
trees. [29]’s techniques are completely automatic and require very little annotations;
but they are not directly applicable to data structures that are cyclic and allow arbitrary
access patterns, or that are not defined in functional programming style.

Data structure collections in heap-based languages. Different techniques target
different trade-offs between automation and expressiveness of specifications to be ver-
ified. Simple properties can be verified automatically with little or no annotations: ab-
sence of errors such as out of bound array accesses, null dereferences, buffer overruns,
and division by zero [34], basic array properties [13], and reachability of objects in
the heap (shape analysis) [54,3,4,62,7]. Within the limits of the properties they can
express, these analysis techniques are applicable to realistic implementations in real
programming languages. Fully automatic techniques have been gradually extended to
cover some decidable functional specification abstractions such as sets and bags. Some
works [21,9,23] are based on top of shape analysis. Others [31,32,60,25,55,61] target
logic fragments amenable to SMT reasoning. These decidable abstractions capture es-
sential traits of the interface behavior of data structures, but cannot exactly express the
semantics of complex operations with arbitrary element access order.

In contrast, fully interactive techniques have no a priori limitations on the properties
that can be reasoned upon, but require expert users who can provide low-level proof
details. [44,10], for example, reason in higher-order separation logic about sharing and
aliasing of data structures featuring a mix of functional and heap-based constructs; such
a great flexibility brings a significant overhead in terms of proof scripts.

Auto-active verification [36] tries to provide a high degree of automation, but with-
out sacrificing the expressiveness needed for full functional correctness. Zee et al. [63]
document a landmark result in verifying full functional correctness of a significant col-
lection of complex data structures by combining provers for various decidable frag-
ments; however, discharging the most complex verification conditions still requires in-
teractive proofs, which make their annotation overhead much higher than ours. Another
major difference with our work is that [63] does not always consider general-purpose
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implementations (for example, hash tables only offer reference-based key comparison,
which is too limiting in practice), nor does it target a unitarily designed library. Pek
et al.’s [47] natural proofs do not require proof scripts and drastically reduce the an-
notation burden by inferring auxiliary (low-level) annotations; the resulting annotation
overhead is slightly lower than ours (Sec. 4.2). They demonstrate their VCDryad tool
on complex data structures including singly and doubly linked lists, and trees; some
implementations are taken from C’s glib and OpenBSD. Compared to EiffelBase2,
their examples consist of a self-contained individual program for each functionality,
and hence do not represent aspects of container libraries with uniform interfaces that
contribute to verification complexity. Another difference with our work is that [47] does
not always prove full functional correctness; reversal and sorting of linked lists, for ex-
ample, only verify that the sets of elements are not altered but ignore their order.

6 Lessons Learned and Conclusions

We offer as conclusions the main insights into verifying realistic software and building
practical verification tools that emerged from our work.

Auto-active verification demands predictability. Usable auto-active verification re-
quires predictable, moderate response time to keep users engaged in successive itera-
tions of the feedback loop. We found timeouts a major impediment, wasting time and
providing completely uninformative feedback; others report similar experiences [11].
The primary source of timeouts were futile instantiations of quantified axioms; the so-
lution involved profiling the SMT solver’s behavior and designing effective triggers.
This effort paid off as it made AutoProof’s performance quite stable. However, con-
structing efficient axiomatizations for SMT solvers remains somewhat of a black art;
automating this task is an attractive direction for future research.

Realistic verification calls for flexible tools. Verifying EiffelBase2 required a com-
bination of effective predefined schemas (to avoid verbose, repetitive annotations of
myriad run-of-the-mill cases) and full control (to tackle the challenging, idiosyncratic
cases); as a result, AutoProof includes a lot of control knobs with useful defaults. This
determines a different trade off than tools (such as Dafny and VeriFast) implementing
bare-bones pristine methodologies, which are easier to learn but offer less support to
advanced users that go the distance.

Verification promotes good design. It’s unsurprising that well-designed software is
easier to verify; the flip-side is that developing software with verification in mind is con-
ducive to good design. Verification commands avoiding any unnecessary complexity—a
rigor which can pay off manyfold by leading to better reusability and maintainability.

It remains that the vision of “developers of data structure libraries [delivering] for-
mally specified and fully verified implementations” [63] is still ahead of us. An im-
portant step towards achieving this vision, our work explored the major hurdles that
lie in the often neglected “last mile” of verification—from challenging benchmarks to
fully-specified general-purpose realistic programs—and described practical solutions to
overcome them.
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