
An Annotation-based Approach for Finding Bugs in Neural Network Programs

Mohammad Rezaalipour, Carlo A. Furia

aSoftware Institute, USI Università della Svizzera italiana, Lugano, Switzerland

Abstract

As neural networks are increasingly included as core components of safety-critical systems, developing effective testing techniques
specialized for them becomes crucial. The bulk of the research has focused on testing neural-network models; but these models are
defined by writing programs, and there is growing evidence that these neural-network programs often have bugs too.

This paper presents aNNoTest: an approach to generating test inputs for neural-network programs. A fundamental challenge is
that the dynamically-typed languages (e.g., Python) commonly used to program neural networks cannot express detailed constraints
about valid function inputs (e.g., matrices with certain dimensions). Without knowing these constraints, automated test-case gen-
eration is prone to producing invalid inputs, which trigger spurious failures and are useless for identifying real bugs. To address
this problem, we introduce a simple annotation language tailored for concisely expressing valid function inputs in neural-network
programs. aNNoTest takes as input an annotated program, and uses property-based testing to generate random inputs that satisfy
the validity constraints. In the paper, we also outline guidelines that simplify writing aNNoTest annotations.

We evaluated aNNoTest on 19 neural-network programs from Islam et al’s survey [1], which we manually annotated following
our guidelines—producing 6 annotations per tested function on average. aNNoTest automatically generated test inputs that revealed
94 bugs, including 63 bugs that the survey reported for these projects. These results suggest that aNNoTest can be a valuable
approach to finding widespread bugs in real-world neural-network programs.

1. Introduction

Neural networks have taken the (programming) world by storm.
With their capabilities of solving tasks that remain challenging
for traditional software, they have become central components
of software systems implementing complex functionality such
as image processing, speech recognition, and natural language
processing, where they can reach performance at or near hu-
man level. These tasks are widely applicable to domains such
as automotive and healthcare, where safety, reliability, and cor-
rectness are critical. Therefore, the software engineering (re-
search) community has been hard at work designing techniques
to assess and ensure the dependability of software with neural
network (NN) components.

Testing techniques, in particular, are being extensively de-
veloped to cater to the specific requirements of NN (and, more
generally, machine learning) systems [2]. Most of this re-
search focuses on testing NN models: instances of a specific
NN architecture, trained on some data and then used to clas-
sify or transform new data. Testing a NN model entails as-
sessing qualities such as its robustness and performance as a
classifier. However, neural networks are programs too: a NN
model is usually implemented in a programming language like
Python, using frameworks such as Keras or TensorFlow. There
is clear evidence that these neural network programs tend to
be buggy [1, 3]; therefore, a technique for finding these bugs
would be practically very useful and complement the extensive
work on NN model testing [4]. This paper presents a novel
contribution in this direction.

NN programs may seem simple by traditional metrics of

complexity: for example, the average project size of the NN
projects surveyed by Islam et al. [1] is just 2165 lines of code;
and the majority of the bugs they found are relatively simple
ones such as crashes and API misuses. Nevertheless, other
characteristics make traditional test-case generation techniques
ineffective to test such programs. NN programs are written
in dynamically typed languages like Python, where the type
of variables is unknown statically. Without this information,
generating valid inputs is challenging for generic techniques
such as random testing and genetic algorithms [5]. Even if
type annotations were available, NN programs routinely ma-
nipulate complex data structures—such as vectors, tensors, and
other objects—whose precise “shape” is not expressible with
the standard types (integers, strings, and so on). As we demon-
strate in Sec. 2 and Sec. 4.3.4, without such precise information
automated test case generation tends to generate many invalid
inputs that trigger spurious failures.

This paper presents aNNoTest: an approach to automatically
generating bug-finding inputs for NN program testing. A key
component of aNNoTest (described in Sec. 3) is aN: a simple
annotation language to concisely and precisely express the valid
inputs of functions in NN programs. The aN language supports
expressing the kinds of constraints that are needed in NN pro-
grams (for example: a variable should be a vector of size from 2
to 5 with components that are positive integers). aN is also eas-
ily extensible to accommodate other constraints that a specific
NN program may need to encode.

Given an annotated NN program, aNNoTest automatically
generates unit tests for the program that span the range of valid

inputs. To this end, the current implementation of aNNoTest
uses property-based testing (more precisely, the Hypothesis [6]
test-case generator). Using the aN language decouples spec-
ifying the constraints from the back-end used to generate the
actual tests; therefore, different back-end tools could also be
used that better suite the kinds of constraints used in a project’s
annotations.

Sec. 4 describes an extensive experimental evaluation of
aNNoTest, targeting 19 open-source NN programs, manually
analyzed by Islam et al. [1], using some of the most widely
used NN frameworks (Keras, TensorFlow, and PyTorch). Af-
ter we manually annotated 24 functions, aNNoTest generated
tests triggering 63 known bugs reported by Islam et al. [1] for
these functions, as well 31 previously unknown bugs. To ex-
periment with aNNoTest’s capabilities when used extensively,
we also annotated all functions in two larger NN projects; the
total of 330 annotations that we wrote enabled aNNoTest to dis-
cover 50 bugs with only 6 false positives. These experiments
demonstrate that aNNoTest can be used both extensively on
a whole project, and opportunistically on only a few selected
functions that are critical. Since our evaluation is based on Is-
lam et al. [1]’s extensive survey, it can assess aNNoTest’s ca-
pabilities of finding relevant bugs in real-world NN programs.
In other experiments, we quantify the amount of annotations
needed by aNNoTest, compare it to generic (non NN-specific)
test-case generators for Python, as well as to developer-written
tests, so as to better understand the trade-off between program-
mer effort and quality assurance benefits it offers.

In summary, this paper makes the following contributions:

• aNNoTest: an approach for test-case generation geared to
the characteristics of NN programs.

• aN: a simple annotation language capable of concisely ex-
pressing precise constraints on the valid inputs of func-
tions in NN programs, with basic guidelines to use it.

• An experimental evaluation of aNNoTest’s bug-finding ca-
pabilities on 19 open-source NN projects surveyed by Is-
lam et al. [1].

• For reproducibility, the implementation of aNNoTest and
all experimental artifacts are publicly available:

https://figshare.com/s/00ef658a6a51cccbaed6

In the paper, we refer to several URLs in order to document
specific parts of a project’s source code. We introduce these ref-
erences by means of superscript numeric marks, and list them
at the end of the paper after the usual bibliographic references.
These superscripts are in blue between curly braces{1} so that
they can be easily distinguished from regular footnotes.

Scope. While aNNoTest is applicable, in principle, to any
Python programs—not just NN programs— it was designed to
primarily cater to the characteristics of NN programs. As we
will see concretely with Sec. 2’s example, NN programs often
involve complex constraints on their inputs, which are impossi-
ble or highly impractical to express using Python’s type hints

annotations. aNNoTest provides annotations that go beyond
type hints, and hence are especially useful for the kinds of con-
straints that we commonly find in NN programs. On the other
hand, being able to express complex constraints is not sufficient
to build tests automatically; as we will see in Sec. 4.3.4, gen-
erating inputs that satisfy the constraints is challenging; simple
strategies such as generating input at random and then filtering
them using the constraints are mostly ineffective. aNNoTest de-
fines suitable generators for each of its constraints, so that valid
inputs can be generated efficiently and automatically even for
the complex combinations of input constraints that are common
in NN programs.

2. An Example of Using aNNoTest

DenseNet{2} is a small Python library that implements densely
connected convolutional networks [7] (a NN architecture where
each layer is directly connected to every other layer) on top of
the Keras framework. Lst. 1 shows a slightly simplified excerpt
of function DenseNet—the main entry point to the library—in
an earlier version of the project.{3}

The complete implementation of function DenseNet com-
prises 34 lines of code (excluding comments and empty lines),
and follows a straightforward logic: after checking the input
arguments (code in Lst. 1), it combines suitable instances of
Keras classes to model a densely connected network, and fi-
nally returns a model object to the caller. Lst. 1’s code, how-
ever, has a bug at line 11—one of the bugs collected in Islam
et al. [1]’s survey. The expression assigned to dense_layers

is a floating point number because the division operator / al-
ways returns a float in Python 3; however, if dense_layer is
not an integer, a later call in DenseNet’s code to the Keras li-
brary fails. DenseNet’s developers discovered the bug and fixed
it (by adding an int conversion at line 11) in a later project re-
vision.{4}

DenseNet’s implementation is deceptively simple: despite its
small size and linear structure, it only accepts input arguments
in very specific ranges. Argument input_shape, for example,
corresponds to a so-called shape tuple of integers; in DenseNet,
it should be a triple of integers with first element at least 20.
If the first element is less than 20, DenseNet eventually fails
while trying to create a layer with a negative dimension—which
violates an assertion of the Keras library. Another example is
argument dense_layers, which can be an integer or an inte-
ger list; if it is the latter, its length must be equal to argument
dense_block, or DenseNet terminates at line 9 with an asser-
tion violation.

Without knowing all these details about valid inputs, testing
DenseNet using a general-purpose automated test-case genera-
tor would trigger lots of spurious failures1 when executing tests

1For example, Pynguin [5] generates 8 tests, all invalid and none triggering
the failure at line 11. With type hints (supported by Pynguin), it generates 5
tests, 4 invalid and none triggering (any) failure. Sec. 4.3.4 describes more
experiments with Pynguin. (As we discuss in Sec. 4.1, Pynguin doesn’t work
with the version of TensorFlow used by Lst. 1’s code; thus, we mocked the
relevant library calls in this example.)

2

https://figshare.com/s/00ef658a6a51cccbaed6

1 def DenseNet(input_shape=None, dense_blocks=3, dense_layers=-1, growth_rate=12, nb_classes=None,

2 dropout_rate=None, bottleneck=False, compression=1.0, weight_decay=1e-4, depth=40):

3 if nb_classes == None:

4 raise Exception(’Please define number of classes’)

5 if compression <= 0.0 or compression > 1.0:

6 raise Exception(’Compression must be between 0.0 and 1.0.’)

7 if type(dense_layers) is list:

8 if len(dense_layers) != dense_blocks:

9 raise AssertionError(’Dense blocks must be the same as layers’)

10 elif dense_layers == -1:

11 dense_layers = (depth - 4) / 3 # Bug: division / returns a float

12 # ... 23 more lines of code ...

Listing 1: An excerpt of function DenseNet from project DenseNet. The code has a bug on line 11.

13 @arg(input_shape): tuples(ints(min=20, max=70), ints(min=20, max=70), ints(min=1, max=3))

14 @arg(dense_blocks): ints(min=2, max=5)

15 @arg(dense_layers): anys(-1, ints(min=1, max=5), int_lists(min_len=2, max_len=5, min=2, max=5))

16 @arg(growth_rate): ints(min=1, max=20)

17 @arg(nb_classes): ints(min=2, max=22)

18 @arg(dropout_rate): floats(min=0, max=1, exclude_min=True, exclude_max=True)

19 @arg(bottleneck): bools()

20 @arg(compression): floats(min=0, max=1, exclude_min=True)

21 @arg(weight_decay): floats(min=1e-4, max=1e-2)

22 @arg(depth): ints(min=10, max=100)

23 @require(type(dense_layers) is not list or len(dense_layers)==dense_blocks)

Listing 2: aN annotations for function DenseNet in Lst. 1.

that call DenseNet with invalid inputs. The few failing but valid
tests that trigger bugs such as that in Lst. 1 would be a needle in
the haystack of all invalid tests, thus essentially making auto-
mated test-case generation of little help to speed up the search
for bugs.

To precisely and concisely express the complex constraints
on valid inputs that often arise in NN programs, we designed
the aN annotation language—which is a central component of
the aNNoTest approach. Lst. 2 shows annotations written in aN2

that characterize DenseNet’s valid inputs. Whereas Sec. 3 will
present aN’s features in greater detail, it should not be hard to
glean the meaning of the annotations in Lst. 2. For example,
the first annotation encodes the aforementioned constraint on
input_shape, and the last one expresses the relation between
dense_layers and dense_blocks when the former is a list. It
should also be clear that aN’s expressiveness is much greater
than what is allowed by the standard programming-language
types—such as Python’s type hints.{5}

Equipped with the annotations in Lst. 2, aNNoTest generates
and runs 36 unit tests for DenseNet in 53 seconds. All the tests
are valid, and only one is failing, reaching Lst. 1’s line 11 and
then ending with a failure due to dense_layers being a float
that we described above—precisely revealing the bug.

The experimental evaluation of aNNoTest—described in

2The aN annotations in the paper use a pretty-printed and slightly simplified
syntax.

Sec. 4—will analyze many more NN programs whose char-
acteristics, input constraints, and faulty behavior are along the
same lines as the example discussed in this section. This will
demonstrate aNNoTest’s capabilities of precisely testing and
finding bugs in NN programs.

3. How aNNoTest works

Fig. 1 overviews the overall process followed by the aNNoTest
approach. To test a NN program with aNNoTest, we first have
to annotate its functions (including member functions, that is
methods) using the aN annotation language (Sec. 3.1). This
is the only step that is manual, since the annotations have to
encode valid inputs of the tested functions—the same kind of
information that is needed to write unit tests. Sec. 3.2 provides
guidelines that help structure the manual annotation process so
that it only requires a reasonable amount of effort; furthermore,
users do not need to annotate a whole program but only those
functions that they want to test with aNNoTest. Then, the aNNo-
Test tool takes as input an annotated program and generates unit
tests for it. To this end, it encodes the constraints expressed by
the aN annotations in the form of test templates for the property-
based test-case generator Hypothesis (Sec. 3.4); then, it runs
Hypothesis which takes care of generating suitable tests. Fi-
nally, the generated unit tests can be run as usual to find which
are passing and which are failing—and thus expose some bugs
in the NN program (Sec. 3.5).

3

NN program aN annotations

Test templates

Test suite
Ë passing tests
é failing tests

annotate g

aNNoTest tool

Hypothesis tool
run

Figure 1: An overview of how the aNNoTest approach works.

3.1. The aN Annotation Language
By writing annotations in the aN language, developers can pre-
cisely express the valid inputs of a function in a NN program.3

To this end, aN provides type annotations (Sec. 3.1.1) and pre-
conditions (Sec. 3.1.3), as well as an extension mechanism to
define arbitrarily complex constraints (Sec. 3.1.2). In addition,
aN offers a few auxiliary annotations (Sec. 3.1.4), which encode
other kinds of information that is practically useful for test-case
generation.

3.1.1. Type Annotations
A type annotation follows the syntax @arg(v):T , where v is a
function argument (parameter), and T is a type constraint that
specifies a set of possible values for v. A type annotation refers
to the function that immediately follows it in the source code.
A function can have up to as many type annotations as it has
arguments.
aN supports several different type constraints, which can ex-

press a broad range of constraints—from simple ones, such
as those that are also expressible using Python’s type hints,
up to complex instances of special-purpose classes. The sim-
plest, and most specific, type constraint uses keyword froms4

to enumerate a list of valid values. For example, constraint
froms([0, 0.0, None, zero()]) corresponds to any of the
four values: integer zero, floating-point zero, None, and what is
returned by the call zero().

Constraints for atomic types specify that an argument is a
Boolean (bools), an integer number (ints), or a floating-point
number (floats). Integer arguments can be restricted to a range
between min and max values; for example, Lst. 2’s line 17 con-
strains nb_classes to be an integer between 2 and 22. Floating-
point arguments can also be restricted to ranges, and the ranges
can be open, closed, or half-open; for example, Lst. 2’s line 20
constrains compression to be a number in the half-open inter-
val (0, 1] which includes 1 but excludes 0. Floating-point con-
straints also support including or excluding the special values
NaN and Inf, as well as the precision (in bits) of the generated
floating point values.

3Directly annotating the source code, rather than having a separate generator
used only when testing, also helps keep the annotations consistent with the
implementation.

4aN type constraints use names that are “pseudo-plurals” (by adding a trail-
ing s) of the corresponding Python types. This avoids using reserved keywords
and also conveys the idea that a type constraint identifies a set of values. This
convention is also customary in property-based testing [8].

Constraints for sequences specify that arguments are Python
lists, tuples, or an array in the NumPy{6} library (which is
widely used in NN programs, as well as other data-intensive ap-
plications). Lists and tuples can have any number of elements,
whose possible values are also constrained using aN’s type con-
straints. For example, Lst. 2’s line 13 specifies a tuple with
3 integer elements: the first and second one between 20 and
70, and the third one between 1 and 3. aN also includes short-
hands for lists with homogeneous elements: Lst. 2’s line 15
uses shorthand int_lists to specify lists of length between 2
and 5, whose elements are integers between 2 and 5.

The shape of a NumPy array is a tuple of positive in-
tegers that characterize its size. For example, the tu-
ple (256, 256, 3) is the shape of a 3-dimensional array
whose first two dimensions have size 256 and whose last
dimension has size 3; arrays with this shape can represent
256x256 pixel color pictures. Type constraint np_shapes

specifies arguments that represent shapes with a certain
range of possible dimensions and sizes. For example,
np_shapes(min_dims=3, max_dims=3) are the shapes of all 3-
dimensional arrays whose dimensions can have any size.

Type constraint np_arrays specifies NumPy array argu-
ments with any shape and whose elements have any of
the valid NumPy types. The shape can be constrained
by an np_shapes annotation or given directly as a tu-
ple. For example, using the shape mentioned in the
previous paragraph, np_arrays(np_type=dtype("uint32"),
shape=(256,256,3)) specifies 256x256x3 arrays whose com-
ponents are unsigned 32-bit integers (one of NumPy’s data-
types), which could represent random color pictures.

Type constraints for maps specify Python’s widely used
associative dictionaries: dicts(K,V, min_size, max_size)

corresponds to all subsets of the Cartesian product K × V with
between min_size and max_size elements, where K and V
are type constraints that apply to the keys and values respec-
tively. A typical usage of this is to constraint Python’s optional
keyword argument **kwargs. For example, Lst. 3 shows how
we used dicts to constrain the **kwargs argument of function
dim_ordering_reshape{7} (from a project using NN models to
simulate multi-player games), so that it simply consists of all
mappings from string "input_shape" to singletons represent-
ing the shapes of monodimensional arrays.

To express the unions of several type constraints, aN includes
the anys type constraint, which specifies the union of its argu-
ments. For example, Lst. 2’s line 15 says that dense_layers
can be any of: (i) the number −1, (ii) an integer between 1 and
5, or (iii) an integer list with between 2 and 5 elements that are
between 2 and 5.

3.1.2. Custom Generators
While aN’s type annotations can define a broad range of fre-
quently used constraints, they cannot cover all cases that one
may encounter in practice. To support arbitrary type con-
straints, aN includes the objs(gen) annotation. This is used as
a type constraint, and identifies all values that are produced by
the user-provided generator function gen. Function gen must

4

24 @arg(k): ints(min=1, max=1000)

25 @arg(w): ints(min=1, max=1000)

26 @arg(kwargs): dicts(keys=froms(["input_shape"]), values=np_shapes(min_dims=1, max_dims=1))

27 def dim_ordering_reshape(k, w, **kwargs):

Listing 3: An example of aN annotations for a function with keyword arguments.

28 @arg(generator): objs(gan_gens)

29 @arg(discriminator): objs(gan_discs)

30 @arg(name): froms(["gan1", "gan2", "gan3",

31 "gan4", "gan5"])

32 def build_gan(generator, discriminator,

33 name="gan"):

34 # ...

35
36 @generator

37 @exclude

38 @arg(latent_dim): ints(min_value=1,

39 max_value=1000)

40 @arg(input_shape): np_shapes(min_dims=2)

41 def gan_gens(latent_dim, input_shape):

42 from examples.example_gan import

model_generator

43 generator = model_generator(latent_dim,

44 input_shape)

45 return generator

Listing 4: An example of using type constraint objs and a custom generator
function.

be visible at the entry of the functions whose annotations refer
to it; gen itself is marked with the annotation @generator.

For instance, Lst. 4 shows the annotations we wrote for func-
tion build_gan{8} (from the same project as Lst. 3). The func-
tion combines two Keras model instances, generator5 and
discriminator, to build GANs (Generative Adversarial Net-
works [9]). These instances are complex objects that are built
by calls to the Keras library; therefore, we introduced two cus-
tom generators, gan_gens and gan_discs, that construct such
instances for testing build_gan. Lst. 4 shows gan_gens’s im-
plementation: the generator’s input are constrained by using
aN’s type annotations as usual; aNNoTest will use gan_gens’s
output as input for build_gan.

Whereas generators such as gan_gens may look daunting
to write at first, we found that they simply encapsulate ex-
isting snippets of the project that call the function under test
(build_gan in Lst. 4). Based on this observation, Sec. 3.3
presents a simple process to build generators by combining
common refactoring steps; this drastically alleviates the effort
to write generators, reducing it to just selecting the right snip-
pets of client code in the project.

5It is just a coincidence that one argument is also named “generator”.

46 @arg(image_path):

47 froms(["image1.png", "image2.png",

48 "image3.png", "image4.png"])

49 @arg(generator): objs(grids)

50 @arg(cmap):

51 froms([’gray’, ’bone’, ’pink’,

52 ’spring’, ’summer’, ’cool’])

53 @cc_example(["image1.png",

54 grids(3, 6, 6, 3), ’gray’])

55 def __init__(self, image_path,

56 generator, cmap=’gray’):

57 # ...

Listing 5: An example of using the cc_example auxiliary annotation on the
constructor of class ImageGridCallback.

3.1.3. Preconditions
Argument annotations constrain each function argument indi-
vidually. Preconditions may express constraints that affect mul-
tiple arguments simultaneously: @require(P), where P is a
Python Boolean expression, specifies that a function’s argu-
ments must be such that P evaluates to true. A precondition
refers to the function that immediately follows it in the source
code. Expression P may refer to any arguments of the spec-
ified function, as well as to any other program element that
is visible at the function’s entry (such as other class mem-
bers). A function can have any number of preconditions, all of
which constraint the function’s argument. For example, Lst. 2’s
line 23 requires that, whenever argument dense_layer is a list,
it should have as many elements as the value of integer argu-
ment dense_blocks.

3.1.4. Auxiliary Annotations
The aN language includes a few more features to control the
test-generation process. Functions marked with @exclude are
not tested (such as generator gan_gens in Lst. 4). Annotation
@timeout introduces a timeout to the unit tests generated for
the function it refers to.

Python modules may include snippets of code that is not in-
side any functions or methods but belongs to an implicit “main”
environment. aNNoTest will generate tests for this environment
for any module that is annotated with @module_test. Since
modules don’t have arguments, these tests simply import and
execute the main environment. This is a simple feature, but
practically useful since some of the NN program bugs that were
surveyed [1] are located in the main environment.

To test an instance method m, one needs to generate an in-
stance o of m’s class C to use as target of the call to m. To this end,

5

C’s constructor is called. The constructor may also be equipped
with aN annotations; as a result, testing m entails also testing C’s
constructor. This can be a problem if the constructor has bugs
that prevent a correct execution of m. To handle this scenario,
aN includes the annotation @cc_example, which supplies a con-
structor with a list of concrete inputs for it. If C’s constructor is
equipped with this annotation, aNNoTest will only call it using
the inputs given by the @cc_example annotation when it needs
to create instances to test any methods of C. This way, one can
effectively decouple testing a class’s constructor from testing
the class’s (regular) methods, so that any bugs in the former
do not prevent testing of the latter. For example, the construc-
tor of class ImageGridCallback{9} shown in Lst. 5 is regularly
tested through its type annotations; however, when it is used
to construct instances of the class to test other methods, it is
only called with the more restricted set of inputs specified by
the @cc_example annotation. The example also demonstrates
that a generator function (grids in this case) can also be used
as a regular function (second component of @cc_example).

3.2. Annotation Guidelines

To test a NN program using aNNoTest, one must first anno-
tate the functions to be tested using the language described
in Sec. 3.1. Ultimately, writing suitable annotations requires
knowledge about the program’s specification—that is, its in-
tended behavior. The very same knowledge is necessary to
write unit tests for the programs; the only difference is that a
test supplies individual (valid) inputs, whereas an annotation
can capture a range of possible (valid) inputs.

This entails that the effort of writing annotations (or tests)
for a project depends on whether the programmer already has
this knowledge—typically, because they are developers of the
project under test—or is trying to test a project they are not
familiar with. In this section, we focus on the latter, more
challenging scenario. To help such a process of “discovery”—
figuring out suitable annotations for NN programs written by
others—and to make it cost-effective, we present some simple
guidelines that suggest which artifacts to inspect and in which
order. In the experiments described in Sec. 4, we followed these
guidelines to annotate NN projects systematically and with rea-
sonable effort—despite our previous lack of familiarity with
those codebases.

Consider a Python function f in some NN project P that we
would like to test. If f’s behavior (and, in particular, the con-
straints on its inputs) is documented in the project, this docu-
mentation should be the first source of information to write aN
annotations. However, if f lacks any (precise) documentation,6

we will have to inspect its implementation. Tab. 1 lists four
sources of information about f’s valid inputs in increasing level
of detail.

To bootstrap the process, we inspect any usage of f within
the NN program P. Since we focus on testing programs,
not libraries, it’s likely that every major function is called

6Many of the NN programs we used in Sec. 4’s experiments are sparsely
documented.

source annotations

1 calls of f in its project P basic type annotations @arg
2 assertions and exceptions

raised by f’s implementation
refined type annota-
tions @arg, preconditions
@require

3 calls of NN framework func-
tions in f’s implementation

refined type annota-
tions @arg, preconditions
@require,
custom generators

4 calls of other functions g in P annotations of g

Table 1: Guidelines to inspect the implementation of a NN function f to suggest
how to annotate it using aN’s annotation language. Each source of information
in f or elsewhere in f’s project P suggests matching aN annotations.

somewhere in P. These calls of f provide basic examples of
valid inputs, which we loosely encode using aN’s type annota-
tions of Sec. 3.1.1. In Lst. 1’s example, looking at usages of
DenseNet indicates that input_shape should be a triple of int,
compression should be a float, and so on.7

Next, we look into f’s implementation for any (implicit or
explicit) input validation. Often, a function uses exceptions or
assertions to signal invalid input arguments. This information
is useful to refine the basic type annotations, and may also sug-
gest constraint that involve multiple arguments—which we can
encode using aN’s preconditions of Sec. 3.1.3. In Lst. 1’s ex-
ample, DenseNet’s initial validation clearly indicates, among
other things, compression’s precise interval of validity, and the
precondition on line 23 in Lst. 2.

The library functions from some NN framework used in f’s
implementation may also (indirectly) introduce requirements
on f’s inputs or otherwise suggest plausible ranges of variabil-
ity. Indirect constraints may be more complex, and may even
require custom generators (Sec. 3.3). In the running example, a
call to Keras’s Convolution2D constructor in DenseNet (not in
Lst. 1) suggests the range for argument weight_decay at line 21
in Lst. 2.

Whenever f’s implementation calls other functions in the
same project, this process can be repeated for these other func-
tions, thus ensuring the consistency of the other functions’
and f’s annotations. In the running example, DenseNet calls
in a loop another function dense_block in the same project,
passing growth_rate as argument and then incrementing it in
each iteration. The input constraints of dense_block, once fig-
ured out, indirectly suggest the validity range for DenseNet’s
growth_rate at line 16 in Lst. 2.

The guidelines we described are flexible and remain useful
even if they are not followed in full. For example, sometimes
we found it useful to start from very narrow annotations (merely
encoding the available examples of usages of f in P) and relax
them as we discovered more information—rather than going
from basic to specific as we did in most examples—since this

7For example, the README.md file in DenseNet’s repository presents an ex-
ample of using function DenseNet where argument input_shape is set to the
triple (28, 28, 1).

6

allowed us to generate some sample tests early on. The guide-
lines are also applicable with different levels of exhaustiveness,
regardless of whether your goal is to annotate as much as possi-
ble in a project, or just test a few selected functions. In the for-
mer case, it is advisable to start annotating the simplest, shortest
functions, so that their annotations can then suggest how to an-
notate the more complex, longer ones.

3.3. Building Custom Generators by Refactoring
As presented in Sec. 3.1.2, annotation @arg(a): @objs(f) tells
aNNoTest to use a custom generator function f in order to build
suitable inputs for some argument a. In principle, f may be
an arbitrarily complex piece of code; in practice, we found that
the very projects we are annotating already include snippets of
code that can be reused as generators of complex objects. In
this section, we demonstrate, on an example, how to build such
generators by applying a few refactoring operations to the rele-
vant snippets of code. Modern IDEs such as PyCharm{10} can
automate such refactoring steps. This drastically reduces the
effort of building custom generators to just selecting the right
snippets of code and doing some copy-pasting in the IDE.

Lst. 6 shows the signature of function G_convblock{11} in
project GANS (described in Sec. 4.1); the first function ar-
gument net expects objects encoding Keras network architec-
tures. This complex type is not directly supported by aN’s built-
in annotations; thus, we should define a custom generator func-
tion generator_G_convblock that builds valid instances of the
type.

To this end, we first look for any client code of G_convblock.
Another function Generator in project GANS, shown in Lst. 7,
calls G_convblock (line 85) after building a suitable network ar-
chitecture object (line 83). Thus we can use parts of Generator
to build generator_G_convblock: the “extract function” refac-
toring{12} applied to lines 75–83 in Lst. 7 outputs Lst. 8’s gen-
erator function. Now, generator_G_convblock is a new func-
tion, which we can annotate like any other functions that is pro-
cessed by aNNoTest.

In this example it was easy to identify a contiguous sequence
of statements and extract it into a generator function. In other
cases, the relevant client code may mix statements useful for
the generator with others that pertain to a different function-
ality. In these cases, we can simply extract a larger snippets
of code, and then refactor it to remove unused statements. In
Lst. 7’s example, we could extract all lines 66–83 into a new
function; then, all statements before line 75 are not used by the
final line 83, and thus can be removed from the generator (lead-
ing to the same generator as in Lst. 8). In all the experiments
of this paper, these simple refactoring steps were sufficient to
build all necessary custom generator functions.

3.4. Test Generation
The annotations written in the aN language supply all the in-
formation that is needed to generate unit tests for every anno-
tated function. In principle, we could use any technique for
test-case generation and then filter any generated tests, keeping
only those that comply with the annotations. However, the ex-
periments reported in Sec. 4.3.4 indicate that such an aimless

strategy would be inefficient, especially given the dynamically
typed nature of Python.

Instead, aNNoTest uses property-based test-case generation
to actively match the constraints introduced by aN annotations.
More precisely, the current implementation of aNNoTest uses
the Hypothesis property-based test-case generator{13} through
its API. To test a Python function using Hypothesis, we have to
write a test template, which consists of a parametric unit test
method that calls a collection of strategies. A strategy is a sort
of generator function, which outputs values of a certain kind. A
parametric test method calls some of the strategies, combines
their outputs, and uses them to call the function under test.
aNNoTest automatically builds a suitable Hypothesis strategy

for each @arg annotation. Hypothesis provides built-in strate-
gies that cover basic type annotations, such as Python’s atomic
types and tuples. aNNoTest reuses the built-in strategies when-
ever possible, and combines them to generate values for more
complex or specialized constraints (such as int_lists). For
instance, Lst. 9 shows parts of the parametric tests generated by
aNNoTest to encode the annotations in Lst. 2’s running exam-
ple. aNNoTest reuses Hypothesis’s built-in strategies integers
(line 103) and floats (line 112); and combines Hypothesis
strategies lists and integers (lines 129–136) to render aN’s
int_lists type constraint.

To encode arbitrary objs annotations (Sec. 3.1.2), aNNoTest
first builds strategies for the annotations of each user-written
custom generator function, as if it was testing the generator;
then, it combines them to build a new strategy that follows
the generator’s implementation to output the actual generated
objects—used as inputs for the function under test.

To encode @require annotations (preconditions), aNNoTest
uses Hypothesis’s assume function. When test-case generation
reaches an assume, it checks whether its Boolean argument
evaluates to true: if it does, generation continues as usual; if
it does not, the current test input is discarded, and the process
restarts with a new test. Thus, assumes can effectively act as fil-
ters to further discriminate between test inputs—a feature that
aNNoTest leverages to enforce precondition constraints where
appropriate in a parametric test. Line 123 in Lst. 9 shows an
example of using assume to encode the running example’s pre-
condition (line 23 in Lst. 2).

After translating the annotations into suitable test templates,
aNNoTest simply runs Hypothesis on those templates. The
property-based test-case generator “runs” the templates to build
unit tests that satisfy the encoded properties; it also runs these
unit tests, and reports any failure to the user. Hypothesis’s out-
put is also aNNoTest’s final output to the user.

Alternative back-ends. aNNoTest’s current implementation
uses Hypothesis as back-end, since property-based testing is a
framework for defining testing properties in a naturally genera-
tive way. However, using other test-input generation engines
as back-end is possible in principle. Automatically translat-
ing all aN annotations to preconditions (Boolean predicates) is
straightforward, which could be passed to a tool like Deal [10].
As we demonstrate in Sec. 4.3.4, Deal is not very effective at
generating inputs that satisfy the preconditions, when these en-
code the complex combinations of constraints that are common

7

58 @arg(net): objs(generator_G_convblock)

59 def G_convblock(net, num_filter, filter_size, actv, init,

60 pad=’same’, use_wscale=True, use_pixelnorm=True, use_batchnorm=False, name=None):

61 # ... 24 lines of body code ...

Listing 6: Signature of project GANS’s function G_convblock, whose first argument net requires a custom generator.

62 def Generator(num_channels=1, resolution=32, label_size=0, fmap_base=4096, fmap_decay=1.0,

63 fmap_max=256, latent_size=None, normalize_latents=True, use_wscale=True,

64 use_pixelnorm=True, use_leakyrelu=True, use_batchnorm=False, tanh_at_end=None,

65 **kwargs):

66 R = int(np.log2(resolution))

67 assert resolution == 2 ** R and resolution >= 4

68 cur_lod = K.variable(np.float32(0.0), dtype=’float32’, name=’cur_lod’)

69
70 def numf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)

71 if latent_size is None:

72 latent_size = numf(0)

73 (act, act_init) = (lrelu, lrelu_init) if use_leakyrelu else (relu, relu_init)

74
75 inputs = [Input(shape=[latent_size], name=’Glatents’)]

76 net = inputs[-1]

77
78 if normalize_latents:

79 net = PixelNormLayer(name=’Gnorm’)(net)

80 if label_size:

81 inputs += [Input(shape=[label_size], name=’Glabels’)]

82 net = Concatenate(name=’G1na’)([net, inputs[-1]])

83 net = Reshape((1, 1,K.int_shape(net)[1]), name=’G1nb’)(net)

84
85 net = G_convblock(net, numf(1), 4, act, act_init, pad=’full’, use_wscale=use_wscale,

86 use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name=’G1a’)

87 # ... 20 more lines of code ...

Listing 7: An excerpt of project GANS’s function Generator, a client of Lst. 6’s function G_convblock.

88 @generator

89 @exclude

90 @arg(latent_size): ints(min=1)

91 @arg(normalize_latents): bools()

92 @arg(label_size): ints()

93 def generator_G_convblock(label_size, latent_size, normalize_latents):

94 inputs = [Input(shape=[latent_size], name=’Glatents’)]

95 net = inputs[-1]

96 if normalize_latents:

97 net = PixelNormLayer(name=’Gnorm’)(net)

98 if label_size:

99 inputs += [Input(shape=[label_size], name=’Glabels’)]

100 net = Concatenate(name=’G1na’)([net, inputs[-1]])

101 net = Reshape((1, 1, K.int_shape(net)[1]), name=’G1nb’)(net)

102 return net

Listing 8: The custom generator for argument net of Lst. 6’s function G_convblock, built by factoring out lines 75–83 in Lst. 7.

8

103 @given(input_shape=tuples(integers(min_value=20, max_value=70),

104 integers(min_value=20, max_value=70),

105 integers(min_value=1, max_value=3)),

106 dense_blocks=integers(min_value=2, max_value=5),

107 dense_layers=one_of(st.just(-1),

108 integers(min_value=1, max_value=5),

109 int_lists_an(min_len=2, max_len=5, min=2, max=5)),

110 growth_rate=integers(min_value=1, max_value=20),

111 nb_classes=integers(min_value=2, max_value=22),

112 dropout_rate=floats(min_value=0, max_value=1,

113 exclude_min=True, exclude_max=True),

114 bottleneck=booleans(),

115 compression=floats(min_value=0, max_value=1, exclude_min=True),

116 weight_decay=floats(min_value=0.0001, max_value=0.01),

117 depth=integers(min_value=10, max_value=100))

118 @settings(deadline=None, suppress_health_check=[HealthCheck.filter_too_much,

119 HealthCheck.too_slow])

120 def test_DenseNet(input_shape, dense_blocks, dense_layers, growth_rate,

121 nb_classes, dropout_rate, bottleneck, compression,

122 weight_decay, depth):

123 assume(type(dense_layers) is not list or

124 len(dense_layers) == dense_blocks)

125 DenseNet(input_shape, dense_blocks, dense_layers, growth_rate,

126 nb_classes, dropout_rate, bottleneck, compression,

127 weight_decay, depth)

128
129 @defines_strategy()

130 def int_lists_an(min_len=1, max_len=None, min=1, max=None):

131 if max_len is None:

132 max_len = min_len + 2

133 if max is None:

134 max = min + 5

135 return lists(integers(min, max),

136 min_size=min_len, max_size=max_len)

Listing 9: Hypothesis test template built by aNNoTest for DenseNet’s annotations in Lst. 2.

9

in NN programs; however, Deal can also use preconditions for
static checking, which would provide a complementary usage
of aNNoTest’s annotations. Pynguin [5] is a general-purpose
test-case generator for Python. In order to use it as a back-end
for aNNoTest, we could leverage its genetic algorithm, which
tries to maximize the branch coverage of the tests it generates.
As done with EvoSuite (a test-case generation tool for Java that
is also based on genetic algorithms) in related work [11, 12],
one could express the input constraints as a series of branches
in the instrumented program, so that Pynguin would be driven
to find inputs that “pass” all the constraints—the valid inputs
that we are looking for.

3.5. Failing Tests and Oracles
The aNNoTest approach, and the aN annotation language on
which it is based, works independent of how a test is classi-
fied as failing or passing. In other words, aNNoTest generates
test inputs that are consistent with the annotations; determining
whether the resulting program behavior is correct requires an
oracle [13]. In this paper, we only ran the tests generated by
aNNoTest with crashing oracles: an execution is failing when
it cannot terminate normally, that is it leads to an assertion vio-
lation, an unhandled exception, or some other low-level abrupt
termination.

While crashing bugs are the most frequent ones, NN pro-
grams also exhibit other kinds of bugs such as performance
loss, data corruption, and incorrect output [1]. In principle, if
we equipped the NN programs with oracles suitable to detect
such kinds of bugs, aNNoTest could still be used to generate
test inputs. However, some of these bug categories may be eas-
ier to identify by testing a NN at a different level than the bare
program code. For example, bugs that lead to poor robustness
of a NN classifier involve testing a fitted model rather than the
model’s implementation [14, 15, 16]. Revisiting the aNNoTest
approach to make it applicable to different kinds of oracles be-
longs to future work.

4. Experimental Evaluation

The experimental evaluation aims at determining whether the
aNNoTest approach is effective at detecting real bugs in NN
programs, and whether it requires a reasonable annotation ef-
fort. Precisely, we address the following research questions:

RQ1. Does aNNoTest generate tests that expose bugs with few
false positives (invalid tests)?

RQ2. Can aNNoTest reproduce known, relevant bugs (that
were discovered and confirmed by expert manual analy-
sis)?

RQ3. How many annotations does aNNoTest need to be effec-
tive?

RQ4. How does aNNoTest compare to other generic (non-NN
specific) test-case generation techniques?

RQ5. How does aNNoTest compare to manual-written tests in
terms of coverage?

4.1. Experimental Subjects

To include a broad variety of real-world NN projects, we se-
lected our experimental subjects following Islam et al. [1]’s ex-
tensive survey of bugs and their replication package,{14} which
collects hundreds of NN program bugs from Stack Overflow
posts and public GitHub projects. The former are unsuitable
to evaluate aNNoTest, since they usually consist of short, often
incomplete, snippets of code that punctuate a natural-language
text. In contrast, the GitHub projects provide useful subjects
for our evaluation.

The survey [1] lists 557 bugs in 127 GitHub projects using
the NN frameworks Keras, TensorFlow, PyTorch, Theano, and
Caffe. With 350 bugs in 42 projects, Keras is the most popu-
lar project in this list; we target it for the bulk of our evalua-
tion. Starting from all 42 Keras projects, we excluded: (i) 3
projects that were no longer publicly available; (ii) 7 projects
with no bugs classified as “crashing” (see Sec. 3.5); (iii) and
5 projects that still use Python 2. While it could be modified
to run with Python 2, we developed aNNoTest primarily for
Python 3, which is the only supported major version of the lan-
guage at the time of writing. We excluded another 4 projects
whose repositories were missing some components necessary
to execute them (such as data necessary to train or test the
NN model, or to otherwise run the NN program). Finally, 7
projects did not include any reproducible crashing bugs (see
Sec. 4.2 for how we determined these). This left 16 projects
using Keras, which we selected for our evaluation. To demon-
strate that aNNoTest is applicable also to other NN frameworks,
we also selected 2 projects based on TensorFlow and 1 project
based on PyTorch; these are among the largest projects using
those frameworks analyzed by Islam et al. [1]. The leftmost
columns of Tab. 3 list all selected 19 projects used in our eval-
uation, and their size in lines of code and number of functions.
These projects (and their known bugs) are based on Islam et
al. [1]’s detailed survey of real-world NN bugs; this ensures that
our subjects are representative of realistic NN programs and of
the bugs that commonly affect them.

Comparison with Pynguin. To answer RQ4, we want to
compare aNNoTest to Pynguin (a general-purpose test-case gen-
erator for Python programs) on generating tests for realistic
NN programs. Unfortunately, all the NN projects that we use
for aNNoTest’s evaluation are incompatible with Python 3.8
(mainly because they require TensorFlow 1.x), whereas Pyn-
guin only runs with Python 3.8 (or later versions). Therefore,
we considered PyTorch’s machine vision project Vision:{15} an
actively maintained open-source NN program that is compat-
ible with Python 3.8 and includes type hints (used by Pyn-
guin). Pynguin can only generate tests for 40 of Vision’s
104 modules; current limitations8 of its implementation pre-
vent it from running correctly on the other 64 modules. For
our experiments, we selected module mnist{17} in package
torchvision.dataset—one of the largest among those that
Pynguin can analyze.

8Including bugs, one of which we reported to Pynguin’s maintainers who
fixed it.{16}

10

Comparison with manual tests. Manually writing aN an-
notations, and then letting aNNoTest generate tests automati-
cally, is an alternative to the usual approach of writing unit tests
manually. Thus, RQ5 compares manually-written tests to those
generated by aNNoTest in terms of coverage. Unfortunately,
none of the 19 projects selected by Islam et al. [1] contains any
unit tests.9 Therefore, we resorted to project Vision again, as
it contains an extensive manually-written test suite. For our
experiments, we selected three Vision modules of substantial
size that are tested in different ways: module backbone_utils

is among the most thoroughly tested (the project’s test suite
reaches 96% branch coverage); module image is fairly well
tested (79% branch coverage, which is an average coverage fig-
ure among the project’s modules); and module _video_opt is
scarcely tested (16% branch coverage, and is only tested indi-
rectly by the unit tests of other client modules).

4.2. Experimental Setup

This section describes how we setup each project before apply-
ing aNNoTest; and the experiments we conducted to answer the
RQs.

4.2.1. Project Setup
As first step, we created an Anaconda{18} environment for each
project to configure and run it independent of the others. Every
project has dependencies that involve specific libraries. Collect-
ing all required dependencies can be tricky: a project may work
only with certain library versions, older versions of a library
may no longer be available, and newer backward-compatible
versions may conflict with other dependencies. A handful of
projects detail the specific versions of the libraries they need
in a setup.py, requirements.txt, or Jupiter Notebook file—
or at least in a human-readable readme. In many cases, none
of these were available, so we had to follow a trial-and-error
process: (i) search the source code for import L statements;
(ii) retrieve the version of library L that was up-to-date around
the time of the project’s analyzed commit; (iii) in case that ver-
sion is no longer available or conflicts with other libraries, try a
slightly more recent or slightly older version of L.

NN programs usually need datasets to run. When a suitable
dataset was not available in a project’s repository, we inspected
the source code and its comments to find references to public
datasets that could be used, fetched them, and added them to
the project’s environment. In a few cases, the project included
functions to generate a sample dataset, which was usually suit-
able to be able to at least test the project. For a few projects
using very large datasets, we shrank them by removing some
data points so that certain parts of the project’s code ran more
efficiently. Whenever we did this, we ascertained that using
the modified dataset did not affect general program behavior in
terms of reachability—which is what matters for detecting the
crashing bugs that we target in our evaluation.

9Project ADV includes a single integration test; the other projects include
no tests at all.

Properly setting up all NN programs so that they can be au-
tomatically run and tested was quite time-consuming at times,
since several of the projects’ repositories are incomplete, out-
dated, and poorly documented. Our replication package in-
cludes all required dependencies, which can help support future
work in this area.

4.2.2. Experimental Process
To address RQ1, we selected the latest versions of two projects
among the largest and most popular ones (ADV and GANS in
Tab. 2) and followed the guidelines described in Sec. 3.2 to fully
annotate them with aN. “Fully annotate” means that we tried
to annotate every function of the project’s source code, and to
write annotations that are as accurate as possible: neither un-
necessarily constraining (skipping some valid inputs) nor too
weak (allowing invalid inputs).

To address RQ2, we tried to use aNNoTest to reproduce the
bugs reported by Islam et al. [1] for the selected projects. More
precisely, Islam et al. [1]’s companion dataset identifies each
bug b by a triple (ℓ, b−, b+): line ℓ in commit b− is the faulty
statement, which is fixed by the (later) commit b+. As we men-
tioned above, Islam et al. [1]’s dataset was collected by man-
ual analysis, and thus some of the bugs are not (no longer) re-
producible, are duplicate, or are otherwise outside aNNoTest’s
scope. For our evaluation, we selected only unique repro-
ducible crashing bugs: (i) “crashing” means that the fault trig-
gers a runtime program failure, which we use as oracle;10 the
crashing location c may be different from the bug location ℓ;
(ii) “reproducible” means that we could manually run the pro-
gram to trigger the failure; (iii) “unique” means that we merged
bugs that are indistinguishable by a crashing oracle (for exam-
ple, they crash at the same program point, or they fail the same
assertion) or that refer to the very same triple in Islam et al. [1]’s
dataset.

Out of all 213 bugs in Islam et al. [1] for the 19 selected
projects, we identified 81 unique reproducible crashing bugs.
For each such bug b = (ℓ, c, b−, b+) we annotated the project’s
commit b− starting from the function (or method) f where loca-
tion ℓ is, and continuing with the other functions that depend on
f. We stopped annotating as soon as the annotations where suf-
ficient to exercise function f (including, in particular, reaching
ℓ and/or crash location c). Then, we ran aNNoTest to generate
tests for f and any other functions that we annotated. We count
bug b as reproduced if some of the generated tests fails at crash-
ing location c, and doesn’t fail if run on the patched version b+.

To address RQ3, we measured the annotations we wrote for
RQ1’s and RQ2’s experiments; and we compared the size (in
lines of code) of these manually-written annotations to the Hy-
pothesis code generated automatically by aNNoTest from the
annotations.

To address RQ4, we compared aNNoTest to Pynguin and
Deal. As we discuss in Sec. 5, Pynguin [5] is a state-of-the-art
unit-test generator for Python that uses type hints to improve

10While Islam et al. [1] classify some bugs as “crashing”, we also included
bugs in other categories provided they can eventually generate a crash.

11

its effectiveness (although it also works without type hints);
Deal [10] is a Python library for Design by Contract, supporting
annotations such as preconditions, as well as test-case genera-
tion and static analysis based on them. For the comparison with
Pynguin, we annotated the functions in Vision’s module mnist

(see Sec. 4.1) using aN similarly to what done for RQ1, writ-
ing 21 regular annotations and 1 generator for 23 functions un-
der test; then, we compared Pynguin’s generated tests to aNNo-
Test’s. For the comparison with Deal, we took all functions
in our running examples Lst. 1–5 and added preconditions in
Deal’s syntax that express the same input constraints as our an-
notations in aN’s syntax; then, we compared Deal’s generated
tests to aNNoTest’s.

To address RQ5, we annotated the functions in Vision’s mod-
ules backbone_utils, image, and _video_opt (see Sec. 4.1)
using aN similarly to what done for RQ1. Since the goal is com-
paring to manually written tests, we ignored the tests when writ-
ing aN annotations, and only considered examples of function
usages in the library implementation or comments. Using tool
Coverage.py{19} we measured the branch coverage achieved on
each module by: (i) the manually-written unit tests in Vision’s
test suite; (ii) the tests generated by aNNoTest from the anno-
tations. We used branch coverage but note that, on these sub-
jects, this metric correlates very strongly (Pearson correlation
coefficient: 0.94) with statement coverage; thus, using either
coverage metric would lead to the same findings.

Annotation effort. As we mentioned in Sec. 3.2, gaining
an accurate understanding of a program’s behavior is necessary
regardless of the approach one follows to build tests. In our
experiments, we found that finding plausible ranges for a func-
tion’s inputs requires only modest effort in the majority of cases.
This is in accordance with the so-called locality principle [17],
which implies that a significant part of a program’s behavior
often can be understood by observing only a small number of
program inputs [18]. Regardless of whether one is targeting a
program that is easy or hard to test, aNNoTest can support the
tester’s job by providing a means of expressing the input con-
straints, of exercising them with automatic test generation.

4.3. Experimental Results

4.3.1. RQ1: Precision
Tab. 2 shows the results of applying aNNoTest to the latest com-
mits11 of projects ADV and GANS. With the goal of annotat-
ing the projects as thoroughly as possible, we ended up writing
some aN annotations for 42% of their 249 functions. Most of
the functions that we left without annotations do not need any
special constraints to be tested—usually because they either are
simple utility functions that are only called in specific ways by
the rest of the project or have no arguments. There are a few
additional cases of functions that are not used anywhere in the
project and whose intended usage we could not figure out in
any other way; in these cases, we did not annotate them (and

11The projects are however no longer maintained; therefore, we did not sub-
mit any of the found bugs to the projects’ repositories.

excluded them from testing). With these annotations, aNNo-
Test reported 56 crashes, 50 of which we confirmed as genuine
unique crashing bugs; this corresponds to a precision of 89%.

As previously reported [19], bugs due to project dependency
conflicts are quite common in NN programs. An interesting ex-
ample is a crash that occurs in ADV when it accesses attribute
W{20} in Keras’s class Dense.{21} This attribute was renamed to
kernel{22} in Keras version 2.0. Since ADV explicitly sup-
ports this major version of Keras, this crash is a true positive.
Another confirmed bug we found was due to a function in ADV
still using tuple parameter unpacking{23}—a Python 2 feature
removed in Python 3. The ADV project developers probably
forgot to update this one instance consistently with how they
updated the rest of the project,{24} which is indeed designed to
work with Python 3.

A tricky example of false positive occurred in project
GANS’s function create_celeba_channel_last,{25} which
creates an HDF5{26} file for the CelebA dataset [20]. One of
the tests generated by aNNoTest crashes{27} as it is unable to
create a file. However, the failure does not happen if we run the
function manually using the very same inputs; thus, the testing
environment is responsible for the spurious failure.

These experiments suggest that aNNoTest can be quite ef-
fective to pin down bugs, problems, and inconsistencies in NN
programs, thus helping systematically improve their quality.

Applied to two fully-annotated open-source NN programs,
aNNoTest generated tests revealing 50 bugs with

89% precision.

4.3.2. RQ2: Recall
Tab. 3 shows the results of applying aNNoTest to detect 81
unique reproducible crashing bugs in 19 projects surveyed by
Islam et al. [1] and selected as explained in Sec. 4.1. Using
the annotations we provided, aNNoTest reproduced 63 of these
bugs without generating any spurious failing tests. This cor-
responds to a 100% precision and 78% recall relative to the
unique reproducible known bugs from Islam et al. [1]. With
the same annotations, aNNoTest also revealed another 31 fail-
ures that we confirmed as additional crashing bugs in the same
projects.12

While aNNoTest was quite effective at reproducing the
known bugs in these projects, it’s interesting to discuss the is-
sues that prevented it from achieving 100% recall. We identified
several scenarios: (i) masking; (ii) scripting code; (iii) nested
functions; (iv) lazy features; (v) and inaccessible code.

Masking occurs when an earlier crash prevents program ex-
ecution from reaching the location of another bug b′. Masking
is usually not a problem when the earlier crash is determined
by a known bug b: in this case, we can just run tests on the
project commit b+ where b has been fixed, so that execution
can reach the other bug b′. However, if a bug b′ is masked by
an unknown bug (column other in Tab. 3), and we don’t know
how to fix the unknown bug to allow the program to continue,

12Islam et al. [1]’s survey is not meant to be an exhaustive catalog of all bugs
in these projects.

12

project loc functions annotations bugs

#a %f %g true spurious precision

ADV 1421 100 1.58 49% 7% 33 5 87%
GANS 2496 149 1.15 37% 6% 17 1 94%

overall 3917 249 1.33 42% 7% 50 6 89%

Table 2: Two projects fully annotated with aNNoTest and the found bugs. Each row shows data about a project (identified by an acronym; see Tab. 3 for the URL
of their GitHub repositories): its size in lines of code loc and number of functions (including methods); the average (per function) number #a of annotations we
added to the project, the percentage %f of functions with at least one annotation, and the percentage %g of annotations that use custom generators; and the number
of unique crashing bugs found by generating tests based on the templates—split into confirmed true bugs, spurious bugs (triggered by invalid inputs), and the
corresponding precision = true/(true + spurious).

project loc functions rev annotations bugs

total tested #a %f %g known rep other spurious precision recall

K NAAS{28} 140 7 0 2 – 0% 0% 2 2 1 0 100% 100%
K ADV{29} 1421 100 4 2 1.5 4% 0% 8 6 3 0 100% 75%
K DN{30} 82 5 2 1 14.0 40% 0% 2 2 2 0 100% 100%
K DCF{31} 748 35 1 1 4.0 3% 0% 1 0 0 0 – 0%
K KIS{32} 2050 92 2 1 1.5 2% 0% 6 5 0 0 100% 83%
K FRCNN{33} 1643 55 3 1 1.7 5% 0% 6 3 0 0 100% 50%
K CONV{34} 350 20 0 1 – 0% – 1 0 0 0 – 0%
K mCRNN{35} 225 1 0 1 – 0% 0% 1 1 5 0 100% 100%
K IR{36} 306 38 0 1 – 0% – 2 0 0 0 – 0%
K RE{37} 966 25 1 1 15.0 4% 0% 1 1 5 0 100% 100%
K CAR{38} 353 21 1 1 7.0 5% 0% 1 1 1 0 100% 100%
K GANS{39} 2496 149 2 1 12.5 1% 4% 6 4 5 0 100% 67%
K KAX{40} 227 15 0 1 – 0% – 1 0 0 0 – 0%
K VSA{41} 630 38 2 1 6.0 5% 0% 2 2 4 0 100% 100%
K UN{42} 440 28 3 2 3.3 11% 30% 6 2 1 0 100% 33%
K LSTM{43} 477 27 0 1 – 0% – 1 0 0 0 – 0%
F TC{44} 285 7 0 2 – 0% 0% 9 9 2 0 100% 100%
F TPS{45} 286 2 2 1 4.0 100% 87% 24 24 0 0 100% 100%
T DAF{46} 1094 70 1 1 9.0 1% 67% 1 1 2 0 100% 100%

overall 14219 735 24 23 6.0 3% 12% 81 63 31 0 100% 78%

Table 3: Bugs from Islam et al. [1] that aNNoTest could reproduce. Each row shows data about a project (identified by an acronym and the URL of its GitHub
repository): its DNN framework (Keras, TensorFlow, Torch), its size in lines of code loc and the number of total and tested functions (including methods); the
number of its different revisions that we analyzed, the average (per tested function) number #a of annotations we added, the percentage %f of functions with at
least one annotation, and the percentage %g of annotations that use custom generators; and the number of crashing bugs found by generating tests based on the
templates—the number of reproducible known bugs reported by Islam et al. [1], how many of these the tests reproduced, how many other confirmed true bugs and
spurious bugs (triggered by invalid inputs) the tests also reported in the same experiments, and the corresponding precision = (rep+others)/(rep+others+spurious)
and recall = rep/known.

b′ is effectively unreachable. We could not reproduce 4 known
bugs because of masking. One of them occurrs{47} in project
GANS, and is masked by an unexpected crash{48} occurring in
the same function Discriminator. In project UN, some miss-
ing statements make it impossible to distinguish three known
bugs,{49},{50},{51} since they all crash the same test. Therefore,
we consider 1 of them reproduced and 2 not reproduced due to
masking. One of the tests produced for project GANS stopped
before finding a known bug,{52} with a SIGKILL (triggered by
memory-related issues).

aNNoTest generates unit tests, which target specific func-
tions in a program’s source code. This excludes any code
snippets in the “main” section of a Python file (under

if __name__==’__main__’), which executes when the file is
run as a script from the command line. Therefore, aNNoTest
could not reproduce 6 bugs affecting this scripting code, such
as one known bug in project CONV.{53} Another example is the
only known bug{54} in project KAX, which occurs in a function
that depends on command line arguments.

aNNoTest can test nested functions only indirectly, that is
when they are called by a top-level function as part of testing
the latter. It does not support annotating nested functions and
generating unit tests for them since they are not accessible out-
side their parent functions. We could not reproduce 3 known
bugs because they affected nested functions. An example is
in project FRCNN’s function rpn_loss_regr_fixed_num,{55}

13

0

1
2
3
5

9

16

27

46

80

137

annotations LOC annotations LOC Hypothesis

Figure 2: Distribution of the number of aN annotations, lines of code (LOC) of
aN annotations, and LOC of generated Hypothesis templates for RQ1’s experi-
ments.

which is defined inside top-level function rpn_loss_regr.
Functions using Python’s yield statement are lazy, that is

their evaluation is delayed. This means that they may not be ex-
ecuted by aNNoTest’s unit testing environment (or rather its Hy-
pothesis back-end’s). We could not reproduce 1 known bug{56}

in project KIS because it uses yield to build a lazy iterator.
As we remarked above, a bug’s crashing location c may dif-

fer from the actual error location ℓ in commit b−. If c is in a
portion of the code that is not accessible to the testing environ-
ment, aNNoTest cannot reproduce the bug even if it is repro-
ducible in principle. This scenario occurred for 3 known bugs
that aNNoTest didn’t reproduce. Two of them are in project
UN{57},{58} and only crash in a module whose implementation
is incomplete in that program revision. Another one{59} occurs
in project IR: we tried to no avail to reproduce it at a different,
accessible location.

Finally, we could not reproduce 1 bug{60} in project IR sim-
ply because we could not figure out suitable type constraints to
properly exercise the corresponding function.

aNNoTest generated tests revealing 63 known NN bugs
in 19 NN programs, with a recall of 78%.

4.3.3. RQ3: Amount of Annotations
For the aNNoTest approach to be practical, it is important that it
requires a reasonable amount of manual annotations. We leave
to future work a detailed empirical evaluation of the time and
expertise that is needed to write aN annotations. Here, we dis-
cuss quantitative measures of aNNoTest’s annotation overhead.
We focus on RQ1’s experiments (Sec. 4.3.1), which analyzed
projects ADV and GANS in full, as they give a better idea
of the effort needed to use aNNoTest systematically on whole
projects.13

Annotation amount. The amount of annotations that we
wrote was usually limited. In RQ1’s experiments, we wrote
2 annotations14 per project function on average (median); 80%
of functions have 3 annotations or less. Annotations are mostly
concise: 96% of them fit a single line, and only 10% (12) of all
functions have annotations that span more than 5 lines (usually

13The figures for RQ2’s experiments are, however, generally similar.
14An annotation is any instance of the kinds presented in Sec. 3.1.

decorating functions with several complex arguments). Fig. 2
pictures the distributions, overall functions, of number of anno-
tations (left) and lines of code (LOC, middle) of annotations;
since most annotations are a single line, these two distributions
are nearly identical.

The average number of annotations per tested function is
higher (6.0) in Tab. 3 since in each of those experiment we
annotated a limited portion of a project focusing on a specific
function that had a known bug; therefore, several of the anno-
tations are duplicated or only slightly modified from one exper-
iment to the other. If we had fully annotated the projects, we
would have likely amortized some of this annotation effort.

In terms of time, we spent, on average, 10–15 minutes to
write the annotations of each function. This time includes in-
specting the project’s source code to become familiar with how
it works. As pointed out in Sec. 4.2, this effort is amortized
over various related functions, and is unevenly distributed, with
a few “complex” functions taking considerably more time to
understand than most “simple” functions. As mentioned in
Sec. 3.2, we consider the overall effort comparable to the time
to manually write unit tests for the same functions.

Another way of quantifying the effort-benefit trade-off is
measuring the amount of annotations per detected bugs: this ra-
tio is 6.6 = 330/50 for the fully-annotated projects in Tab. 2 and
1.5 = 145/94 for the experiments in Tab. 3. These are encour-
aging figures, if we think of the amount of manually-written
tests that may have been necessary to discover the same bugs
(see also Sec. 4.3.5).

The percentage of annotations using generators is higher
(12%) for the projects in Tab. 3. More precisely, the two
projects in Tab. 2 use 15 generators, 73% (11/15) of which
generate NN models. Among the 16 generators built for the
projects in Tab. 3, 31% (5/16) generate NN models, 37%
(6/16) provide TensorFlow’s tensor objects, and 25% (4/16)
load datasets from disk. The one remaining generator function
loads an image from hard disk, turns it into a NumPy array and
passes it to a function. As we explained in Sec. 3.3, we built all
generators by applying light refactoring operations to suitable
portions of existing client code within the same project.

Hypothesis overhead. Since aNNoTest translates aN anno-
tations to Hypothesis templates, we can quantify how concise
aN is compared to directly encoding constraints in Hypothesis.
The rightmost plot in Fig. 2 pictures the distribution of LOC of
generated Hypothesis code. Clearly, Hypothesis code is consid-
erably more verbose than aN annotations: Hypothesis templates
are 5.5 (median overhead) times longer—11.6 times longer in
terms of mean overhead—than the aN annotations they encode,
which points to the benefits of using aN’s concise language.

In our experiments, aNNoTest used 2 annotations per
function on average; 96% of all annotations fit a single line.

4.3.4. RQ4: Comparison to Generic Test-Case Generators
We designed aNNoTest not as a general-purpose testing tool but
as one specifically geared towards NN programs. Therefore, we
expect aNNoTest to outperform generic test-case generators for
Python when generating tests for these programs.

14

As we discussed in Sec. 4.1, we ran Pynguin on module
mnist in project Vision; the module includes type hints anno-
tations, which Pynguin uses to improve the accuracy of its gen-
erated tests. Pynguin15 generated 19 tests, reporting 6 tests as
passing (they terminate without errors), and 13 tests as failing
(they throw an exception). By manual inspection, we deter-
mined that: (i) 2 of the 6 passing tests and 10 of the 13 failing
tests are actually invalid, since they call functions with input
values that are not valid according to the functions’ docstring,
type hints,16 or other available documentation; (ii) the other 3
failing tests should be classified as passing, since throwing an
exception is the functions’ expected behavior in those cases. In
all, 63% ((2 + 10)/19) of the tests generated by Pynguin are in-
valid, and 79% ((3 + 2 + 10)/19) are misclassified. We cannot
expect Pynguin to perform better, since it simply lacks the infor-
mation to precisely characterize valid inputs; in contrast, lever-
aging the aN annotations’ information, aNNoTest generated 11
tests for module mnist: all of them are valid and passing.17

Deal’s expressive annotation language is capable of con-
cisely encoding most of the aN annotations as preconditions
(@deal.pre). Then, Deal’s test-case generation engine draws
inputs randomly and uses preconditions to filter them; there-
fore, the stronger a precondition is, the more it will struggle to
find any valid inputs. In all our examples (Lst. 1–5), Deal could
not generate a single valid input that satisfies all constraints.
Even after removing some of the most complex constraints (for
example, the first one in Lst. 2), Deal’s built-in test-case gen-
erator couldn’t generate valid inputs. Here too, we cannot ex-
pect Deal to perform better, since, unlike aNNoTest, its test-case
generation process is not built around the kinds of complex con-
straints that arise in NN programs.18

aNNoTest outperforms other test-case generation techniques
that are not designed specifically for NN programs.

These results are another manifestation of the trade-off be-
tween specification accuracy and test effectiveness: precise
tests require precise knowledge of the expected program con-
straints (and behavior), regardless of whether this knowledge
is formalized as annotations, as executable code, or is applied
directly by the programmer.

4.3.5. RQ5: Code Coverage
Tab. 4 compares the manually-written tests in three of project
Vision’s modules (see Sec. 4.1) to those generated by aNNoTest
after annotating the functions in these modules.

Module _video_opt is scarcely tested in Vision: there are no
unit tests for this module (column unit in Tab. 4), but tests in

15We report experiments that used Pynguin’s default configuration; however,
using other generation strategies did not significantly change the outcome.

16Pynguin may violate type hints whose format it does not support.
17While experimenting with testing the Vision project using aNNoTest, we

found a bug in a module that Pynguin cannot test. We submitted a fix as a pull
request{61} that was promptly accepted. Interestingly, the affected function{62}

already included a developer-written parameterized test,{63} which nonetheless
did not detect “our” bug; this further demonstrates aNNoTest’s practical effec-
tiveness.

18In addition, Deal focuses on using annotations for static analysis.

other modules still indirectly exercise 16% of its branches (col-
umn indirect). In contrast, aNNoTest reaches a 76% coverage
after annotating 8 functions in this module. Vision’s unit tests
for module image achieve a 79% coverage; aNNoTest reaches
a higher 84% coverage. Finally, Vision’s unit tests for module
image achieve a 82% coverage, the same as aNNoTest. The
whole test suite in Vision actually further exercises module
backbone_utils, as tests in other modules indirectly add an
additional 14% of coverage. Overall, aNNoTest-generated tests
achieve a high coverage—comparable to or often higher than
that of the programmer-written test suite.19

In order to achieve this coverage, what is the amount of code
(manual tests) or annotations (aNNoTest) that is required? Vi-
sion’s unit tests for Tab. 4’s three modules consist of 24 tests,
spanning 597 lines of code or 21859 characters; aNNoTest’s an-
notations are only needed for 22 functions, and span 88 lines or
4468 characters. This confirms that aNNoTest’s annotations are
concise—considerably more concise than unit tests achieving a
lower coverage. Naturally, the sheer size of a piece of code is
an imperfect measure of the effort needed to produce it; how-
ever, aN annotations encode essentially the same information as
parametric tests, and their succinctness is an advantage.

100% coverage? Neither aNNoTest nor the programmer-
written test suite managed to cover 100% of the branches
in the three modules. In a few cases, increasing the cov-
erage would be possible by simply writing more unit tests
or more general annotations. For instance, none of the
manual tests for module backbone_utils instantiates class
BackboneWithFPN by passing argument None to its construc-
tor’s parameter extra_blocks; the corresponding branch{66} is
thus never covered (but it is by aNNoTest). Conversely, aNNo-
Test does not test function _read_video_from_memory{67} in
module _video_opt because we could not find meaningful ex-
amples of its usage.20 In other cases, however, achieving a
100% coverage is impractical due to constraints in the test ex-
ecution environment. For instance, a branch{68} in function
decode_jpeg of module image requires running the module on
a machine with a GPU supporting the CUDA API.{69} There is
actually a manual test{70} covering this branch, but it was not
activated in our experiments since we did not run them with
CUDA. We found a few other examples of this scenario{71},{72}

where increasing the test coverage requires specific hardware
or system libraries.

Bug density. Users of aNNoTest write annotations to then
generate unit tests automatically. In RQ1’s experiments, aNNo-
Test generated 5649 (valid) tests overall; only 1% of them fail
and expose a bug. Thus, bugs in NN programs are rare [21].
This suggests that directly writing tests that selectively expose
these bugs may be challenging even for programmers knowl-

19While testing module image in these experiments, aNNoTest detected a
failure in function decode_jpeg{64} (which is already thoroughly tested in
the project’s test suite). Reporting this failure{65} to the project maintainers
prompted them to modify the function’s documentation so as to more accu-
rately reflect its intended, implemented behavior.

20As discussed in Sec. 4.2, we did not consider the manually-written tests
when writing aN annotations, so that the comparison in terms of coverage is
fair and meaningful.

15

project test suite aNNoTest

coverage #functions test size #tests coverage annotation size

module unit indirect loc chars annotated loc chars

_video_opt 0% 16% 0 0 0 8 76% 25 1566
image 79% 0% 15 359 13381 11 84% 40 1858
backbone_utils 82% 14% 9 238 8478 3 82% 23 1044

overall 50% 5% 24 597 21859 22 80% 88 4468

Table 4: A comparison (part of) Vision’s programmer-written test suite and aNNoTest’s generated tests in terms of coverage. For each module, the table reports
the branch coverage of the programmer-written project test suite on the module (split between unit tests directly targeting the module’s functions, and coverage
achieved indirectly by other modules’ tests calling the module); the number of unit test functions directly exercising the module; and the size of these tests in lines
of code loc and number of characters chars; the number of functions we annotated; the coverage achieved by aNNoTest on these functions; and the size of these
annotations in lines of code loc and number of characters chars.

edgeable of the program under test. The same knowledge is
sufficient to write aN annotations and generate tests from them.

aNNoTest achieves high code coverage,
comparable to that of manually-written test cases.

4.4. Threats to Validity

Identifying valid test inputs, and distinguishing between spuri-
ous and authentic bugs, is crucial to ensure construct validity
(i.e., the experimental measures are adequate). Unfortunately,
a reliable and complete ground truth is not available: the doc-
umentation of NN programs is often incomplete (when it ex-
ists), so we had to manually discover the intended behavior of
NN programs from examples, manual code analysis, and back-
ground knowledge. Our reference—Islam et al. [1]’s survey—
was also compiled by purely manual analysis; therefore, it does
not aim at completeness, and includes bugs that are not repro-
ducible (see Sec. 4.2). These limitations imply that we cannot
make claims of completeness (“we found all bugs”); neverthe-
less, we still have a good confidence in the correctness of our
results (“we found real bugs”): since we focused on bugs de-
tected by crashing oracles, most bugs we found with aNNoTest
are clear violations of the program’s requirements.

Since aNNoTest uses manually-written annotations, quanti-
fying the annotation effort is needed for internal validity (i.e.,
the experimental results are suitable to support the findings).
We mostly reported simple measures (number of annotations,
number of functions that require annotations, etc.) which are
unambiguous. In contrast, we do not make any strong claims
about the time and relative effort needed by programmers to an-
notate: these heavily depend on a programmer’s knowledge of
the NN program and of the domain; precisely assessing them
would require controlled experiments and user studies, which
are outside this paper’s scope. However, we remark that ex-
pressing aN annotations requires a knowledge of the program
under test of the same kind that is needed to write effective unit
tests.

Picking experimental subjects from Islam et al. [1]’s exten-
sive survey of real-world NN bugs helps external validity (i.e.,
the findings generalize). As we discussed in Sec. 4.1, we ex-
cluded some projects for practical reasons (e.g., no longer avail-
able or incomplete) and we focused on those using the Keras

NN framework. While this focus does not seem especially
restrictive (the majority of projects in the survey uses Keras,
and we also analyzed projects using other frameworks), apply-
ing aNNoTest to very different kinds of NN programs may re-
quire different kinds of annotations or other changes in the ap-
proach. The aN annotation language is extensible with genera-
tors (Sec. 3.1.2), which can further help generalizability. Fur-
thermore, in addition to Islam et al. [1]’s subjects, we also
extensively analyzed the latest versions of projects ADV and
GANS (Sec. 4.3.1), so that our evaluation did not only include
projects with known bugs.

5. Related work

Automated test-case generation. Since testing is a fundamen-
tal activity to ensure software quality [22], software engineer-
ing research has devised several different techniques to auto-
mate the generation of test inputs [23]. Randoop [24] (based
on random testing) and EvoSuite [25] (based on genetic algo-
rithms [26]) are two of the most popular tools for Java imple-
menting automated test-case generation. Techniques such as
those implemented by Randoop and Evosuite usually depend
on the typing information about a method’s input that is pro-
vided statically in languages such as Java.

Test-case generation for Python. In contrast, programs
written in dynamically typed languages like Python do not in-
clude such information, which complicates test-case genera-
tion. In fact, despite Python’s popularity [27], the first widely
available tools for automated test-case generation in Python ap-
peared only in recent years [6, 5]. Pynguin [5] is based on
genetic algorithms like EvoSuite, and relies on Python’s type
hints. Hypothesis [6] implements property-based testing, which
generates random inputs trying to satisfy some programmer-
written properties. Deal [10] is a Python library for design by
contact that provides decorations to express pre- and postcondi-
tions; based on them, it supports both static and dynamic (i.e.,
test-case generation) analysis. aNNoTest is also an automated
test-case generator for Python, but it provides a specialized set
of expressive annotations useful to precisely express the valid
inputs of NN programs. Then, it defers the actual test-input
generation to Hypothesis, which it uses as back-end. As we
demonstrated in Sec. 4.3.4, directly using Pynguin, Hypothesis,

16

or Deal to generate tests for NN programs might be possible in
principle, but it would involve plenty of additional manual work
to express the necessary constraints indirectly through a com-
bination of type hints (Pynguin) and testing strategies (Hypoth-
esis), and to program test-case generation strategies that match
them (Deal).

Bugs in NN programs. Following the increasing in popu-
larity of NN and other forms of machine learning (ML), some
recent research has looked into the nature of bugs that occur
in NN and ML programs to understand how they differ com-
pared to “traditional” software. Thung et al. [28] studied bugs
and human-written patches in 3 ML projects (Apache Mahout,
Lucene, and OpenNLP) and classified them according to crite-
ria such as bug severity and fixing effort. A similar study [19]
of three other ML projects (Scikit-learn, Paddle, and Caffe) re-
vealed that compatibility bugs due to conflicts between project
dependencies are quite common in these programs—as they
were in the subjects we used in Sec. 4’s experiments.

Zhang et al. [29]’s analysis of TensorFlow-based NN projects
found that modeling mistakes, incorrect shape of input ten-
sors, and unfamiliarity of users with TensorFlow’s computation
model were among the most frequent origins of bugs. Once
again, these findings set NN programs apart from traditional
software. Recent studies by Islam et al. [1, 30] on 5 NN frame-
works confirmed some of Zhang et al. [29]’s findings and fur-
ther found that bug fix patterns in NN programs are often dif-
ferent compared to traditional programs. In the same line of
research, Humbatova et al. [3]’s extensive taxonomy of bugs in
deep learning systems identified several causes of bugs that are
specific to NN program, including incorrect/incomplete mod-
els, wrong input data types, and training process issues.

Bugs in NN models. As we recalled in Sec. 1, a NN program
implements in code a NN model that is trained on some data,
both of which can also be plagued by mistakes. Hence, tradi-
tional software engineering approaches to test generation [14],
mutation testing [15, 16], fault localization [31], and even au-
tomated program repair [32] have been applied to NN models
and training data to assess and improve their quality, robust-
ness, and correctness. Under this paradigm, bugs are revealed
by adversarial examples, e.g., two slightly different inputs that
appear identical to the human eye but result in widely different
classification by a trained model [14]. Adversarial examples
correspond to failing tests; and fault localization and fixing cor-
respond to finding [31] and changing [32] neuron weights in
a model, This kind of research is complementary to our work
on aNNoTest, which is specific to NN programs but focuses on
testing and finding faults in their code implementations.

Test oracles. Testing a program comprises three main
steps [33]. First, selecting concrete inputs (arguments and pre-
state); second, executing the program under test on those inputs;
and third, checking whether the program behaved as expected
while executing—in particular, whether its output (return val-
ues and post-state) is as expected. The present paper’s contri-
bution, as well as the related work we discussed in the rest of
this section, concerns the first step: test-input generation. In
contrast, addressing the third step requires an oracle: a mecha-
nism to check the outcome of test execution; thus, the problem

of designing such mechanisms is known as the test oracle prob-
lem [34, 13, 35, 36].

Similarly as for test-input generation, a key research chal-
lenge is automating the generation of suitable oracles, so as to
reduce the required developer effort. The simplest kind of test
oracle are implicit oracles, such as the crashing oracles we used
for our experiments with aNNoTest. More expressive automated
test oracles may be derived from some kind of formal specifi-
cation [37], such as assertions [38] and contracts [39], as well
from informal or semi-formal documentation written in natural
language [40, 41]. In absence of specifications, a practical op-
tion is building regression oracles [42], which check whether
a new version of a program retains the same input/output be-
havior on the test inputs as a previous version [43]; test-input
generators—like the aforementioned Randoop, EvoSuite, and
Pynguin—are usually capable of building some kind of regres-
sion oracles automatically.

6. Conclusions and Future Work

The paper presented the aNNoTest approach to generate in-
puts that test NN programs written in Python. aNNoTest re-
lies on code annotations that precisely and succinctly describe
the range of valid inputs for the functions under test. Using
this information, aNNoTest can generate tests that avoid spuri-
ous failures, and thus have a good chance of exposing actual
bugs. In an experimental evaluation targeting 19 open-source
NN programs, aNNoTest was able to reveal 94 bugs (including
63 previously known ones) with an overhead of 6 annotations
per tested function on average.

Future work. A natural continuation of the work on aNNo-
Test is extending aN to support more kinds of constraints. As
discussed in Sec. 4.3.3, most of the generator functions we
wrote for our experiments generate complex NN model objects
such as tensors; being able to specify such objects concisely
would further increase the applicability and convenience of us-
ing aNNoTest.

This paper’s contributions address the test-input generation
problem, which is largely independent of the test-oracle prob-
lem (see Sec. 3.5 and Sec. 5). In future work, we may ex-
tend aNNoTest to add support for other kinds of oracles. Since
aNNoTest is based on annotations—a form of lightweight for-
mal specification—adding postconditions would be a natural
way to do so. Unlike the annotations currently supported by
aNNoTest, which act as constraints on the pre-state and hence
require a matching generation mechanism, postconditions are
evaluated on a test’s post-state, and hence can simply be evalu-
ated to determine whether the test is passing or failing. Regres-
sion oracles are another kind of oracles that are commonly sup-
ported by test generation tools such as Pynguin [5]; aNNoTest
could add support for a similar mechanism to generate regres-
sion tests, whose assertion capture the post-state of the program
under test, and can be re-run on future versions of the program
to determine whether its expected behavior has changed. Given
aNNoTest’s focus, it could target regression oracles that capture
NN-specific properties [44, 45, 46].

17

Acknowledgments

Work partially supported by SNF grant 200021-182060 (Hi-Fi).

References

[1] M. J. Islam, G. Nguyen, R. Pan, H. Rajan, A comprehensive study on
deep learning bug characteristics, in: Proceedings of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 510–520. doi:

10.1145/3338906.3338955.
[2] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss,

P. Tonella, Testing machine learning based systems: a systematic map-
ping, Empir. Softw. Eng. 25 (6) (2020) 5193–5254. doi:10.1007/s106

64-020-09881-0.
URL https://doi.org/10.1007/s10664-020-09881-0

[3] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
P. Tonella, Taxonomy of real faults in deep learning systems, in: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 1110–1121. doi:10.1145/3377811.3380395.

[4] J. M. Zhang, M. Harman, L. Ma, Y. Liu, Machine learning testing: Sur-
vey, landscapes and horizons, IEEE Transactions on Software Engineer-
ing 48 (1) (2022) 1–36. doi:10.1109/TSE.2019.2962027.

[5] S. Lukasczyk, F. Kroiß, G. Fraser, Automated unit test generation for
Python, in: Proceedings of the 12th Symposium on Search-based Soft-
ware Engineering, 2020, pp. 9–24.

[6] D. MacIver, Z. Hatfield-Dodds, M. Contributors, Hypothesis: A new ap-
proach to property-based testing, Journal of Open Source Software 4 (43)
(2019) 1891. doi:10.21105/joss.01891.

[7] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, K. Weinberger, Convo-
lutional networks with dense connectivity, IEEE Transactions on Pattern
Analysis and Machine Intelligence (2019).

[8] K. Claessen, J. Hughes, QuickCheck: a lightweight tool for random test-
ing of Haskell programs, in: M. Odersky, P. Wadler (Eds.), Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’00), Montreal, Canada, September 18-21, 2000, ACM,
2000, pp. 268–279. doi:10.1145/351240.351266.
URL https://doi.org/10.1145/351240.351266

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Pro-
ceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 2, 2014, pp. 2672–2680.

[10] Deal: A Python library for design by contract, https://github.com/l
ife4/deal (2018).

[11] G. Fraser, A. Arcuri, 1600 faults in 100 projects: automatically finding
faults while achieving high coverage with evosuite, Empir. Softw. Eng.
20 (3) (2015) 611–639. doi:10.1007/s10664-013-9288-2.
URL https://doi.org/10.1007/s10664-013-9288-2

[12] J. P. Galeotti, C. A. Furia, E. May, G. Fraser, A. Zeller, Inferring loop in-
variants by mutation, dynamic analysis, and static checking, IEEE Trans-
actions on Software Engineering 41 (10) (2015) 1019–1037.

[13] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, The oracle prob-
lem in software testing: A survey, IEEE Transactions on Software Engi-
neering 41 (5) (2015) 507–525.

[14] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, R. Ashmore, Struc-
tural test coverage criteria for deep neural networks, ACM Trans. Embed.
Comput. Syst. 18 (5s) (2019). doi:10.1145/3358233.
URL https://doi.org/10.1145/3358233

[15] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, J. Zhao, Deepmutation++: A muta-
tion testing framework for deep learning systems, in: 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), 2019,
pp. 1158–1161. doi:10.1109/ASE.2019.00126.

[16] W. Shen, J. Wan, Z. Chen, Munn: Mutation analysis of neural networks,
in: 2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), 2018, pp. 108–115. doi:10.1109/QR
S-C.2018.00032.

[17] P. J. Denning, The locality principle, Commun. ACM 48 (7) (2005) 19–
24. doi:10.1145/1070838.1070856.
URL https://doi.org/10.1145/1070838.1070856

[18] C. Ding, Y. Zhong, Predicting whole-program locality through reuse dis-
tance analysis, in: R. Cytron, R. Gupta (Eds.), Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation 2003, San Diego, California, USA, June 9-11, 2003, ACM,
2003, pp. 245–257. doi:10.1145/781131.781159.
URL https://doi.org/10.1145/781131.781159

[19] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, B. Li, An empirical study on
real bugs for machine learning programs, in: 24th Asia-Pacific Software
Engineering Conference, 2017, pp. 348–357.

[20] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the
wild, in: Proceedings of International Conference on Computer Vision
(ICCV), 2015.

[21] S. Roy, A. Pandey, B. Dolan-Gavitt, Y. Hu, Bug synthesis: Challenging
bug-finding tools with deep faults, in: Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, ACM, 2018, pp.
224–234. doi:10.1145/3236024.3236084.
URL https://doi.org/10.1145/3236024.3236084

[22] G. Candea, P. Godefroid, Automated software test generation: Some chal-
lenges, solutions, and recent advances, in: B. Steffen, G. J. Woeginger
(Eds.), Computing and Software Science - State of the Art and Perspec-
tives, Vol. 10000 of Lecture Notes in Computer Science, Springer, 2019,
pp. 505–531. doi:10.1007/978-3-319-91908-9_24.
URL https://doi.org/10.1007/978-3-319-91908-9_24

[23] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, P. McMinn, A. Bertolino, J. Jenny Li, H. Zhu,
An orchestrated survey of methodologies for automated software test case
generation, Journal of Systems and Software 86 (8) (2013) 1978 – 2001.
doi:https://doi.org/10.1016/j.jss.2013.02.061.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, T. Ball, Feedback-directed random
test generation, in: 29th International Conference on Software Engineer-
ing, 2007, pp. 75–84.

[25] G. Fraser, A. Arcuri, EvoSuite: automatic test suite generation for
object-oriented software, in: SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13),
Szeged, Hungary, September 5-9, 2011, ACM, 2011, pp. 416–419. doi:
10.1145/2025113.2025179.
URL https://doi.org/10.1145/2025113.2025179

[26] S. Ali, L. C. Briand, H. Hemmati, R. K. Panesar-Walawege, A system-
atic review of the application and empirical investigation of search-based
test case generation, IEEE Transactions on Software Engineering 36 (6)
(2010) 742–762.

[27] S. Cass, The top programming languages 2019, https://spectrum.iee
e.org/the-top-programming-languages-2019 (2019).

[28] F. Thung, S. Wang, D. Lo, L. Jiang, An empirical study of bugs in ma-
chine learning systems, in: IEEE 23rd International Symposium on Soft-
ware Reliability Engineering, 2012, pp. 271–280.

[29] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, L. Zhang, An empirical study
on tensorflow program bugs, in: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018, pp.
129–140. doi:10.1145/3213846.3213866.
URL https://doi.org/10.1145/3213846.3213866

[30] M. J. Islam, R. Pan, G. Nguyen, H. Rajan, Repairing deep neural net-
works: Fix patterns and challenges, in: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 1135–
1146. doi:10.1145/3377811.3380378.

[31] H. F. Eniser, S. Gerasimou, A. Sen, Deepfault: Fault localization for deep
neural networks, in: R. Hähnle, W. van der Aalst (Eds.), Fundamental
Approaches to Software Engineering, Springer International Publishing,
Cham, 2019, pp. 171–191.

[32] J. Sohn, S. Kang, S. Yoo, Search based repair of deep neural networks
(2019). arXiv:1912.12463.

[33] P. Ammann, J. Offutt, Introduction to Software Testing Edition 2, Cam-
bridge University Press, New York, NY, 2017.

[34] S. R. Shahamiri, W. M. N. W. Kadir, S. Z. Mohd-Hashim, A comparative
study on automated software test oracle methods, in: Fourth International
Conference on Software Engineering Advances, 2009, pp. 140–145. doi:
10.1109/ICSEA.2009.29.

[35] R. A. Oliveira, U. Kanewala, P. A. Nardi, Chapter three - automated test

18

https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.21105/joss.01891
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://github.com/life4/deal
https://github.com/life4/deal
https://doi.org/10.1007/s10664-013-9288-2
https://doi.org/10.1007/s10664-013-9288-2
https://doi.org/10.1007/s10664-013-9288-2
https://doi.org/10.1007/s10664-013-9288-2
https://doi.org/10.1145/3358233
https://doi.org/10.1145/3358233
https://doi.org/10.1145/3358233
https://doi.org/10.1145/3358233
https://doi.org/10.1109/ASE.2019.00126
https://doi.org/10.1109/QRS-C.2018.00032
https://doi.org/10.1109/QRS-C.2018.00032
https://doi.org/10.1145/1070838.1070856
https://doi.org/10.1145/1070838.1070856
https://doi.org/10.1145/1070838.1070856
https://doi.org/10.1145/781131.781159
https://doi.org/10.1145/781131.781159
https://doi.org/10.1145/781131.781159
https://doi.org/10.1145/781131.781159
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://spectrum.ieee.org/the-top-programming-languages-2019
https://spectrum.ieee.org/the-top-programming-languages-2019
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3377811.3380378
http://arxiv.org/abs/1912.12463
https://doi.org/10.1109/ICSEA.2009.29
https://doi.org/10.1109/ICSEA.2009.29

oracles: State of the art, taxonomies, and trends, Vol. 95 of Advances in
Computers, Elsevier, 2014, pp. 113–199. doi:https://doi.org/10.1

016/B978-0-12-800160-8.00003-6.
[36] M. Pezzè, C. Zhang, Chapter one - automated test oracles: A survey,

Vol. 95 of Advances in Computers, Elsevier, 2014, pp. 1–48. doi:https:
//doi.org/10.1016/B978-0-12-800160-8.00001-2.

[37] B. K. Aichernig, Automated black-box testing with abstract vdm oracle,
in: Computer Safety, Reliability and Security, 1999, pp. 250–259.

[38] D. Coppit, J. Haddox-Schatz, On the use of specification-based assertions
as test oracles, in: 29th Annual IEEE/NASA Software Engineering Work-
shop, 2005, pp. 305–314. doi:10.1109/SEW.2005.33.

[39] W. Araujo, L. C. Briand, Y. Labiche, On the effectiveness of contracts as
test oracles in the detection and diagnosis of race conditions and dead-
locks in concurrent object-oriented software, in: International Sympo-
sium on Empirical Software Engineering and Measurement, 2011, pp.
10–19. doi:10.1109/ESEM.2011.9.

[40] R. Schwitter, English as a formal specification language, in: Proceedings.
13th International Workshop on Database and Expert Systems Applica-
tions, 2002, pp. 228–232. doi:10.1109/DEXA.2002.1045903.

[41] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, S. D.
Castellanos, Translating code comments to procedure specifications, IS-
STA 2018, Association for Computing Machinery, New York, NY, USA,
2018, p. 242–253. doi:10.1145/3213846.3213872.
URL https://doi.org/10.1145/3213846.3213872

[42] S. Yoo, M. Harman, Regression testing minimization, selection and pri-
oritization: A survey, Softw. Test. Verif. Reliab. 22 (2) (2012) 67–120.
doi:10.1002/stv.430.

[43] T. Xie, Augmenting automatically generated unit-test suites with regres-
sion oracle checking, in: ECOOP 2006 – Object-Oriented Programming,
2006, pp. 380–403.

[44] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, H. Mei, Search-
based inference of polynomial metamorphic relations, in: Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, 2014, pp. 701–712. doi:10.1145/2642937.2642994.

[45] J. Ding, X. Kang, X.-H. Hu, Validating a deep learning framework by
metamorphic testing, in: IEEE/ACM 2nd International Workshop on
Metamorphic Testing (MET), 2017, pp. 28–34. doi:10.1109/MET.20

17.2.
[46] M. Nejadgholi, J. Yang, A study of oracle approximations in testing

deep learning libraries, in: 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2019, pp. 785–796. doi:

10.1109/ASE.2019.00078.

URL References

1. An example of URL reference: https://bugcounting.net

2. DenseNet project page: https://github.com/cmasch/densenet/

3. https://github.com/cmasch/densenet/blob/70ee31d0f6f800324f

be98ea687122395248d39e/densenet.py

4. https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d

524b25d7d2f6428de4a524ff#diff-813086a9be01b05b352f0111384c4

8e74735b009e22f4bab1f3dcaa06e2303c2R68

5. Type hints: https://www.python.org/dev/peps/pep-0484/

6. NumPy: https://numpy.org/

7. https://github.com/bstriner/keras-adversarial/blob/master/e

xamples/image_utils.py#L34

8. https://github.com/bstriner/keras-adversarial/blob/master/k

eras_adversarial/adversarial_utils.py#L10

9. https://github.com/bstriner/keras-adversarial/blob/master/k

eras_adversarial/image_grid_callback.py#L7

10. The PyCharm Python IDE https://www.jetbrains.com/pycharm/

11. https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflo

w-progressive_growing_of_gans/model.py#L21

12. Extract function refactoring https://refactoring.com/catalog/extr

actFunction.html

13. Hypothesis: https://hypothesis.readthedocs.io

14. Islam et al.’s NN bugs dataset: https://lab-design.github.io/pape
rs/ESEC-FSE-19/

15. Vision (0.11.2): https://github.com/pytorch/vision/tree/v0.11

.2

16. https://github.com/se2p/pynguin/issues/20

17. https://github.com/pytorch/vision/blob/v0.11.2/torchvision

/datasets/mnist.py

18. Anaconda: https://www.anaconda.com/

19. Coverage.py v. 6.5.0 https://github.com/nedbat/coveragepy

20. https://github.com/bstriner/keras-adversarial/blob/master/e

xamples/example_rock_paper_scissors.py#L62

21. https://github.com/keras-team/keras/blob/keras-1/keras/lay

ers/core.py#L588

22. https://github.com/keras-team/keras/blob/keras-2/keras/lay

ers/core.py#L823

23. https://github.com/bstriner/keras-adversarial/blob/master/e

xamples/example_aae_cifar10.py#L69-L70

24. https://github.com/bstriner/keras-adversarial/blob/master/e

xamples/example_aae.py#L46-L47

25. https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflo

w-progressive_growing_of_gans/h5tool3.py#L500

26. HDF5 (Hierarchical Data Format 5) for Python: https://www.h5py.o

rg/

27. https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflo

w-progressive_growing_of_gans/h5tool3.py#L520

28. https://github.com/anastassia-b/neural-algorithm-artisti

c-style

29. https://github.com/bstriner/keras-adversarial

30. https://github.com/cmasch/densenet

31. https://github.com/csvance/deep-connect-four

32. https://github.com/dhkim0225/keras-image-segmentation

33. https://github.com/dishen12/keras_frcnn

34. https://github.com/heuritech/convnets-keras

35. https://github.com/jamesmf/mnistCRNN

36. https://github.com/javiermzll/Image-Recognition

37. https://github.com/katyprogrammer/regularization-experiment

38. https://github.com/michalgdak/car-recognition

39. https://github.com/naykun/TF_PG_GANS

40. https://github.com/notem/keras-alexnet

41. https://github.com/Spider101/Visual-Semantic-Alignments

42. https://github.com/taashi-s/UNet_Keras

43. https://github.com/yagotome/lstm-ner

44. https://github.com/dennybritz/cnn-text-classification-tf

45. https://github.com/iwyoo/tf_ThinPlateSpline

46. https://github.com/zzsdsgdtc/BiDAF_PyTorch

47. https://github.com/naykun/TF_PG_GANS/commit/efc6c368158731

9c72e0e867b2b0e673aa018c17#diff-2add825310f36eb885287038932

1d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197

48. https://github.com/naykun/TF_PG_GANS/commit/efc6c368158731

9c72e0e867b2b0e673aa018c17#diff-2add825310f36eb885287038932

1d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187

49. https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf1

73331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f81315301

8d4e40a721ed0bac509ce0a3f75d14c046fc800R51

19

https://doi.org/https://doi.org/10.1016/B978-0-12-800160-8.00003-6
https://doi.org/https://doi.org/10.1016/B978-0-12-800160-8.00003-6
https://doi.org/https://doi.org/10.1016/B978-0-12-800160-8.00001-2
https://doi.org/https://doi.org/10.1016/B978-0-12-800160-8.00001-2
https://doi.org/10.1109/SEW.2005.33
https://doi.org/10.1109/ESEM.2011.9
https://doi.org/10.1109/DEXA.2002.1045903
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/2642937.2642994
https://doi.org/10.1109/MET.2017.2
https://doi.org/10.1109/MET.2017.2
https://doi.org/10.1109/ASE.2019.00078
https://doi.org/10.1109/ASE.2019.00078
https://bugcounting.net
https://github.com/cmasch/densenet/
https://github.com/cmasch/densenet/blob/70ee31d0f6f800324fbe98ea687122395248d39e/densenet.py
https://github.com/cmasch/densenet/blob/70ee31d0f6f800324fbe98ea687122395248d39e/densenet.py
https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d524b25d7d2f6428de4a524ff#diff-813086a9be01b05b352f0111384c48e74735b009e22f4bab1f3dcaa06e2303c2R68
https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d524b25d7d2f6428de4a524ff#diff-813086a9be01b05b352f0111384c48e74735b009e22f4bab1f3dcaa06e2303c2R68
https://github.com/cmasch/densenet/commit/693d772ae9dcdb4d524b25d7d2f6428de4a524ff#diff-813086a9be01b05b352f0111384c48e74735b009e22f4bab1f3dcaa06e2303c2R68
https://www.python.org/dev/peps/pep-0484/
https://numpy.org/
https://github.com/bstriner/keras-adversarial/blob/master/examples/image_utils.py##L34
https://github.com/bstriner/keras-adversarial/blob/master/examples/image_utils.py##L34
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/adversarial_utils.py##L10
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/adversarial_utils.py##L10
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/image_grid_callback.py##L7
https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/image_grid_callback.py##L7
https://www.jetbrains.com/pycharm/
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/model.py#L21
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/model.py#L21
https://refactoring.com/catalog/extractFunction.html
https://refactoring.com/catalog/extractFunction.html
https://hypothesis.readthedocs.io
https://lab-design.github.io/papers/ESEC-FSE-19/
https://lab-design.github.io/papers/ESEC-FSE-19/
https://github.com/pytorch/vision/tree/v0.11.2
https://github.com/pytorch/vision/tree/v0.11.2
https://github.com/se2p/pynguin/issues/20
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/datasets/mnist.py
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/datasets/mnist.py
https://www.anaconda.com/
https://github.com/nedbat/coveragepy
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_rock_paper_scissors.py##L62
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_rock_paper_scissors.py##L62
https://github.com/keras-team/keras/blob/keras-1/keras/layers/core.py##L588
https://github.com/keras-team/keras/blob/keras-1/keras/layers/core.py##L588
https://github.com/keras-team/keras/blob/keras-2/keras/layers/core.py##L823
https://github.com/keras-team/keras/blob/keras-2/keras/layers/core.py##L823
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae_cifar10.py##L69-L70
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae_cifar10.py##L69-L70
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae.py##L46-L47
https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae.py##L46-L47
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L500
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L500
https://www.h5py.org/
https://www.h5py.org/
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L520
https://github.com/naykun/TF_PG_GANS/blob/master/Tensorflow-progressive_growing_of_gans/h5tool3.py#L520
https://github.com/anastassia-b/neural-algorithm-artistic-style
https://github.com/anastassia-b/neural-algorithm-artistic-style
https://github.com/bstriner/keras-adversarial
https://github.com/cmasch/densenet
https://github.com/csvance/deep-connect-four
https://github.com/dhkim0225/keras-image-segmentation
https://github.com/dishen12/keras_frcnn
https://github.com/heuritech/convnets-keras
https://github.com/jamesmf/mnistCRNN
https://github.com/javiermzll/Image-Recognition
https://github.com/katyprogrammer/regularization-experiment
https://github.com/michalgdak/car-recognition
https://github.com/naykun/TF_PG_GANS
https://github.com/notem/keras-alexnet
https://github.com/Spider101/Visual-Semantic-Alignments
https://github.com/taashi-s/UNet_Keras
https://github.com/yagotome/lstm-ner
https://github.com/dennybritz/cnn-text-classification-tf
https://github.com/iwyoo/tf_ThinPlateSpline
https://github.com/zzsdsgdtc/BiDAF_PyTorch
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL196-L197
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL187
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R51
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R51
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R51

50. https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf1

73331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f81315301

8d4e40a721ed0bac509ce0a3f75d14c046fc800R52

51. https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf1

73331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f81315301

8d4e40a721ed0bac509ce0a3f75d14c046fc800R53

52. https://github.com/naykun/TF_PG_GANS/commit/efc6c368158731

9c72e0e867b2b0e673aa018c17#diff-2add825310f36eb885287038932

1d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35

53. https://github.com/heuritech/convnets-keras/commit/b1b472cc

f59bfc3edb7ad033299875c905bf8e37#diff-4a9f068fbd6ab76d347ca

7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325

54. https://github.com/notem/keras-alexnet/commit/94638c596ca6

f3f474241e8a058fd893e1f5ffaa#diff-23de837fc8b40e270ddb47d0a

e913f55e8d31635b80daa5618273535b9d3cd28L198

55. https://github.com/dishen12/keras_frcnn/commit/d91c0adc5cc

d34f6e346fdeddc0a2ce7085a4ffb#diff-a3429d56d560ec95c6b1197

54a121d183b32f8a4b73786f8760d083353914efbL18

56. https://github.com/dhkim0225/keras-image-segmentation/comm

it/992685cde39c3d53ea881d22b9cb26e84963d4bb#diff-d0ff84174

43a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89

57. https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a

3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f81315301

8d4e40a721ed0bac509ce0a3f75d14c046fc800L31

58. https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a

3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f81315301

8d4e40a721ed0bac509ce0a3f75d14c046fc800L35

59. https://github.com/javiermzll/CCN-Whale-Recognition/commit/

e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82

aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46

60. https://github.com/javiermzll/CCN-Whale-Recognition/commit/

e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82

aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46

61. https://github.com/pytorch/vision/pull/5238

62. https://github.com/pytorch/vision/blob/v0.11.2/torchvision

/models/detection/backbone_utils.py#L49

63. https://github.com/pytorch/vision/blob/v0.11.2/test/test_b

ackbone_utils.py#L25

64. https://github.com/pytorch/vision/blob/main/torchvision/io

/image.py#L127

65. https://github.com/pytorch/vision/issues/6607

66. https://github.com/pytorch/vision/blob/b4686f2b7409d1783df

bb951492cd59bfed08bce/torchvision/models/detection/backbon

e_utils.py#L44

67. https://github.com/pytorch/vision/blob/b4686f2b7409d1783df

bb951492cd59bfed08bce/torchvision/io/_video_opt.py#L265

68. https://github.com/pytorch/vision/blob/b4686f2b7409d1783df

bb951492cd59bfed08bce/torchvision/io/image.py#L160

69. CUDA https://developer.nvidia.com/cuda-zone

70. https://github.com/pytorch/vision/blob/b4686f2b7409d1783df

bb951492cd59bfed08bce/test/test_image.py#L382

71. https://github.com/pytorch/vision/blob/b4686f2b7409d1783df

bb951492cd59bfed08bce/torchvision/io/image.py#L12

72. https://github.com/pytorch/vision/blob/b4686f2b7409d1783df

bb951492cd59bfed08bce/torchvision/io/_video_opt.py#L14

20

https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R52
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R52
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R52
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R53
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R53
https://github.com/taashi-s/UNet_Keras/commit/fd81da67bfcf173331e03687425040138e76bc8f#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800R53
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35
https://github.com/naykun/TF_PG_GANS/commit/efc6c3681587319c72e0e867b2b0e673aa018c17#diff-2add825310f36eb8852870389321d3e6a7416fed8f9aacd3e0b29fd0a2336b1dL35
https://github.com/heuritech/convnets-keras/commit/b1b472ccf59bfc3edb7ad033299875c905bf8e37#diff-4a9f068fbd6ab76d347ca7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325
https://github.com/heuritech/convnets-keras/commit/b1b472ccf59bfc3edb7ad033299875c905bf8e37#diff-4a9f068fbd6ab76d347ca7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325
https://github.com/heuritech/convnets-keras/commit/b1b472ccf59bfc3edb7ad033299875c905bf8e37#diff-4a9f068fbd6ab76d347ca7772f3da3f100db338cd6c8fb3900adef38ab9dff20L325
https://github.com/notem/keras-alexnet/commit/94638c596ca6f3f474241e8a058fd893e1f5ffaa#diff-23de837fc8b40e270ddb47d0ae913f55e8d31635b80daa5618273535b9d3cd28L198
https://github.com/notem/keras-alexnet/commit/94638c596ca6f3f474241e8a058fd893e1f5ffaa#diff-23de837fc8b40e270ddb47d0ae913f55e8d31635b80daa5618273535b9d3cd28L198
https://github.com/notem/keras-alexnet/commit/94638c596ca6f3f474241e8a058fd893e1f5ffaa#diff-23de837fc8b40e270ddb47d0ae913f55e8d31635b80daa5618273535b9d3cd28L198
https://github.com/dishen12/keras_frcnn/commit/d91c0adc5ccd34f6e346fdeddc0a2ce7085a4ffb#diff-a3429d56d560ec95c6b119754a121d183b32f8a4b73786f8760d083353914efbL18
https://github.com/dishen12/keras_frcnn/commit/d91c0adc5ccd34f6e346fdeddc0a2ce7085a4ffb#diff-a3429d56d560ec95c6b119754a121d183b32f8a4b73786f8760d083353914efbL18
https://github.com/dishen12/keras_frcnn/commit/d91c0adc5ccd34f6e346fdeddc0a2ce7085a4ffb#diff-a3429d56d560ec95c6b119754a121d183b32f8a4b73786f8760d083353914efbL18
https://github.com/dhkim0225/keras-image-segmentation/commit/992685cde39c3d53ea881d22b9cb26e84963d4bb#diff-d0ff8417443a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89
https://github.com/dhkim0225/keras-image-segmentation/commit/992685cde39c3d53ea881d22b9cb26e84963d4bb#diff-d0ff8417443a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89
https://github.com/dhkim0225/keras-image-segmentation/commit/992685cde39c3d53ea881d22b9cb26e84963d4bb#diff-d0ff8417443a18c35cc6c3183197d82f48cee72d735133ff901da033d0e32242L89
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L31
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L31
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L31
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L35
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L35
https://github.com/taashi-s/UNet_Keras/commit/b1b6d938bdd7a3e30f3d1fa58009f4850cbc2958#diff-e1afe2b6eb4252b0f813153018d4e40a721ed0bac509ce0a3f75d14c046fc800L35
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/javiermzll/CCN-Whale-Recognition/commit/e2d3ff925460060f0127c894368147b54b5f03c0#diff-1b740140b6c82aacc5a6f6b319be9cf103ee72b424ad475f795ea72d4b267849L46
https://github.com/pytorch/vision/pull/5238
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/detection/backbone_utils.py##L49
https://github.com/pytorch/vision/blob/v0.11.2/torchvision/models/detection/backbone_utils.py##L49
https://github.com/pytorch/vision/blob/v0.11.2/test/test_backbone_utils.py##L25
https://github.com/pytorch/vision/blob/v0.11.2/test/test_backbone_utils.py##L25
https://github.com/pytorch/vision/blob/main/torchvision/io/image.py#L127
https://github.com/pytorch/vision/blob/main/torchvision/io/image.py#L127
https://github.com/pytorch/vision/issues/6607
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/models/detection/backbone_utils.py#L44
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/models/detection/backbone_utils.py#L44
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/models/detection/backbone_utils.py#L44
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L265
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L265
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L160
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L160
https://developer.nvidia.com/cuda-zone
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/test/test_image.py#L382
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/test/test_image.py#L382
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L12
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/image.py#L12
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L14
https://github.com/pytorch/vision/blob/b4686f2b7409d1783dfbb951492cd59bfed08bce/torchvision/io/_video_opt.py#L14

	Introduction
	An Example of Using [0.5]aNNoTest
	How [0.5]aNNoTest works
	The [0.5]aN Annotation Language
	Type Annotations
	Custom Generators
	Preconditions
	Auxiliary Annotations

	Annotation Guidelines
	Building Custom Generators by Refactoring
	Test Generation
	Failing Tests and Oracles

	Experimental Evaluation
	Experimental Subjects
	Experimental Setup
	Project Setup
	Experimental Process

	Experimental Results
	RQ1: Precision
	RQ2: Recall
	RQ3: Amount of Annotations
	RQ4: Comparison to Generic Test-Case Generators
	RQ5: Code Coverage

	Threats to Validity

	Related work
	Conclusions and Future Work

