What Good Is Bayesian Data Analysis
for Software Engineering?

Carlo A. Furia
Chalmers University of Technology, Gothenburg, Sweden
furia@chalmers.se bugcounting.net

Empirical software engineering, like every rigorous empir-
ical discipline, uses statistics for two purposes: summarizing
data; and assessing whether data support a hypothesized
model. The second purpose is more subtle because it has
to address the problem of induction: generalizing a widely
applicable model from specific observational data.

A bunch of influential statisticians approached the prob-
lem head on at the beginning of the twentieth century, and
developed a collection of readily applicable techniques that
collectively go under the name statistical hypothesis testing.
Thanks to the prominent position of those statisticians in the
scientific community, as well as to their and others’ incisive
popularization effort, statistical hypothesis testing has become
a prevalent practice in pretty much all experimental sciences.

Only in the last few decades have we started to realize that
statistical hypothesis testing techniques—at least in the ways
in which they have normally been used—have serious theo-
retical and practical shortcomings, which make them prone to
drawing incorrect conclusions [5], and ill-suited to address the
induction problem. This short text outlines the problems with
classical statistical hypothesis testing, and recommends using
alternative techniques based on Bayesian statistics, which are
largely immune to the shortcomings of statistical hypothesis
testing, and support a robust induction process.

I. HOW STATISTICAL HYPOTHESIS TESTING WORKS

Let us outline how statistical hypothesis testing works on a
concrete example from my previous research.

The Rosetta Code study [7] compared the features of solu-
tions to programming tasks written in different programming
language. One of the experiments, which I single out here
merely as an interesting example, ran Haskell and Python
solutions to 28 problems on the same inputs and compared
their running time performance. The statistical summaries of
these experiments show a mixed picture: Haskell was faster in
15 problems (a narrow majority), with a median speedup of 1.3
compared to Python; however, the mean speedup is 27 in favor
of Python, due to two problems where Haskell was particularly
inefficient. How to decide whether this data indicates a genuine
speed advantage of one language over another?

Statistical hypothesis testing provides means precisely to
answer such questions. While the details vary from test to
test, the general approach is the same: given two sets of data, a
statistical test computes a statistics called the p-value. Roughly
speaking, the p-value is the probability of observing the two

given data sets under the assumption of no difference—the so-
called null hypothesis. In our example, the data sets are the
running times of Haskell and Python on each problem, and
the p-value is the probability of recording those running times
assuming there is no fundamental performance difference be-
tween Haskell and Python—and thus any observed difference
is due to chance.

The way statistical testing are normally used, a small p-
value (typically p < 0.05) leads to rejecting the null hypothesis
and to concluding that the empirically measured difference is
statistically significant; conversely, a large p-value suggests
that the empirically measured difference may be due to chance
alone, and thus either the experiment is inconclusive or the
differences are insignificant. The Wilcoxon signed-rank test is
a suitable hypothesis test for our language comparison; applied
to the Haskell vs. Python data set, it gives a p-value of 0.33,
and thus the data does not warrant claiming any significant
difference between Haskell’s and Python’s performance.

II. WHAT 1S WRONG WITH
STATISTICAL HYPOTHESIS TESTING

Upon closer look, the analysis based on statistical hypoth-
esis testing leaves much to be desired. The most egregious
issue is that the p-value is the probability P[data | Hp|] of the
data given the null hypothesis Hy; however, to accept or reject
hypothesis Hy we really need the other probability P[Hy | data].
In general P[H) | data] and P[data | Hy] may be very different,
so knowing the p-value alone is of no help to accept or reject
a hypothesis based on experimental data!

Even assuming specific conditions ensure that the p-value
is related to the probability that the data support a hypoth-
esis, deciding whether to accept or reject a model using
a fixed probability threshold—any threshold, really—risks
being arbitrary. There is nothing special about a 1%, 5%, or
10% probability that ensures that borderline cases are treated
consistently. Another problem is that a small p-value leads to
rejecting a hypothesis, but it does not necessarily help find
out which alternative hypothesis holds. Going back to the
Haskell vs. Python comparison, even if statistical hypothesis
testing had told us to reject the hypothesis that Haskell and
Python are as fast, we would still be left with the problem of
deciding which is faster: Haskell (as suggested by the median)
or Python (as suggested by the mean).

Statisticians have been well aware of these intrinsic short-
comings of statistical hypothesis testing; over decades, they

have developed a number of techniques, such as effect sizes,
confidence intervals, and statistical regression, that can help
improve the reliability of statistical analysis. All of these
techniques are still largely rooted in the same basic principles
as statistical hypothesis testing, constituting the corpus of
so-called frequentist statistics. A distinct sets of approaches,
which we advocate here, relies on the distinct set of techniques
known as Bayesian statistics whose peculiar advantages we
outline in the remainder.

IIT. BAYESIAN STATISTICS IN A NUTSHELL

Bayesian statistics directly addresses the problem of induc-
tion based on Bayes theorem of conditional probabilities:

PID | H]-P[H]

BIH | D] = == g

which relates the probability P[D | H] of observing data D
under hypothesis H to the “converse” probability P[H | D] that
hypothesis H holds given observed data D.

Rather than narrowly targeting the null hypothesis Hy,
Bayes theorem easily applies to a complete probability distri-
bution over possible observations. In the case of the language
performance comparison, the goal is estimating the posterior
probability P[haskell-to-python speedup | data), where data
are the measured speedups—following the convention that a
negative speedup —s indicates that Haskell is s times faster
than Python, and a positive speedup +s indicates that Python
is s times faster than Haskell.

In addition to the experimental data, applying Bayes theo-
rem requires knowing the unconditional probability P[H]—
in the running example, a probability distribution over the
haskell-to-python speedup before performing the experiments.
This probability is called the prior, and it is a way in which
Bayesian statistics may incorporate additional information—
for example other studies on the same subject. If we prefer
not to bias the probability estimation by the results of other
studies, or simply if no reliable prior information is available,
we can pick an uninformative prior which assigns uniform
probability. For the running example, the Computer Language
Benchmarks Game [8] includes benchmark data comparable
to the Rosetta Code study, and thus we use its distribution of
speedups as prior. For Haskell and Python, its prior distribution
has mean and median around —24, which indicate that Haskell
has consistently been much faster than Python in [8]'s 12
benchmarks.

The next key ingredient to apply Bayes theorem is the distri-
bution P[D | H]—called likelihood in Bayesian lingo—which
quantifies a probability over differences between observations
and expectations. For the running example, it amounts to an
estimate of IP[s | 7]—the probability of observing a certain
speedup s given that a speedup ¢ was expected (the hypothesis).
We base the likelihood on an extended data set from [8], which
suggests a range of variability due to different experimental
choices in comparing Haskell and Python (such as input size
and kind of algorithm for the same problem).

The probability P[D] can be derived from the prior and
likelihood as a normalization factor without additional infor-
mation. By doing this in the running example, we obtain the
following posterior distribution of speedups (runtime ratios):

0.0025
Haskell/Python
0.00201 | — Haskell/Python (post)
£ 0.0015
H
g
o
£.0.0010
0.0005
0,000970 —60 =50 —40 -30 —20 ~10 0

runtime ratio

A distinctive advantage of Bayesian statistics is that it
estimates a complete distribution of data. In the picture, we can
easily see that the distribution’s support only comprises nega-
tive speedups, which correspond to Haskell being consistently
faster than Python. Additionally, we see how the application
of Bayes theorem provides a rigorous way to integrate appar-
ently contradictory—or otherwise not completely consistent—
evidence obtained in different experimental conditions. The
prior (which comes from [8]) indicated that Haskell is usually
much faster than Python; but the new data (which comes
from [7]) was inconclusive as to which is faster. By combining
them, Bayes theorem strongly supports the hypothesis that
Haskell is faster than Python, but also suggests that the average
speedup may be not great.

IV. BAYESIAN STATISTICS IN SOFTWARE ENGINEERING?

The limitations of statistical hypothesis testing, as well the
potential advantages of using Bayesian analysis, have been
often noted in other experimental disciplines [2], [5], [4].
Nonetheless, statistical hypothesis testing is still extensively
used in practice, while Bayesian analysis remains more of
a specialized knowledge; empirical software engineering, in
particular, still has to incorporate Bayesian techniques in its
recommended data analysis practices [9], [1], [6].

Answering the titular question in the affirmative, I argued
that there is much to be gained by introducing Bayesian
analysis in empirical software engineering practices:

« Bayes theorem correctly addresses the problem of

induction—unlike the defective hypothesis testing;

« estimating complete distributions rather than single prob-
abilities supports analysis of nuanced cases;

« priors and likelihoods provide means to naturally incor-
porate the results of other studies, in a way that behooves
the scientific method.

A technical report [3] offers a more rigorous presentation of
Bayesian techniques, with three full-fledged case studies from
empirical software engineering research.

(1]

(2]
(3]
[4]
[3]
[6

—_

[7

—

(8]
(91

REFERENCES

Andrea Arcuri and Lionel C. Briand. A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineering. Softw.
Test., Verif. Reliab., 24(3):219-250, 2014.

Jacob Cohen. The earth is round (p < .05). American Psychologist,
49(12):997-1003, 1994.

Carlo A. Furia. Bayesian statistics in software engineering: Practical
guide and case studies. http://arxiv.org/abs/1608.06865, August 2016.
Steven N. Goodman. Toward evidence-based medical statistics. 1: The p
value fallacy. Annals of Internal Medicine, 130(12):995-1004, 1999.
John P. A. Ioannidis. Why most published research findings are false.
PLoS Med, 2(8), 2005.

Andreas Jedlitschka, Natalia Juristo Juzgado, and H. Dieter Rombach.
Reporting experiments to satisfy professionals’ information needs. Em-
pirical Software Engineering, 19(6):1921-1955, 2014.

Sebastian Nanz and Carlo A. Furia. A comparative study of programming
languages in Rosetta Code. In Proceedings of the 37th International
Conference on Software Engineering (ICSE), pages 778-788. ACM, 2015.
The computer language benchmarks game. http://benchmarksgame.alioth.
debian.org/, Aug 2016.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, and Bjorn
Regnell. Experimentation in Software Engineering. Springer, 2012.

