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Abstract. A program’s exceptional behavior can substantially complicate its con-
trol flow, and hence accurately reasoning about the program’s correctness. On the
other hand, formally verifying realistic programs is likely to involve exceptions—
a ubiquitous feature in modern programming languages.
In this paper, we present a novel approach to verify the exceptional behavior
of Java programs, which extends our previous work on BYTEBACK. BYTEBACK

works on a program’s bytecode, while providing means to specify the intended
behavior at the source-code level; this approach sets BYTEBACK apart from most
state-of-the-art verifiers that target source code. To explicitly model a program’s
exceptional behavior in a way that is amenable to formal reasoning, we introduce
Vimp: a high-level bytecode representation that extends the Soot framework’s
Grimp with verification-oriented features, thus serving as an intermediate layer
between bytecode and the Boogie intermediate verification language. Working on
bytecode through this intermediate layer brings flexibility and adaptability to new
language versions and variants: as our experiments demonstrate, BYTEBACK can
verify programs involving exceptional behavior in all versions of Java, as well as
in Scala and Kotlin (two other popular JVM languages).

1 Introduction

Nearly every modern programming language supports exceptions as a mechanism to
signal and handle unusual runtime conditions (so-called exceptional behavior) sepa-
rately from the main control flow (the program’s normal behavior). Exceptions are
usually preferable to lower-level ad hoc solutions (such as error codes and defensive
programming), because deploying them does not pollute the source code’s structured
control flow. However, by introducing extra, often implicit execution paths, exceptions
may also complicate reasoning about all possible program behavior—and thus, ulti-
mately, about program correctness.

In this paper, we introduce a novel approach to perform deductive verification of
Java programs involving exceptional behavior. Exceptions were baked into the Java
programming language since its inception, where they remain widely used [13, 15, 17];
nevertheless, as the example of Sec. 2 demonstrates, they can be somewhat of a chal-
lenge to reason about formally. To model together normal and exceptional control flow
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Fig. 1: An overview of BYTEBACK’s verification workflow.

paths, and to seamlessly support any exception-related language features, our verifi-
cation approach crucially targets a program’s bytecode intermediate representation—
instead of the source code analyzed by state-of-the-art verifiers such as KeY [1] and
OpenJML [6]. We introduced the idea of performing formal verification at the level of
bytecode in previous work [20]. In this paper, we build on those results and implement
support for exceptions in the BYTEBACK deductive verifier.

The key idea of our BYTEBACK approach (pictured in Fig. 1) is using JVM bytecode
solely as a convenient intermediate representation; users of BYTEBACK still annotate
program source code in a very similar way as if they were working with a source-level
verifier. To this end, we extend the specification library introduced with BYTEBACK

(called BBlib) with features to specify exceptional behavior (for example, conditions
under which a method terminates normally or exceptionally) using custom Java ex-
pressions; thus, such specifications remain available in bytecode after compiling an
annotated program using a standard Java compiler. BYTEBACK analyzes the bytecode
and encodes the program’s semantics, its specification, and other information necessary
for verification into Boogie [3]—a widely-used intermediate language for verification;
then, verifying the Boogie translation is equivalent to verifying the original Java pro-
gram against its specification.

As we demonstrate with experiments in Sec. 4, performing verification on bytecode
offers several advantages: i) Robustness to source-language changes: while Java evolves
rapidly, frequently introducing new features (also for exceptional behavior), bytecode is
generally stable; thus, our verification technique continues to work with the latest Java
versions. ii) Multi-language support: BYTEBACK and its BBlib specification library are
designed so that they can be applied, in principle, to specify programs in any language
that is bytecode-compatible; while the bulk of our examples are in Java, we will demon-
strate verifying exceptional behavior in Scala and Kotlin—two modern languages for
the JVM. iii) Flexibility of modeling: since exceptional behavior becomes explicit in
bytecode, the BYTEBACK approach extensively and seamlessly deals with any intricate
exceptional behavior (such as implicit or suppressed exceptions).
Contributions and positioning. In summary, the paper makes the following contribu-
tions: i) Specification features to specify exceptional behavior of JVM languages. ii) A
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1 @Require(r = null ∨¬r.closed)
2 @Raise(NullPointerException, r = null)
3 @Return(a ̸= null ∧ a.length = 0 ∧ r ̸= null)
4 @Ensure(r = null ∨ r.closed)
5 static void into(final Resource r, final int[] a) {
6 try (r) {
7 int i = 0;
8 while (true) { invariant(0 ≤ i ≤ a.length);
9 invariant(r = null ∨¬r.closed);

10 a[i] = r.read(); ++i;
11 }
12 } catch (IndexOutOfBoundsException
13 | NoSuchElementException e) { return; }
14 }

(a) Method into copies r’s content into array a. It
is annotated with normal and exceptional pre- and
postconditions using a simplified BBlib syntax.

class Resource implements AutoCloseable {

boolean closed;
boolean hasNext;

@Raise(IllegalStateException, closed)
@Raise(NoSuchElementException,¬hasNext)
@Return(¬closed ∧ hasNext)
int read()
{ /* ... */ }

// ...

}

(b) An outline of class Resouce’s inter-
face with Boolean attributes closed and
hasNext, and method read.

Fig. 2: Annotated Java method into and class Resource, which demonstrate some pit-
falls of specifying and reasoning about exceptional behavior.
verification technique that encodes bytecode exceptional behavior into Boogie. iii) An
implementation of the specification features and the verification technique that extend
the BBlib library and BYTEBACK verifier. iv) Vimp: a high-level bytecode format suit-
able to reason about functional correctness, built on top of Soot’s Grimp format [11,26].
v) An experimental evaluation with 37 programs involving exceptional behavior in Java,
Scala, and Kotlin. vi) For reproducibility, BYTEBACK and all experimental artifacts are
available in a replication package [19]. While we build upon BBlib and BYTEBACK,
introduced in previous work of ours [20], this paper’s contributions substantially ex-
tend them with support for exceptional behavior, as well as other Java related features
(see Sec. 3). For simplicity, henceforth “BBlib” and “BYTEBACK” denote their current
versions, equipped with the novel contributions described in the rest of the paper.

2 Motivating Example

Exceptions can significantly complicate the control flow of even seemingly simple code;
consequently, correctly reasoning about exceptional behavior can be challenging even
for a language like Java—whose exception-handling features have not changed signifi-
cantly since the language’s origins.

To demonstrate, consider Fig. 2a’s method into, which inputs a reference r to a
Resource object and an integer array a, and copies values from r into a—until either
a is filled up or there are no more values in r to read. Fig. 2b shows the key features
of class Resource—which implements Java’s AutoCloseable interface, and hence can
be used similarly to most standard I/O classes. Method into’s implementation uses a
try-with-resources block to ensure that r is closed whenever the method terminates—
normally or exceptionally. The while loop terminates as soon as any of the following
conditions holds: i) r is null; ii) k reaches a.length (array a is full); iii) r.read()

throws a NoSuchElementException (r has no more elements). Method into returns
with an (propagated) exception only in case i); case ii)’s IndexOutOfBounds and case
iii)’s NoSuchElement exceptions are caught by the catch block that suppresses them
with a return—so that into can return normally.
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Fig. 2a’s annotations, which use a simplified syntax for BBlib—BYTEBACK’s spec-
ification library—specify part of into’s expected behavior. Precondition @Require ex-
presses the constraint that object r must be open (or null) for into to work as in-
tended. Annotation @Raise declares that into terminates with a NullPointer excep-
tion if r is null; conversely, @Return says that into returns normally if a is a non-null
empty array and r is also not null. Finally, postcondition @Ensure says that, if it’s not
null, r will be closed when into terminates—regardless of whether it does so nor-
mally or exceptionally. The combination of language features and numerous forking
control-flow paths complicate reasoning about—and even specifying—into’s behav-
ior. While exception handling has been part of Java since version 1, try-with-resources
and multi-catch (both used in Fig. 2a) were introduced in Java 7; thus, even a state-
of-the-art verifier like KeY [1] lacks support for them. OpenJML [6] can reason about
all exception features up to Java 7; however, the try-with-resources using an existing
final variable became available only in Java 9.{1} Furthermore, OpenJML implicitly
checks that verified code does not throw any implicit exceptions (such as NullPointer
or IndexOutOfBound exceptions)—thus disallowing code such as Fig. 2a’s, where im-
plicitly throwing exceptions is part of the expected behavior. These observations are
best thought of as design choices—rather than limitations—of these powerful Java ver-
ification tools: after all, features such as multi-catch are syntactic sugar that makes
programs more concise but does not affect expressiveness; and propagating uncaught
implicit exceptions can be considered an anti-pattern{2} [14, 27]. However, they also
speak volumes to the difficulty of fully supporting all cases of exceptional behavior in
a feature-laden language like Java.

As we detail in the rest of the paper, BYTEBACK’s approach offers advantages in
such scenarios. Crucially, the implicit control flow of exception-handling code becomes
explicit when compiled to bytecode, which eases analyzing it consistently and disentan-
gling the various specification elements. For instance, the while loop’s several excep-
tional exit points become apparent in into’s bytecode translation, and BYTEBACK can
check that the declared invariant holds in all of them, and that postcondition @Ensure

holds in all matching method return points. Furthermore, bytecode is more stable than
Java—thus, a verifier like BYTEBACK is more robust to source language evolution.
Thanks to these capabilities, BYTEBACK can verify the behavior of Fig. 2’s example.

3 Specifying and Verifying Exceptional Behavior

This section describes the new features of BYTEBACK to specify and verify exceptional
behavior. Fig. 1 shows BYTEBACK’s workflow, which we revisited to support these new
features. Users of BYTEBACK—just like with every deductive verifier—have to anno-
tate the source code to be verified with a specification and other annotations. To this
end, BYTEBACK offers BBlib: an annotation library that is usable with any language
that is bytecode compatible. Sec. 3.1 describes the new BBlib features to specify ex-
ceptional behavior. Then, users compile the annotated source code with the language’s
bytecode compiler. BYTEBACK relies on the Soot static analysis framework to analyze
bytecode; precisely, Soot offers Grimp: a higher-level alternative bytecode represen-
tation. BYTEBACK processes Grimp and translates it to Vimp: a verification-oriented
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extension of Grimp that we introduced in the latest BYTEBACK version and is described
in Sec. 3.2. As we discuss in Sec. 3.3, BYTEBACK transforms Grimp to Vimp in steps,
each taking care of a different aspect (expressions, types, control flow, and so on). Once
the transformation is complete, BYTEBACK encodes the Vimp program into the Boogie
intermediate verification language [3]; thanks to Vimp’s custom design, the Boogie en-
coding is mostly straightforward. Finally, the Boogie tool verifies the generated Boogie
program, and reports success or any verification failures (which can be manually traced
back to source-code specifications that could not be verified).

3.1 Specifying Exceptional Behavior

Users of BYTEBACK add behavioral specifications to a program’s source using BBlib:
BYTEBACK’s standalone Java library, offering annotation tags and static methods suit-
able to specify functional behavior. Since BBlib uses only basic language constructs,
it is compatible with most JVM languages (as we demonstrate in Sec. 4); and all the
information added as BBlib annotations is preserved at the bytecode level. This section
first summarizes the core characteristics of BBlib (to make the paper self contained),
and then describes the features we introduced to specify exceptional behavior.

Specification Expressions. Expressions used in BYTEBACK specifications must be ag-
gregable, that is pure (they can be evaluated without side effects) and branchless (they
can be evaluated without branching instructions). These are common requirements to
ensure that specification expressions are well-formed [24]—hence, equivalently ex-
pressible as purely logic expressions. Correspondingly, BBlib forbids impure expres-
sions, and offers aggregable replacements for the many Java operators that introduce
branches in the bytecode, such as the standard Boolean operators (&&, ||, . . . ) and com-
parison operators (==, <, . . . ). Tab. 1 shows several of BBlib’s aggregable operators,
including some that have no immediately equivalent Java expression (such as the quan-
tifiers). Using only BBlib’s operators in a specification ensures that it remains in a
form that BYTEBACK can process after the source program has been compiled to byte-
code [20]. Thus, BBlib operators map to Vimp logic operators (Sec. 3.2), which directly
translate to Boogie operators with matching semantics (Sec. 3.4).

IN JAVA/LOGIC IN BBlib

comparison
x < y, x <= y, x == y lt(x, y), lte(x, y), eq(x, y)

x != y, x >= y, x > y neq(x, y), gte(x, y), gt(x, y)

conditionals c ? t : e conditional(c, t, e)

propositional !a, a && b, a || b, a =⇒ b not(a), a & b, a | b, implies(a, b)

quantifiers
∀x : T • P(x) T x = Binding.T(); forall(x, P(x))

∃x : T • P(x) T x = Binding.T(); exists(x, P(x))

Table 1: BBlib’s aggregable operators, used instead of Java’s impure or branching op-
erators in specification expressions.

Method Specifications. To specify the input/output behavior of methods, BBlib of-
fers annotations @Require and @Ensure to express a method’s pre- and postconditions.
For example, @Require(p) @Ensure(q) t m(args) specifies that p and q are method
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m’s pre- and postcondition; both p and q denote names of predicate methods, which
are methods marked with annotation @Predicate. As part of the verification process,
BYTEBACK checks that every such predicate method p is well-formed: i) p returns a
boolean; ii) p’s signature is the same as m’s or, if p is used in m’s postcondition and m’s
return type is not void, it also includes an additional argument that denotes m’s returned
value; iii) p’s body returns a single aggregable expression; iv) if p’s body calls other
methods, they must also be aggregable. For example, the postcondition q of a method
int fun(int x) that always returns a value greater than the input x is expressible in
BBlib as @Predicate boolean q(int x, int result) {return gt(result, x);}.
Postcondition predicates may also refer to a method’s pre-state by means of old(a)
expressions, which evaluates to a’s value in the method’s pre-state.

For simplicity of presentation, we henceforth abuse the notation and use an identi-
fier to denote a predicate method’s name, the declaration of the predicate method, and
the expression that the predicate method returns. Consider, for instance, Fig. 2a’s pre-
condition; in BBlib syntax, it can be declared as @Require("null_or_open"), where
"null_or_open" is the name of a method null_or_open, whose body returns expres-
sion eq(r, null) | not(r.closed), which is into’s actual precondition.

Exceptional Postconditions. Predicate methods specified with @Ensure are evaluated
on a method’s post-state regardless of whether the method terminated normally or with
an exception; for example, predicate x_eq_y in Fig. 3 says that attribute x always equals
argument y when method m terminates. To specify exceptional behavior, a method’s
postcondition predicate may include an additional argument e of type Throwable, which
denotes the thrown exception if the method terminated with an exception or satisfies
BBlib’s predicate isVoid(e) if the method terminated normally. Predicate x_pos in
Fig. 3 is an example of exceptional behavior, as it says that m throws an exception of type
PosXExc when attribute x is greater than zero upon termination; conversely, predicate
y_neg specifies that m terminates normally when argument y is negative or zero.

SHORTHAND EQUIVALENT POSTCONDITION

@Raise(exception = E.class, when = p) @Ensure(implies(old(p), e instanceof E))

@Return(when = p) @Ensure(implies(old(p), isVoid(e)))
@Return @Return(when = true)

Table 2: BBlib’s @Raise and @Return and annotation shorthands.

Shorthands. For convenience, BBlib offers annotation shorthands @Raise and @Return

to specify when a method terminates exceptionally or normally. Tab. 2 shows the se-
mantics of these shorthands by translating them into equivalent postconditions. The
when argument refers to a method’s pre-state through the old expression, since it is
common to relate a method’s exceptional behavior to its inputs. Thus, Fig. 3’s postcon-
dition y_neg is equivalent to @Return(lte(y, 0)), since m does not change y’s value;
conversely, @Raise(PosXExc.class, gt(x, 0)) is not equivalent to x_pos because m

sets x to y’s value.

Intermediate Specification. BBlib also supports the usual intra-method specifica-
tion elements: assertions, assumptions, and loop invariants. Given an aggregable ex-
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29 class C {

30

31 int x = 0;

32

33 @Ensure("x_eq_y") // x = y when m terminates normally or exceptionally

34 @Ensure("x_pos") // if x > 0 then m throws an exception

35 @Ensure("y_neg") // if y ≤ 0 then m terminates normally

36 void m(int y) { x = y; if (x > 0) throw new PosXExc(); }

37

38 @Predicate public boolean y_neg(int y, Throwable e)

39 { return implies(lte(y, 0), isVoid(e)); }

40

41 @Predicate public boolean x_pos(int y, Throwable e)

42 { return implies(gt(x, 0), e instanceof PosXExc); }

43

44 @Predicate public boolean x_eq_y(int y)

45 { return eq(x, y); }

46

47 }

Fig. 3: Examples of exceptional postconditions in BBlib.

pression e, assertion(e) specifies that e must hold whenever execution reaches it;
assumption(e) restricts verification from this point on to only executions where e
holds; and invariant(e) declares that e is an invariant of the loop within whose body
it is declared. As we have seen in Fig. 2a’s running example, loop invariants hold, in
particular, at all exit points of a loop—including exceptional ones.

3.2 The Vimp Intermediate Representation

In our previous work [20], BYTEBACK works directly on Grimp—a high-level bytecode
representation provided by the Soot static analysis framework [11, 26]. Compared to
raw bytecode, Grimp conveniently retains information such as types and expressions,
which eases BYTEBACK’s encoding of the program under verification into Boogie [3].
However, Grimp remains a form of bytecode, and hence it represents well executable in-
structions, but lacks support for encoding logic expressions and specification constructs.
These limitations become especially inconvenient when reasoning about exceptional
behavior, which often involves logic conditions that depend on the types and values of
exceptional objects. Rather than reconstructing this information during the translation
from Grimp to Boogie, we found it more effective to extend Grimp into Vimp, which
fully supports logic and specification expressions.

Our bespoke Vimp bytecode representation can encode all the information relevant
for verification. This brings several advantages: i) it decouples the input program’s static
analysis from the generation of Boogie code, achieving more flexibility at either ends
of the toolchain; ii) it makes the generation of Boogie code straightforward (mostly
one-to-one); iii) BYTEBACK’s transformation from Grimp to Vimp becomes naturally
modular: it composes several simpler transformations, each taking care of a different
aspect and incorporating a different kind of information. The rest of this section presents
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Vimp’s key features, and how they are used by BYTEBACK’s Grimp-to-Vimp transfor-
mation V .1 As detailed in Sec. 3.4, V composes the following feature-specific trans-
formations: Vexc makes the exceptional control flow explicit; Vagg aggregates Grimp
expressions into compound Vimp expressions; Vinst translates Grimp instructions (by
applying transformation Vstm to statements, transformation Vexp to expressions within
statements, and Vtypes to expression types); Vloop handles loop invariants.

Expression Aggregation. Transformation Vagg aggregates specification expressions
(see Sec. 3.1), so that each corresponds to a single Vimp pure and branchless expres-
sion. In a nutshell, Vagg(s) takes a piece s of aggregable Grimp code, converts it into
static-single assignment form, and then recursively replaces each variable’s single us-
age with its unique definition. For example, consider Fig. 2a’s loop invariant: it corre-
sponds to a := lte(0, i); b := lte(i, a.length); c := a & b in Grimp, and be-
comes c := lte(0, i) & lte(i, a.length) in Vimp.

Expected Types. Transformation Vtype reconstructs the expected type of expressions
when translating them to Vimp. An expression e’s expected type depends on the context
where e is used; in general, it differs from e’s type in Grimp, since Soot’s type inference
may not distinguish between Boolean and integer expressions—which both use the int

bytecode type.

Boolean Expressions. Another consequence of bytecode’s lack of a proper boolean
representation is that Grimp uses integer operators also as Boolean operators (for exam-
ple the unary minus - for “not”). In contrast, Vimp supports the usual Boolean operators
¬ , ∧ , ∨ , =⇒ , and constants true and false. Transformation Vexp uses them to trans-
late Vimp expressions e whose expected type Vtype(e) is boolean; this includes specifi-
cation expressions (which use BBlib’s replacement operators), but also regular Boolean
expressions in the executable code. For example, Vexp(-a) = ¬Vexp(a), Vexp(k) = true

for every constant k ≥ 1, and Vexp(h) = false for every constant h < 1.
Transformation Vexp(e) also identifies quantified expressions—expressed using a

combination of BBlib’s Contract and Binding—after aggregating them, and renders
them using Vimp’s quantifier syntax:

Vexp(Contract.forall(Binding.T(),e)) = ∀ Vtype(Binding.T()) v : : Vexp(e)

Vexp(Contract.exists(Binding.T(),e)) = ∃ Vtype(Binding.T()) v : : Vexp(e)

Assertion Instructions. Vimp includes instructions assert, assume, and invariant,
which transformation Vstm introduces for each corresponding instance of BBlib as-
sertions, assumptions, and loop invariants. Transformation Vloop relies on Soot’s loop
analysis capabilities to identify loops in Vimp’s unstructured control flow; then, it ex-
presses their invariants by means of assertions and assumptions. As shown in Fig. 4,
Vloop checks that the invariant holds upon loop entry (label head), at the end of each
iteration (head again), and at every exit point (label exit).

1 In the following, we occasionally take some liberties with Grimp and Vimp code, using a read-
able syntax that mixes bytecode instruction and Java statement syntax; for example, m() rep-
resents an invocation of method m that corresponds to a suitable variant of bytecode’s invoke.
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k = 0;
while (k < 10) {
invariant(lte(k, 10) & lte(k, X));
k++;
if (k ≥ X) break;

}
return k;

k := 0;
head:
if k ≥ 10 goto exit;
invariant k ≤ 10 ∧ k ≤ X;
k := k + 1;
if k ≥ X goto exit;

back: goto head;
exit:
return k;

k := 0;
head: assert k ≤ 10 ∧ k ≤ X;
if k ≥ 10 goto exit;
assume k ≤ 10 ∧ k ≤ X;
k := k + 1;
if k ≥ X goto exit;

back: goto head;
exit: assert k ≤ 10 ∧ k ≤ X;
return k;

Fig. 4: A loop in Java (left), its unstructured representation in Vimp (middle), and the
transformation Vloop of its invariant into assertions and assumptions (right).

try {
x = o.size();
if (x = 0)
throw new E();

} catch (E e) {
x = 1;

}

ℓ1: x := o.size();

ℓ2: if x != 0 goto ℓ5;
ℓ3: e := new E();
ℓ4: throw e;

ℓ5: goto ℓ6;
hE:
e := @caught;
x := 1;

ℓ6: ...

ℓ1: x := o.size();
if @thrown = void goto skip2;
Vexc(throw @thrown;)

skip2: ℓ2: if x ̸= 0 goto ℓ5;
ℓ3: e := new E();
ℓ4: @thrown := e;

if ¬(@thrown instanceof E) goto skip5;
goto hE;

skip5: ℓ5: goto ℓ6;
hE:
e := @thrown; @thrown := void;
x := 1;

ℓ6: ...

Fig. 5: A try-catch block in Java (left), its unstructured representation as a trap in Grimp
(middle, empty lines are for readability), and its transformation Vexc in Vimp with ex-
plicit exceptional control flow (right).

3.3 Modeling Exceptional Control Flow
Bytecode stores a block’s exceptional behavior in a data structure called the exception
table.{3} Soot represents each table entry as a trap, which renders a try-catch block in
Grimp bytecode. Precisely, a trap t is defined by: i) a block of instructions Bt that may
throw exceptions; ii) the type Et of the handled exceptions; iii) a label ht to the handler
instructions (which terminates with a jump back to the end of Bt). When executing Bt

throws an exception whose type conforms to Et, control jumps to ht. At the beginning
of the handler code, Grimp introduces e := @caught, which stores into a local variable
e of the handler a reference @caught to the thrown exception object. Fig. 5 shows an
example of try-catch block in Java (left) and the corresponding trap in Grimp (middle):
ℓ1, . . . , ℓ5 is the instruction block, E is the exception type, and hE is handler’s entry label.
The rest of this section describes BYTEBACK’s transformation Vexc, which transforms
the implicit exceptional control flow of Grimp traps into explicit control flow in Vimp.

Explicit Exceptional Control-Flow. Grimp’s variable @caught is called @thrown in
Vimp. While @caught is read-only in Grimp—where it only refers to the currently han-
dled exception—@thrown can be assigned to in Vimp. This is how BYTEBACK makes
exceptional control flow explicit: assigning to @thrown an exception object e signals
that e has been thrown; and setting @thrown to void marks the current execution as
normal. Thus, BYTEBACK’s Vimp encoding sets @thrown := void at the beginning of a
program’s execution, and then manipulates the special variable to reflect the bytecode
semantics of exceptions as we outline in the following. With this approach, the Vimp
encoding of a try block simply results from encoding each of the block’s instructions
explicitly according to their potentially exceptional behavior.
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Throw Instructions. Transformation Vexc desugars throw instructions into explicit as-
signments to @thrown and jumps to the suitable handler. A throw e instruction within
the blocks of n traps t1, . . . , tn—handling exceptions of types E1, . . . , En with han-
dlers at labels h1, . . . , hn—is transformed into:

Vexc

(
throw e

)
=



@thrown := e;

if ¬(@thrown instanceof E1) goto skip1;

goto h1;

skip1 : if ¬(@thrown instanceof E2) goto skip2;

goto h2;

skip2 : if ¬(@thrown instanceof E3) goto skip3;
...

skipn−1 : if ¬(@thrown instanceof En) goto skipn;

goto hn;

skipn : return; // propagate exception to caller


The assignment to @thrown stores a reference to the thrown exception object e; then, a
series of checks determine if e has type that conforms to any of the handled exception
types; if it does, execution jumps to the corresponding handler.

Transformation Vexc also replaces the assignment e := @caught that Grimp puts at
the beginning of every handler with e := @thrown; @thrown := void, signaling that
the current exception is handled, and thus the program will resume normal execution.

Exceptions in Method Calls. A called method may throw an exception, which the
caller should propagate or handle. Accordingly, transformation Vexc adds after every
method call instructions to check whether the caller set variable @thrown and, if it did,
to handle the exception within the caller as if it had been directly thrown by it.

Vexc

(
m(a1, . . . , am)

)
=


m(a1, . . . , am);

if (@thrown = void) goto skip;

Vexc (throw @thrown)
skip : /* code after call */


Potentially Excepting Instructions. Some bytecode instructions may implicitly throw
exceptions when they cannot execute normally. In Fig. 2a’s running example, r.read()
throws a NullPointer exception if r is null; and the assignment to a[i] throws an
IndexOutOfBounds exception if i is not between 0 and a.length - 1. Transforma-
tion Vexc recognizes such potentially excepting instructions and adds explicit checks
that capture their implicit exceptional behavior. Let op be an instruction that throws an
exception of type Eop when condition Fop holds; Vexc transforms op as follows.

Vexc

(
op
)
=


if ¬Fop goto normal;

Vexc

(
e := new Eop();
throw e;

)
normal : op


By chaining multiple checks, transformation Vexc handles instructions that may

throw multiple implicit exceptions. For example, here is how it encodes the potentially
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excepting semantics of array lookup a[i], which fails if a is null or i is out of bounds.

Vexc

(
res := a[i]

)
=



if ¬(a = null) goto normal1;

Vexc

(
e1 := new NullPointerException();

throw e1;

)
normal1 : if ¬(0 ≤ i ∧ i < a.length) goto normal2;

Vexc

(
e2 := new IndexOutOfBoundsException();

throw e2;

)
normal2 : res := a[i];


3.4 Transformation Order and Boogie Code Generation
BYTEBACK applies the transformations V from Grimp to Vimp in a precise order that
incrementally encodes the full program semantics respecting dependencies.

Grimp Vexc Vagg Vinst Vloop Vimp B Boogie
BYTEBACK

Like raw bytecode, the source Grimp representation on which BYTEBACK operates
is a form of three-address code, where each instruction performs exactly one operation
(a call, a dereferencing, or a unary or binary arithmetic operation). i) BYTEBACK first
applies Vexc to make the exceptional control flow explicit. ii) Then, it aggregates expres-
sions using Vagg. iii) Transformation Vinst is applied next to every instruction; in turn,
Vinst relies on transformations Vexp, Vstm, and Vtype (presented in Sec. 3.2) to process
the expressions and types manipulated by the instructions (the instructions themselves
do not change, and hence Vinst’s definition is straightforward). iv) Finally, it applies
Vloop to encode loop invariants as intermediate assertions; since this transformation is
applied after Vexc, the loop invariants can be checked at all loop exit points—normal
and exceptional.

The very last step B of BYTEBACK’s pipeline takes the fully transformed Vimp pro-
gram and encodes it as a Boogie program. Thanks to Vimp’s design, and to the transfor-
mation V applied to Grimp, the Vimp-to-Boogie translation is straightforward. In addi-
tion, BYTEBACK also generates a detailed Boogie axiomatization of all logic functions
used to model various parts of JVM execution—which we described in greater detail
in previous work [20]. One important addition is an axiomatization of subtype relations
among exception types, used by Boogie’s instanceof function to mirror the semantics
of the homonymous Java operator. Consider the whole tree T of exception types used
in the program:2 each node is a type, and its children are its direct subtypes. For every
node C in the tree, BYTEBACK produces one axiom asserting that every child X of C is a
subtype of C (X⪯ C), and one axiom for every pair X, Y of C’s children asserting that any
descendant types x of X and y of Y are not related by subtyping (in other words, the sub-
trees rooted in X and Y are disjoint): ∀x, y : Type • x⪯ X ∧ y⪯ Y =⇒ x⪯̸ y ∧ y⪯̸x.

3.5 Implementation Details
BBlib as Specification Language. We are aware that BBlib’s syntax and conventions
may be inconvenient at times; they were designed to deal with the fundamental con-

2 Since the root of all exception types in Java is class Throwable—a concrete class—an excep-
tion type cannot be a subtype of multiple exception classes, and hence T is strictly a tree.
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EXCEPTING INSTRUCTIONS EXCEPTION CONDITION

dereferencing o._, o[i] NullPointerException o = null

array access a[i] IndexOutOfBoundsException ¬ (0 ≤ i ∧ i < a.length)

Table 3: Potentially excepting instructions currently supported by BYTEBACK.

straints that any specification must be expressible in the source code and still be fully
available for analysis in bytecode after compilation. This rules out the more practical
approaches (e.g., comments) adopted by source-level verifiers. More user-friendly no-
tations could be introduced on top of BBlib—but doing so is outside the present paper’s
scope.

Attaching Annotations. As customary in deductive verification, BYTEBACK models
calls using the modular semantics, whereby every called method needs a meaningful
specification of its effects within the caller. To support more realistic programs that call
to Java’s standard library methods, BBlib supports the @Attach annotation: a class S

annotated with @Attach(I.class) declares that any specification of any method in S

serves as specification of any method with the same signature in I. We used this mecha-
nism to model the fundamental behavior of widely used methods in Java’s, Scala’s, and
Kotlin’s standard libraries. As a concrete example, we specified that the constructors of
common exception classes do not themselves raise exceptions.

Implicit Exceptions. Sec. 3.3 describes how BYTEBACK models potentially excepting
instructions. The mechanism is extensible, and the current implementation supports the
ubiquitous NullPointer and IndexOutOfBounds exceptions, as shown in Tab. 3. Users
can selectively enable or disable these checks for implicitly thrown exceptions either
for each individual method, or globally for the whole program.

Dependencies. BYTEBACK is implemented as a command-line tool that takes as input
a classpath and a set E of class files within that path. The analysis collects all classes
on which the entry classes in E recursively depend—where “A depends on B” means
that A inherits from or is a client of B. After collecting all dependencies, BYTEBACK

feeds them through its verification toolchain (Fig. 1) that translates them to Boogie. In
practice, BYTEBACK is configured with a list of system packages—such as java.lang—
that are treated differently: their implementations are ignored (i.e., not translated to
Boogie for verification), but their interfaces and any specifications are retained to reason
about their clients. This makes the verification process more lightweight,

Features and Limitations. The main limitations of BYTEBACK’s previous version [20]
were a lack of support for exception handling and invokedynamic. As discussed in
the rest of the paper, BYTEBACK now fully supports reasoning about exceptional be-
havior. We also added a, still limited, support for invokedynamic: any instance of
invokedynamic is conservatively treated as a call whose effects are unspecified; fur-
thermore, we introduced ad hoc support to reason about concatenation and comparison
of string literal—which are implemented using invokedynamic since Java 9.3 A full
support of invokedynamic still belongs to future work.

3
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html

https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html
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Other remaining limitations of BYTEBACK’s current implementation are a limited
support of string objects, and no modeling of numerical errors such as overflow (i.e.,
numeric types are encoded with infinite precision). Adding support for all of these fea-
tures is possible by extending BYTEBACK’s current approach.

4 Experiments

We demonstrated BYTEBACK’s capabilities by running its implementation on a collec-
tion of annotated programs involving exceptional behavior in Java, Scala, and Kotlin.

4.1 Programs

Tab. 4 lists the 37 programs that we prepared for these experiments; all of them in-
volve some exceptional behavior in different contexts.4 More than half of the programs
(20/37) are in Java: 17 only use language features that have been available since Java 8,
and another 3 rely on more recent features available since Java 17. To demonstrate how
targeting bytecode makes BYTEBACK capable of verifying, at least in part, other JVM
languages, we also included 9 programs written in Scala (version 2 of the language),
and 8 programs written in Kotlin (version 1.8.0). Each program/experiment consists of
one or more classes with their dependencies, which we annotated with BBlib to spec-
ify exceptional and normal behavior, as well as other assertions needed for verification
(such as loop invariants). The examples total 7 810 lines of code and annotations, with
hundreds of annotations and 1 070 methods (including BBlib specification methods)
involved in the verification process. According to their features, the experiments can be
classified into two groups: feature experiments and algorithmic experiments.

Feature Experiments. Java 8 programs 1–7, Java 17 program 18, Scala programs
21–25, and Kotlin programs 30–33 are feature experiments: each of them exercises a
small set of exception-related language features; correspondingly, their specifications
check that BYTEBACK’s verification process correctly captures the source language’s
semantics of those features. For example, experiments 4, 24, and 32 feature different
combinations of try-catch blocks and throw statements that can be written in Java, Scala,
and Kotlin, and test whether BYTEBACK correctly reconstructs all possible exceptional
and normal execution paths that can arise. A more specialized example is experiment 5,
which verifies the behavior of loops with both normal and exceptional exit points.

Algorithmic Experiments. Java 8 programs 8–17, Java 17 programs 19–20, Scala pro-
grams 26–29, and Kotlin programs 34–37 are algorithmic experiments: they implement
classic algorithm that also use exceptions to signal when their inputs are invalid. The
main difference between feature and algorithmic experiments is specification: algorith-
mic experiments usually have more complex pre- and postconditions than feature ex-
periments, which they complement with specifications of exceptional behavior on the

4 We focus on these exception-related programs, but the latest version of BYTEBACK also verifies
correctly the 35 other programs we introduced in previous work to demonstrate its fundamental
verification capabilities.
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corner cases. For example, experiments 8, 26, and 34 implement array reversal algo-
rithms; their postconditions specify that the input array is correctly reversed; and other
parts of their specification say that they result in an exception if the input array is null.
Experiment 20 is an extension of Fig. 2’s running example, where the algorithm is a
simple stream-to-array copy implemented in a way that may give rise to various kinds
of exceptional behavior.

Experiments 16 and 17 are the most complex programs in our experiments: they
include a subset of the complete implementations of Java’s ArrayList and LinkedList

standard library classes,{4} part of which we annotated with basic postconditions and
a specification of their exceptional behavior (as described in their official documenta-
tion). In particular, ArrayList’s exceptional specification focuses on possible failures
of the class constructor (for example, when given a negative number as initial capac-
ity); LinkedList’s specification focuses on possible failures of some of the read meth-
ods (for example, when trying to get elements from an empty list). Thanks to BBlib’s
features (including the @Attach mechanism described in Sec. 3.5), we could add anno-
tations without modifying the implementation of these classes. Note, however, that we
verified relatively simple specifications, focusing on exceptional behavior; a dedicated
support for complex data structure functional specifications [9,22] exceeds BBlib’s cur-
rent capabilities and belongs to future work.

Implicit Exceptions. As explained in Sec. 3.5, users of BYTEBACK can enable or dis-
able checking of implicitly thrown exceptions. Experiments 2, 20, 22, and 31 check
implicit null-pointer exceptions; experiments 1, 20, 21, and 30 check implicit out-of-
bounds exceptions; all other experiments do not use any implicitly thrown exceptions,
and hence we disabled the corresponding checks.

4.2 Results

All experiments ran on a Fedora 36 GNU/Linux machine with an Intel Core i9-12950HX
CPU (4.9GHz), running Boogie 2.15.8.0, Z3 4.11.2.0, and Soot 4.3.0. To account for
measurement noise, we repeated the execution of each experiment five times and report
the average wall-clock running time of each experiment, split into BYTEBACK bytecode-
to-Boogie encoding and Boogie verification of the generated Boogie program. We ran
Boogie with default options except for experiment 19, which uses the /infer:j option
(needed to derive the loop invariant of the enhanced for loop, whose index variable is
implicit in the source code).

All of the experiments verified successfully. To sanity-check that the axiomatization
or any other parts of the encoding introduced by BYTEBACK are consistent, we also ran
Boogie’s so-called smoke test on the experiments;5 these tests inject assert false in
reachable parts of a Boogie program, and check that none of them pass verification.

As you can see in Tab. 4, BYTEBACK’s running time is usually below 1.5 seconds;
and so is Boogie’s verification time. Unsurprisingly, programs 16 and 17 are outliers,
since they are made of larger classes with many dependencies; these slow down both
BYTEBACK’s encoding process and Boogie’s verification, which have to deal with many
annotations and procedures to analyze and verify.

5 Smoke tests provide no absolute guarantee of consistency, but are often practically effective.
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# EXPERIMENT LANG ENCODING VERIFICATION SOURCE BOOGIE MET ANNOTATIONS

TIME [s] SIZE [LOC] P S E

1 Implicit Index Out of Bounds J 8 1.2 1.0 87 366 16 5 2 8

2 Implicit Null Dereference J 8 1.0 1.0 84 429 26 4 0 10

3 Multi-Catch J 8 1.2 0.9 67 311 10 1 1 4

4 Throw-Catch J 8 1.1 1.1 164 504 46 10 0 17

5 Throw-Catch in Loop J 8 1.1 1.0 97 398 11 1 0 9

6 Try-Finally J 8 1.0 1.0 125 386 15 2 4 6

7 Try-With-Resources J 8 1.3 1.2 199 1 635 26 3 4 13

8 Array Reverse J 8 1.1 1.1 72 221 9 5 3 2

9 Binary Search J 8 1.2 0.8 52 169 6 4 4 1

10 GCD J 8 1.1 0.8 50 200 6 3 1 1

11 Linear Search J 8 1.2 0.8 62 193 9 6 6 2

12 Selection Sort (double) J 8 1.2 1.9 110 234 16 9 9 3

13 Selection Sort (int) J 8 1.1 3.2 110 234 16 9 9 3

14 Square of Sorted Array J 8 1.1 0.8 61 187 7 4 1 1

15 Sum J 8 1.1 0.8 45 175 5 2 1 1

16 ArrayList J 8 5.7 5.7 2 653 7 160 294 14 0 24

17 LinkedList J 8 2.1 2.9 2 472 3 041 366 8 2 17

18 Try-With-Resources on Local J 17 1.0 0.9 44 220 6 1 1 1

19 Summary J 17 0.9 0.8 48 171 5 2 2 1

20 Read Resource J 17 1.1 0.8 117 447 14 12 6 7

21 Implicit Index Out of Bounds S 2 1.2 0.8 44 231 7 2 1 4

22 Implicit Null Dereference S 2 1.0 0.9 43 275 6 1 0 6

23 Multi-Catch S 2 1.2 0.9 45 297 7 1 1 2

24 Throw-Catch S 2 1.1 1.1 121 460 22 7 1 12

25 Try-Finally S 2 1.3 1.0 117 455 15 2 4 3

26 Array Reverse S 2 1.1 1.2 62 221 8 4 2 2

27 Counter S 2 1.2 0.8 48 183 8 3 3 4

28 GCD S 2 1.1 0.8 51 203 5 2 1 1

29 Linear Search S 2 1.0 0.8 46 155 6 4 3 1

30 Implicit Index Out of Bounds K 1.8 1.2 0.8 45 279 7 2 4 4

31 Implicit Null Dereference K 1.8 1.2 0.9 41 309 6 1 0 6

32 Throw-Catch K 1.8 1.2 1.1 121 442 22 7 0 12

33 Try-Finally K 1.8 1.3 1.0 108 409 15 2 4 3

34 Array Reverse K 1.8 1.2 1.0 60 226 8 4 2 2

35 Counter K 1.8 1.2 0.9 46 177 8 3 3 4

36 GCD K 1.8 1.1 0.8 50 202 5 2 1 1

37 Linear Search K 1.8 1.3 0.8 43 193 6 4 3 1

total 47.8 44.0 7 810 21 398 1 070 156 89 199
average 1.3 1.2 211 578 29 4 2 5

Table 4: Verification experiments with exceptional behavior used to demonstrate BYTE-
BACK’s capabilities. Each row reports: a numeric identifier # and a short description
of the EXPERIMENT; the source programming LANGuage (Java 8, Java 17, Scala 2,
Kotlin 1.8); the wall-clock time (in seconds) taken for ENCODING bytecode into Boo-
gie, and for the VERIFICATION of the Boogie program; the size (in non-empty lines of
code) of the SOURCE program with its annotations, and of the generated BOOGIE pro-
gram; the number of METhods that make up the program and its BBlib specification; and
the number of ANNOTATIONS introduced for verification, among: specification predi-
cates P (@Predicate), pre- and postconditions S (@Require, @Ensure), and exception
annotations E (@Raise, @Return).
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Only about 11% of the time listed under Tab. 4’s column ENCODING is taken by
BYTEBACK’s actual encoding; the rest is spent to perform class resolution (Sec. 3.5)
and to initialize Soot’s analysis—which dominate BYTEBACK’s overall running time.

5 Related Work

The state-of-the-art deductive verifiers for Java include OpenJML [6], KeY [1], and
Krakatoa [7]; they all process the source language directly, and use variants of JML
specification language—which offers support for specifying exceptional behavior.

Exceptional Behavior Specifications. Unlike BBlib, where postconditions can refer
to both exceptional and normal behavior, JML clearly separates between the two, us-
ing ensures and signals clauses (as demonstrated in Fig. 6). These JML features are
supported by OpenJML, KeY, and Krakatoa according to their intended semantics.

//@ ensures this.a == a;
//@ signals (Throwable) this.a == a;
public void m(int a)
{ this.a = a; if (ϵ) throw new RuntimeException(); }

@Ensure(this.a = a)
public void m(int a)
{ this.a = a;
if (ϵ) throw new RuntimeException(); }

Fig. 6: Equivalent exceptional specifications in JML (left) and BBlib (right).

Implicit Exceptional Behavior. Implicitly thrown exceptions, such as those occurring
when accessing an array with an out-of-bounds index, may be handled in different ways
by a verifier: i) ignore such exceptions; ii) implicitly check that such exceptions never
occur; iii) allow users to specify these exceptions like explicit ones. OpenJML and
Krakatoa [12] follow strategy ii), which is sound but loses some precision since it won’t
verify some programs (such as Sec. 2’s example); KeY offers options to select any of
these strategies, which gives the most flexibility; BYTEBACK offers options i) and iii),
so that users can decide how thorough the analysis of exceptional behavior should be.

Java Exception Features. OpenJML, KeY, and Krakatoa [7] all support try-catch-
finally blocks, which have been part of Java since its very first version. The first sig-
nificant extension to exceptional feature occurred with Java 7, which introduced multi-
catch and try-with-resources blocks.{5} KeY and Krakatoa support earlier versions of
Java, and hence they cannot handle either feature. OpenJML supports many features
of Java up to version 8, and hence can verify programs using multi-catch or try-with-
resources—with the exception of try-with-resources using an existing final variable,
a feature introduced only in Java 9. As usual, our point here is not to criticize these
state-of-the-art verification tools, but to point out how handling the proliferation of
Java language features becomes considerably easier when targeting bytecode follow-
ing BYTEBACK’s approach.

Intermediate Representation Verifiers. A different class of verifiers—including Jay-
Horn [10, 25], SeaHorn [8], and SMACK [23]—target intermediate representations
(JVM bytecode for JayHorn, and LLVM bitcode for SeaHorn and SMACK). Besides
this similarity, these tools’ capabilities are quite different from BYTEBACK’s: they im-
plement analyses based on model-checking (with verification conditions expressible
as constrained Horn clauses, or other specialized logics), which provide a high degree
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of automation (e.g., they do not require loop invariants) to verify simpler, lower-level
properties (e.g., reachability). Implicitly thrown exceptions are within the purview of
tools like JayHorn, which injects checks before each instruction that may dereference
a null pointer, access an index out of bounds, or perform an invalid cast. In terms of
usage, this is more similar to a specialized static analysis tool that checks the absence
of certain runtime errors [2, 4, 21] than to fully flexible, but onerous to use, deductive
verifiers like BYTEBACK.

BML [5] is a specification language for bytecode; since it is based on JML, it is
primarily used as a way of expressing a high-level Java behavioral specification at the
bytecode level. This is useful for approaches to proof-carrying code [18] and proof
transformations [16], where one verifies a program’s source-code and then certifies its
bytecode compilation by directly transforming the proof steps.

6 Conclusions

Reasoning about exceptional behavior at the level of Java bytecode facilitates handling
exception-related features in any version of Java, as well as in other JVM languages
like Scala and Kotlin. More generally, the BYTEBACK approach that we extended in this
paper can complement the core work in source-level deductive verification and make it
readily available to the latest languages and features.
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