
Towards Code Improvements Suggestions
from Client Exception Analysis

Diego Marcilio Carlo A. Furia
dvmarcilio.github.io bugcounting.net

Software Institute – USI Università della Svizzera italiana – Lugano, Switzerland

Abstract—Modern software development heavily relies on
reusing third-party libraries; this makes developers more pro-
ductive, but may also lead to misuses or other kinds of design
issues. In this paper, we focus on the exceptional behavior of
library methods, and propose to detect client code that may
trigger such exceptional behavior. As we demonstrate on several
examples of open-source projects, exceptional behavior in clients
often naturally suggests improvements to the documentation, tests,
runtime checks, and annotations of the clients.

In order to automatically detect client calls that may trig-
ger exceptional behavior in library methods, we show how to
repurpose existing techniques to extract a method’s exception
precondition—the condition under which the method throws an
exception. To demonstrate the feasibility of our approach, we
applied it to 1,523 open-source Java projects, where it found
4,115 cases of calls to library methods that may result in an
exception. We manually analyzed 100 of these cases, confirming
that the approach is capable of uncovering several interesting
opportunities for code improvements.

I. INTRODUCTION

Any piece of client code that calls a library method
must comply with the method’s precondition. Thus, analyzing
method calls against the callees’ preconditions can reveal
issues with how a library is used, and possibly suggest useful
improvements to the client code.

A widespread scenario occurs when a library method may
throw an exception; for example, to signal that one of its
arguments should not be null. If we can show that a client
never calls the method with a null argument, or suitably
handles the exception (for example, with a try/catch block),
we rule out a certain category of faults. Conversely, if we
find a concrete client execution where the exception is raised
and not handled, this suggests a number of improvements
to the client code, such as adding tests or documentation
for this possible exceptional behavior, or perhaps modifying
the client so that it handles the exception directly. As we
discuss in Sec. II on concrete examples of Java code, such
scenarios of client code calling library methods that may
throw exceptions are quite common in open-source projects;
analyzing them systematically (and automatically) has the
potential of revealing interesting instances of misuses and
critical cases, as well as of suggesting ways of improving the
client code to address the issues.

Unfortunately, there are two main obstacles that stand in the
way of practically pursuing this idea of analyzing exception

Work partially supported by SNF grant 200021-182060 (Hi-Fi).

preconditions of library methods in client code to suggest code
improvements to the client. First, (exception) preconditions
are often documented only informally (e.g., using natural-
language comments) and partially [10], [17]. Second, even if
we have a formula precisely expressing a library method’s
exception precondition, determining whether a call to the
method may actually raise an exception requires precise rea-
soning about the client code (for example, through symbolic
execution), which remains challenging to carry out on code
bases of realistic size and complexity.

In Sec. II of this paper, we discuss a practical approach that
can deal with these two difficulties. To this end, it leverages re-
cent work on automatically extracting exception preconditions
in a way that is scalable (applicable to realistic projects) and
precise (always returns correct exception preconditions) [13],
[15], [18]. Running these tools on widely used Java libraries
and frameworks (including a substantial portion of the JDK)
populates a database of exception precondition Boolean for-
mulas, which precisely indicate under what conditions calling
a certain library method results in an exception. To pursue
our approach, we then discuss how to repurpose these existing
detection techniques so that they can run on client code and
find feasible matches of any exception preconditions in their
database; in other words, they detect calls to any of the
methods with an exception precondition that may result in
an exception being thrown.

Sec. III describes preliminary experiments that we con-
ducted to assess the practical feasibility of our approach.
Among the aforementioned tools for exception precondition
detection we used WIT [13] for our experiments. First, we
selected 1,523 open-source Java projects that use some of the
libraries that can be analyzed with WIT. Then, we modified
WIT to detect feasible matches of exception preconditions—
that is, possible exceptional behavior in the clients—and ran
it on the selected projects. We found 4,115 such matches,
which indicates that our analysis is widely applicable. We also
manually analyzed a random sample of 100 matches, in order
to better understand what kinds of issues the matches reveal,
and how they could be turned into actionable suggestions for
improvements to the client code, its tests, or its documentation.
We report several concrete examples taken from open-source
Java projects, which lend weight to this paper’s core idea: iden-
tifying possible improvements to client code by automatically
analyzing the exception preconditions of library methods.

As we discuss in Sec. IV, while there is plenty of related

1

dvmarcilio.github.io
bugcounting.net


Listing 1: Documentation of java.util.Random.nextInt(int).
1 // @throws IllegalArgumentException if bound is not positive
2 public int nextInt(int bound) {
3 if (bound <= 0) throw
4 new IllegalArgumentException("bound must be positive");
5 // ...
6 }

Listing 2: Client code calling Lst. 1’s method.
7 public static int random(final int min, final int max) {
8 return Utils.RANDOM.nextInt(max - min) + min;
9 }

work about analyzing exceptional behavior and detecting API
misuses, the combination of the two concepts has hardly
systematically been explored. Therefore, this paper’s ideas
follow an original, under-researched direction, and Sec. III’s
experiments assess its potential.

II. FROM EXCEPTION PRECONDITIONS
TO CODE IMPROVEMENTS

This paper’s main idea is an approach to automatically
analyze client code for potential throws of exceptions in library
methods. Precisely, a method m’s exception precondition is a
Boolean condition Pm under which the method terminates with
an exception. Conversely, a potential throw (“pothrow” for
short) is a piece of client code with a call to m whose actual
arguments may match m’s exception precondition Pm, and that
does not handle the corresponding exception. Potential throws
point to client code that may not fully conform to the library’s
(exceptional) specification—a possible case of design issues or
even misuses. Sec. III describes some experiments supporting
our hypothesis that pothrows in real projects can indeed
suggest code improvements and refactoring. The rest of this
section outlines an approach to detect pothrows automatically.

A. An Example of Potential Throw Detection

Lst. 1 shows Java’s java.util.Random.nextInt(int),a a
library method that throws an IllegalArgumentException

(IAE) if its argument is strictly less than one. Even a basic
exception precondition like nextInt’s (explicitly documented

Listing 3: Possible improvements to Lst. 2’s code (in color).

10 // @throws IllegalArgumentException if @code\{max <= min\}

11 public static int random(final int min,

12 @Refinement ("max > min") final int max) {

13 Validate.isTrue (max > min, "max <= min");
14 return Utils.RANDOM.nextInt(max - min) + min;
15 }
16

17 @Test

18 void random_throws_IAE() {
19 assertThrows(IllegalArgumentException.class,
20 () -> Utils.random(1, 1);
21 // ... other cases
22 }

in the method’s Javadoc natural language documentation) may
be non-trivial to handle properly for clients. For example,
consider method random in project Zelix Injection;b as shown
in Lst. 2, random is a pothrow of nextInt: if max ≤ min,
the call to nextInt fails with an uncaught IAE whose error
message is not very informative in the client’s context.

B. Code Improvements

Even though code including potential throws might be
perfectly correct, more commonly it indicates possible design
issues, which, in turn, may suggest improvements to the code,
its documentation, or its tests that increase its quality for its
own clients and for the whole project. In fact, there is evidence
that exceptional behavior is often insufficiently documented
and tested even within a project [19], [12]; the same issues
are likely to intensify when considering a project’s clients.

Lst. 3 shows four possible improvements for Lst. 2’s
pothrow. Documenting the derived exception precondition
of random with a @throws tag helps its users know
when to expect an exception. Argument checking (using
Validate.isTrue in Lst. 3) performs a runtime check that
random’s actual arguments will not trigger an exception; this
follows the fail fast principle, signaling precisely the condition
and location of the exception when one occurs. Extended type
annotations (using Liquid Java’s @Refinement annotation
in Lst. 3) go one step further as they support checking for
possible exceptional behavior at compile time using tools
such as the Checker Framework [16] and Liquid-Java [7].
Providing tests that exercise exceptional behavior (through
JUnit’s @Test in Lst. 3) also helps code quality, as it provides
means to detect possible regressions, and serves as a concrete
counterpart to the method’s documentation.

C. Detecting Potential Throws Automatically

In order to automatically find instances of pothrows, we
propose an approach in three steps. First, we collect exception
preconditions of library methods; to this end, we can use any
recently developed static techniques [13], [15], [18] that are
applicable to realistic projects and return correct exception
preconditions (if the preconditions may be incorrect, the whole
analysis would become noisy and imprecise).

Second, we analyze clients of the libraries, looking for calls
to any of the library methods for which exception precon-
ditions are available. Ideally, this step would be performed
without fully building the client code, so that the analysis is
more lightweight and can also target parts of a project. Here
too, we privilege precision (every match is a real match) over
recall (all possible matches are detected).

Third, we determine whether the arguments of any calls
identified in the previous step may actually satisfy any of
the available exception preconditions. This amounts to a
feasibility check that finds a condition over the client’s ar-
guments (such as max ≤ min in Lst. 2) that triggers the
exception. In general, the feasibility check requires precisely
reasoning about client code at its call locations. For example,
if method random in Lst. 2 called nextInt with argument

2



1 + Math.max(min, max) - Math.min(min, max), it should
recognize that this expression is always positive, and hence
nextInt will not throw. The feasibility checks should be pre-
cise as well (since we do not want to report many false alarms),
but they should also achieve a reasonable recall—otherwise,
the analysis would produce hardly any output. To perform the
feasibility check, we encode it as a modular variant of the
same exception precondition detection performed in the first
step: given a piece c of client code calling library method
m, determine c’s exception precondition using m’s. Any such
exception preconditions of c are reported as pothrows.

III. EXPERIMENTAL EVALUATION

In this section, we first discuss our prototype implemen-
tation of our approach to detect potential throws of library
exceptions in client code (Sec. III-A); then, we present the
design (Sec. III-B) and quantitative results (Sec. III-C) of an
empirical evaluation on several open-source Java projects; fi-
nally, we discuss several interesting cases that emerged in these
experiments, which we manually inspected to validate the
approach and to illustrate its practical usefulness (Sec. III-D).

A. Potential Throw Detector Implementation

Among the available techniques for exception precondition
detection, we used WIT [13] as the basis for our implemen-
tation. When run on a library, WIT returns two kinds of
exception preconditions—called expres and maybes in [13].
For our work, we only consider the former, which pass a path
feasibility check, and hence are correct by construction.

First, we added support to store in a database the exception
precondition WIT collects over multiple runs, so that they can
be queried by library and method signature. Second, we wrote
a simple program that uses JavaParserc to scan through a
project and resolve the fully qualified names of any called
library methods, and then searches the database of exception
precondition for any match of these called methods. Third,
we modified WIT so that it analyzes any enclosing method in
the client that includes a call to one of the matching library
methods; WIT determines whether the callee’s exception can
be propagated to the caller (the client) and under which con-
ditions; in other words, it reports potential throws (pothrows)
in the client. Again, we enable WIT’s feasibility checks, so that
it only reports pothrows that are indeed feasible.

B. Empirical Study: Design

We ran an empirical study to confirm that our approach is
applicable to realistic projects, that it can identify a significant
number of pothrows, and that several of these pothrows are
indicative of design issues—and potential code improvements.

First, we selected 21 widely used open-source Java libraries
including 6 analyzed in WIT’s original work [13] (joda-time,
and Apache Commons Lang, IO, Text, Configuration, and
Math), as well as 15 new ones (Java 11’s1 JDK, Apache Com-
mons Codec and Collections, Eclipse Collections, ehcache3,

1We focus on Java 11 because it’s the latest Java LTS version that JavaParser
fully supports.

gson, Guava, hibernate-orm, jaxb-ri, jsoup, retrofit, and Spring
boot, data-jpa, framework, and security).

We also selected several client projects from two different
sources. Using the GHS search tool [4], we gathered 1,312
Java (non-fork) projects on GitHub with at least 10 stars and a
thousand lines of code. We did not perform any a priori check
that these projects use any of the 21 libraries we considered;
however, it’s overwhelmingly likely that these projects at
least use some JDK library classes (e.g., String). To further
increase the diversity of client projects, we also gathered
another 220 client projects from the DUETS dataset [6], which
consists of library/client pairs among Java open source projects
developed with Maven; we specifically collected all client
projects that use the latest version of joda-time, jsoup, and
all Apache Commons projects we analyzed. In the following,
GHS denotes the first batch of 1,312 projects, and DUETS the
second batch of 220 projects.

Finally, we selected 100 pothrows among those reported
in all projects and analyzed them manually. This sample of
pothrows corresponds to 2.5% of all the 4,115 pothrows re-
ported by our tool (see Sec. III-C). This is a reasonable sample
size for an exploratory study, given that manual checks like
this can be very time-consuming [13], [14]: they took the first
author more than eight hours. We sampled opportunistically,
trying to cover several different libraries, called methods, and
library projects. The manual analysis was, first of all, a sanity
check to confirm that the pothrows are correct (i.e., they
identify method calls that may throw an exception). Most
of the times, confirming the correctness of a pothrow was
straightforward (e.g., a possible null argument), and required
only a cursory analysis of the call context. For more com-
plex cases (e.g., a call to StringBuilder.appendd in project
feathersui-starling-sdk e with arguments empty array, 2, and
-1 throws an IndexOutOFBoundsException), we inspected the
code more extensively using jshell.f After the sanity checks,
we also thought about what kinds of code improvements the
manually analyzed pothrows suggest; Sec. III-D presents a few
selected interesting examples.

C. Empirical Study: Quantitative Results

Running WIT on the 21 selected libraries populated our
database with 14,180 exception preconditions of 10,204 public
library methods. The analysis of the 1,312 GHS client projects
found 106,345 calls to 1,961 of the analyzed library methods.
The analysis of the 220 DUETS client projects found 28,324
calls to 806 of the analyzed library methods. Overall, we found
134,579 calls matching 1,961 of the analyzed library methods
(i.e., the called methods in the DUETS batch are a subset of
the called methods in the GHS batch). Running our modified
version of WIT on the code snippets surrounding each of these
134,579 client calls identified 4,115 pothrows (2,885 in the
GHS projects and 1,260 in the DUETS projects)—around 3%
of the client calls. We confirmed that all the 100 pothrows we
manually analyzed were correctly identified by the tool.

We can think of a possible explanation for why only
a fraction of all matching calls are pothrows. Precondition

3



TABLE I: Ten of the most widely called library methods in our
experiments. For each LIBRARY METHOD, the table reports the
number of CLIENT projects with at least one call to the method,
the total number of CALLS to the method, and how many of the calls
are POTHROWS (potentially throwing).

LIBRARY METHOD CLIENTS CALLS POTHROWS

ArrayList.ArrayList(int) 351 3 446 140
ArrayList.get(int) 333 8 538 11
File.File(String) 610 7 597 660
Integer.parseInt(String) 589 7 359 62
Objects.requireNonNull(T) 156 2 292 832
Objects.requireNonNull(T, String) 89 1 002 643
Optional.of(T) 166 1 234 36
Random.nextInt(int) 296 2 769 38
String.substring(int) 640 6 285 12
String.String(char[], int, int) 81 304 60

inference techniques like WIT trade off recall for precision [13];
in our experiments, the modified WIT only reports a call as
pothrow if it can conclusively establish that the call is feasible,
which may miss some real instances. (In fact, its original
evaluation [13] indicates that WIT’s recall can dip below 10%
on some projects.) Regardless, it is also reasonable to expect
that a large fraction of library method calls are set up by the
client to comply with the library’s preconditions or are within
a try block—and thus, they never result in an exception.

Tab. I gives an overview of ten of the most frequently
called library methods among those we considered in our
experiments; all of them are to JDK methods. In fact, it is
clear that JDK methods dominate both the matching calls
and the pothrows: overall, only 4.7% (6,371) of all calls,
and 9.5% (387) of all pothrows refer to methods in libraries
other than the JDK. Even though the DUETS projects should
focus on non-JDK libraries, they still use plenty of JDK
libraries: among DUETS projects, 96% (27,092) of calls,
and 92% (1,164) of pothrows, refer to some of 614 JDK
library methods; among GHS projects, 95% (101,206) of calls,
and 90% (2,564) of pothrows, refer to some of 1,758 JDK
library methods. Overall, the 6,371 calls and 387 pothrows
involve only 1,007 non-JDK library methods; just three of
these libraries (Apache Commons Lang, Guava, and Spring
framework) account for 998 calls and 93 pothrows of 29
argument-checking library methods.

In hindsight, JDK’s dominance is not surprising. First, virtu-
ally every project—even if it uses other common libraries—is
a client of the JDK. Second, just because a project declares
a certain library as a dependency does not mean that it uses
it extensively; in fact, it may not use it at all: Harrand et
al.’s empirical study [11] found that 41% of declared project
dependencies do not correspond to any API usages at the
bytecode-level. The study also found that, for more than half of
the 94 analyzed libraries, 75% of the clients use only 12% of
the libraries’ methods; thus, expecting a much larger number
of pothrows in our experiments is unrealistic.

D. Empirical Study: Qualitative Discussion

The constructor of java.util.ArrayList throws an
IllegalArgumentException if the given initial capacity is a

Listing 4: Pothrow call to ArrayList’s constructor.
23 // @throws IllegalArgumentException if there are
24 // more columns requested than the dimension
25 public static List<Vector> getBasis(int dim, int nCols) {
26 if (dim < nCols)
27 throw new IllegalArgumentException(msg);
28 List<Vector> basis = new ArrayList<Vector>(nCols);
29 // ...
30 }

negative number. As shown in Tab. I, calls to this method
are common in our client projects; 140 of them are pothrows,
which happen when the actual argument is an expression that
may be negative. (None of these pothrows is a sure bug, i.e.,
none of them passes a negative literal to ArrayList.) Lst. 4
shows an interesting case from project SuanShu, involving
two arguments of public static method getBasis.g The client
method first checks the precondition dim ≥ nCols, and then
calls ArrayList’s constructor with argument nCols; thus, if
dim < 0, the constructor’s exception will propagate to the
client. Perhaps dim, which should denote a dimension, is
supposed to always be a nonnegative number; if this is the
case, project getBasis could benefit from making this assump-
tion explicit using a combination of the code improvements
outlined in Sec. II: adding documentation, argument checking,
extended type annotations, and tests to boot.

Here is another piece of evidence in support of our hy-
pothesis that automatically analyzing potential throws can
reveal subtle semantic differences between different clients and
libraries. The constructor of LinkedBlockingDeque,h another
java.util data structure, throws an exception if its initial
capacity argument is negative or zero. Indeed, we found two
pothrow calls that may violate this constraint in our ana-
lyzed projects.i,j Interestingly, whereas LinkedBlockingDeque
implements interface Deque, other implementations of the
same interface may have different exception preconditions;
for example, ArrayDeque robustly accepts any value as initial
capacity, and simply resets it to one if given a zero or negative
number.k Thus, its clients cannot incur any pothrow when
constructing instances of ArrayDeque.

It is well known that null pointer derefencing—signaled by
NullPointerException (NPE) in Java—is a widespread prob-
lem in programming languages where they can happen [9]—
and one that prompted countless attempts at mitigating it [5]l.
Analyzing some of the numerous instances of pothrows that
may result in a NPE, we realized that the problem is com-
pounded when null is a perfectly valid value for some
arguments but not for others. Take the constructor of class
JFreeChartm from the homynomous project, whose signature
is shown in Lst. 5: argument title may be null (denoting
an empty title), whereas argument plot results, through an
indirect check, in a IAE if it is null. This instance of pothrow
is already explicitly documented in JFreeChart’s constructor;
but it still highlights the usefulness of an automated analysis
that can follow third-party library dependencies and disentan-
gle different valid usages of a method.

4



Listing 5: The signature and header comment of JFreeChart’s
constructor in client project JFreeChart.

31 // @param title the chart title ({@code null} permitted).
32 // @param plot the plot ({@code null} not permitted).
33 public JFreeChart(String title, Plot plot) {
34 // ...
35 }

Listing 6: Private method calling JDK’s Properties.setProperty.
36 private void add(String key, String value) {
37 properties.setProperty(key, value);
38 }

Besides, not all methods are as accurately documented
as Lst. 5’s constructor. Consider, for example, method
Properties.setProperty(String, String)n in JDK’s pack-
age java.util, which throws a NPE if any of its two
arguments is null. Despite being widely used (we found
1,545 calls to it in our projects), method setProperty’s
documentation does not mention its exception precondition. In
fact, we found 12 pothrows that involve calls to setProperty.
Lst. 6 shows one of these cases from project javapos_shtrih:o

a wrapper of setProperty, which thus has the same exception
precondition as pothrow. If we want to think about possible
code improvements in this case, it is important to notice
that add is private. While it might be called with a null
argument, all its calls within the project supply non-null
arguments; the project developers may have certain guidelines
on how (and if) such cases need documentation or other kinds
of annotations. In general, however, extended type checking
annotations are often applied to private methods as well—
for the few projects that make the effort of producing and
maintaining such annotations; for example, Lst. 7 shows a
snippetp from a project part of the popular Jenkins automation
server which systematically annotates all its methods (also
private ones) with @NonNull annotations.

The examples suggest that, once a developer identifies con-
crete cases of potential throws, they can apply their judgment,
preferences, and project knowledge to devise the most suitable
code improvements. There is usually a certain latitude in how
to change the code (if it needs changing), but even seemingly
minor changes may be beneficial—especially with exceptions,
where “failing fast” may be the least bad option [3].

IV. RELATED WORK

Previous work has found that (Java) exception-handling
code is often undocumented [19] and tied to anti-patterns [17].

Listing 7: An example of a private method annotated with @NonNull.
39 private static CacheStatus getCacheStatus(
40 @NonNull LibraryCachingConfiguration cachingConfiguration,
41 @NonNull final FilePath versionCacheDir) {
42 // ...
43 }

As APIs typically throw exceptions to signal invalid precon-
ditions [12], uncaught exceptions are often symptoms of API
misuses [2]—in turn, a common cause of bugs.

A lot of research has studied API misuses from different
angles [1], often noting the relevance of exceptional behavior
(which motivates our own work): for example, passing an
invalid argument (e.g., null) and omitting a try-catch block
are quite common [11] (but, fortunately, “there are various
ways to fix bugs related to [these] API misuses”); static API-
misuse detectors are often limited with respect to exceptional
behavior [2]; and automated program repair approaches could
benefit from better API-misuse detection capabilities [10].

Static analysis tools such as Infer,q Coverity Scan,r Spot-
Bugs,s and SonarQubet all have rules that check for null
dereferences: a null deference occurs in a piece of code like
s.length() when s is null. Our approach does not report
possible null dereferences in the clients as pothrows, since it
is only concerned with exceptions that originate in external
libraries. Conversely, to our knowledge, these static analyz-
ers do not generally report potential throws that originate
in external libraries. SonarQube does have rules that check
API misuses of common Java libraries (e.g., JUnit, Spring,
and Mockito), as well as the JDK core APIs; however, it
lacks rules that look for general potential throws in external
libraries. The only case we found that does something along
the lines of our approach is SonarQube’s rule “Optional value
should only be accessed after calling isPresent()”.u When an
instance o of an Optional type is empty (i.e., o.isPresent()
returns false or o.isEmpty() returns true), a call o.get()

throws a NoSuchElementException.v The SonarQube rule
looks for calls to get() that are not preceded by checks that
isPresent() returns true. This is a fairly complex rule to
implement, as it requires reasoning about the feasibility of
individual control-flow paths; indeed, SonarQube labels it as
requiring “symbolic execution”.

A number of exception precondition extraction techniques
have been developed in the last few years, using different
sources of information—from documentation, to clients, to
library code [19]—mostly using the extracted precondition
to generate documentation [13], [15], [20]. In this paper,
we explored the idea of using these techniques to first ex-
tract preconditions from libraries, and then to analyze client
code of these libraries. To our knowledge, Zeng et al.’s
recent work [18] is the only other approach that experiments
with the idea of combining the results of library and client
analysis. Their work is not specific to exception behavior
but targets different kinds of API misuses and information
sources (including Javadoc natural language documentation,
call graphs, method names, and annotations); thus, they can
potentially report a broader variety of API misuses, but with
weaker guarantees of precision compared to our experiments.
In addition, there is a natural trade off between breadth of
detected misuses and how easily addressable they are; our
focus on exception preconditions can lead to actionable (and
possibly even automatic) code improvement suggestions.

5



V. CONCLUSIONS AND FUTURE WORK

Two main directions to mature this paper’s idea of analyzing
exception preconditions of library methods in client code to
suggest code improvements are: 1) improving the quality and
quantity of exception preconditions; and 2) automating the
generation of code improvement suggestions. Direction 1) is
motivated by findings that a small portion of a library is
generally responsible for a large portion of client usage [8],
[11]; and can naturally lead to progress in direction 2) by
specializing the suggestions to cover the most common cases.
Finally, applying our ideas to different benchmark collec-
tions [1], [10] is also a natural way to further validate them.

Dataset: the complete dataset of our experiments is avail-
able: https://doi.org/10.6084/m9.figshare.23634747.

REFERENCES

[1] Sven Amann, Sarah Nadi, Hoan Anh Nguyen, Tien N. Nguyen, and
Mira Mezini. MUBench: a benchmark for API-Misuse Detectors. In
MSR, pages 464–467. ACM, 2016.

[2] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and
Mira Mezini. A Systematic Evaluation of Static API-Misuse Detectors.
IEEE Trans. Software Eng., 45(12):1170–1188, 2019.

[3] K. Bourrillion. Nulness Design FAQ. https://github.com/jspecify/
jspecify/wiki/nullness-design-FAQ, 2022.

[4] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects
in github for MSR studies. In MSR, pages 560–564. IEEE/ACM, 2021.

[5] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Mon-
perrus. Dynamic Patch Generation for Null Pointer Exceptions Using
Metaprogramming. SANER, 2017.

[6] Thomas Durieux, César Soto-Valero, and Benoit Baudry. Duets: A
dataset of reproducible pairs of Java library-clients. In MSR, pages
545–549. IEEE, 2021.

[7] Catarina Gamboa, Paulo Canelas, Christopher Steven Timperley, and
Alcides Fonseca. Usability-oriented design of liquid types for java.
In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1520–1532.
IEEE, 2023. doi:10.1109/ICSE48619.2023.00132.

[8] Nicolas Harrand, Amine Benelallam, César Soto-Valero, François Bet-
tega, Olivier Barais, and Benoit Baudry. API beauty is in the eye of the
clients: 2.2 million maven dependencies reveal the spectrum of client-
API usages. J. Syst. Softw., 184:111134, 2022.

[9] C. A. R. Hoare. Null references: The billion
dollar mistake. https://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/, 2009.

[10] Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman.
Evaluating Automatic Program Repair Capabilities to Repair API Mis-
uses. IEEE Trans. Software Eng., 48(7):2658–2679, 2022.

[11] Xia Li, Jiajun Jiang, Samuel Benton, Yingfei Xiong, and Lingming
Zhang. A Large-scale Study on API Misuses in the Wild. In ICST,
pages 241–252. IEEE, 2021.

[12] Diego Marcilio and Carlo A. Furia. How Java programmers test
exceptional behavior. In MSR, pages 207–218. IEEE, 2021.

[13] Diego Marcilio and Carlo A. Furia. What is thrown? Lightweight precise
automatic extraction of exception preconditions in Java methods. In
ICSME, pages 340–351. IEEE, 2022.

[14] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P.
Robillard. Generating unit tests for documentation. IEEE Transactions
on Software Engineering, pages 1–1, 2021. doi:10.1109/TSE.2021.
3087087.

[15] Hoan Anh Nguyen, Hung Dang Phan, Syeda Khairunnesa Samantha,
Son Nguyen, Aashish Yadavally, Shaohua Wang, Hridesh Rajan, and
Tien N. Nguyen. A hybrid approach for inference between behavioral
exception API documentation and implementations, and its applications.
In ASE, pages 2:1–2:13. ACM, 2022.

[16] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins,
and Michael D. Ernst. Practical pluggable types for Java. In ISSTA, pages
201–212. ACM, 2008.

[17] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifá-
cio. Understanding the exception handling strategies of Java libraries:
an empirical study. In MSR, pages 212–222. ACM, 2016.

[18] Hushuang Zeng, Jingxin Chen, Beijun Shen, and Hao Zhong. Mining
API constraints from library and client to detect API misuses. In APSEC,
pages 161–170. IEEE, 2021.

[19] Hao Zhong, Na Meng, Zexuan Li, and Li Jia. An empirical study on
API parameter rules. In ICSE, pages 899–911. ACM, 2020.

[20] Yu Zhou, Changzhi Wang, Xin Yan, Taolue Chen, Sebastiano Panichella,
and Harald Gall. Automatic Detection and Repair Recommendation of
Directive Defects in Java API Documentation. IEEE Trans. Software
Eng., 46(9):1004–1023, 2020.

URL REFERENCES

a. https://github.com/openjdk/jdk/blob/
da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/
classes/java/util/Random.java#L383-L388

b. https://github.com/AlphaAutoLeak/zelix-injection/blob/master/src/
main/java/zelix/utils/Utils.java#L256

c. JavaParser: https://github.com/javaparser/javaparser
d. https://github.com/openjdk/jdk/blob/

da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/
classes/java/lang/StringBuilder.java#L228C40-L228C40

e. https://github.com/feathersui/feathersui-starling-sdk/blob/master/
modules/swfutils/src/java/flash/swf/tools/SwfxParser.java#L173

f. https://docs.oracle.com/en/java/javase/20/jshell/introduction-jshell.html
g. https://github.com/aaiyer/SuanShu/blob/

ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/
numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java#
L83

h. https://github.com/openjdk/jdk/blob/
da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/
classes/java/util/concurrent/LinkedBlockingDeque.java#L182

i. https://github.com/microsphere-projects/microsphere-java/blob/main/
microsphere-core/src/main/java/io/microsphere/convert/multiple/
StringToBlockingDequeConverter.java#L31

j. https://github.com/msdeep14/getAheadWithMe/blob/main/
LowLevelDesign/Concurrency/src/practice/ratelimiter/strategy/
LeakyBucket.java#L15

k. https://github.com/openjdk/jdk/blob/
da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/
classes/java/util/ArrayDeque.java#L194

l. https://jspecify.dev/
m. https://github.com/jfree/jfreechart/blob/

5aac9ae42147d34fe175e29af3993172e9c9080a/src/main/java/org/
jfree/chart/JFreeChart.java#L257

n. https://github.com/openjdk/jdk/blob/
da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/
classes/java/util/Properties.java#L224

o. https://github.com/shtrih-m/javapos_shtrih/blob/master/Source/Core/
src/com/shtrih/util/Localizer.java#L169

p. https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/
773332a145baaa64a936eb23019e92dc110f7bc0/src/main/java/org/
jenkinsci/plugins/workflow/libs/LibraryAdder.java#L172C5-L172C5

q. https://fbinfer.com/docs/all-issue-types/#nullptr_dereference
r. https://scan.coverity.com/
s. https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
t. https://rules.sonarsource.com/java/RSPEC-2259/
u. https://rules.sonarsource.com/java/RSPEC-3655/
v. https://github.com/openjdk/jdk/blob/

da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/
classes/java/util/Optional.java#L148

6

https://doi.org/10.6084/m9.figshare.23634747
https://github.com/jspecify/jspecify/wiki/nullness-design-FAQ
https://github.com/jspecify/jspecify/wiki/nullness-design-FAQ
https://doi.org/10.1109/ICSE48619.2023.00132
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://doi.org/10.1109/TSE.2021.3087087
https://doi.org/10.1109/TSE.2021.3087087
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Random.java#L383-L388
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Random.java#L383-L388
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Random.java#L383-L388
https://github.com/AlphaAutoLeak/zelix-injection/blob/master/src/main/java/zelix/utils/Utils.java#L256
https://github.com/AlphaAutoLeak/zelix-injection/blob/master/src/main/java/zelix/utils/Utils.java#L256
https://github.com/javaparser/javaparser
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/StringBuilder.java##L228C40-L228C40
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/StringBuilder.java##L228C40-L228C40
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/StringBuilder.java##L228C40-L228C40
https://github.com/feathersui/feathersui-starling-sdk/blob/master/modules/swfutils/src/java/flash/swf/tools/SwfxParser.java##L173
https://github.com/feathersui/feathersui-starling-sdk/blob/master/modules/swfutils/src/java/flash/swf/tools/SwfxParser.java##L173
https://docs.oracle.com/en/java/javase/20/jshell/introduction-jshell.html
https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java##L83
https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java##L83
https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java##L83
https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java##L83
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/concurrent/LinkedBlockingDeque.java##L182
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/concurrent/LinkedBlockingDeque.java##L182
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/concurrent/LinkedBlockingDeque.java##L182
https://github.com/microsphere-projects/microsphere-java/blob/main/microsphere-core/src/main/java/io/microsphere/convert/multiple/StringToBlockingDequeConverter.java##L31
https://github.com/microsphere-projects/microsphere-java/blob/main/microsphere-core/src/main/java/io/microsphere/convert/multiple/StringToBlockingDequeConverter.java##L31
https://github.com/microsphere-projects/microsphere-java/blob/main/microsphere-core/src/main/java/io/microsphere/convert/multiple/StringToBlockingDequeConverter.java##L31
https://github.com/msdeep14/getAheadWithMe/blob/main/LowLevelDesign/Concurrency/src/practice/ratelimiter/strategy/LeakyBucket.java##L15
https://github.com/msdeep14/getAheadWithMe/blob/main/LowLevelDesign/Concurrency/src/practice/ratelimiter/strategy/LeakyBucket.java##L15
https://github.com/msdeep14/getAheadWithMe/blob/main/LowLevelDesign/Concurrency/src/practice/ratelimiter/strategy/LeakyBucket.java##L15
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/ArrayDeque.java##L194
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/ArrayDeque.java##L194
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/ArrayDeque.java##L194
https://jspecify.dev/
https://github.com/jfree/jfreechart/blob/5aac9ae42147d34fe175e29af3993172e9c9080a/src/main/java/org/jfree/chart/JFreeChart.java##L257
https://github.com/jfree/jfreechart/blob/5aac9ae42147d34fe175e29af3993172e9c9080a/src/main/java/org/jfree/chart/JFreeChart.java##L257
https://github.com/jfree/jfreechart/blob/5aac9ae42147d34fe175e29af3993172e9c9080a/src/main/java/org/jfree/chart/JFreeChart.java##L257
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Properties.java##L224
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Properties.java##L224
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Properties.java##L224
https://github.com/shtrih-m/javapos_shtrih/blob/master/Source/Core/src/com/shtrih/util/Localizer.java##L169
https://github.com/shtrih-m/javapos_shtrih/blob/master/Source/Core/src/com/shtrih/util/Localizer.java##L169
https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/773332a145baaa64a936eb23019e92dc110f7bc0/src/main/java/org/jenkinsci/plugins/workflow/libs/LibraryAdder.java##L172C5-L172C5
https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/773332a145baaa64a936eb23019e92dc110f7bc0/src/main/java/org/jenkinsci/plugins/workflow/libs/LibraryAdder.java##L172C5-L172C5
https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/773332a145baaa64a936eb23019e92dc110f7bc0/src/main/java/org/jenkinsci/plugins/workflow/libs/LibraryAdder.java##L172C5-L172C5
https://fbinfer.com/docs/all-issue-types/#nullptr_dereference
https://scan.coverity.com/
https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
https://rules.sonarsource.com/java/RSPEC-2259/
https://rules.sonarsource.com/java/RSPEC-3655/
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Optional.java#L148
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Optional.java#L148
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Optional.java#L148

	Introduction
	From Exception Preconditions to Code Improvements
	An Example of Potential Throw Detection
	Code Improvements
	Detecting Potential Throws Automatically

	Experimental Evaluation
	Potential Throw Detector Implementation
	Empirical Study: Design
	Empirical Study: Quantitative Results
	Empirical Study: Qualitative Discussion

	Related Work
	Conclusions and Future Work
	References

