Why Just Boogie?

Translating Between Intermediate Verification Languages

Michael Ameri! and Carlo A. Furia®*

! Chair of Software Engineering, Department of Computer Science,
ETH Zurich, Switzerland mameri@student.ethz.ch
2 Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden furia@chalmers.se

Abstract. The verification systems Boogie and Why3 use their respective inter-
mediate languages to generate verification conditions from high-level programs.
Since the two systems support different back-end provers (such as Z3 and Alt-
Ergo) and are used to encode different high-level languages (such as C# and
Java), being able to translate between their intermediate languages would pro-
vide a way to reuse one system’s features to verify programs meant for the other.
This paper describes a translation of Boogie into WhyML (Why3’s intermediate
language) that preserves semantics, verifiability, and program structure to a large
degree. We implemented the translation as a tool and applied it to 194 Boogie-
verified programs of various sources and sizes; Why3 verified 83% of the trans-
lated programs with the same outcome as Boogie. These results indicate that the
translation is often effective and practically applicable.

1 Introduction

Intermediate verification languages (IVLs) are intermediate representations used in ver-
ification technology. Just like compiler design has benefited from decoupling front-end
and back-end, IVLs help write verifiers that are more modular: the front-end special-
izes in encoding the rich semantics of a high-level language (say, an object-oriented
language such as C#) as a program in the IVL; the back-end generates verification con-
ditions (VCs) from IVL programs in a form that caters to the peculiarities of a specific
theorem prover (such as an SMT solver).

Boogie [3] and WhyML [6] are prime examples of popular IVLs with different,
often complementary, features and supporting systems (respectively called Boogie and
Why?3). In this paper we describe a translation of Boogie programs into WhyML pro-
grams and its implementation as the tool b2w. As we illustrate with examples in[Sec. 3]
using b2w increases the versatility brought by IVLs: without having to design and im-
plement a direct encoding into WhyML, users can take advantage of some of the best
features of Why3 when working with high-level languages that translate to Boogie.

* Work done mainly while affiliated with ETH Zurich.

Boogie vs. WhyML. While the roles of Boogie and WhyML as IVLs are similar, the
two languages have different characteristics that reflect a focus on complementary chal-
lenges in automated verification. Boogie is the more popular language in terms of front-
ends that use it as IVL, which makes a translation from Boogie more practically use-
ful than one into it; it has a finely tuned integration with the Z3 prover that results
from the two tools having been developed by the same group (Microsoft Research’s
RiSE); it combines a simple imperative language with an expressive typed logic, which
is especially handy for encoding object-oriented or, more generally, heap-based imper-
ative languages. In contrast, WhyML has a more flexible support for multiple back-end
provers it translates to, including a variety of SMT solvers as well as interactive provers
such as Coq; it can split VCs into independent goals and dispatch them to different
provers; if offers limited imperative constructs within a functional language that be-
longs to the ML family, which brings the side benefit of being able to execute WhyML
programs—a feature quite useful to debug and validate verification attempts.

Goals and evaluation. The overall goal of this paper is devising a translation 7 from
Boogie to WhyML programs. The translation, described in[Sec. 4] should preserve cor-
rectness and verifiability as much as possible. Preserving correctness means that, given
a Boogie program p, if its translation 7 (p) is a correct WhyML program then p is cor-
rect (soundness); the converse should also hold as much as possible: if 7 (p) is incorrect
then p is too (precision). Preserving verifiability means that, given a Boogie program p
that verifies in Boogie, its translation 7 (p) is a WhyML program that verifies in Why3.

The differences, outlined above, between Boogie and WhyML and their supporting
systems make achieving correctness and verifiability challenging. While we devised T
to cover the entire Boogie language, its current implementation b2w does not fully sup-
port a limited number of features (branching, the most complex polymorphic features,
and bitvectors) that make it hard to achieve verifiability in practice. In fact, while replac-
ing branching (goto) with looping is always possible [9]], a general translation scheme
does not produce verifiable loops since one should also infer invariants (which are often
cumbersome due to the transformation). Polymorphic maps are supported to the extent
that their type parameters can be instantiated with concrete types; this is necessary since
WhyML'’s parametric polymorphism cannot directly express all usages in Boogie, but
it may also introduce a combinatorial explosion in the translation; hence, b2w fails on
the most complex instances that would be unmanageable in Why3. Boogie’s bitvector
support is much more flexible than what provided by Why3’s libraries; hence b2w may
render the semantics of bitvector operations incorrectly.

These current implementation limitations notwithstanding (see for details),
we experimentally demonstrate that b2w is applicable and useful in practice. As
discusses, we applied b2w to 194 Boogie programs of different size and sources; most of
the programs have not been written by us and exercise Boogie in a variety of different
ways. For 83% (161) of these programs, b2w produces a WhyML translation that Why3
can verify as well as Boogie can verify the original, thus showing the feasibility of
automating translation between IVLs.

Tool availability. For lack of space this paper omits some details that are available as a
technical report [1]]. The tool b2w is available as open source at: https://bitbucket.
org/michael_ameri/b2w/

https://bitbucket.org/michael_ameri/b2w/
https://bitbucket.org/michael_ameri/b2w/

2 Related Work

Translations and abstraction levels. Translation is a ubiquitous technique in computer
science; however, the most common translation schemes bridge different abstraction
levels, typically encoding a program written in a high-level language (such as Java) into
a lower-level representation which is suitable for execution (such as byte or machine
code). Reverse-engineering goes the opposite direction—from lower to higher level—
for example to extract modular and structural information from C programs and encode
it using object-oriented constructs [19]. This paper describes a translation between inter-
mediate languages—Boogie and Why3—which belong to similar abstraction levels. In
the context of model transformations [[15]], so-called bidirectional transformations [[18]]
also target lossless transformations between notations at the same level of abstraction.

Intermediate verification languages. The Spec# project [4] introduced Boogie to add
flexibility to the translation between an object-oriented language and the verification
conditions. Since its introduction for Spec#, Boogie has been adopted as interme-
diate verification language for numerous other front-ends such as Dafny [13]], Auto-
Proof [21]], Viper [10], and Joogie [2]; its popularity demonstrates the advantages of
using intermediate verification languages.

While Boogie retains some support for different back-end SMT solvers, Z3 remains
its primary target. By contrast, supporting multiple, different back-ends is one of the
main design goals behind the Why3 system [6]. Why3 also fully supports interactive
provers, which provide a powerful means of discharging the most complex verification
conditions that defy complete automation.

In all, while the Boogie and WhyML languages belong to a similar abstraction level,
they are part of systems with complementary features, which motivates this paper’s idea
of translating one language into the other.

Other intermediate languages for verification are Pilar [17], used in the Sireum
framework for SPARK; Silver [10]], an intermediate language with native support for
permissions in the style of separation logic; and the flavor of dynamic logic for object-
oriented languages [16] used in the KeY system. Another approach to generalizing
and reusing different translations uses notions from model transformations to provide
validated mappings for different high-level languages [5]. Future work may consider
supporting some of these intermediate languages and approaches.

3 Motivating Examples

Verification technology has made great strides in the last decade or two, but a few
dark corners remain where automated reasoning shows its practical limitations.
provides three examples of simple Boogie programs that trigger incorrect or otherwise
unsatisfactory behavior. We argue that translating these programs to WhyML makes it
possible to verify them using a different, somewhat complementary verification tool;
overall, confidence in the results of verification is improved.

Procedure not_verify in has a contradictory postcondition (notice N < N,
N is a nonnegative constant, and the loop immediately terminates). Nonetheless, recent

versions of Boogie and Z3 successfully verify itE] More generally, unless the complete
toolchain has been formally verified (a monumental effort that has only been performed
in few case studies [[14.11012]), there is the need to validate the successful runs of a
verifier. Translating Boogie to Why3 provides an effective validation, since Why3 has
been developed independent of Boogie and uses a variety of backends that Boogie does
not support. Procedure not_verify translated to Why3 does not verify as it
should.

Procedures lemma_yes and lemma_no in demonstrate Boogie’s support for
mathematical real numbers, which is limited in the way the power operator ** is han-
dled. Boogie vacuously verifies both properties 22 > 0 and 23 < 0, even though Z3
outputs some unfiltered errors that suggest the verification is spurious. Why3 provides
a more thorough support for real arithmetic; in fact, it verifies the translated procedure
lemma_yes but correctly fails to verify lemma_no.

The loop in procedure trivial_inv in |Fig. I|includes an invariant asserting that
i takes only even values. Even if this is clearly true, Boogie fails to check it; pinning
down the precise cause of this shortcoming requires knowledge of Boogie’s (and Z3’s)
internals, although it likely is a manifestation of the “triggers” heuristics that handle
(generally undecidable) quantified expressions. However, if we insist on verifying the
program in its original form, Why3 can dispatch verification conditions to interactive
provers, where the user provides the crucial proof steps Cases such as the loop invari-
ant of trivial_inv where a proof is “obvious” to a human user but it clashes against
the default strategies to handle quantifiers are prime candidate to exploit interactive
provers.

N: H lemma_yes() trivial_inv()
o< N; 2.0xx3.0> 0.0; {
i:
not_verify() i=0;
(V k, 1: . lemma_no() (i< 10)
< kS 1<K N = N N); 2.0%xx3.0< 0.0; 0< i< 10;
{
X: ENHE o i=2xj);

{i=1+42; 1}
}

Fig. 1. Three simple Boogie programs for which automated reasoning is limited.

4 Boogie-to-Why3 Translation

Intermediate languages for verification combine programming constructs and a logic
language. When used to encode programs written in a high-level language, the pro-
gramming constructs encode program behavior, and the logic constructs encode spec-
ifications, constrain the semantics to conform to the high-level language’s (typically
through axioms), and support other kinds of annotations (such as triggers).

3 https://github.com/boogie-org/boogie/issues/25
* Why3 can also check the invariant automatically by relying on the CVC4 SMT solver.

https://github.com/boogie-org/boogie/issues/25

constant N: int val lemma_yes (): () val trivial_inv (): ()
axiom A@: 0@ < N; ensures

{ (pow 2.0 3.0) >. 0.0 } let trivial_inv_impl (): ()
val not_verify (): () =(

ensures { V k, 1: int . val lemma_no (): () let i = ref (any int) in
0<k<1T<N—=>NN?} ensures i.contents < 0;
{ (pow 2.0 3.0) <. 0.0 } while (i.contents < 10) do
let not_verify_impl(): () invariant
ensures { V k, l: int . let lemma_yes_impl (): () { 6 <i.contents <10 }
0<k<1T<N—=>NIN?} ensures invariant
=({ (pow 2.0 3.0) >. 0.0 } {3j: int .
let x = ref (any int) in =() i.contents = 2xj }
x.contents < -N; i.contents <— i.contents + 2;
while let lemma_no_impl (): () done;
(x.contents # x.contents) ensures)
do done; { (pow 2.0 3.0) <. 0.0 }
end) =()

Fig. 2. The translation to WhyML of the three Boogie programs in[Fig. I

Both Boogie and WhyML provide, as logic language, a typed first-order logic with
arithmetic. Boogie’s programming constructs are a simple imperative language with
both structured (while loops, procedures) and unstructured (jumps, global variables)
statements. WhyML’s programming constructs combine an ML-like functional lan-
guage with a few structured imperative features such as mutable variables and loops.

Correspondingly, we define a translation 7 : Boogie — WhyML of Boogie to
WhyML as the composition £ o D of two translations: D: Boogie — Boogie is a
desugarinéﬂ which rewrites away the Boogie constructs, such as call-forall, that have
no similar construct in WhyML by expressing them using other features of Boogie.
Then, £: Boogie — WhyML encodes Boogie programs simplified by D as WhyML
programs. For simplicity, the presentation does not sharply separate the two transla-
tions D and £ but defines either or both of them as needed to describe the translation of
arbitrary Boogie constructs.

A single feature of the Boogie language significantly compounds the complexity
of the translation: polymorphic maps. For clarity, the presentation of the translation
initially ignores polymorphic maps. Then, [Sec. 4.8]discusses how the general translation
scheme can be extended to support them.

As running examples, shows how 7 translates the examples of For
lack of space, we focus on describing the most significant aspects of the translation that
are also implemented; see [[1] for the missing details.

4.1 Types

Primitive types are (mathematical integers), (mathematical reals), and
(Booleans). 7 translates primitive types into their Why3 analogues as shown in[Tab. 3]
Type constructors. A Boogie type declaration using the type constructor syntax intro-
duces a new parametric type T. 7 translates it to an algebraic type with constructor T:
T(T aj...am) = type T 'aj..."a,, form > 0, where ticks ’ identify type
parameters in WhyML.

3 This is unrelated to Boogie’s built-in desugaring mechanism (option /printDesugared).

T T(T) Why?3 libraries

int int.Int, int.EuclideanDivision
real real.Reallnfix, real.FromInt, real.Truncate, real.PowerReal
bool bool.Bool

Table 3. Translation of primitive types, and Why?3 libraries supplying the necessary operations.

Map types. A Boogie map type M declared as: M= [T;,...T,] U defines the
type of a mapping from Ty X --- X T, to U, for n > 1. Why3 supports maps through
its library map.Map; hence, 7 (M) = map (7 (T1),...,7(T,)) 7 (U), where an n-tuple
encapsulates the n-type domain of M.

4.2 Constants
The translation of constant declarations is generally straightforward, following the scheme:
T(c: T) = constant c: T(T)

T expresses unique constants and order constraints by axiomatization.

4.3 Variables

Why?3 supports mutable variables through the reference type ref from theory Ref. Boo-
gie global variable declarations become global value declarations of type ref; Boogie
local variable declarations become let bindings with local scope. Thus, if v is a global
variable and 1_v is a local variable in Boogie:

global variable 7 (v: T) =val v: ref T(T)
local variable T (Lv: T)=T1let v = ref (any 7(T)) in

The expression any T provides a nondeterministic value of type T.

4.4 Functions

Boogie function declarations become WhyML function declarations:

’T(f(x1: Ti,oony Xt Tp) (U))
= function T (x1:7(T1)) - (x: T (Tn)):T(U) (1)
WhyML function definitions require, unlike Boogie’s, a variant to ensure that recursion

is well-formed. Therefore, Boogie function definitions are not translated into WhyML
function definitions but are axiomatizedE]

4.5 Expressions

Variables. Since a Boogie variable v of type T turns into a value v of type ref 7(T),
occurrences of v in an expression translate to v.contents, which represents the value
attached to reference v.

® To take advantage of Why3’s well-formedness checks, we plan to offer translations of Boogie
functions to WhyML functions as a user option in future work.

Map expressions. T translates map selection and update using functions get and set
from theory Map. If m is a map of type M defined in [Sec. 4.1] then:

E T(E)
selection ml[ey,..., el get T(m) (T(e1),...,T(en))
update mler,..., epi=Ff1 setT(m) (T(e1),....T(en)) T(f)
Lambda expressions. The translation desugars lambda expression into constant maps:
DA x1: T1, ..., Xp: Tpe) = lmb, where tmb : [Ty, ..., T,]7(e) is axioma-
tized by (V x1: Ty, .0 Xy s Tpe lmblxy, ...,x,] = e),and 7(e) is e’s type.

4.6 Procedures

Boogie procedures have a declaration (signature and specification) and zero or more
implementations. The latter follow the general syntax of (left). For simplicity of
presentation, p has one input argument, one output argument, and one local variable,
but generalizing the description to an arbitrary number of variables is straightforward.

p(t: T Wt) val p (t : 7(T)): T(u)
(u: U Wu) ; requires { 7 (R) }
R; writes { M}
fR; returns { | u — T(E) }
M; returns { | u — T(fE) }
E; returns { | u — 7 (Wu) }
fE;
let p_impl0 (t: 7(T)): T (U)
p(t: T) requires { 7(R) } requires { 7 (fR) }
(u: V) returns { | u — T(E) }
{ =(
1:L wi; T(u: U; 1:L;)
B assume { 7 (Wg) }
} assume { 7 (Wt) }

assume { 7 (Wl) }
assume { 7 (Wu) }

try (T(B))
with | Return — assume { true } end
T ()

Fig. 4. Translation of a Boogie procedure (left) into WhyML (right).

The specification of procedure p consists of preconditions , frame specifi-
cation , and postconditions . Specification elements marked are
assumed without being checked.

T translates a generic procedure p as shown in (right). The declaration of p
determines val p, which defines the semantics of p for clients: the precondition
fR does not feature there because clients don’t have to satisfy it, whereas both and
non- postconditions are encoded as conditions. The implementation of p
determines let p_impl®, which triggers the verification of the implementation against
its specification: both and non- preconditions are encoded, whereas the
postcondition fE does not feature there because implementations don’t have to satisfy
it. The body introduces let bindings for the local variable 1 and for a new local vari-
able u which represents the returned value; these declarations are translated as discussed

in Then, a series of assume encode the semantics of Boogie’s clauses,
which constrain the nondeterministic values variables can take (Wg comes from any
global variables, which are visible everywhere); p’s body B is translated and wrapped
inside an exception-handling block try, which does not do anything other than allow-
ing abrupt termination of the body’s execution upon throwing a Return exception (see
for details). Regardless of whether the body terminates normally or excep-
tionally, the last computed value of u is returned in the last line, and checked against
the postcondition in returns. In all, the modular semantics of Boogie’s procedure p is
preserved.

4.7 Statements

Assignments. Assignments involve variables (global or local), which become mutable
references in WhyML: 7 (v := e) = v.contents < 7 (e). Boogie parallel assign-
ments become simple assignments using let bindings of limited scope:

1 "= Py '7n= m i
TVi, oo V= €1, ...,6p) = { e;’?vi :126’311));”. ;eT(an:(:E!e’)n:)rI 2)

Havoc. An abstract function val havoc (): 'a provides a fresh, nondeterministic
value of any type ’a. It translates Boogie’s statements following the scheme:

T(u, v) = T (u)<havoc();T (v)<havoc();assume {7 (Wu)};assume {7 (Wv)}

where Wu and Wv are the clauses of u’s and v’s declarations; the generalization to
an arbitrary number of variables is obvious. It is important that the assume statements
follow all the calls to havoc: since Wv may involve u’s value, u, Vv is not in
general equivalent to u; v; the translation reflects this behavior.

Return. The behavior of Boogie’s statement, which determines the abrupt ter-
mination of a procedure’s execution, is translated to WhyML using exception handling.
An exception handling block wraps each procedure’s body, as illustrated in and
catches an exception Return; thus, T() = raise Return.

Loops. shows the translation of a Boogie loop into a WhyML loop. An invariant
marked as can be assumed but need not be checked; correspondingly, the trans-
lation adds assumptions that ensure it holds at loop entrance and after every iteration.
The exception handling block surrounding the loop in WhyML emulates the semantics
of the control-flow breaking statement A) = raise Break.

4.8 Polymorphic Maps

We now consider polymorphic map types, declared in Boogie as:

M= (a) [Ty,...,T,1 U 3)
where ac is a vector ay,...,a, of m > 0 type parameters, and some of the types
Ti,-..,Tn,U in pM’s definition depend on a. In the next paragraph, we explain why

assume { 7(fI) }
try while 7(b) do
(b) invariant { 7(I) }
I; invariant { 7(fI) }
fI; T(B)
{B} assume { 7 (fI) }
done;
with | Break — assume { 7(fI) } end

Fig. 5. Translation of a Boogie loop (left) into WhyML (right).

polymorphic maps cannot be translated to WhyML directly. Instead, we replace them
with several monomorphic maps based on a global analysis of the types that are actu-
ally used in the Boogie program being translated. The result of this rewrite is a Boogie
program without polymorphic maps, which we can translate to Why3 following the
rules we previously described. The shortcoming of this approach is that it gives up
modularity: verification holds only for the concrete types that are used (closed-word
assumption); this seems to be necessary to express Boogie’s extremely liberal polymor-
phism without resorting to intricate “semantic” translations, which would likely fail
verifiability.

Boogie vs. WhyML polymorphism. While WhyML also supports generic polymor-
phism, its usage is more restrictive than Boogie’s. The first difference is that mutable
maps cannot be polymorphic in WhyML. The second difference is that, in some con-
texts, a variable of polymorphic map type in Boogie effectively corresponds to multiple

maps. Consider, for example, a Mix = (a)[a]a of maps from generic « to «;
Boogie accepts formulas such as (V. m: Mix e m[0] =1 A m[1) where
m acts as a map over in the first conjunct and as a map over in the second.

WhyML, in contrast, always makes the type parameters explicit; hence, a logic variable
of type map ’'a ’a denotes a single map of a generic type that can only feature in ex-
pressions which do not assume anything about the concrete type that will instantiate ' a.

Besides type declarations and quantifications, polymorphic maps can appear within
polymorphic functions and procedures, declared as:

PF(a) (X1 T, ooy Xnt Ty) (V) 4)
PP(a) (Xy: Ti, ooy Xp: Ty) (u: U))

Type analysis. We have seen that a Boogie polymorphic map may correspond to mul-
tiple monomorphic maps in certain contexts. The translation reifies this idea based on
global type analysis: for every item (constant, program or logic variable, or formal ar-
gument) pm of polymorphic map type pM as in (3)), it determines the set types(pm) of all
actual types pm takes in expressions or assignments, as outlined in This in turn
determines the set types(pM) as the union of all sets types(p) for p of type pM.

The types in types(pM) include in general both concrete and parametric types. For

example, the program of (left) determines types(m) = {[intlint, [518},

types(pm) includes [t1, ..., t,, 1w such that:

read pm pm:: [t1, ..., tnlu
N select pmley, ..., e, e iity,...,en i ty,pmle;, ..., e, tu
expressions update pmley, ..., en,="F] erity,. ... e ity fiiu
function reference f(it) it [t1, ... ,tn]u, where f(pm: pM)
copy pm:= it it [t1, ..., thlu
assignment pmley, ..., el i=Ffepiity,...,en ity, fitu
statements havoc pm -
procedure call in p(it) it [ty, ..., tn Ju, where p(pm: pM)
procedure call out it =p() it [ty1, ... ,tn]u, where p() (pm: pM)

Table 6. Each occurrence of an item pm of polymorphic map type pM determines the set types(pm)
of actual types. (x :: ¢ denotes that x has type ¢.)

types(n) = {I[] }, and types(M) = types(m) U types(n), where [is proce-
dure p’s type parameter (since p is not called anywhere, that’s the only known actual
type of x). Let conc(pM) denote the set of all concrete types in types(pM).

M= (o) [ala; (M_int, M_bool, M.a) = ([int]int, [1 , [ala);
m: M; (m_int, m_bool, m_a): (M_int, M_bool, M_a);
(Vn: Men[1); (V (n_int, n_bool, n_a): (M_int, M_bool, M_a) e
n_bool[1);
p(B) (x: B) (p_int, p_bool, p_a)(x: (int, . a))
(Vi e m[i] =1i); (Vi: e m_int[i] =1);
m; (m_int, m_bool, m_a);
{ m[x] = x; } { (m_int, m_bool, m_a)[x] := x }

Fig. 7. An example of how polymorphic maps (left) translate to monomorphic (right). Procedure p
translates to 3 procedures p_int, p_bool, and p_a, each with argument of type int, bool, or a.

Desugaring polymorphic maps. To describe how the translation replaces polymorphic
maps by monomorphic maps, we introduce a pseudo-code notation that allows fuples (in
round brackets) of program elements where normally only a single element is allowed.
The semantics of this notation corresponds quite intuitively to multiple statements or
declarations. For example, a variable declaration (x, y): (,) is a short-
hand for declaring variables x: and y: ; a formula (x, y) = (3,)
is a shorthand for x = 3 A y; and a procedure declaration using the tuple notation

(p_int, p_bool)(x: (int,)) is a shorthand for declaring two pro-
cedures p_int(x:) and p_bool(x:).

We also use the following notation: given an n-vector @ = ag,...,a, and a type
expression 7' parametric with respect to o, T,, denotes 1" with ay, substituted for a, for
k=1,...,n. If Tis a set of types obtained from the same type expression 7', such as
types(pM) with respect to pM’s definition, and id is an identifier, let (T) denote T as a
tuple, and (id_T') denote the tuple of identifiers id_t such that T} is the corresponding
type in T. In the example of [Fig. 7] if T = [alathen T, = [int]int, (types(m)) =
([int]lint, [B16), and (j_types(m)) = (j_int, j_p). Throughout, we also assume
that an uninterpreted type ay is available for £ = 1,... n, that M, denotes the type
expression [Ty, ...,T,] Uin (@) with each «y, replaced by ay, and that conc™ (pM) =
conc(pM) U {M,}.

10

Declarations. Type declaration (3]) desugars to several type declarations:
(pM_conc™(pM))) = (conc™t(pM)) 6)

The declaration of an item pm: pM, where pm can be a constant, or a program or logic
variable, desugars to a declaration (pm_conc™t(pM))): (conc™(pM)) of multiple items
of the same kind. The declaration of a procedure or function g with an (input or out-
put) argument x: pM desugars to a declaration of multiple procedures or functions
(g_conct(pM)) (x: (conc™(pM))—multiple declarations each with one variant of x;
if g has multiple arguments of this kind, the desugaring is applied recursively to each
variant. (right) shows how the polymorphic map type M and each of the items m
and n of type M become 3 monomorphic types and 3 items of these monomorphic types.

For every polymorphic function or procedure g with type parameters (3, also con-
sider any one of their arguments declared as x: X. If X is a type expression that depends

on 3, and there exists a map type [Vi, ..., V,1Vy in types(pM) such that X = Vj, for
some k = 0,...,n, then g becomes (g-Vy) (x: (Vy))—corresponding to multiple
g’s each with one argument, where Vj, = {V | [V, ..., V,1V(€ conc™ (pM)} is

the set of all concrete types that instantiate the kth type component. This transforma-
tion enables assigning arguments to polymorphic maps inside polymorphic functions or
procedures that have become monomorphic. (right) shows how argument x: 3
becomes an argument of concrete type , , or a, since [B15 € types(M). (As
procedure p does not use [elsewhere, we drop it from the signature.)

Expressions. Every occurrence—in expressions, as I-values of assignments, and as tar-
gets of statements—of an item w of polymorphic type W whose declaration has
been modified to remove polymorphic map types is replaced by one or more of the
newly introduced monomorphic types as follows. If w’s actual type within its context is
a concrete type C, then we replace w with w_c such that W, = C; otherwise, w’s actual
type is a parametric type, and we replace w with the tuple (w_X), including all variants
of w that have been introduced. In[Fig. 7] (right), n[] rewrites to just n_bool[1
since the concrete type is ; the assignment in p’s body, whose actual type is para-
metric with respect to 3, becomes an assignment involving each of the three variants of
m corresponding to the three variants of p that have been introduced.

5 Implementation and Experiments

5.1 Implementation

We implemented the translation 7 described in as a command-line tool b2w
implemented in Java 8. b2w works as a staged filter: 1) it parses and typechecks the
input Boogie program, and creates a Boogie AST (abstract syntax tree); 2) it desugars
the Boogie AST according to D; 3) it transforms the Boogie AST into a WhyML AST
according to &; 4) it outputs the WhyML AST in the form of code.

Stage 1) relies on Schif’s parsing and typechecking library Boogieamlﬂ which we
modified to support access using the visitor pattern, AST in-place modifications, and

7 https://github.com/martinschaef/boogieamp

11

https://github.com/martinschaef/boogieamp

the latest syntax of Boogie (e.g., for integer vs. real division). Stages 2) and 3) are
implemented by multiple AST visitors, each taking care of a particular aspect of the
translation, in the style of [20]]; the overhead of traversing the AST multiple times is
negligible and improves modularity: handling a new construct (for example, in future
versions of Boogie) or changing the translation of one feature only requires adding or
modifying one feature-specific visitor class.

5.2 Experiments

The goal of the experiments is ascertaining that b2w can translate realistic Boogie pro-
grams producing WhyML programs that can be verified taking advantage of Why3’s
multiple back-end support. The experiments are limited to fully-automated verification,
and hence do not evaluate other possible practical benefits of translating programs to
WhyML such as support for interactive provers and executability for testing purposes.

Programs. The experiments target a total of 194 Boogie programs from three groups
according to their origin: group NAT (native) includes 29 programs that encode algorith-
mic verification problems directly in Boogie (as opposed to translating from a higher-
level language); group OBJ (object-oriented) includes 6 programs that are based on a
heap-based memory model; group TES (tests) includes 159 programs from Boogie’s
test suite. summarizes the sizes of the programs in each group.
LOC BOOGIE LoCc WHYML

GROUP # m u M X m u M X

NAT 29|20 73 253 2110]62 128 318 3716

OBJ 6|44 146 385 878(90 208 446 1245

TES 159| 3 21 155 3272[36 64 290 10180

Total. 194 3 34 385 626036 106 446 15141
Table 8. A summary of the Boogie programs used in the experiments, and their translation to

WhyML using b2w. For each program GROUP, the table reports how many programs it includes
(#), the minimum m, mean p, maximum M, and total X' length in non-comment non-blank lines
of code (LOC) of those BOOGIE programs and of their WHYML translations.

The programs in NAT, which we developed in previous work [8/7], include sev-
eral standard algorithms such as sorting and array rotation. The programs in OBJ in-
clude 2 simple examples in Java and 1 in Eiffel, encoded in Boogie by Joogie [2] and
AutoProof [21] (we manually simplified AutoProof’s translation to avoid features b2w
doesn’t support), and 3 algorithmic examples adapted from NAT to use a global heap in
the style of object-oriented programs. Among the 515 programs that make up Boogie’s
test suitﬂ we retained in TES those that mainly exercise features supported by b2w.

Setup. Each experiment targets one Boogie program b: it runs Boogie with command
boogie b and a timeout of 180 seconds; it runs b2w to translate b to w in WhyML,;
for each SMT solver p among Alt-Ergo, CVC3, CVC4, and Z3, it runs Why3 with
command why3 prove -P p w, also with a timeout of 180 seconds. For each run we
collected the wall-clock running time, the total number of verification goals, and how
many of such goals the tool verified successfully.

8 https://github.com/boogie-org/boogie/tree/master/Test

12

https://github.com/boogie-org/boogie/tree/master/Test

All the experiments ran on a Ubuntu 14.04 LTS GNU/Linux box with 8-core Intel
i7-4790 CPU at 3.6 GHz and 16 GB of RAM, with the following tools: Alt-Ergo 0.99.1,
CVC(C324.1,CVC4 14,73 4.3.2, Mono 4.2.2, Boogie 2.3.0.61016, and Why3 0.86.2.
To account for noise, we repeated each verification three times and report the mean
value of the 95th percentile of the running times.

GROUP # B=W B>W B<W 0=0 50=50 100=100 SPURIOUS

NAT 29 19 10 0 1 0 18 0
OBJ 6 5 0 1 1 2 2 0
TES 159 137 21 1 71 21 45 0
Total: 194 161 31 2 73 23 65 0

Table 9. A summary of how Boogie performs in comparison with Why3. For each program
GROUP, the table reports how many programs it includes (#), for how many of the programs
Boogie verifies as many goals (B = W), more goals (B > W), or fewer goals (B < W) than Why3
with any of the SMT solvers; for how many of the programs both Boogie and Why3 verify none
(0=0), some but not all (50=50), or all (100=100) of the goals; the last column (SPURIOUS)
indicates that b2w’s translation never introduces spurious goals that are proved by Why3 (that is,
if Boogie’s input has zero goals, so does WhyML’s translation).

Results. shows a summary of the results where we compare Why3’s best perfor-
mance, with any one of the four SMT solvers, against Boogie’s. The most significant
result is that the WhyML translation produced by b2w behaves like the Boogie original
in 83% (161, B=W) of the experiments. This means that Boogie may fail to verify all
goals (column 0=0), verify some goals and fail on others (column 50=50), or verify all
goals (column 100=100); in each case, Why3 consistently verifies the same goals on
b2w’s translation. Indeed, many programs in TES are tests that are supposed to fail veri-
fication; hence, the correct behavior of the translation is to fail as well. We also checked
the failures of programs in NAT and OBJ to ascertain that b2w’s translation preserves
correctness. does not show this, but we also found another 2 programs in NAT
where Why3 proves the same goals as Boogie only by combining the results of multiple
SMT solvers.

Boogie verifies more goals than Why3 in 16% (31, B > W) of the experiments, where
it is more effective because of better features (default triggers, invariant inference, SMT
encoding) or simply because of some language features that are not fully supported by
b2w (examples are Z3-specific annotations, which b2w simply drops, and , which
b2w encodes as to ensure soundness). In 1% (2, B < W) of the experi-
ments, Why3 even verifies more goals than Boogie. One program in OBJ is a genuine
example where Why3’s Z3 encoding is more effective than Boogie’s; the one program
in TES should instead be considered spurious, as it deploys some trigger specifications
that are Boogie-specific (negated triggers) or interact in a different way with the de-
fault triggers. As this was the only program in our experiments that introduced clearly
spurious behavior, the experiments provide convincing evidence that b2w’s translation
preserves correctness and verifiability to a large degree.

provides data about the experiments’ running times, and differentiates the
performance of each SMT solver with Why3. Z3 is the most effective SMT solver in
terms of programs it could completely verify (columns V), followed by Alt-Ergo. While
CVC3 is generally the least effective, it has the advantage of returning very quickly
(only 0.2 seconds of average running time), even more quickly than Z3 in Boogie.

13

73 BOOGIE ALT-ERGO WHY3 CVC3 WHY3 CVC4 WHY3

OUTCOME TIME OUTCOME TIME OUTCOME TIME OUTCOME

GROUP # pu V A p XoopuV A p XY copV A p XoopuV A

TIME

73
OUTCOME

WHY3

pw X copuV A p XY o

NAT
OBJ
TES

2919325 1|04 12 0f|61 14 6]20.6 598 0]{28 1 12{0.2 5 0[(33 2 11
6[52 2 2(3923 0[|46 1 2|30.1 181 Of[46 1 2|02 1 0|52 2 2
159(45 55 71(0.3 53 0]|37 45 85|25.8 4096 1|33 39 91]0.1 18 0|37 45 86

30.1 873 0
28.4 170 0
27.4 4360 1

Total:

194|60 82 74|0.7 88 0]|53 60 93|22.6 4875 1|30 41 105|0.2 24 0|35 49 99

29.7 5403 1

69 63 92

14.5 4630

Table 10. For each program GROUP the table reports how many programs it includes (#) and,
for both Boogie and Why3 for each choice of SMT solver among ALT-ERGO, CVC3, and Z3:
the mean percentage of goals verified in each program (OUTCOME g), how many programs were
completely verified (OUTCOME V), and how many were not verified at all (OUTCOME A), the
mean g and total X verification TIME in seconds, and how many programs timed out.

CV(4 falls somewhere in the middle, in terms both of effectiveness and of running
time. Boogie’s responsiveness remains excellent if balanced against its effectiveness; a
better time-effectiveness of Why3 with Alt-Ergo and Z3 could be achieved by setting
tight per-goal timeouts (in most cases, verification attempts that last longer than a few
seconds do not eventually succeed).

6 Discussion

The current implementation of the translation 7 has some limitations that somewhat
restrict its applicability. As we already mentioned in the paper, some features of the
Boogie language are not supported (bitvectors, gotos), or only partially supported (poly-
morphic mappings); and frame specifications are assumed. All of these are, however,
limitations of the current prototype implementation only, and we see no fundamental
hurdles to extending b2w along the lines of the definition of 7 in[Sec. 4]

Since b2w also takes great care to confine the effect of translating Boogie programs
that include unsupported features, and to fail when it cannot produce a correct transla-
tion, it still largely preserves correctness (soundness, in particular). On the other hand,
our experiments also demonstrate that the translation 7, as implemented by b2w, largely
meets the other goal of preserving verifiability: even if the experimental subjects all are
idiomatic Boogie programs written independent of the translation effort, 83% of the
translated programs behave in Why3 as they do in Boogie.

In future work, we will address the features of Boogie that are still not satisfactorily
supported by b2w. We will also devise strategies to take advantage of Why3’s multi-
prover support. Other possible directions include formalizing the translation to prove
that it preserves correctness; and devising a reverse translation from WhyML to Boogie.

References

1. M. Ameri and C. A. Furia. Why just Boogie? Translating between intermediate verification
languages. http://arxiv.org/abs/1601.00516, January 2016.

2. S. Arlt and M. Schif. Joogie: Infeasible code detection for Java. In Proceedings of CAV,
volume 7358 of LNCS, pages 767-773. Springer, 2012.

3. M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In Proceedings of FMCO, volume 4111 of
LNCS, pages 364-387. Springer, 2006.

14

http://arxiv.org/abs/1601.00516

4.

5.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

M. Barnett, M. Fiahndrich, K. R. M. Leino, P. Miiller, W. Schulte, and H. Venter. Specification
and verification: the Spec# experience. Commun. ACM, 54(6):81-91, 2011.

Z.Cheng, R. Monahan, and J. F. Power. A sound execution semantics for ATL via translation
validation — research paper. In Proceedings of ICMT, volume 9152 of LNCS, pages 133—148.
Springer, 2015.

. J. Filliatre and A. Paskevich. Why3 — where programs meet provers. In Proceedings of

ESOP, volume 7792 of LNCS, pages 125-128. Springer, 2013.

. C. A. Furia. Rotation of sequences: Algorithms and proofs. |http://arxiv.org/abs/1406.

5453, June 2014.

. C. A. Furia, B. Meyer, and S. Velder. Loop invariants: Analysis, classification, and examples.

ACM Computing Surveys, 46(3):Article 34, 2014.

. D. Harel. On folk theorems. Commun. ACM, 23(7):379-389, 1980.
. S. Heule, I. T. Kassios, P. Miiller, and A. J. Summers. Verification condition generation

for permission logics with abstract predicates and abstraction functions. In Proceedings of
ECOOP, volume 7920 of LNCS, pages 451-476. Springer, 2013.

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: formal veri-
fication of an operating-system kernel. Commun. ACM, 53(6):107-115, 2010.

R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: a verified implementation
of ML. In Proceedings of POPL, pages 179—-192. ACM, 2014.

K. R. M. Leino. Developing verified programs with Dafny. In Proceedings of ICSE, pages
1488-1490. ACM, 2013.

X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115, 20009.
T. Mens and P. Van Gorp. A taxonomy of model transformation. Electr. Notes Theor. Comput.
Sci., 152:125-142, 2006.

P. H. Schmitt, M. Ulbrich, and B. Weif}. Dynamic frames in Java dynamic logic. In Proceed-
ings of FoVeOOS, volume 6528 of LNCS, pages 138—152. Springer, 2011.

L. Segal and P. Chalin. A comparison of intermediate verification languages: Boogie and
Sireum/Pilar. In Proceedings of VSTTE, volume 7152 of LNCS, pages 130-145. Springer,
2012.

P. Stevens. A landscape of bidirectional model transformations. In Proceedings of GTTSE,
volume 5235 of LNCS, pages 408—424. Springer, 2008.

M. Trudel, C. A. Furia, M. Nordio, and B. Meyer. Really automatic scalable object-oriented
reengineering. In Proceedings of ECOOP, volume 7920 of LNCS, pages 477-501. Springer,
2013.

M. Trudel, C. A. Furia, M. Nordio, B. Meyer, and M. Oriol. C to O-O translation: Beyond
the easy stuff. In Proceedings of WCRE, pages 19-28. IEEE Computer Society, October
2012.

J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova. AutoProof: Auto-active functional
verification of object-oriented programs. In Proceedings of TACAS, volume 9035 of LNCS,
pages 566-580. Springer, 2015.

15

http://arxiv.org/abs/1406.5453
http://arxiv.org/abs/1406.5453

	Why Just Boogie?

