
Diss. ETH No. 24129

Void Safety

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by
ALEXANDER KOGTENKOV

Diploma with Honors in Applied Mathematics
Moscow State Engineering Physics Institute (Technical University)

Russian Federation

born on
November 18th, 1970

citizen of
Russian Federation

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. Carlo A. Furia, co-examiner

Prof. Dr. Manuel Mazzara, co-examiner
Prof. Dr. Erik Meijer, co-examiner

Prof. Dr. Lothar Thiele, co-examiner

2017

Alexander Kogtenkov
Void Safety
Avoiding Null Pointer Dereferencing in an Object-Oriented Language

DOI:10.3929/ethz-b-000000135

2017 Alexander Kogtenkov

© 2017 Alexander Kogtenkov

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License:
http://creativecommons.org/licenses/by-nc-sa/4.0/.

http://dx.doi.org/10.3929/ethz-b-000000135
http://creativecommons.org/licenses/by-nc-sa/4.0/

Ac k n o w l e d g m e n t s

My research work would be impossible without continuous sup-
port of many people and I am very grateful for overall apprecia-
tion of the idea to make yet another step towards more reliable
software.
I learned about void safety from Bertrand Meyer who coined the
term to reflect absence of access on void target in Eiffel. He in-
troduced me to the basic elements of the mechanism and perma-
nently promoted it bringing us to a solid theoretical and practical
solution. Many issues discussed in this work came out as a result
of recurring discussions with Bertrand Meyer about language evo-
lution and his strong position about intransigent correctness and
usability of proposed language rules.
The ideas seemed to be around for some time at the beginning of
2000’s and were discussed by top-level scientists. I was lucky to
meet Eric Meijer who told me about the early communications on
null dereference avoidance techniques that looked rather simple
at that time, but turned out to be a nightmare when it came to
implementation.
Indeed, the implementation part was not easy, especially because
there were tons of void-unsafe code around, and I am very thank-
ful to Eiffel Software that was generous enough to go through
multiple releases of the product featuring varying maturity of
void safety, finally reaching its firm position. We had innumer-
able discussions about technical details with Emmanuel Stapf who
shared a lot of important ideas. In particular, he and Mark Howard
came up with the thought to have several void safety levels when
migrating from void-unsafe to void-safe source code. Similarly,
David Hollenberg became an early tester of the technology and
found several border-line overlooked cases incorrectly handled
by the compiler. The whole Eiffel Software team was involved in
adapting existing libraries to the new rules of the game, includ-
ing Jocelyn Fiat who wholeheartedly embraced the migration, and
Ian King who worked on the migration of a cross-platform GUI
library and proposed the object initialization scheme that was

iii

compatible with the solution I had implemented in the compiler
at that time. We also discussed so called “design mode” that al-
lowed for developing incomplete systems. At a summer school
I was able to share the ideas with Tony Hoare and to get a quick
feedback on the theoretical side of the approach.
Many language-specific decisions came from hot discussions at
the ECMA TC49-TG4 standardization committee. One of its constant
members, Eric Bezault thoroughly reviewed the language stan-
dard that allowed me to avoid missing cases in the implemen-
tation. He also persuaded me to have a closer look at certified
attachment patterns that finally resulted in a much more general-
ized version of the rules. His comments also forced me to support
more flexible object initialization. Talking about object initializa-
tion, I should mention a pretty lengthy discussion on how this
could be done with Bertrand Meyer and Emmanuel Stapf, resulted
in a very practical solution compared to the one we originally
devised.
An opportunity to attend a IFIP WG 2.3 meeting, especially to
hear straight comments of Jayadev Misra and to observe a detailed
analysis of problems by Rustan Leino as well as later short conver-
sations with both of them, taught me to look for rigorous and
thorough theoretical background of a model, and urged me to
look in the direction of proof assistants. I am very thankful to
Andreas Lochbihler and Christoph Sprenger who introduced me to
the world of Isabelle/HOL and showed me how to use the tool. I
am also grateful to anonymous reviewers of my papers for their
helpful comments on my work.
The Chair of Software Engineering at ETH Zürich collected a fan-
tastic group of people, such as Sebastian Nanz, Carlo A. Furia,
Martin Nordio that provided general support though the course
of my endeavors, as well as Chris Poskitt, Roman Schmocker, Ji-
won Shin, Christian Estler, Max Pei, Marco Trudel, Marco Piccioni,
Chandrakana Nandi, Ðurica Nikolić, Georgiana Caltais, Julian Tschan-
nen, Nadia Polikarpova, Scott West, Benjamin Morandi, Jason Wei, Pi-
otr Nienaltowski, Alexey Kolesnichenko, Andrey Rusakov who always
welcomed me during my brief visits to ETH. Also, many thanks
to Mischael Schill for helping me with translation into German.
On the organizational side Denise Spicher all the time helped me
to find appropriate answers to administrative questions I occa-
sionally had. And Claudia Günthart was an incredible savior in
multiple predictable and unforeseen situations immediately re-

iv

v

acting to my (sometimes crazy) requests from the very beginning
of my application as a PhD student.
I give my special thanks to the examiners who took their time to
read and evaluate my work: Carlo A. Furia, Manuel Mazzara, Erik
Meijer and Lothar Thiele.

C o n t e n t s

1 I n t r o d u c t i o n 1

1.1 Motivation and goal 1

1.2 Effect in industry . 3

1.3 The keys to void safety 8

1.4 Challenges . 8

1.5 Role of Isabelle . 9

1.6 Terminology . 11

1.7 Contributions . 12

2 O v e r v i e w 15

2.1 Research area . 15

2.1.1 State of the art 16

2.1.2 Goals . 18

2.1.3 Novelty . 19

2.2 Achievements . 19

2.2.1 Methodology 19

2.2.2 Value of the work 20

2.2.3 Proposed solutions 20

2.2.4 Practical effect 22

2.2.5 Relevant publications 23

2.3 Outline . 24

2.4 Conclusion . 25

2.4.1 Main results 25

2.4.2 Future work 26

3 F r o m Th e o r y t o P r a c t i c e 27

3.1 First steps . 27

3.2 Language conventions 28

3.2.1 Default attachment status 28

3.2.2 Array items 29

3.2.3 Once functions 31

3.2.4 Scopes for attributes 33

3.3 Adapting legacy code 36

3.3.1 Void safety levels 36

3.3.2 Migration statistics 38

3.4 Controversial issues 41

3.4.1 Self-initializing attributes 41

vii

viii Contents

3.4.2 Assertion checks 42

3.5 Related work . 43

4 A Ty p e S y s t e m f o r Vo i d S a f e t y 47

4.1 Attachment status . 47

4.2 General validity rules 49

4.3 Formal generics . 51

4.3.1 Attachment property 52

4.3.2 Self-initialization status 53

4.3.3 Conformance 54

4.4 Related work . 57

4.5 Conclusion . 59

5 Th e O b j e c t I n i t i a l i z at i o n I s s u e 61

5.1 Attribute access safety 61

5.1.1 Motivating example 61

5.1.2 Solution . 64

5.1.3 Initialization order in presence of inheritance 70

5.1.4 Modification of existing structures 74

5.1.5 Implementation 75

5.1.6 Practical experience 78

5.1.7 Conclusion 80

5.2 Circular references 81

5.2.1 Motivating example 81

5.2.2 Solution . 83

5.2.3 Implementation 97

5.2.4 Empirical results 98

5.3 Object disposal . 102

5.4 Related work . 103

5.5 Conclusion . 114

6 C e r t i f i e d At ta c h m e n t Pat t e r n s 119

6.1 Overview . 119

6.2 Attachment state . 123

6.2.1 Abstract syntax 124

6.2.2 Scopes . 124

6.2.3 Transfer function 134

6.2.4 Design mode 141

6.3 Validity rules . 145

6.3.1 Expression validity 145

6.3.2 Beyond void safety 148

6.3.3 Implementation 149

6.4 Practical experience 150

6.5 Related work . 154

Contents ix

6.6 Conclusion . 155

7 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s 157

7.1 Overview . 157

7.2 State validity . 161

7.3 The semantics . 162

7.4 Safety . 164

7.4.1 Preservation theorem 164

7.4.2 Equivalence of safe and unsafe semantics . . 166

7.5 Related work . 169

7.6 Conclusion . 170

a C o d e M i g r at i o n 171

a.1 General information 171

a.2 Migration from void-unsafe to transitional level of
void safety . 174

a.3 Migration from transitional to complete level of
void safety . 176

b Th e o r i e s c o d e 179

b.1 Common definitions 179

b.2 Identifiers . 179

b.3 Types . 179

b.4 Type environment . 180

b.5 Values . 180

b.6 Expression . 182

b.6.1 Expressions 182

b.6.2 Final computations 182

b.6.3 Boolean expressions 183

b.7 Object heap . 183

b.8 Memory state . 184

b.9 Void-safe Big-step semantics 184

b.9.1 Big-step semantics rules 184

b.9.2 Final state . 186

b.10 Void-unsafe Big-step semantics 187

b.10.1 Big-step semantics rules 188

b.11 Types with attachment status 190

b.11.1 Type abstraction describing attachment status190

b.11.2 Attachment status of types 195

b.12 Values with attachment status 195

b.12.1 Attachment type of simple expressions . . . 195

b.13 Attachment properties of object heap 196

b.14 Type environment with attachment marks 197

b.15 Expression with attached types 197

x Contents

b.16 Set with absorbing top element 197

b.17 Loop operator . 213

b.18 Transfer function . 216

b.18.1 Transfer function without scopes 216

b.18.2 Transfer function with scopes 217

b.19 Expression void safety 226

b.19.1 Attachment validity rules and type checks . 226

b.19.2 Type checks properties 227

b.20 Memory state validity 233

b.20.1 Run-time attachment status 233

b.20.2 Run-time state decomposition. 237

b.20.3 Run-time state updates. 238

b.21 Attachment correctness 239

b.21.1 Preservation of valid run-time state 239

b.21.2 Preservation of attachment property 267

b.22 Conditional equivalence of void-safe and void-unsafe
semantics . 273

b.23 Class declaration . 278

b.23.1 Declarations 278

b.23.2 Routines . 278

b.24 System . 279

b.24.1 Class properties 279

b.25 Validity of creation procedures 280

b.25.1 Unattached attributes 280

b.25.2 Validity rule: simple attribute access safety . 282

b.25.3 Access to current 283

b.25.4 Presence of qualified calls 283

b.25.5 Validity rule: circular references 287

b.26 Formal generic conformance 289

I n d e x 293

B i b l i o g r a p h y 295

L i s t o f F i g u r e s

Figure 1.1 Null pointer issues in the CVE database . . 4

Figure 2.1 Key elements of void safety 17

Figure 3.1 Void safety levels in different releases . . . 38

Figure 3.2 LOC changed for transitional void safety . 40

Figure 3.3 Classes changed for transitional void safety 40

Figure 4.1 Self-initializing and attached types 49

Figure 5.1 Example: parent dialog class 62

Figure 5.2 Example: child dialog class (A) 63

Figure 5.3 Example: child dialog class (A) – corrected
version . 64

Figure 5.4 Object initialization with validity rule 5.1 . 65

Figure 5.5 Simplified abstract expression syntax . . . 66

Figure 5.6 Function to compute a set of unattached
attributes . 67

Figure 5.7 Predicate for validity rule 5.1 69

Figure 5.8 Example: counter widget 70

Figure 5.9 Example: child dialog class (B) 71

Figure 5.10 Example: child dialog classes (A) and (B) . 73

Figure 5.11 Example: mediator pattern 75

Figure 5.12 Using a stack to compute currently set at-
tributes . 76

Figure 5.13 Classes changed for complete void safety . 79

Figure 5.14 LOC changed for complete void safety . . . 79

Figure 5.15 Creating objects with circular references . . 82

Figure 5.16 Object initialization with validity rule 5.2 . 85

Figure 5.17 Function to report safe uses of Current . . . 86

Figure 5.18 Function to detect immediate qualified calls 89

Figure 5.19 Function to collect creation procedure calls 90

Figure 5.20 Predicate for validity rule 5.2 92

Figure 5.21 Corrected example from [17] 105

Figure 5.22 Eiffel version of buggy code from [62] . . . 107

Figure 5.23 Adapted example of a binary tree from [62] 108

Figure 5.24 Eiffel version of a buggy example from [70] 111

Figure 5.25 Doubly-linked list example from [70] . . . 112

xi

xii List of Figures

Figure 6.1 Example of an issue with loop CAPs 122

Figure 6.2 Datatype expression 125

Figure 6.3 Scope combinations 129

Figure 6.4 Unfolded forms of boolean operators . . . 133

Figure 6.5 Transfer function 135

Figure 6.6 Attachment status function 136

Figure 6.7 Transfer functions for argument lists 136

Figure 6.8 Transfer functions for positive and nega-
tive scopes 138

Figure 6.9 Operations on topset 142

Figure 6.10 Insertion and removal in topset 143

Figure 6.11 Void safety rules 146

Figure 6.12 Number of errors reported with type-based
and CAP-based local void safety rules . . . 153

Figure 7.1 Simplified graph of theories 160

Figure 7.2 Big-step semantics: regular cases 163

Figure 7.3 Big-step semantics: exception propagation 164

Figure 7.4 Feature call rule in safe and unsafe big-
step semantics 168

Figure A.1 LOC changed for transitional void safety . 175

Figure A.2 LOC changed for complete void safety . . . 177

L i s t o f Ta b l e s

Table 3.1 Summary of changes in public libraries . . 41

Table 5.1 Creation procedures classified by use of
qualified calls and incompletely initialized
objects . 99

Table 5.2 Compilation time increase due to additional
checks for object initialization 101

Table 6.1 Voidness tests 125

Table 6.2 Errors reported with different void safety
rules . 151

Table A.1 Void safety status of public libraries 172

Table A.2 LOC in public libraries in different releases 173

Table A.3 Migration to transitional void safety 174

Table A.4 Migration to complete void safety 176

xiii

A b s t r a c t

Null pointer dereferencing is a well-known issue in object-orient-
ed programming, and can be avoided by adding special validity
rules to the programming language. However, just introducing a
single rule is not enough: the whole language infrastructure has
to be considered instead. The resulting guarantees are called void
safety.
The thesis reviews, in detail, engineering solutions and migration
efforts that enabled the transition from classic to void safe code of
multiple libraries and projects with lines of code ranging in the
millions. Experience with the tiny details of the implementation
can be an invaluable source of insight for researcher looking into
making a language void safe.
The void safety rules can be divided into three major categories.
The first one is the extension of a regular type system with at-
tached (non-null) and detachable (possibly-null) types. Generic
programming opens a door to different interpretations. The the-
sis defines some base void safety properties for formal generic types
and specifies void-safety-aware conformance rules.
The second category of rules ensures that newly created objects
reach a stable state maintaining the type system guarantees. The
thesis proposes two solutions for this object initialization issue and
compares them to previous work. It formalizes the rules in the
Isabelle/HOL proof assistant and establishes some of their prop-
erties. To ensure safety at the end of object life cycle it also speci-
fies validity rules for finalizers. A number of examples are used to
demonstrate that the proposed solutions are of practical use and
do not suffer from limited expressiveness caused by the lack of
additional annotations describing intermediate object states.
The third category of void safety rules covers a practical need
to bridge the gap between attached and detachable types. The
thesis proposes formal void safety rules for local variables in the con-
text of an object-oriented language that do not require any marks
to distinguish between attached and detachable types. It demon-
strates advantages of the annotation-free approach with bench-

xv

xvi List of Tables

marks based on open source code, discusses implementation de-
cisions and how they are reflected in the formal model.
The thesis concludes with a machine-checkable soundness proof for
the rules involving local variables using the Isabelle/HOL proof
assistant.

Z u s a m m e n f a s s u n g

Nullzeigerdereferenzierung ist eine bekannte Problematik in der
objektorientierten Programmierung und kann durch spezifische
Gültigkeitsregeln der Programmiersprache vermieden werden. Ei-
ne einzelne Regel macht dies nicht möglich, stattdessen muss die
gesamte Sprachinfrastruktur einbezogen werden. Die dadurch er-
reichten Garantien werden Void Safety genannt.
Diese Dissertation untersucht detailliert einige technische Lösun-
gen und Migrationsansätze, welche den Übergang von klassi-
schem zu Void Safe Eiffel-Quelltext mehrerer Bibliotheken und
Projekte mit millionen Programmzeilen ermöglichten. Erfahrung
mit den winzigen Details der Implementation kann eine wertvol-
le Quelle der Erkenntnis für Forscher sein, welche eine Sprache
um Void Safety erweitern wollen. Die Regeln für Void Safety kön-
nen in drei Kategorien eingeteilt werden. Die erste umfasst die
Erweiterung des Typsystems mit befestigten (attached, garantiert
nicht Null) und lösbaren (detachable, möglicherweise Null). Ge-
nerische Programmierung öffnet dabei aber die Türe für verschie-
dene Interpretationen. Diese Dissertation definiert grundlegende
Eigenschaften formaler generischer Typen und spezifiziert diesbezüg-
lich Konformitätsregeln für Void Safety.
Die zweite Kategorie der Regeln stellt sicher, dass neue Objekte
einen stabilen Zustand erreichen, der die Typsystemgarantieren
sicherstellt. Die Dissertation schlägt zwei Lösungen für diese Ob-
jektinitialisierungsproblematik vor und vergleicht sie mit vorheri-
gen Ansätzen. Sie formalisiert die Regeln für den Isabelle/HOL
Beweisassistenten und zeigt einige der Eigenschaften. Um Void
Safety auch am Ende des Objektlebenszyklus sicherzustellen spe-
zifiziert die Dissertation auch Gültigkeitsregeln für Finalisierer. Ei-
ne Anzahl von Beispielen demonstriert dass die vorgeschlagenen
Lösungen praktikabel sind und nicht an einer, durch den Mangel
an zusätzlichen, zwischenzeitliche Objektzustände beschreiben-
den, Annotationen, limitierten Ausdrucksfähigkeit leiden.
Die dritte Kategorie der Regeln für Void Safety befasst sich mit
der praktischen Notwendigkeit die Brücke zwischen befestigten

xvii

xviii Zusammenfassung

und lösbaren Typen zu schlagen. Die Dissertation präsentiert da-
für formale Void Safety Regeln für lokale Variablen im Kontext einer
objektorientierten Sprache, welche keine Markierungen benötigt
um zwischen befestigten und lösbaren Typen zu unterscheiden.
Sie demonstriert die Vorteile des annotationsfreien Ansatzes mit
Benchmarks basierend auf offenem Quelltext, diskutiert Imple-
mentationsentscheidungen und wie sie im formalen Modell re-
flektiert werden.
Die Thesis schliesst mit einem, mit dem Isabelle/HOL Beweisas-
sistenten durchgeführten, maschinenüberprüfbaren Zuverlässigkeits-
beweis der Regeln bezüglich lokaler Variablen.

1
I n t r o d u c t i o n

1.1 Motivation and goal

In his talk at a conference in 2009 Tony Hoare called his inven-
tion of the null reference in 1965 a “billion-dollar mistake” ([24]).
The reason is simple: most object-oriented languages suffer from
a problem of null pointer dereferencing. What does it mean in
practice? It is possible that at run-time some variables (or expres-
sions in general) do not reference any existing object, or are null.
On the other hand the core of object-oriented languages is in the
ability to send a message to a particular object or, in other terms,
to make a call on an object. Given that there is no object when the
reference is null, the run-time should signal to the program about
the issue. Different languages deal with the problem in different
ways, the most popular are as follows:

• throw an exception (Java [21, 22], C# [26], JavaScript [13],
Python [63], Ruby [28])

• consider the behavior as undefined (C++ [29])
• return default values for basic types or structures, consider

the behavior as undefined otherwise (Objective C [4])
• trigger a fatal error that can be caught by a user-specified

error handler (PHP [23])
In particular, it turns out that in Java or C# an object call

expr.something (args)

denotes not just a call, but also a check whether the target is null,
i. e., is interpreted similar to the following code snippet:

tmp = expr;

if (tmp == null)

throw new NullPointerException ();

else

tmp.something (args);

1

2 I n t r o d u c t i o n

This hidden semantics requires additional static analysis and test-
ing for production software due to the need to reveal the cases
when NullPointerException may be triggered, and still not guar-
anteeing 100% absence of bugs.
Solutions to this problem fall into two major groups depending
on whether the absence of null pointer dereferencing bugs can
be guaranteed for a self-contained set of classes or requires a
whole system analysis. Solutions from the first group ([17, 51, 62,
70]) equip types with additional information that tells whether
the corresponding run-time value is never null or may be null at
run-time. The type system conformance rules are used to specify
what operations are permitted or not depending on the new null-
ness information associated with types. Though in a stable execu-
tion, when all objects have finished their initialization, the rules
are simple, object initialization introduces certain challenges for
language designers because some variables that are normally not
null, may be null at this stage.
The obvious approach to distinguish between never-null and pos-
sibly-null references is to introduce a type mark [17, 51, 70] to in-
dicate this property. Java-like languages (including C#) use their
annotation mechanism with marks [NotNull] and [MaybeNull]

to indicate nullness status of a type, Eiffel uses type marks
attached and detachable for the same purpose. Masked types pro-
posed in [62] are essentially different from this convention and
operate on a much higher level of granularity allowing for identi-
fying specific object parts that are initialized or not. In particular,
they go far beyond null safety at the cost of amount of additional
annotations. This approach might be justified for critical system
development but seems too elaborate for everyday programming.
Solutions from the second group, with the most influential [67],
do not use any annotations and infer nullness status of expres-
sions from the program itself. This requires whole system analy-
sis and cannot be used as a basis for language rules specification
as safety properties of a class may be affected by other classes,
not directly reachable from the current one. The main advantage
of the approach is that no source code changes are required. Un-
fortunately, without knowing whether a type of an expression
should be never-null or maybe-null, it is unclear how to report
issues detected in a program that does not pass all checks. The
issue might be in the client that does not respect supplier’s ex-
pectations, or in the supplier that is buggy.

1.2 Effect in industry 3

An ideal solution should be able to take advantage of both ap-
proaches to be:

• modular: there should be no requirement to do whole sys-
tem analysis to see that a particular class, or, better, a self-
contained library, is free of null pointer dereferencing;

• simple: the annotations should be easy to grasp and to use,
preferably without special notions for rare cases;

• naturally expressive: there should be no artificial restric-
tions caused by the type system and language rules.

This work focuses on specification of void safety rules on a lan-
guage level, so that a program written in this language, if it com-
piles successfully, never causes a null dereferencing bug at run-
time.

1.2 Effect in industry

Null-pointer dereference being known for a long time (at least
from the time mentioned by Tony Hoare in [24]) remains one of
the day-to-day issue discovered in open source and private soft-
ware. About 20 years ago software industry realized that even
though different platforms have different score for software bugs
due to different paradigms, tools, design and coding style, sim-
ilar issues tend to repeat in different environments leading to
similar vulnerabilities in software products. One of such initia-
tives was launched in 1999 and led to creation of a dictionary
of common names for publicly known cybersecurity vulnerabil-
ities known as Common Vulnerabilities and Exposures (CVE®)
[8] funded by CERT (Computer emergency response teams, [10]). As
of December 2016, the database has 727 entries mentioning null
pointer dereference bugs explicitly. The distribution by years is
shown in figure 1.1.
The statistics if strongly incomplete, because there are other bugs
related to null-pointer safety. For example,

CVE-2016-2519
ntpq and ntpdc can be used to store and retrieve informa-
tion in ntpd. It is possible to store a data value that is larger
than the size of the buffer that the ctl_getitem() function
of ntpd uses to report the return value. If the length of
the requested data value returned by ctl_getitem() is too

4 I n t r o d u c t i o n

2000 2002 2004 2006 2008 2010 2012 2014 2016

10

20

30

40

50

60

70

80
10-Year average

N
um

be
r

of
nu

ll-
po

in
te

r
is

su
es

Figure 1.1. Null pointer issues (such as null pointer dereferencing) in
Common Vulnerabilities and Exposures database.

1.2 Effect in industry 5

large, the value NULL is returned instead. . . . if one has per-
mission to store values and one stores a value that is “too
large”, then ntpd will abort if an attempt is made to read
that oversized value.

The description of the issue is taken from the vulnerability note
VU#718152 titled “NTP.org ntpd contains multiple vulnerabilities” re-
leased on 28th of April 2016 by CERT and affects almost every
computer on the Earth. Among vendors the bulletin mentions
Apple, AT&T, Cisco, Google, IBM Corporation, and Microsoft Corpo-
ration to name a few. All planet is explicitly or implicitly involved
in updating operating systems that uses ntpd program, because
the issue is discovered in the reference implementation.
Other examples from the database:

CVE-2015-4444
Adobe Reader and Acrobat 10.x before 10.1.15 and 11.x be-
fore 11.0.12, Acrobat and Acrobat Reader DC Classic before
2015.006.30060, and Acrobat and Acrobat Reader DC Con-
tinuous before 2015.008.20082 on Windows and OS X allow
attackers to cause a denial of service (NULL pointer deref-
erence) via unspecified vectors.

CVE-2015-8746
fs/nfs/nfs4proc.c in the NFS client in the Linux kernel
before 4.2.2 does not properly initialize memory for migra-
tion recovery operations, which allows remote NFS servers
to cause a denial of service (NULL pointer dereference and
panic) via crafted network traffic.

CVE-2015-8835
The make_http_soap_request function in ext/soap/php_

http.c in PHP before 5.4.44, 5.5.x before 5.5.28, and 5.6.x
before 5.6.12 does not properly retrieve keys, which allows
remote attackers to cause a denial of service (NULL pointer
dereference, type confusion, and application crash) or pos-
sibly execute arbitrary code via crafted serialized data rep-
resenting a numerically indexed _cookies array, related to
the SoapClient::__call method in ext/soap/soap.c.

CVE-2016-1756
The kernel in Apple iOS before 9.3 and OS X before
10.11.4 allows attackers to execute arbitrary code in a privi-
leged context or cause a denial of service (NULL pointer
dereference) via a crafted app. (Fix provided by Apple

6 I n t r o d u c t i o n

(see https://support.apple.com/en-us/HT206167): A null
pointer dereference was addressed through improved input
validation.)

CVE-2016-2168
The req_check_access function in the mod_authz_svn mod-
ule in the httpd server in Apache Subversion before 1.8.16

and 1.9.x before 1.9.4 allows remote authenticated users to
cause a denial of service (NULL pointer dereference and
crash) via a crafted header in a (1) MOVE or (2) COPY re-
quest, involving an authorization check.

Here an extract from the bug database [60] (https://bugs.php.
net/bug.php?id=70081) that describes CVE-2015-8835:

The first problem lies how zend_hash_get_current_key is
called in php_http.c:826

zend_hash_get_current_key_ex(Z_ARRVAL_PP(cookies),

&key, &key_len, NULL, 0, NULL);

here a wrong assumption is made about key always be-
ing a **char, in fact, this is not true when unserializing
a SoapClient object crafted with a numerically indexed
array as _cookies. The scenario mentioned above would
then result in a null pointer dereference occurring in
zend_hash_get_current_key(), zend_hash.c, line 1088.

*num_index = p->h;

where num_index is the NULL passed as 4th argument, and
p->h a user-controlled value. While remotely this will al-
ways lead to a crash attempting to dereference 0x0, locally,
if memory mapping is possible, this could be used to get
arbitrary memory write and most likely code execution.

As described in the bug report, the null pointer dereference is
just one step before crashing an application (best case scenario)
or gaining privileged access to the computer by an attacker.
The references above are only the tip of the iceberg because they
give an overview of what has been discovered. The real issue
is about how much is going to be discovered in the future. The
international community-driven dictionary of software weakness
types Common Weakness Enumeration (CWE™, [9]) mentions the
following consequences of CWE-476 NULL Pointer Dereference:

• NULL pointer dereferences usually result in the failure of
the process unless exception handling (on some platforms)

https://support.apple.com/en-us/HT206167
https://bugs.php.net/bug.php?id=70081
https://bugs.php.net/bug.php?id=70081

1.2 Effect in industry 7

is available and implemented. Even when exception han-
dling is being used, it can still be very difficult to return the
software to a safe state of operation.

• In very rare circumstances and environments, code execu-
tion is possible.

It suggests the following potential mitigation depending on the
software development phase:
Requirements

Use a language that is not susceptible to these issues.
Architecture and Design

Identify all variables and data stores that receive informa-
tion from external sources, and apply input validation to
make sure that they are only initialized to expected values.

Implementation
• Sanity-check all pointers previous to use.
• Check the results of all functions that return a value

and verify that the value is non-null before acting
upon it.

• Explicitly initialize all your variables and other data
stores, either during declaration or just before the first
usage.

Testing
Use automated static analysis tools that target this type of
weakness. Many modern techniques use data flow analy-
sis to minimize the number of false positives. This is not a
perfect solution, since 100% accuracy and coverage are not
feasible.

The weakness is described as an indicator of poor code quality.
Using this terminology all software that we use every day is of
a poor quality as demonstrated by the statistics and specific ex-
amples presented above. Other categories with this weakness in-
clude:

• OWASP [58] Top Ten 2004 Category A9 – Denial of Service
• CERT [10] C and C++ Secure coding (Expressions and Mem-

ory Management sections)
• CWE [9] Nominee of 2010 and 2011 CWE/SANS Top 25

Most Dangerous Programming Errors
So, although the null-safety problem is known for a long time, it
is still quite relevant in practice.

8 I n t r o d u c t i o n

1.3 The keys to void safety

A void-safe language distinguishes between types of expressions
that always produce an object and types of expressions that
may produce null. The type system rules ensure that a variable
marked as non-null is never assigned a null value. With such
rules it is possible to go from never-null values to maybe-null
values, because the latter is a superset of the former, or to stay
within the same kind of nullness category. This introduces two
stable groups of expressions that may be exchanged – never-
null and maybe-null – and unidirectional flow from never-null
to maybe-null values. The opposite direction – from maybe-null
to never-null values – is not covered by the typing rules to pre-
serve soundness.
However, this opposite direction is essential in at least two cases.
Firstly, when a new object is created, if it has fields declared as
never-null, they have to be initialized properly before the object
can be safely used. This problem is known as object initialization.
Secondly, even in a stable system, an expression of a maybe-null
type can be checked for nullness at run-time. As soon as its value
is not null, it should be safe to use it even in place of a never-null
expression. The associated code structures are known as certified
attachment patterns (CAP) ([12, 27]).
Therefore, the complete solution comes as a combination of

• a null-reference-aware type system
• language rules for object initialization
• certified attachment patterns

1.4 Challenges

One role of type systems in modern statically typed object-
oriented languages is to enable reasoning about execution-time
properties of objects at compile time. It effectively serves as a
mechanism to limit potential aliasing when two variables of dif-
ferent static types can reference the same run-time object. Direct
application of the type system approach to null safety quickly be-
comes too complicated because unlike regular typing rules, vari-
ables can become null and non-null during execution. Moreover,
step-by-step execution principle does not allow for setting mu-

1.5 Role of Isabelle 9

tually dependent variables simultaneously. In other words, an
object of the same type can be seen as having different nullness
properties at run-time. A very detailed specification of these prop-
erties is possible at compile time, but introduces too much anno-
tations in the language with little benefit for the end user, who,
looking at the code, can say “Isn’t it obvious from the code? Why
do I have to annotate it?”
Removal of annotations is possible, but should not lead to an-
other extreme: the need to recompile the whole system from
scratch to make sure after every change it still remains null-
safe. This actually would prevent programmers from develop-
ment of reusable libraries that can be checked independently of
each other.
These observations lead to the following challenges when design-
ing null safety rules:

• Avoid additional annotations in the source code to keep
language syntax simple and to abstain from special notions
for rarely used cases.

• Support human-understandable reasoning for obvious
code (in particular, overcome restrictions introduced by a
type system that are too strong).

• Make sure the checks enable modular software develop-
ment, so that if a library is checked, there should not be
any reason to recheck it if it is used in a specific project.

• Allow for fast re-compilation cycle to keep incremental re-
compilation time minimal.

1.5 Role of Isabelle

Programming language rules ensure no inconsistencies arise at
compile time or at run-time. The desire to make a language less
restrictive and still preserving its guarantees, such as void safety,
leads to the need to introduce more sophisticated rules to the lan-
guage specification and to have a more complex implementation.
At some point the rules and their interaction become too compli-
cated to rely just on intuition. Moreover, the intuition may induce
false believes in soundness of a mechanism. Carrying out sound-
ness proofs on paper improves the situation, but does not guar-
antee absence of implicit assumptions, missing cases or some de-

10 I n t r o d u c t i o n

tails that can be simply overlooked. Fortunately, current achieve-
ments in software tools assisting with the development of formal
proofs enables their use in a casual setting. In my work I used one
of such proof assistants – Isabelle/HOL– to formalize language
rules and to prove their soundness. Without this tool, evolution
of the theory would take much longer and would be error-prone.
Sometimes an addition of a new concept to the theory triggered
a significant rewrite that was immediately caught by the mechan-
ical assistant and would be difficult to track manually. Also, the
tool does not allow for performing proofs “by parity of reason-
ing”, every case should be considered. This is especially impor-
tant for a language specification where every tiny detail should
be in place.
Isabelle/HOL was successfully used in different projects start-
ing from algebraic topology to verification of an operating sys-
tem micro-kernel ([25]). It is built on top of a logic-neutral core
called Pure with a specialized formalism of Higher-Order Logic
(HOL). Talking about safety properties it was used to verify type
soundness of JinjaThreads using operational semantics for con-
current execution of Java-like programs ([32, 33, 41]). Some deci-
sions used in that formalization are adopted in the current work,
some are new.
Even though selection of Isabelle/HOL is both voluntary (I knew
it better) and traditional (it was used to formalize and prove type
safety of Jinja) – both look like obvious advantages to me, there
are some other features that make it more attractive compared to
other proof assistants:

• ability to write forward proofs in Isar language that makes
reasoning closer to conventional textbooks;

• proof automation allowing for finding direct (i. e., not in-
volving case analysis or induction) proofs automatically
without diving into low-level details;

• built-in document preparation system enabling to type set
all formulas (e. g., in this paper) directly from verified lem-
mas and preventing from using them for unfinished or
failed proof scripts.

All formal specifications of functions and predicates presented
in the text, as well as associated lemmas and theorems have cor-
responding machine-checked code written in Isabelle/HOL and
available in appendix B.

1.6 Terminology 11

1.6 Terminology

Different languages use different terminology for language con-
structs and notions. Given that the research has been done using
programming language Eiffel ([12, 27]), here is a summary of
terms that are used throughout the text and are known some-
where else by different terms:
Access on void target – an exception raised by the run-time

when it detects that a target of a call is Void. This is sim-
ilar to NullPointerException in Java.

Anchor – an entity referenced in an anchored type.
Anchored type – a type described in terms of some entity rather

than explicitly. Most used anchored types are like Current
denoting a type of the current class and like query where
query is a feature that returns a value. The type declared in
an ancestor class is automatically recomputed in a descen-
dant class to take into account its context.

Attribute – a data member of a class that does not involve com-
putation and whose value can be retrieved from memory.
A variable attribute is represented by a field of an object at
run-time. A constant attribute has a fixed value. When the
qualification is omitted, the term attribute usually means a
variable attribute.

Conformance – a binary relation on types that tells if an expres-
sion of one type can be used in place of an expression of
another type. In mathematical notation A conforms to B is
denoted as A 6 B.

Creation procedure – a constructor, a feature used to initialize
an object after it is allocated in memory; unlike Java-like lan-
guages, creation procedures in Eiffel have different names,
so it is possible to have two different creation procedures
with the same signature.

Current – an entity used to denote a current object on which all
unqualified calls are implicitly applied, often denoted by
this in other languages.

Expanded class – a class whose instances have copy semantics,
i. e., are passed as objects rather than references to objects.
An expanded class is similar to a value type in C#, but un-

12 I n t r o d u c t i o n

like a value type it should provide a default creation proce-
dure that satisfies all requirements to creation procedures.

Feature – a member of a class, i. e., a routine or an attribute.
Root class – a class that is used to start system execution, to-

gether with a dedicated creation procedure called root cre-
ation procedure, indicates an entry point to the program
that is similar to a function main in other languages.

Routine – a method. Routines returning values are called func-
tions, those that do not return a value are called procedures.

Routine body – a sequence of instructions associated with a
given routine.

System – a program.
Void – a special entity that evaluates to an absent reference, also

denoted by null in some languages.
Void safety – a compile-time guarantee that a system never

causes access on void target at run-time, also known as null
safety.

1.7 Contributions

The effort to address challenges from section 1.4 has led to the
development of new language mechanisms and engineering de-
cisions. The list of novelties can be classified by the associated
subject:

• Type system
– Extension of conformance rules for formal generic

types with respect to void safety.
– Specification of attachment and self-initialization prop-

erties of formal generic types.
• Application to real projects

– Implementation of all proposed mechanisms in a pro-
duction compiler environment with the ability to test
them on a large code base with millions lines of code.

– Gathering statistics for and analyzing publicly avail-
able libraries and projects, confirming or disproving
certain proposals.

1.7 Contributions 13

– Introduction of a notion of void safety levels and other
engineering decisions to ease transition from void-
unsafe to void-safe code.

• Object initialization
– Support for creating object structures with circular ref-

erences without any additional annotations, maintain-
ing independent component development.

– Ability to call regular methods from class constructors
without loosing safety guarantees.

• Certified attachment patterns
– Generalization of scope rules for arbitrary conditional

expressions.
– Relaxing declaration and reattachment rules for local

variables.
– Addition of “design mode” to enable gradual develop-

ment of large systems.
• Mechanically checked formal proofs

– Specification of language validity rules in a proof as-
sistant environment.

– Drawing essential properties of transfer functions and
validity predicates.

– Proving soundness of proposed certified attachment
patterns with respect to a big-step operational seman-
tics.

2
O v e r v i e w

2.1 Research area

Void safety, also known as null safety, introduced in Eiffel,
guarantees absence access on void target, analogous to
NullPointerException, at run-time in void-safe programs. The
issue with such exceptions remains one of the most critical ones
in modern object-oriented software development. High interest
in the area can be seen in the syntactic sugar added to existing
popular languages to deal with nullity such as null coalescing
and safe navigation operators as well as claimed null safety in rel-
atively young languages such as Kotlin that, according to the on-
line documentation [30], may exhibit “some data inconsistency
with regard to initialization (an uninitialized this available in a
constructor is used somewhere)”, and its specification [31] men-
tions “null safety” next to “possible violations” in a TODO list.
The most obvious language-based solution to the problem is dis-
tinction between possibly-null and non-null types correspond-
ing to expressions that can and cannot return null respectively.
As soon as possibly-null expressions cannot be assigned to vari-
ables of non-null types, all the guarantees should be there. This
statement constitutes the basis of a void-safe type system. Data
flow compatible with this statement is schematically shown in
figure 2.1 in solid lines: an expression with a specific attachment
property (denoted Attached for non-null types and Detachable for
possibly-null types) can be assigned to a variable with the same
attachment type and an expression of an attached type can be
assigned to a variable of a detachable type.
Given that objects are created with all attributes unset and taking
into account the type system rules, it is easy to realize that very
soon everything in the program will get a detachable type. To
avoid this collapse, some mechanisms are required to go in the
opposite direction – from detachable expressions to attached vari-
ables. There are two such mechanisms: object initialization rules

15

16 O v e r v i e w

ensuring that soon after object creation all fields of attached types
become indeed attached to some objects, and so called certified
attachment patterns that guarantee that in certain conditions re-
sults of expressions of detachable types are in fact attached to
existing objects. These two mechanisms attract the most research
interest.

2.1.1 State of the art

Instruments to remedy the famous NullPointerException can be
divided into two large groups. The first group relies on language
mechanisms to prevent access on null. They enable modular de-
velopment and favor not only code reuse, but also reuse of the
safety guarantees. Once a class is compiled with all checks on,
it will be complied with the same result in a different project.
The second group relies on pure code analysis not requiring any
support from the language. They do not force a programmer to
provide any hints in a form of type specifications or extra an-
notations – a program can be compiled “as is”. Consequently, it
is not known in advance whether a particular expression may
produce null or not, therefore, requiring whole system analysis
that is usually performed on compiled byte-code using abstract
interpretation techniques to figure out an attachment status of
the expression, and reporting errors or warnings depending on
whether 100% safety guarantees are requested or not. The price to
pay for such a posteriori analysis is longer compile-check-update
cycle and lack of support for modular component-based develop-
ment. In the ideal world the best of both approaches should be
combined to support development of reusable components with-
out compromising automatic detection of safe code snippets.
Language-based solutions tend to present a proof of concept
without diving into “not that important” details of specific lan-
guage features. One of them is genericity enabling creation of
type-safe classes not using run-time type checks to make sure
expressions are of a specific type. Consequently, language rules
for generic parameters of a class are either ignored or consid-
ered as not requiring special attention. In practice, however, it
becomes important to know properties of generic types to decide
whether a variable of a generic type needs initialization or not
and whether its attachment status can be guaranteed.

2.1 Research area 17

Attached

Detachable

Ty
pe

sy
st

em

In
it

ia
liz

at
io

n

C
A

P

Figure 2.1. Key elements of
void safety.

The issue with object initialization
was identified in early days of re-
search in the area of null safety. Most
proposed schemes deal with it by
employing techniques known from
the theory of type systems: they pro-
pose to specify whether a particu-
lar expression corresponds to a com-
pletely initialized object or not. This
is similar to specifying that an ex-
pression has one type rather than an-
other one. However, the main differ-
ence between class types and attach-
ment types is that the same reference
can have different initialization sta-
tus during execution and, therefore,
different attachment types. On the
other hand, in a class-based type sys-
tem a reference has just one, possi-
bly abstract, type. The solutions try
to identify suitable rules when one
attachment type can be turned into
another one without compromising void safety. In order to mark
such intermediate states in the code they need more type annota-
tions than just non-null and possibly-null. Moreover, the rules for
such types differ from those of regular class-based types, because
the marks are temporary, i. e., do not apply to the whole object
life cycle, and, therefore, cause confusion for developers.
In most cases proposals to make a language null-safe are accom-
panied with the proofs confirming their soundness against some
formally specified language semantics. Unfortunately, sometimes
authors ignore some important features of a real programming
language such as branching expressions with different outcomes
in different branches or exceptions. This leads to incomplete un-
derstanding of whether the proof is sufficient and can be extrap-
olated to the full language, or whether the rules need further
fine-tuning to make them realistic. The proofs are carried out on
paper and are potentially subject to mistakes and missing details.
Current state of proof checking environments allows for verify-
ing proofs by software tools rather than by hand. Some subtle
issues have been found earlier when performing such automated

18 O v e r v i e w

checks for type systems soundness proofs. The same can be done
for null safety.
Finally, development of null safety theories is often decoupled
from a real code base. The prototypes allow for analyzing a lim-
ited set of classes and for reporting how many annotations are
required or how many errors or warnings are reported with the
suggested checks. While this gives a feeling whether the pro-
posed solution is good enough, it does not permit to see all the
consequences and how well the solution scales on real-life code.

2.1.2 Goals

Usability of a particular safety mechanism depends on how well
it can be integrated in the development cycle. For this reason
and based on the analysis of different approaches to guarantee
void safety, it should rely on language rules allowing for quick
recompilation and for creation of reusable components.
To this end a void-safe language needs to distinguish between
non-null and possibly-null types. Being effective for the object life
cycle starting from the moment when an object reaches a stable
state after its creation, they cannot be used to describe a transition
period when some object fields marked as non-null may be null.
Fortunately, the cases when such an object is passed around are
rare. Therefore, it would be nice to avoid any additional annotations
describing the temporary object state, but to keep the guarantees
intact.
Although purely type-based language rules for void safety are
sound, for software developers they are often too strict and trig-
ger too many false positives, rejecting programs that are prov-
ably safe. This issue is addressed by certified attachment patterns
(CAPs). If it would be possible to improve CAPs and to allow for
more code to be accepted by the language rules, it would improve
users perception of the mechanism and back up their intuition.
As a set of language rules becomes more involved, it is essential
to provide evidence of their soundness. To avoid any misinterpre-
tations and omissions, formal specification of void safety rules can be
done in some computed-aided environment rather than on paper.
This opens the road to mechanically checked proofs of soundness in
a proof assistant environment.

2.2 Achievements 19

2.1.3 Novelty

The research touches almost all fields of the target domain:
• On the engineering front, it reviews practical decisions that

made Eiffel a void-safe language, and presents detailed
statistics of migration from void-unsafe to void-safe code.

• On the type system front, it clarifies properties and validity
rules for formal generic parameters of generic classes.

• On the object initialization issue, it proposes two possible
solutions that do not require any new language constructs
and cover all practical needs, preserving modular software
development.

• On the usability front, it makes treatment of local variables
flow-sensitive, introduces a concept of positive and nega-
tive scopes and frees users from the need to specify attach-
ment marks for local variables explicitly.

• On the formalization front, it is the first work that uses a
proof assistant environment to specify void safety proper-
ties and validity predicates in a machine-checkable way.

• On the soundness proofs front, it is the first time when
they are carried out and mechanically verified by the proof
checker.

2.2 Achievements

2.2.1 Methodology

One of the main objectives used when performing this work was
to ensure usability and practical feasibility of the proposed solu-
tions. This led to the following methodological principles:

• Graduality of changes. New language mechanisms can break
existing code. This situation is unsatisfactory for large
projects and should be alleviated by ensuring backward
compatibility when

– particular guarantees are not requested, e. g., by allow-
ing for side-by-side compilation of the same code in
void-safe and void-unsafe modes;

20 O v e r v i e w

– new language rules are claimed to be “better” than ex-
isting ones, e. g., by compiling already void-safe code
with new rules without any changes.

• Practical acceptance. New safety guarantees require more
restrictions to be placed on code. A satisfactory solution
should show its usability on a large code base developed
by different users with varied level of experience as well as
on new large projects where not all classes can have ready-
to-use non-abstract implementations.

• Human-factor avoidance. New language rules with a lot of
technical details can be difficult to grasp and to specify cor-
rectly by hand. Human intuition should be replaced by au-
tomated tools for specifying the rules and for verifying ex-
pected outcomes.

2.2.2 Value of the work

The work has the following merits:
• All proposed validity rules that ensure safety of object

initialization and improve CAPs are specified formally in
Isabelle/HOL. This leaves no space for misinterpretation
and can be used as a reference to update the language stan-
dard.

• Comparison to examples from the previous work and re-
ported statistics demonstrate practical superiority of the
proposed solutions.

• Usage of tool-assisted technique to prove soundness of the
mechanisms lifts confidence of their correctness to the new
level.

2.2.3 Proposed solutions

In my work I propose to discriminate on the void-safety related
properties of formal generic types and to specify their attachment
status and whether they are self-initializing. Both properties are
used in the language validity rules ensuring void safety. More-
over, based on these definitions I propose new conformance rules
for formal generic types in Eiffel that are less restrictive than the
ones specified in the current reading of the standard.

2.2 Achievements 21

For the issue with object initialization I propose two solutions: a
stricter one that may be of interest for other languages aiming to
provide void safety, and a less demanding one requiring slightly
more sophisticated source code analysis. Application of the rules
is shown on several examples taken from real code. I describe
coding guidelines and report what changes are required to adapt
existing code. In the first solution it is required to set all attributes
of a class before a reference to the current object can be safely
used. This is ensured by the proposed language rules and does
not require any additional annotations in source code. Analysis
of public libraries with more than a million lines of code shows
that this solution works for 98% of code.
The remaining 2% of cases can be dealt with the second solu-
tion. It permits passing a reference to the current object before
all attributes of a class are properly set, but prohibits qualified
feature calls until all attributes are set. This enables creation of
object structures with mutual references to each other stored in
the fields of attached types. I show that all examples from the pre-
vious work can be expressed without violation of the proposed
rules and unlike the previous work do not require new annota-
tions.
In addition, I formally specify the proposed rules as predicates in
Isabelle/HOL and prove some of their properties such as mono-
tonicity. Also, I show that the first solution is a more restrictive
version of the second one.
To ensure completeness of void safety guarantees for object ini-
tialization I review finalizers and identify issues that can lead to
access on void target. Then I propose to eliminate the issues with
a special validity rule similar to the rule for object initialization:
qualified calls on reference targets should not be allowed in a
finalizer.
Next I present deficiencies of using a type-based approach to
govern void-safety reattachment rules for local variables. Instead,
I analyze safe uses of the variables in void-safe programs and
introduce a notion of positive and negative scopes. Combined
with proposed conversion for boolean connectives this removes
the need to do a case-by-case analysis for each boolean operator
and simplifies further theory development. I propose a way to
develop a void-safe system when not all classes can have con-
crete implementations, and reflect a required concept in the for-

22 O v e r v i e w

mal model. Then I define a transfer function for a subset of an
object-oriented language that tells what variables are definitely
attached at a particular execution point. I use it to specify a valid-
ity predicate ensuring that code is void-safe. By analyzing public
libraries I reveal that the proposed predicate triggers about 33%
fewer spurious errors than the one using attachment marks for
local variables. At the same time all existing void-safe code com-
piles without an issue.
In order to prove soundness of the proposed certified attach-
ment patterns, I introduce a notion of a valid state that connects
compile-time information with a run-time state. In a valid state
every variable known to be attached at compile time should have
an existing object value at run-time. I specify language semantics
in a big-step style for two different cases: when the language is
considered void-safe and when – not. After that I prove a preser-
vation theorem for the void-safe version of the semantics. Then
I perform comparison of program execution using void-safe and
void-unsafe versions of the semantics and prove that for a void-
safe program there is no difference. This signifies absence of
null pointer exceptions at run-time and soundness of the validity
predicate.
All formalization and proofs are performed using the general
proof assistant Isabelle/HOL. This ensures there are no missing
cases in the proofs or implicit assumptions in premises of lem-
mas and theorems. I provide the complete code of the proofs in
appendices.

2.2.4 Practical effect

The work demonstrates close integration of theoretical ap-
proaches with practical needs:

• Collected statistics about changes required to make void-
unsafe code void-safe can be used to estimate efforts re-
quired to do the conversion for existing projects.

• Measured increase of compilation time to check object ini-
tialization rules shows its marginally low influence on total
compilation time.

• Case study for the object initialization issue presents quali-
tative measure of achieved results by using examples from
previous work and suggesting new ones.

2.2 Achievements 23

• Certified attachment patterns for local variables are tested
on a large code base against previously implemented type-
based validity rules to estimate their superiority for real
code.

• All massive experiments are performed on 100% live code
from production releases of different open-source libraries.

2.2.5 Relevant publications

My publications on the subject of the thesis include (chapter and
section numbers in the comments indicate appropriate sections
of the thesis):

[50] Bertrand Meyer, Alexander Kogtenkov, and Emmanuel
Stapf. “Void Safety: Putting an End To the Plague of Null
Dereferencing.” In: Dr.Dobbs Journal online (Sept. 1, 2009).
url: http://drdobbs.com/architecture- and- design/
219500827

Introduces the concept of void safety with some base rules
covering basic type system rules (chapter 4), simple certi-
fied attachment patterns (chapter 6) and issues with creat-
ing array objects (section 3.2.2).

[51] Bertrand Meyer, Alexander Kogtenkov, and Emmanuel
Stapf. “Avoid a Void: The Eradication of Null Dereferenc-
ing.” In: Reflections on the Work of C.A.R. Hoare. Ed. by A.W.
Roscoe, Cliff B. Jones, and Kenneth R. Wood. History of
Computing. Springer London, 2010, pp. 189–211. isbn: 978-
1-84882-912-1. doi: 10.1007/978-1-84882-912-1_9
Expands on the void safety rules and explains new con-
structs added to the language founded on practical experi-
ence such as stable attributes (section 3.2.4) and mandatory
check instruction (section 3.4.2), provides the first statis-
tics about migration (sections 3.3.2, 5.1.6 and 5.2.4 and ap-
pendix A).

[37] A.V. Kogtenkov. “Mechanically Proved Practical Local Null
Safety.” In: Proceedings of the Institute for System Program-
ming of the RAS 28.5 (Dec. 2016), pp. 27–54. issn: 2079-8156

(Print), 2220-6426 (Online). doi: 10.15514/ISPRAS- 2016-
28(5)-2

http://drdobbs.com/architecture-and-design/219500827
http://drdobbs.com/architecture-and-design/219500827
https://doi.org/10.1007/978-1-84882-912-1_9
https://doi.org/10.15514/ISPRAS-2016-28(5)-2
https://doi.org/10.15514/ISPRAS-2016-28(5)-2

24 O v e r v i e w

Formalizes certified attachment patterns in Isabelle/HOL
for read-only and read-write local variables (chapter 6) and
provides mechanically-checked soundness proofs for the
validity rules (chapter 7).

Some ideas, in particular, for definitions and notations used for
the transfer functions in chapter 5 and chapter 6 are taken from
the following articles:

[35] Alexander Kogtenkov, Bertrand Meyer, and Sergey Velder.
“Alias and Change Calculi, Applied to Frame Inference.” In:
CoRR abs/1307.3189 (2013). url: http://arxiv.org/abs/
1307.3189

[36] Alexander Kogtenkov, Bertrand Meyer, and Sergey Velder.
“Alias calculus, change calculus and frame inference.” In:
Science of Computer Programming 97, Part 1 (2015). Special
Issue on New Ideas and Emerging Results in Understand-
ing Software, pp. 163–172. issn: 0167-6423. doi: 10.1016/j.
scico.2013.11.006

Selected on-line resources on void-safety I added when working
on void safety mechanism as an author or as a co-author include:

[34] Alexander Kogtenkov. Void-safety: tag info. Stackoverflow,
July 15, 2016. url: http://stackoverflow.com/tags/void-
safety/info (visited on 2016-12-30)

[14] Eiffel compatibility options. Community portal for Eiffel, 2016.
url: https://www.eiffel.org/doc/eiffelstudio/Eiffel%
20compatibility%20options (visited on 2016-12-30)

[11] Creating a new void-safe project. Community portal for Eif-
fel, 2016. url: https : / / www . eiffel . org / doc / eiffel /

Creating%20a%20new%20void-safe%20project (visited on
2016-12-30)

2.3 Outline

The rest of the dissertation is organized as follows:
Chapter 3 reports overall experience with building void-safe

Eiffel infrastructure, including particular engineer-
ing solutions that made this possible.

Chapter 4 explains conformance rules in a void-safe type sys-
tem and associated type properties like attachment

http://arxiv.org/abs/1307.3189
http://arxiv.org/abs/1307.3189
https://doi.org/10.1016/j.scico.2013.11.006
https://doi.org/10.1016/j.scico.2013.11.006
http://stackoverflow.com/tags/void-safety/info
http://stackoverflow.com/tags/void-safety/info
https://www.eiffel.org/doc/eiffelstudio/Eiffel%20compatibility%20options
https://www.eiffel.org/doc/eiffelstudio/Eiffel%20compatibility%20options
https://www.eiffel.org/doc/eiffel/Creating%20a%20new%20void-safe%20project
https://www.eiffel.org/doc/eiffel/Creating%20a%20new%20void-safe%20project

2.4 Conclusion 25

status and self-initialization. Then it considers how
they are applied to formal generic types and clari-
fies corresponding definitions and validity rules.

Chapter 5 describes the issue with object initialization and
proposes two solutions. The informal validity
rules are accompanied by formal specifications
of transfer functions and validity predicates in
Isabelle/HOL. The solutions are then compared be-
tween each other and against different examples on
the subject proposed by other authors.

Chapter 6 focuses on formalization of validity rules for local
variables without using any attachment informa-
tion. The section is concluded with a report about
practical results of using this scheme instead of the
type-based one.

Chapter 7 introduces big-step semantics for the subset of a lan-
guage described in the previous chapter and proves
soundness of the void safety predicate using the
Isabelle/HOL proof assistant.

Appendix A provides detailed statistics about migration from
void-unsafe to void-safe code in EiffelStudio environ-
ment.

Appendix B contains the complete theories code with proofs in
Isabelle/HOL.

2.4 Conclusion

2.4.1 Main results

The outcome of the work can be summarized as follows:
• Clarification of attachment properties and conformance

rules for formal generic types.
• Demonstration of practical feasibility of annotation-free

safe object initialization on existing and new examples as
well as on large open-source libraries.

• Replacement of type-based rules for local variables with cer-
tified attachment patterns.

26 O v e r v i e w

• Formalization of void safety rules for object initialization
and for certified attachment patterns in Isabelle/HOL.

• Mechanically-checked soundness proofs for certified attach-
ment patterns.

• Complete implementation of all proposed solutions in a
production environment confirming their usability.

2.4.2 Future work

Immediate continuation of the current work could be its exten-
sion to

• Improve object initialization rules to enable certain asser-
tion checks involving back references.

• Move certain run-time assertion checks such as whether a
given type is self-initializing to compile time to enable static
detection of void-safety related errors.

• Carry out mechanically-checked soundness proofs for ob-
ject initialization.

The second item from the list above could also be useful in other
scenarios and could become the first step to make software ver-
ification available for casual use. Research areas affecting void
safety guarantees include:

• Checks for invariants of objects being constructed. Until
the construction is finished, some attributes may be unset
and class invariant checks may be unsafe. Solving this issue
would be an important event for object-oriented program-
ming in general.

• Covariant redeclarations that are needed to support Design
by Contract™. Such redeclarations are known to be type-
unsafe and for the same reason they can ruin void safety.
One of the challenges here is to avoid breaking too much
existing code while keeping language complexity moder-
ate.

3
F r o m Th e o r y t o

P r a c t i c e

3.1 First steps

For everyone who is just introduced to the realm of void-safe pro-
gramming, the rules of the game seem pretty simple: variables
and functions may be declared to have an attached type, mean-
ing that they always produce an existing object at run-time, or
to have a detachable type, meaning that they may produce either
an object or Void. In order to preserve soundness, i. e., to make
sure an attached expression never returns Void at run-time, it is
permitted to assign expressions of attached types to variables of
attached or detachable types, but expressions of detachable types
can be assigned only to variables of detachable types. If it were
allowed to assign an expression of a detachable type to a variable
of an attached type, it would be possible to set this attached vari-
able to Void breaking all the guarantees. (The term “to assign” is
used here in a broader meaning and also includes argument pass-
ing involving actual and formal arguments as source expressions
and target variables respectively.)
Of course, it should be possible to check that an expression is
attached and to use its value in the context that requires an at-
tached type:

if x /= Void then
... −− Use ‘x‘ as if it is of an attached

type.
end

Also, attributes of attached types should be initialized prior to
their use, e. g., they all should be set by the corresponding cre-
ation procedure. Then a validity rule that ensures there is no
access on void target at run-time would be that a qualified call is
valid only if its target is of an attached type. All this has been de-

27

28 F r o m Th e o r y t o P r a c t i c e

scribed in more details by Bertrand Meyer in [47]. And it would
be the entire story if there were no generic parameters, if objects
could be created in an atomic operation and if users did not want
to forget about attachment status of variables in “obviously” safe
cases. These important elements of the mechanism are described
in greater details in the following chapters. The current one fo-
cuses on less fundamental but still important aspects of the lan-
guage design and tool support.

3.2 Language conventions

Assuming there is a distinction between attached and detach-
able types, a number of other language-related issues need to
be sorted out to make the language void-safe.
For Eiffel, additional difficulties came from the fact that void
safety was added for an existing language with a lot of exist-
ing libraries and projects. Therefore, tools such as the compiler
or the IDE had to handle the old void-unsafe code and the new
void-safe code simultaneously. This was supported by using Eif-
fel Configuration Files (ecf) that specified whether a particular
library or project is void-safe or not.

3.2.1 Default attachment status

At the very beginning of transition to void-safe code in Eiffel
it seemed obvious that old code was written without any void-
safety rules in mind and all reference types should be considered
detachable by default because void-safety added new rules to the
existing language. To let users play with the new rules without
having to rewrite all the code at once an attempt was made to
have a compiler option is_attached_by_default to treat class
types attached or detachable depending on its value. This was
even mentioned in an informative part of the language [12, 27].
Fortunately the standard itself specified that class types without
any special annotation are considered attached.
In practice the decision to have such an option caused more trou-
ble than benefit, in particular,

3.2 Language conventions 29

• the option caused confusion for users as some of them
treated attached-by-default setting as an alias to the void
safety option;

• the requirement to add attached keyword in front of at-
tached class types and omit detachable keyword in front
of detachable class types complicated further migration to
standard rules;

• even non-void-safe code uses type declarations to denote
attached types more frequently than detachable ones.

After 10 years upon introduction of the option that controls de-
fault attachment status of class types, it was dropped in [16].

3.2.2 Array items

The original creation procedure of a class ARRAY [G] has the
signature

make (min_index, max_index: INTEGER)

to create an array object with item indexes in the specified range.
This works perfectly in a void-unsafe program. If the formal
generic parameter G is instantiated with an expanded type, all
items in the range get their default values, if with a reference
type, all items are set to Void. The feature to retrieve items from
an array has the signature

item (index: INTEGER): G

where index is a requested item index. The return type is the
formal generic of the array class.
The same declarations do not work for void-safe programs when
the formal generic is instantiated with an attached reference type.
A program then can simply do

my_array: ARRAY [FOO]
value: FOO −− This type is attached by default.
...
create my_array.make (1, 5)
value := my_array [3] −− Problem here!

and expect to get an attached value at the last line. But no value
has been stored at this index yet!
Several solutions are possible:

30 F r o m Th e o r y t o P r a c t i c e

1. Change the signature of the feature item to return
detachable G instead of G. Would it work? Of course, now
the code would be safe: for a freshly created array the fea-
ture would return Void that would be legal. A client would
then check the return value whether it is Void or not and use
it accordingly. Would it be convenient? No. Every access to
an array of attached elements would be followed by a void-
ness test for the returned value. The same effect could be
achieved by declaring the array as ARRAY [detachable FOO].
In other words, for daily programming, if an array is de-
clared with an attached actual generic parameter, any item
at a valid index is expected to be attached.

2. Add a precondition to the feature make that will ensure the
actual generic type has a default value that can be used to
fill the array elements:

make (min_index, max_index: INTEGER)
require

({G}).has_default

The syntax {G} is used to denote a type object for the type
G. The query has_default tells if this type has a default value.
This is true for every type except for an attached reference
one. The creation procedure can be used to create arrays
with elements of expanded or detachable types. But the
precondition prevents from allocating memory for a whole
array object when the actual generic parameter is an at-
tached reference type. In this case the array should be cre-
ated using a creation procedure make_empty and updated
by adding new elements one-by-one that is pretty ineffi-
cient. Moreover, the precondition check is done at run-time.
A static analyzer could catch creation of an array with a
type that has no default value, but at the moment the lan-
guage standard does not support validity rules that involve
static checks like this one. (It would be a good addition.)

3. Provide a new feature that is passed an explicit value to fill
a newly created array with:

make_filled (default_value: G; min_index, max_index:
INTEGER)

This solution has no issues with efficiency and is completely
safe.

3.2 Language conventions 31

Solution 1 was dropped as very inconvenient for void-safe pro-
gramming, solution 2 is taken as a temporary one for a transition
period. The feature make of the class ARRAY is marked as obso-
lete and will be removed as soon as all code is updated to use
make_empty or make_filled. Solution 3 is used as the permanent
one.
Apart from the class ARRAY there are other classes providing
array-like functionality. They all have been updated to have cre-
ation procedures that take a default element value. Adaptation
of the low-level class SPECIAL was more sophisticated. The class
allows for allocation of memory for arbitrary number of ele-
ments, but distinguishes between the current element count and
the capacity of the storage. The capacity is passed as an argu-
ment to the creation procedure make_empty for creating a new
storage. But the number of elements is set to zero by this cre-
ation procedure. When new elements are put to the storage, the
number of current elements is updated accordingly. All items
are stored starting from a fixed index and no gaps between two
items are permitted. This approach removes the requirement to
fill the whole array area with a default value at creation time,
but preserves efficiency of preallocated memory. Only elements
in the range between the first and last indexes can be accessed,
and storing elements is permitted within the same range or at
the index last_index + 1 provided that the new total number
of elements does not exceed the storage capacity. When a new
element is stored at last_index + 1, the value of last_index is
incremented by one, otherwise it remains unchanged.

3.2.3 Once functions

Unlike Java-like programming languages, Eiffel [12, 27] does not
support static fields and static initializers. The similar functional-
ity is encapsulated in a form of a function that is computed only
once. Any subsequent calls to the function yield the result of the
previous evaluation. A validity rule for a result of a once func-
tion is identical to the validity rule of a regular function: if its
type is attached, Result should be properly set at the end of the
function. This works perfectly together with void safety except
for recursive calls.

32 F r o m Th e o r y t o P r a c t i c e

According to the semantics of a once feature call, if this feature
is called for the second time, its value is the current value of the
special entity Result. While we know that it will be set at the
end of the function, during execution of the function body the
value may still be unset. The simplest example demonstrating
the problem is:

f: FOO
once

f.something
create Result.make

end

The special entity Result is indeed properly set the end of the
feature f, but the very same feature is accessed earlier. In real life
scenario a recursive call to a once function can occur indirectly
and may involve dynamic binding, making it infeasible to detect
such cases at compile time without analyzing the whole system.
It might be possible to add a new validity rule for once functions
requiring that Result should be set before any qualified feature
call (this would be somewhat similar to object initialization tech-
niques discussed in chapter 5). Unfortunately there is a pretty
common pattern to relay creation of the result to some other
query: Result := other.something. A target of the qualified call is
usually another once function used to retrieve a required value.
Disallowing qualified feature calls before Result of a once func-
tion is properly set would lead to disallowing this pattern that in
turn could break the principle of information hiding.
So far, no better solution is found than to check whether the re-
sult of a once function of an attached type on the second call is
actually set. If it is not set, an exception is raised, signaling an er-
ror before any attempt to perform access of this unset value, and
preserving void safety guarantees of the language type system.
In order to maintain semantics of once functions, the exception is
recorded and if it is caught before returning to the place where
the once function was called first, it is re-raised there, so that both
second and first accesses to the once function produce exactly the
same (exceptional) result.
Strictly speaking, access to a result of a once function that has
been already called, but has not exited yet, is not necessary spe-
cific to void safety. The same approach to detect a recursive call
and to raise an exception can be used regardless of the result type

3.2 Language conventions 33

of the function. This ensures the same program behaves identi-
cally when compiled as void-safe and as void-unsafe.

3.2.4 Scopes for attributes

Chapter 5 formally specifies rules to deal with the cases when
attachment status of an expression can be derived from the code
itself. For example, for a local variable local_var of a detachable
type the following code is absolutely valid:

if local_var /= Void then
local_var.something

end

This code falls in the category of certified attachment patterns
that enable the call in then-branch of the conditional instruction.
What if x were an attribute, would it work too?
Unfortunately, no. Firstly, if there is any intermediate call
some_call after the voidness test and before the call on attr (re-
member, it is assumed that attr is of a detachable type) like in

if attr /= Void then
some_call
attr.something

end

then some_call can set the attribute attr to Void and the instruction
attr.something will trigger an exception.
What if the intermediate call is removed like in the following
code?

if attr /= Void then
attr.something

end

It turns out that the code could still be unsafe depending on
used concurrency mode. If thread-based concurrency is enabled,
another thread can set attr to Void after the voidness test and
before the call on this attribute. Therefore, even such simple code
would not be safe if certified attachment patterns were applied to
attributes rather than only to arguments and to local variables.
If the program runs in SCOOP mode (see [56]), the value of the
attribute attr cannot be modified asynchronously from this code.

34 F r o m Th e o r y t o P r a c t i c e

Therefore, the last example becomes safe. However, the previous
one does not. So, in general case, extension of CAPs to attributes
brings more complexity to the language definition than benefits.
But what if we know that an attribute is never assigned Void
explicitly? In that case once a non-void value is attached to the
attribute, it remains non-void all the time. Due to the property to
keep their attached state forever, such attributes are called stable.
As of now, a note clause syntax is used to mark such attributes
in the code (here the note clause serves the same purpose as an-
notation attributes in C# [26]):

attr: detachable FOO
note

option: stable
attribute
end

Stable attributes have a detachable type, but a validity rule tells
that they can be assigned only an expression of an attached type.
This guarantees that as soon as we know that the attribute is
not void, we can rely on its attachment status, because it cannot
become detachable anymore. As a result all certified attachment
patterns specified in chapter 6 for local variables are applicable
to stable attributes, and are even simpler, because, unlike local
variables, a stable attribute cannot be assigned a detachable ex-
pression.
The notion of attached state stability turned out to be convenient
for assigner procedures as well. Eiffel allows for associating a pro-
cedure of an appropriate signature with a query. This procedure
is then called when the query is used in a qualified call on the
left-hand side of an assignment. E. g., the class ARRAY declares
a feature item with an assigner put

item alias "[]" (i: INTEGER): G assign put ...
put (v: G; i: INTEGER) ...

This allows writing

some_array.item (3) := "A string"

or, in a more conventional syntax,

some_array [3] := "A string"

3.2 Language conventions 35

Both variants are equivalent to

some_array.put ("A string", 3)

This works excellent for an array where access to elements is
performed by an index that is easy to check whether it fits the
index range or not. The story is different for tables with arbi-
trary keys. Assume that both actual generic parameters of a class
HASH_TABLE denoting an item type and a key type are attached
types. The feature put has the signature

put (value: G; key: K)

If we want the feature item to be of type G (the type of elements)
like in ARRAY, there should be a precondition to make sure the
element is present in the table and that the return value is not
Void when Void elements are not permitted:

item alias "[]" (key: K): G assign put
require

has (key)
...

The function has returns True if and only if the table has an ele-
ment with this key.
Then, before a client could call the feature item, it would have to
check whether the element is present in the table, and valid code
would look like

if some_table.has (my_key) then
value := some_table [my_key]

...

In other words, the element would be looked up by the feature
has and then its value would be retrieved by the feature item.
This rings the bell about efficiency: wouldn’t it be better to return
a found element immediately or to return Void if the element
is not found? At least most of existing code relied on the code
pattern that a value returned by a table lookup function is tested
against Void and used afterwards. To support this behavior the
precondition has is removed and the return type is changed to be
detachable G instead of just G. Now we expect to get Void even
if all elements in the table are attached because we do not check
beforehand that a given key is present in the table:

item alias "[]" (key: K): detachable G assign put

36 F r o m Th e o r y t o P r a c t i c e

Unfortunately, the modified code does not compile anymore: the
result of the query and the argument of the assigner are now of
different types – detachable G and G respectively – and a validity
rule says that they should be the same. In particular, this rule is
essential in making sure that types of elements that are put to an
array and that are retrieved from the array are the same.
The trick here is similar to the one with stable attributes. Even
though the query type is detachable, it is allowed to “assign” to
it only attached values. Therefore, the signature of the assigner
does not have a mark detachable. However, retrieved values are
of a detachable type, because some keys may have no associated
elements. On the source code side, the feature item is marked in
HASH_TABLE as stable:

item alias "[]" (key: K): detachable G assign put
note

option: stable
...

This convention relaxes the validity rule for assigners of sta-
ble queries: attachment-mark-free types used in a query and in
the associated assigner should be the same and the query type
should conform to the type used in the assigner, thus enabling
the declaration above. Now the items from a hash table can be
retrieved in one step:

if attached some_table [my_key] as value then
... −− The element is found and attached to ‘value‘,

use it.
else

... −− There is no element with this key.
end

3.3 Adapting legacy code

3.3.1 Void safety levels

The best way to write void-safe systems is to ensure all validity
rules are checked from the beginning of the development. Unfor-
tunately, if a void-unsafe system has to be adapted to void safety,
it becomes difficult for developers to identify steps for achieving

3.3 Adapting legacy code 37

the final goal. The validity rules could serve as a good basis to
split migration of the code into stages, called void safety level:

1. None: The code is void-unsafe, no void-safety rules are
checked.

2. Conformance: Attachment status is taken into account in
conformance checks (section 4.2, validity rule 4.1).

3. Initialization: conformance + Variables should be set be-
fore use (section 4.2, validity rule 4.2).

4. Transitional: initialization + Feature calls are allowed only
on attached targets (section 4.2, validity rule 4.3).

5. Complete: All avoid safety rules are checked, including ob-
ject initialization (chapter 5).

The void safety levels allow for performing the transition from
void-unsafe code gradually. The levels are ordered as follows:

None < Conformance < Initialization < Transitional < Complete

The levels can be specified for a class using a compiler option
void_safety.
Inheritance and client relationships between classes introduce re-
lations is_descendant and is_client.

Definition 3.1. A class A uses a class B if it is a descendant of B, a
client, or both: uses A B = is_descendant A B ∨ is_client A B.

A reflexive transitive closure of the predicate uses allows telling
what classes are reachable from the given one.

Definition 3.2. A reflexive transitive closure of the predicate uses is
called reachable.

Definition 3.3 (Void safety level validity). A class has a particular
void safety level if it satisfies all validity rules of that level and all classes
it uses have the same or higher level of void safety.

This validity rule ensures that all classes a given one depends on
satisfy at least the same void safety level:

Lemma 3.1. If a class has a particular void safety level then all classes
reachable from it have the same or higher level of void safety.

Proof. From the definition of reachable classes and definition 3.3.

38 F r o m Th e o r y t o P r a c t i c e

6
.2

6
.3

6
.4

6
.5

6
.6

6
.7

6
.8

7
.0

7
.1

7
.2

7
.3

1
3

.1
1

1
4

.0
5

1
5

.0
1

1
5

.0
8

1
5
.1

2

1
6

.0
5

0

0.5

1

·106

Release

LO
C

Complete
Transitional
None

Figure 3.1. Number of lines (LOC) with different void safety levels in
different releases.

Corollary 3.1. If a root class of a system is completely void-safe, then
all classes in the system are completely void-safe, i. e., all classes in the
system satisfy all void-safety validity rules.

3.3.2 Migration statistics

While source code conventions and coding guidelines are great
to write software from scratch, sometimes they are not immedi-
ately applicable to existing software. First void safety checks were
added to EiffelStudio 6.3 at the time when public libraries almost
reached a million lines of code. Rewriting them from scratch was
not an option because of code size and the requirement to pre-
serve backward compatibility for customers so that they can use
the same libraries in their projects without any changes, just by
compiling in non-void-safe mode. That migration took several re-
leases and is still an ongoing work for few remaining libraries
that are not completely void-safe.
Although the compiler supported several levels (section 3.3.1), an
updated version of a library was not released until it reached a
top level of void safety available at that time. As a result there
were no public releases with Conformance and Initialization

3.3 Adapting legacy code 39

levels (figure 3.1). In practice all levels are used. Initially the
compiler did not check a possible issue with passing an incom-
pletely initialized object to another creation procedure, therefore
many libraries were updated to match a transitional level with-
out creation-specific checks and only later updated to complete
void safety.
Figure 3.1 also demonstrates a critical void-safety problem that
was discovered in a library class ARRAY (or, more precisely in a
low-level library class SPECIAL) in version 6.5 and is not specific
to the language rules. It was allowed to allocate an array for ob-
jects of an attached type without providing an object to fill this
array with. The fix is described in section 3.2.2. Taking this issue
into account, the figure reflects presumed void-safety levels: ver-
sion 6.5 was not worse than 6.4, the issue was not realized at that
time instead.
Figure 3.2 shows how much code had to be changed to lift non-
void-safe libraries to the transitional level in terms of relative
number of updated lines (absolute numbers can be found in ap-
pendix A). Either the libraries code had to be modified or some
additional checks had to added, very little code had to be deleted.
There is no obvious dependency between amount of changes and
library size. On average, about 15–16% of code had to be updated.
Note, that the figure does not take into account improvements of
code analysis that became possible thanks to my work, such as
significantly lower rate of false positives reported for local vari-
ables (section 6.4).
Another metric – the number of classes affected by the migration
– is shown in figure 3.3. Compared to the previous one, the per-
centage is pretty high: about 76% of classes needed to be touched.
This affirms that void safety does not come for free and cannot
be seen as a minor code update.
The statistics reflecting migration from non-void-safe code to
transitional void safety and, as a second step, from the transi-
tional level to the complete one is summarized in table 3.1 (the
detailed data can be found in tables A.3 and A.4). According to
the table, migration was not a complete rewrite. Also, adaptation
of code to make it safe with respect to object initialization (“transi-
tional to complete” part, reviewed in section 5.1.6) involved much
fewer changes than the step to make it void-safe without taking
object initialization into account.

40 F r o m Th e o r y t o P r a c t i c e

go
bo

_e
xt

en
si

on
ev

en
t

uu
id

km
p_

m
at

ch
er

di
ff

ba
se

_e
xt

en
si

on
vi

si
on

2
_e

xt
en

si
on

pa
rs

e
cu

rl
th

re
ad

en
co

di
ng

w
eb

ei
ff

el
2

ja
va le

x
te

st
in

g
ar

gu
m

en
t_

pa
rs

er
ti

m
e

m
em

or
y_

an
al

yz
er

pr
ef

er
en

ce
s

pr
oc

es
s

gr
ap

h
i1

8
n

ne
t

ed
it

or
st

or
e

do
ck

in
g

w
el

ba
se

vi
si

on
2

0%

20%

40%

60%

80%

100%

120%

140%

15.85%

C
ha

ng
ed

LO
C

Inserted
Deleted
Modified
Average

Figure 3.2. Changes in non-void-safe public libraries in lines of code to
bring them to transitional void safety level relative to their
size.

go
bo

_e
xt

en
si

on
ev

en
t

uu
id

km
p_

m
at

ch
er

di
ff

ba
se

_e
xt

en
si

on
vi

si
on

2
_e

xt
en

si
on

pa
rs

e
cu

rl
th

re
ad

en
co

di
ng

w
eb

ei
ff

el
2

ja
va le

x
te

st
in

g
ar

gu
m

en
t_

pa
rs

er
ti

m
e

m
em

or
y_

an
al

yz
er

pr
ef

er
en

ce
s

pr
oc

es
s

gr
ap

h
i1

8
n

ne
t

ed
it

or
st

or
e

do
ck

in
g

w
el

ba
se

vi
si

on
2

0%

20%

40%

60%

80%

100%
76.13%

C
ha

ng
ed

C
la

ss
es Modified

Average

Figure 3.3. Changes in non-void-safe public libraries in number of
classes to bring them to transitional void safety level relative
to their size.

3.4 Controversial issues 41

Table 3.1. Summary of changes in public libraries.

Measurement
Migration to a particular void safety level

None→ Transitional Transitional→ Complete

Classes 2912 of 3825 76.13% 1867 of 4254 43.89%

LOC

Inserted 53867

of 788984

6.83% 16306

of 822487

1.98%

Deleted 10659 1.35% 12794 1.56%

Modified 60525 7.67% 9209 1.12%

All 125051 15.85% 38309 4.66%

3.4 Controversial issues

Sometimes it is difficult to draw a strict line between alternatives
with a similar outcome. Below are the examples that may need
deeper discussion or rely on some policy decisions in particular
projects.

3.4.1 Self-initializing attributes

Attributes in Eiffel can have an associated body similar to a func-
tion:

attr: FOO
attribute

... −− Some code that sets ‘Result‘.
end

Such attributes need not be properly set at the end of a creation
procedure, i. e., in advance. They are set “on demand” when they
are accessed before they have been set, hence the name – self-
initializing. If the attribute type is detachable, no initialization is
needed because the type has a default value Void. If the attribute
is of an attached reference type, it has to be initialized prior to its
use. When the attribute is accessed before it is explicitly set, its
body is executed and a value of the special entity Result at the
end of the body is used to set the attribute.
This works perfectly when void safety rules are respected all the
time. If the same code has to work in both void-safe and void-
unsafe mode, there is a problem. In void-unsafe code any refer-

42 F r o m Th e o r y t o P r a c t i c e

ence type has a default value Void. Therefore, there is no reason
to execute the attribute body in void-unsafe code. Consequently,
the same code behaves differently depending on a selected void-
safety compilation mode. In a void-safe mode it calls the attribute
body, in a void-unsafe mode it does not.
One of the following approaches can resolve the issue:

• Discard attributes with bodies from the language standard.
All attribute initialization would have to be moved to the
corresponding creation procedures. This may require code
refactoring to do the object initialization properly.

• Respect attachment marks even when code is compiled
as void-unsafe. Access to attributes with associated bodies
would be performed with a check like in void-safe mode.

Either solution will remove users confusion about the semantics
of self-initializing attributes in void-unsafe mode and honor the
principle of least surprise.

3.4.2 Assertion checks

One of the most problematic cases during migration from void-
unsafe to void-safe code is adaptation of routine contracts and
routine bodies that rely on contracts. For example, class TABLE
provides a feature item that returns an element corresponding to
a given key. The feature has a precondition valid_key. In the de-
scendant class HASH_TABLE the feature valid_key does not per-
form any checks and just returns True. It means that the feature
item can return either a found value or a default value when no
corresponding value exists. Because attached types have no de-
fault values, the type of item is detachable. As described later in
chapter 4, the result in this case is properly set even if it is not
assigned a value explicitly. This is what we need when the key is
not found.
Contrast to this, a class CHAIN defines valid_key as a predicate
that tells whether a specified index is in the range of valid in-
dex values that includes elements from 1 to count. Therefore, as
soon as a chain index is within the range, there should be an ele-
ment with this index, and the type of the feature item is a formal
generic without any attachment marks. Roughly speaking, the
class CHAIN models an array-like container without any missing
elements between indexes 1 and count. On the implementation

3.5 Related work 43

side the feature i_th (this is a renamed version of the feature item
of the class TABLE) positions a cursor to the specified index and
retrieves a value using a cursor-based feature item. For example,
in a descendant class LINKED_LIST, if all the assertions could be
statically verified, one could prove that there would be indeed
a linked list cell with the value. The feature i_th would set an
attribute active to point to that found cell. Then the item value
could be retrieved via active that would be known to be attached.
Unfortunately, the technology is not there yet and in order to
preserve soundness of the type system we have to be pessimistic.
Because of that, the type of the feature active is detachable. The
implementation of {LINKED_LIST}.item looks like

check attached active as a then
Result := a.item

end

Here the assertion check is mandatory (it is called later a guard
instruction), i. e., cannot be disabled at run-time like most other
assertion checks. It guarantees that the local variable a is attached
inside the then part. If at run-time the value of active is not at-
tached, an exception is raised. This is similar to raising an excep-
tion ClassCastException by the Java virtual machine performing a
type cast when a source object type does not match a target type,
with the difference that here we are checking whether a value is
attached or not.
Although the guard instruction can be used to quickly make code
“void-safe”, its use should be strictly controlled and allowed only
in cases when there no other way to make sure a particular vari-
able is properly set. Otherwise, making code void-safe would
mean replacing access on void target exceptions with assertion
violations and defeat the whole idea of void safety.

3.5 Related work

Raymie Stata proposes to stick to the convention that class types
are detachable by default in [68] with the rationale that existing
programs are null-unsafe and allow for null to be assigned to
a variable of any reference type. Early experiments [17] carried
out by Manuel Fähndrich and Rustan Leino attested that it is
better to use a non-null type as the default for a reference. They

44 F r o m Th e o r y t o P r a c t i c e

found that this choice requires fewer annotations and mentioned
it would make sense to allow alternative class-wide or module-
wide defaults. The experience with Eiffel showed that it is better
stick to just a single default with attached types, though the im-
plementation allowed for selecting the default on different levels
of hierarchy, including project, library and class. In the standard
[12, 27] the class types are attached by default. The choice with a
single default, where class types without any marks are attached,
is confirmed by a group of authors reporting about their expe-
rience with Spec# in [6]. Some tools, e. g., the Checker Framework
[72], use non-null type annotations by default, but allow for ex-
plicit setting of default annotations because their values are not
part of the language standard.
In [17] Manuel Fähndrich and Rustan Leino also identified an
issue with initialization of array types. They propose to instan-
tiate arrays as having a partially initialized type. Then, as soon
as all elements of the array are set, users will cast the tempo-
rary array type to the regular one that expects all elements to be
set. This should be sound, but requires a new notion of “raw”
types (see section 5.4) and a run-time type cast. In particular, it is
not clear what a program should do if the type cast fails. The
Checker Framework [72] follows the similar route except that
the run-time cast is replaced with an annotation suppressing a
warning when an array of nullable values is assigned to an array
of a non-null values. Bertrand Mayer in [47] proposes to intro-
duce a notion of self-initializing formal generic types that would
make sure that every array instance can create a default element
value whenever it is required to fill the array. This preserves
soundness, but limits the use of ARRAY only to self-initializing
types as actual generics. A better approach with using a new
creation procedure make_filled instead of make is described by
Bertrand Meyer, Alexander Kogtenkov and Emmanuel Stapf in
[50]. Alexander Summers and Peter Müller in [70] suggest to use
special marker methods to identify places where an array is com-
pletely constructed. This is similar to the already mentioned so-
lution proposed in [17] and later extended by Manuel Fähndrich
and Songtao Xia in the framework with delayed types [18], but
forbids initialization of objects with circular references involving
array types. The same run-time cast is used by Chris Male et
al. in a tool [42] that verifies Java byte code. The authors clarify
that such a cast essentially replaces NullPointerException with

3.5 Related work 45

ClassCastException thus impairing the effect of null safety. All
the authors try to find a solution preserving the limitation of
the Java virtual machine [40] that accepts just a total number of
elements for every array dimension when creating a new array
object. On the other hand, the solution with two index bound-
aries – one for maximum number of elements and one for the
current number of elements – described at the end of section 3.2.2
seems to be far superior in terms of convenience and compile-
time safety guarantees. The changes applied to classes ARRAY
and SPECIAL are described in more details in [73].
A notion similar to stable attributes is supported by the Checker
Framework [72] with an annotation @MonotonicNonNull.
Cyclic dependencies between static initializers are considered by
Manuel Fähndrich and Rustan Leino as symptomatic of a design
problem that could be caught by a static analyzer. Given that in
general there are no special restrictions on the code in such ini-
tializers it remains unclear whether and how such an analyzer
can be used as part of a language specification. They also pro-
pose to mark all methods (directly or indirectly) called by ini-
tializers in a special way to indicate that static fields might not
be set yet. Alexander Summers and Peter Müller confirm that
static initializers cannot be checked modularly and therefore in-
sist that a static field should be of a possibly-null type. This is
required for two reasons: to make sure no uninitialized object
can reach a commitment point where all reachable objects have
all non-null fields set and to avoid escaping uninitialized objects
from one thread into another. In both cases static fields would
serve as a carrier of incompletely initialized objects. Chris Male
et al. argue that marking all static fields as possibly-null is im-
practical. Indeed, a lot of code uses System.out or similar static
fields without checking them for nullity. The idea would be then
to keep NullPointerException, but limit its used to static fields
only. This is close to the decision about raising an exception in
recursive feature calls to once functions. Unlike static fields and
static initializers, a once function connects both a value and a
piece of code to compute it, so it might be possible to find a bet-
ter solution in the future.
In [51] Bertrand Meyer, Emmanuel Stapf and I collected some
statistics about first experiments with adapting existing libraries
to void safety rules. Like in [17] the statistics was limited to a
few libraries. In this work I report migration results for a much

46 F r o m Th e o r y t o P r a c t i c e

larger set of libraries. None of the existing publications discussed
engineering decisions to do the migration. They are an impor-
tant mechanism to move from void-unsafe to void-safe code for
a large code base. In particular, one of them – void safety lev-
els – seems to be a successful technology for software developers
performing the migration.

4
A Ty p e S y s t e m

f o r Vo i d S a f e t y

4.1 Attachment status

A type system usually associates with a class hierarchy that
enables inheritance and polymorphism in object-oriented lan-
guages. But class-based type conformance is irrelevant for void
safety. The only interesting property here is whether a particular
expression is always attached at run-time to an object or it can
be Void. In the first case the type is called attached, in the second
case it is called detachable. The property of a type to be in one
of these groups is called an attachment status. In Eiffel source
code it is indicated by specifying an attachment mark attached
or detachable ([12, 27]). From practical experience of developing
void-safe systems, class types are considered as attached by de-
fault when they are declared without any attachment marks.
Expanded types are always attached regardless of specified at-
tachment marks because the corresponding expressions always
have associated values at run-time. Anchored types have attach-
ment status of their anchors if there are no attachment marks.
Otherwise, the status is explicitly specified by the marks. Drop-
ping attachment marks from an anchor would break the rule of
least surprise because the resulting type might become different
from the type of the anchor.
It is allowed to assign an expression to a variable of an attached
type only when the expression is of an attached type. This guar-
antees that the variable cannot become Void and thus cause a call
on void target at a later time at run-time. Therefore, the relation
on attached and detachable types is reflexive, antisymmetric and
transitive with the inequality

Attached < Detachable

47

48 A Ty p e S y s t e m f o r Vo i d S a f e t y

Given that class types of a system form a lattice, the elements
Attached and Detachable can be seen as a bottom and as a top
of the lattice Attachment reflecting attachment status, the prod-
uct ClassType × Attachment forms a lattice too. The conformance
relation is defined component-wise:

(C1, A1) 6 (C2, A2)

⇐⇒ C1 6 C2 ∧ (is_expanded C1 ∨ A1 6 A2) (1)

According to the language specification [12, 27] the type of the
special entity Void is NONE that conforms to any detachable ref-
erence type. Taking attachment marks into account, the type of
Void should be detachable NONE. According to the definition (1)
the type with a different attachment mark – attached NONE –
should conform to any attached type. Even though such a type
makes not much sense in the source code and there could be a
validity rule that forbids such type declarations, it can appear
indirectly via anchored or generic types as soon as the type dec-
laration detachable NONE is allowed. The type attached NONE
can be seen as the lowest bound for all attached reference types.
Instantiation of objects of such a type is impossible.
As with class-based type conformance, inherited routine asser-
tions remain usable only if attachment status of routine argu-
ments and function result follows covariant rules, i. e., if an ar-
gument or a function are attached, their counterparts in the re-
declaration are attached as well. For example,

search (n: STRING)
require

n.is_ascii
do ... end

can be safely redeclared into

search (n: STRING)
require else

n.is_unicode
do ... end

4.2 General validity rules 49

Class type self_initializing is_attached

Expanded True True

Attached Reference False True

Detachable Reference True False

Figure 4.1. Self-initializing and attached types.

but not into

search (n: detachable STRING)
require else

attached n and then n.is_unicode
do ... end

In the last case, the inherited assertion n.is_ascii would cause ac-
cess on void target if the contravariant redeclaration would be al-
lowed and the redeclared version of the feature would be called
with Void. Covariant redeclarations cause other issues but the cor-
responding solutions go beyond this work.
A variable of an expanded or of a detachable reference type
is immediately usable right after its declaration. In the first
case it is initialized by executing a standard creation procedure
default_create without arguments. In the second case the variables
are initialized with Void. These types are called self-initializing.
Depending on whether a class type is expanded or reference and
has an (implicit or explicit) attached or detachable mark, it can
be self-initializing or not, attached or detachable. This can be ex-
pressed with 2 functions self_initializing and is_attached as shown
in figure 4.1.

4.2 General validity rules

Validity rules in a void-safe language serve several goals:
• make sure a variable of an attached type is indeed attached

to an object at run-time;
• make sure the variable is initialized prior to its use;
• disallow calling a feature on an expression unless it is at-

tached.

50 A Ty p e S y s t e m f o r Vo i d S a f e t y

The first validity rule prevents from assigning Void to a variable
of an attached type:

Validity rule 4.1. A reattachment of an expression e to a variable v is
valid if the type of e conforms to the type of v.

The notion of reattachment stands either for an assignment in-
struction or an association between an actual and a formal argu-
ment of a routine. Even though the rule does not mention attach-
ment status of involved types explicitly, the type conformance
takes it into account according to the equation (1).
As discussed in chapter 6 it is not necessary that the declared
types of the expression e and of the variable v coincide with the
types used for checks. The actual type may depend on the con-
text.
Some types are self-initializing, i. e., do not require explicit initial-
ization of variables of these types:

Definition 4.1. A type is self-initializing if and only if any of the
following is true:

• it is an expanded class type;
• it is a detachable reference class type (i. e., a reference class type

with a mark detachable);
• it is a self-initializing formal generic type.

In the first case, a variable is initialized automatically with a de-
fault value of the corresponding expanded type. In particular,
standard basic class types such as BOOLEAN and NATURAL_64
are expanded and are initialized with associated default values
(False and 0 (zero) in this case).

Definition 4.2. A variable is properly set if and only if any of the
following is true:

• it is of a self-initializing type;
• it has been assigned a value in all preceding blocks of code;
• it is an attribute of an attached type that is properly set at the end

of every creation procedure.

The preceding blocks of code are defined canonically ([55]). In the
first case the variable is automatically initialized either to Void or
by creating an expanded object, in the second and third cases it is
initialized by an assignment instruction, by a creation instruction,

4.3 Formal generics 51

or as a result of associating an actual argument with a formal
one. The requirements to initialize a variable prior to its use is
guaranteed by:

Validity rule 4.2. Access to a variable is valid if the variable is properly
set.

Finally, the third goal of a void-safe system is achieved by making
sure all calls are performed on existing objects:

Validity rule 4.3. A feature call with a target e is valid if e is of an
attached type.

Generally speaking, these rules do not guarantee absence of fea-
ture calls on void target because even though a current target
of a call may be attached, some attribute of an attached type of
this target may be uninitialized yet. This issue is addressed by
additional validity rules in chapter 5.

4.3 Formal generics

Even though conformance rules for formal generics specified in
[12, 27] are sound, they are too restrictive and rule out some safe
cases. With attachment marks a formal generic type has three
variants:

• G – a formal generic type without an attachment mark
• attached G – a formal generic type with an explicit attached

mark
• detachable G – a formal generic type with an explicit

detachable mark

Allowed attachment status of an actual generic type that can be
substituted for a formal generic parameter depends on the formal
generic constraints. In the void-unsafe world an unconstrained
formal generic conforms to ANY. Introduction of void safety
brings two possibilities for default constraints: attached ANY and
detachable ANY. It turns out that formal generics are mostly used
in container classes where a type of elements does not matter and
could be attached or detachable. Given that an attached type of
a constraint forbids specifying detachable actual generic parame-
ter, it is more convenient to have the default detachable ANY. To
be more specific, out of 245 generic classes of all standard library

52 A Ty p e S y s t e m f o r Vo i d S a f e t y

classes included in EiffelStudio 16.11 [16], 141 (58%) use uncon-
strained genericity with the default detachable ANY and 18 use
constrained genericity with a detachable constraint type. In other
words 65% of all generic parameters can be substituted with at-
tached or detachable actual generic types and, therefore, the se-
lection of detachable ANY as the default formal generic constraint
is well-justified.

4.3.1 Attachment property

An attachment status of a class type – whether the type is at-
tached or detachable – is known from its declaration. This is not
true for formal generic types. Even more: for a formal generic
type we never know if it can be detachable, i. e., whether the
type is detachable for any substituted actual generic parameter.
Indeed, substituting an expanded type as an actual parameter
for a formal generic parameter G, the actual type of the formal
generic type detachable G is still the original expanded type and
is therefore attached. In other words, for any attachment mark, a
formal generic parameter may be substituted so that the resulting
type will be attached.
Fortunately, there are definitive cases when a formal generic type
is attached. This might be important to know when the type is
used as a source of a reattachment (validity rule 4.1) or as a tar-
get of a call (validity rule 4.3). Whether a formal generic is at-
tached depends on two factors: what attachment mark is used
and what are its constraints. For example, if there is an attach-
ment type among constraints, any valid actual generic should
be attached and, hence, the formal generic can be safely consid-
ered as attached too. Formally, the attachment status of a formal
generic can be expressed with the following lemma that denotes
constraints of a given formal generic as Cs:

Lemma 4.1.B.26
p. 290

All substitution of a formal generic type with an actual
one conforming to all its constraints Cs and taking into account its at-
tachment mark m (if any) are attached if and only if one the constraints
is expanded, or one of the constraints is attached and the formal generic
attachment mark m is not Detachable, or the mark m is Attached:

4.3 Formal generics 53

Cs 6= [] =⇒
(∀A. (∀C. C ∈ Cs −→ A 6 C) −→ is_attached ((A, m)))←→
(∃C. C ∈ Cs ∧ C = Expanded) ∨ (∃C. C ∈ Cs ∧ C =

AttachedReference ∧ m 6= Detachable) ∨ m = Attached

Proof. The proof follows from a lemma that considers just a single
constraint and is proved by case analysis.

The left-hand side specifies the requirement for a formal generic
to be safely considered attached: for any actual generic type that
conforms to all formal generic constraints the resulting type is
attached. The premise that the list of constraining class types is
not empty is always true because when there are no class types
in the constraints, the default detachable ANY is used. The right-
hand side provides the exact conditions when the formal generic
can be safely treated as attached. Lemma 4.1 shows that the fol-
lowing definition of an attachment status of a formal generic type
is sound:

Definition 4.3 (Formal generic attachment status). A formal
generic type is attached if and only if any of the following is true:

• one of its constraints is an expanded type
• it does not have a mark detachable and one of its constraints is

an attached type
• it has a mark attached

As explained above, in contrast to class types, there is no way to
tell if a formal generic is detachable.

4.3.2 Self-initialization status

Self-initializing types enable automatic initialization of variables.
In certain conditions a formal generic type can also be proved to
be self-initializing:

Lemma 4.2. B.26
p. 290

All substitutions of a formal generic type with an actual
one conforming to all its constraints Cs and taking into account its

54 A Ty p e S y s t e m f o r Vo i d S a f e t y

attachment mark m (if any) are self-initializing if and only if one the
constraints is expanded or the mark m is Detachable:

Cs 6= [] =⇒
(∀A. (∀C. C ∈ Cs −→ A 6 C) −→ self_initializing ((A, m)))

←→ (∃C. C ∈ Cs ∧ C = Expanded) ∨ m = Detachable

As before, Cs stands for a list of given formal generic parame-
ter constraints. The left-hand side specifies the requirement that
for any actual generic type as soon as it conforms to all for-
mal generic constraints, the resulting type is self-initializing. The
right hand side specifies the necessary and sufficient conditions
for this requirement. The premise that the list of constraints is not
empty is guaranteed by the language rule to use a default class
type constraint if none is given explicitly. This proves soundness
of the following definition.

Definition 4.4 (Self-initializing formal generic). A formal generic
type is self-initializing if and only if either of the following is true:

• it has a mark detachable

• one of its constraints is an expanded type

4.3.3 Conformance

An actual generic type should conform to all formal generic type
constraints of the corresponding generic parameter. Therefore, in
order to deduce conformance rules for formal generic types it is
sufficient to analyze all possible variants of constraining types.

A formal generic with an expanded type constraint. Accord-
ing to the conformance rules, the only actual generic that can be
used is the corresponding expanded type. Because attachment
marks do not change attachment status of expanded types, the
formal generic with or without any attachment mark conforms
to the same formal generic with or without any attachment mark
(here and in the following tables “+” indicates that a source type
with the specified mark conforms to a target type with the speci-
fied mark, while “−” indicates that they do not conform):

4.3 Formal generics 55

Target mark
Source mark

– attached detachable

– + + +

attached + + +

detachable + + +

A formal generic without an expanded type constraint but with
an attached type constraint. The only actual generic type that
can be substituted for this formal generic is attached. There are
two cases. If the actual generic is an expanded type, there are no
restrictions on attachment marks as discussed in the paragraph
above. If the actual generic is an attached reference type, having
no attachment mark or having the mark attached is equivalent.
Therefore, all reattachments are safe except when the source has
the mark detachable and the target does not:

Target mark
Source mark

– attached detachable

– + + –

attached + + –

detachable + + +

A formal generic without an attached type constraint. The
actual generic can be any suitable type. The conformance rules
for the formal generic should preserve properties for the actual
generics, namely, if the target type is not self-initializing, so has
to be the source type, and if the target type is attached, so has to
be the source type (figure 4.1). The following conformance table
satisfies these properties:

56 A Ty p e S y s t e m f o r Vo i d S a f e t y

Target mark
Source mark

– attached detachable

– + + –

attached – + –

detachable + + +

If we denote the function that corresponds to the tables above as
· 6G ·, then it preserves conformance rules for actual generics:

Lemma 4.3.B.26
p. 291

mS 6G mT =⇒ (T, mS) 6 (T, mT)

Moreover, this is the maximum function that preserves actual
generic properties self_initializing and is_attached:

Lemma 4.4.B.26
p. 291 (

∧
T mT mS. f mS mT ∧ is_attached ((T, mT)) ∧ ¬ self_initializing

((T, mT)) =⇒ is_attached ((T, mS)) ∧ ¬ self_initializing ((T, mS)))
=⇒ f mS mT 6 (mS 6G mT)

Proof. By case analysis.

This leads to the following conformance rules for formal generics.

Definition 4.5. A formal generic type G conforms to a formal generic
type F if their attachment-mark-free forms are the same and any of the
following is true:

• G and F are the same type
• G is constrained by an expanded type
• G is constrained by an attached type and G has no detachable

mark
• G has an attached mark
• F has a detachable mark

The similar definition can be used for specifying conformance
rules between formal generic types and their constraints if the
formal generic type F is replaced with a constraint of the formal
generic type G.

4.4 Related work 57

4.4 Related work

The idea of distinguishing between different types of expressions
that always return an object and that may return null is not new.
In the early days of Java in 1995 Raymie Stata proposed ([68]) to
use a notation T ? in the spirit of the C language notation T *
to denote that the value may be null. In all other cases the value
could not be null. In other words, a convention adopted in func-
tional languages should be used: a special type Maybe [T] would
indicate that a value might be absent. Because all existing code
was implicitly relying on the default that permitted to use null

instead of an object value, there was also a proposal to introduce
T ! for types that guarantee presence of object values.
Certain experiments aimed to perform static analysis of Java and
to report software defects at early stages in the development
cycle led to introduction of the Extended Static Checked for Java
(ESC/Java). A group of its authors reported ([19]) that the tool
relies on /*@non_null*/ annotations for declarations of non-null
types. The checker did not guarantee absence of errors but rather
warned a user about potential issues. Authors of the Checkers
Framework [72] mention that most static analysis tools for Java
use similar annotations: @Nullable and @NonNull, though from dif-
ferent packages depending on the associated tool.
Manuel Fähndrich and Rustan Leino attempted to construct a
sound null-safe type system in [17]. They used C# mechanism to
annotate types. Unlike ESC/Java that had to use comments for
describing properties outside of the language standard, C# has
a built-in extension mechanism. The authors used C# attributes
[NotNull] and [MayBeNull] for non-null and maybe-null types
respectively. They also briefly reviewed introduction of generic
types to C# and Java and came to the conclusion that it might be
problematic to instantiate formal generics with actual types of ar-
bitrary attachment status in the cases when null annotations are
allowed for formal generics. My work gives a thorough analysis
of all combinations of attachment marks for both formal and ac-
tual generic parameters, including expanded types, and clarifies
the conformance rules. It also establishes conditions when formal
generic types are considered attached and when – self-initializing.
An expression of a formal generic type is permitted to be used
as a target of a call only if it is known to be attached. When the

58 A Ty p e S y s t e m f o r Vo i d S a f e t y

type system fails to capture this property, the code should rely
on other means, discussed in subsequent chapters. And when a
formal generic type is not self-initializing, a variable of this type
should be set explicitly (section 4.2).
Erik Meijer and Wolfram Schulte in [45] explore a more advanced
type system to work with SQL and XML in an object-oriented
language directly. Because SQL features nullable types, there is a
need to reflect this in the type system together with other domain-
specific type facets like streams. In this type system non-null,
non-stream and possibly-null values have types with the follow-
ing subtyping relation: T! <: T <: T?. For reference types, the
special entity null of type 0? is still allowed as a valid value in
all cases: 0? <: T. Therefore, reference types without any marks
effectively behave like maybe-null types. Because the rules are ex-
pected to model SQL, it is allowed to make a call on a target of a
maybe-null type. The result of such a call is also of a maybe-null
type regardless of the message type. This is different from valid-
ity rule 4.3 where only calls on attached targets are permitted.
The term attached type was introduced by Bertrand Meyer in
[47] where the notations ! T and ? T were used for attached and
detachable types respectively. The work covered most issues of
void-safe programming, including required validity rules and cer-
tified attachment patterns (discussed in chapter 6). The rule for
self-initializing formal generics was also given, but it was differ-
ent from the definition I use in this work. Particularly, the self-
initialization status of a formal generic parameter was explicitly
specified in the class declaration. Then clients of the class were
obliged to provide a self-initializing type as the corresponding
actual generic parameter. The rules proposed in my work do not
put any restrictions on this aspect of actual generics. Still, formal
generics are considered as self-initializing in certain cases. The
keyword-based syntax that replaced question and exclamation
marks in type declarations in Eiffel was mentioned by Bertrand
Meyer, Alexander Kogtenkov and Emmanuel Stapf in [50].
A completely different approach to describe whether a variable
is attached or not is used by Xin Qi and Andrew C. Myers in
[62]. Instead of talking about attachment status, they proposed to
specify whether an object field is initialized or not and claimed
that in that case the use of null can become rare and can be re-
placed with values of types Option and Maybe. All the examples
they use to demonstrate the approach do not rely on run-time

4.5 Conclusion 59

tests for null. However, the experiments show that in some cases
null is a legitimate value. Thorough review of the accompany-
ing soundness proof of the type system in [61] reveals that null
references are not taken into account in the proofs. Thus, there
is a significant dissonance between the theory and real programs.
The work covers a very important aspect of object initialization,
but it seems that there are no void safety guarantees if use of
null is allowed.
Finally, no additional type information is required for a static
null-pointer analysis like the one described by Fausto Spoto
in [67]. Whether a particular expression can produce null at
run-time is computed using an abstract interpretation technique.
Then calls on expressions that can produce null are flagged by
the tool as unsafe. This permits to analyze any program compiled
into Java byte code, but requires whole system analysis and is not
suitable for a void safe language specification.

4.5 Conclusion

Almost all languages or their dialects that allow for Void refer-
ences and support some sort of void safety distinguish between
attached and detachable types (probably, using different names,
such as “non-null” and “possibly-null”). However, publications
usually focus on regular class types and do not specify precise
rules for formal generics. Similarly, the rules for formal generics
specified in the language standard [12, 27] are sound, but are too
pessimistic. Another aspect of developing void-safe programs –
support for gradual migration from existing void-unsafe to void-
safe code – is also not covered in publications. The main contri-
butions of my work include:
Clarification of formal generic properties Precise conditions

when a formal generic type has a specific void-safety-
related property are defined for:

• Attachment status – tells if a formal generic is at-
tached.

• Self-initialization – tells if the type is self-initializing.
• Conformance – tells if two formal generic types con-

form to each other or if a formal generic type conforms
to the corresponding constraint.

60 A Ty p e S y s t e m f o r Vo i d S a f e t y

Decription of void safety levels An engineering approach to fa-
cilitate transition from void-unsafe to void-safe code is de-
scribed with the details how to do the gradual update.

Migration statistics Statistics summarizing changes required to
update existing code is collected for a large open source
code base with more than a million lines of code.

5
Th e O b j e c t

I n i t i a l i z at i o n I s s u e

General validity rules described in section 4.2 are sufficient for
making a program void-safe except for the rare case when Current
object escapes to the rest of the program before all attributes are
properly set. Indeed, according to the rules, the attributes have
to be properly set at the end of the corresponding creation pro-
cedure. However, it is quite possible that Current is passed as an
argument of a call to some feature that incorrectly accesses an
attribute that is not set yet. This may lead to accessing an unini-
tialized field with unexpected value (Void for reference types) as
if it was initialized and cause access on void target. Additional
rules applied for creation procedures address this issue.

5.1 Attribute access safety

5.1.1 Motivating example

Let’s consider an application that uses a GUI library and has a
class PARENT_DIALOG that allows creating and showing some
dialog to a user (figure 5.1).
The dialog is very simple. In addition to the standard con-
trols such as OK and Cancel buttons it adds a reset button
to put all user controls to some default state. This button is
referred in the code via an attribute reset_button. The feature
create_implementation is inherited from the parent class DIALOG
and implements the underlying window toolkit functionality to
initialize the dialog.
Suppose that a child dialog adds a text area that a user can fill in.
There is also some default text that is put to this area. A user can
change the text area, and when the button OK is pressed, the text
is saved using an agent set_text. But if a user decides to start over,

61

62 Th e O b j e c t I n i t i a l i z at i o n I s s u e

class PARENT_DIALOG inherit DIALOG create make
feature {NONE} −− Creation

make
do

create reset_button
create_implementation (Current)
reset_button.select_actions.extend (agent

on_reset)
end

feature −− Access
reset_button: BUTTON

feature {NONE} −− Actions
on_reset

do
end

end

Figure 5.1. A parent dialog class.

(s)he can press the button Reset available from the parent dialog.
In order to avoid code duplication, the procedure that resets all
the data is also called in the creation procedure.
Let’s look at how the child class creation procedure is executed.
Firstly, it calls the parent’s creation procedure to initialize at-
tributes declared there. Then it creates a text area, records the
default text, calls the feature to set all widgets to the default val-
ues and registers an action to be performed when a user presses
a button OK. All the conditions specified in section 4.2 are ful-
filled. However, calling a parent creation procedure causes a call
to create_implementation that in turn calls on_create. The latter is
supposed to be redefined in a descendant if some actions need
to be performed right after the dialog is created. The dynamic
type of the current object is CHILD_A, so the version from the
class CHILD_A is called and it executes text.put (default_text). But
at this point the field text is not set yet that causes access on void
target.

5.1 Attribute access safety 63

class CHILD_A inherit
PARENT_DIALOG

rename make as make_parent
redefine on_create, on_reset
end

create
make

feature {NONE} −− Creation
make (original_text: STRING; set_text: PROCEDURE

[STRING])
require

not original_text.is_empty
do

make_parent
create text
default_text := original_text
ok_actions.extend (agent do set_text (text.item) end)

end
feature −− Access: user interface

text: TEXT_AREA
feature −− Access: default values

default_text: STRING
feature {NONE} −− Actions

on_create, on_reset
do

text.put (default_text)
end

end

Figure 5.2. A child dialog class (A).

64 Th e O b j e c t I n i t i a l i z at i o n I s s u e

class CHILD_A
...

make (original_text: STRING; set_text: PROCEDURE
[STRING])

require
not original_text.is_empty

do
create text
default_text := original_text
make_parent
ok_actions.extend (agent do set_text (text.item) end)

end
...
end

Figure 5.3. A child dialog class (A) – corrected version.

5.1.2 Solution

The issue in the example from section 5.1.1 arises because Current
object is passed before all attributes of this object are properly
set (definition 4.2). The simplest rule would be to forbid using
Current until all attributes are properly set:

Validity rule 5.1 (Creation procedure; see validity rule 5.2 for a
weaker version). An expression Current is valid in a creation proce-
dure or in an unqualified feature it (directly or indirectly) calls if all
attributes of the current class are properly set at the execution point of
the expression.

The clarification about calling unqualified features is important
to make sure that access on void target does not happen in a
called feature that accesses Current. In particular, this clarification
ensures that for DIALOG_A not only the creation procedure make
is checked, but also the parent’s creation procedure make_parent
that passes Current to the window toolkit.
The corrected version of the class (only changed code) is shown
in figure 5.3.
The core difference is the order of initialization. The attributes of
the child class are set before calling a parent’s creation procedure.

5.1 Attribute access safety 65

Time

Current is unused Current is fully initialized

All attributes are set

Creation procedure

Figure 5.4. Timeline during object initialization according to validity
rule 5.1.

This ensures that at the time Current is used, all attributes are
properly set and are safe to access.
The rule introduced by validity rule 5.1 could be depicted with
a time line that goes from left to right (figure 5.4). During exe-
cution, object fields are initialized with proper values, but until
they all are properly set, the reference to the current object can-
not be used. And when they all are set, Current is fully initialized
and can be freely used alongside with any other object references
without any special restriction.
The main benefit in this scheme is that all used objects are com-
pletely initialized throughout program execution. So, all features
can be freely called regardless of the fact that an object is being
created: the inconsistent state when not all attributes are properly
set is simply kept inaccessible due to validity rule 5.1.
The picture in figure 5.4 should not be interpreted literally. Due
to branching instructions such as conditionals, loops, etc., all at-
tributes could be set in one branch so that Current can be safely
used in this branch. However, it is possible that not all attributes
are set in another branch. Therefore, for the whole expression
both conditions “there are unset attributes” and “Current is used”
could be true at the same time even if the expression passes the
validity check.
The validity rules in this chapter are formalized using a simpli-
fied version of an Eiffel-like abstract syntax shown in figure 5.5.
It assumes that the source code is parsed and the compiler dis-
tinguishes between local variables and attribute variables. Even
though the language does not provide direct means to raise ex-
ceptions, this is an important concept and is reflected in the
syntax productions. This allows for modeling some missing lan-

66 Th e O b j e c t I n i t i a l i z at i o n I s s u e

B.25
p. 280

expr =

Value value | – Value (constant)

Current | – Current object

Local name | – Local variable

Attribute name | – Attribute variable

expr ; ; expr | – Sequence

name :=L expr | – Assignment to local

name :=A expr | – Assignment to attribute

create {type} name (expr list) | – Creation expression

expr.name (expr list) | – Feature call

if expr then expr else expr end | – Conditional

until expr loop expr end | – Loop

attached type expr as name | – Object test

Exception – Exception

Figure 5.5. Simplified abstract expression syntax.

guage constructs. For example, the mandatory check instruction
(guard) check ... then ... end could be translated into the abstract
form if . . . then . . . else Exception end.
In order to see if all attributes are properly set at a particular ex-
ecution point, we need to know how every expression affects the
set of properly-set attributes. As soon as all attributes are set, it
is safe to use Current. Because comparing the set of currently set
attributes to the set of all attributes of the current class would re-
quire passing the set of class attributes all the time, it is easier to
track if there are any unset attributes left and to check if this set
is empty. As soon as the set of unattached attributes is empty, all
attributes are properly set. The computation is done by the trans-
fer function · >> ·. The equations for the function are specified
in figure 5.6 (here _ is a placeholder for any expression different
from all explicitly specified ones and >> has higher precedence
than any set-theoretic operations like set difference or union).
The transfer function takes 2 arguments – an expression and a
set of attributes V that may be unattached before the expression
– and returns a set of attributes that may be unattached after

5.1 Attribute access safety 67

B.25.1
p. 280

V >> e1 ;; e2 = V >> e1 >> e2
V >> n :=L e = V >> e

V >> n :=A e = V >> e − {n}

V >> create {t} · n (es) = V >> es

V >> e · n (es) = V >> e >> es

V >> if c then e1 else e2 end = V >> c >> e1 ∪ V >> c >> e2
V >> until c loop b end = V >> c

V >> attached t e as n = V >> e

V >> Exception = ∅
V >> _ = V

V >> [] = V

V >> (e · es) = V >> e >> es

Figure 5.6. A function to compute a set of unattached attributes.

the expression. At the beginning of a creation procedure the set
of unattached attributes is a set of all current class attributes of
attached reference types (attributes of expanded and detachable
types are initialized automatically).
If the expression is a sequence or an argument list, the set of unset
attributes for a subsequent expression is computed starting from
the set computed for the first expression. For assignment to an at-
tribute, firstly the set is computed for the source expression, then
the attribute name is removed from the set of unset attributes,
because after the assignment it is set. Removal of the attribute
from the set is sound because the validity of the assignment is
checked according to conformance rules discussed in section 4.2.
Because the attribute is of an attached type, the source expression
is also attached. Therefore, after the assignment the attribute is
attached.
For a creation expression, the set is computed using associated
list of actual arguments starting from the initial set. For a quali-
fied call the rule is similar except that the set computed for the
target of the call is used as a starting one.
For a conditional expression, the computation is done for both
branches like for a sequence and then their union is used as a

68 Th e O b j e c t I n i t i a l i z at i o n I s s u e

result. The rationale is that even though every branch can set
some attributes, if these attributes are not set in the other branch,
the attributes should not be considered set because it is unknown
which branch is going to be taken at execution time. For a loop
only an exit condition is taken into account and a loop body is
completely ignored. It is possible that the loop body is not going
to be executed at all, so whatever attributes it sets cannot be used
to reduce the set of unattached attributes.
For an exception the set of unattached attributes is empty be-
cause execution never goes after this point, so any assumptions
are valid. Using an empty set signals to the compiler that no more
attributes have to be initialized and effectively triggers “design
mode” discussed in section 6.2.4.
For the rest of expressions, if there are subexpressions, the func-
tion returns sets for these subexpressions, otherwise it returns
the initial set.
The function is monotone, i. e., the more attributes are set before
an expression, the more are set after the expression. This is true
thanks to the rule that attached attributes, once initialized, cannot
be uninitialized back.

Lemma 5.1 (Monotonicity of >>).B.25.1
p. 281

A ⊆ B =⇒ A >> e ⊆ B >> e

A predicate V ` e
√
c
′ tells if an expression e satisfies validity

rule 5.1 in the context with unset attributes V. (The subscript let-
ter c indicates that the predicate applies to creation procedures
only, not to arbitrary features, and the apostrophe ′ is used to
distinguish this set of rules from a more sophisticated one dis-
cussed in section 5.2.2.3.) Because the set of unattached attributes
changes from one expression to another, it uses the transfer func-
tion for a set of unattached attributes to update the context of
nested expressions. The rules of the predicate are shown in fig-
ure 5.7.
Access to a constant and to a local variable (rules Value and
Local) is valid in all cases. Access to the special entity Current
that denotes a current object is valid only if all attributes are
initialized (Current). Access to an attribute is valid only when
it is not in the set of unattached attributes (Attr).
A sequence of two expressions is valid if and only if the first ex-
pression is valid in the initial context and the second expression
is valid in the context obtained by replacing a set of unattached

5.1 Attribute access safety 69

B.25.2
p. 282V ` Value v

√
c
′ Value

V = ∅
V ` Current

√
c
′ Current

V ` Local n
√
c
′ Local

n /∈ V
V ` Attribute n

√
c
′ Attr

V ` e
√
c
′

V ` n :=L e
√
c
′ AssignLocal

V ` e
√
c
′

V ` n :=A e
√
c
′ AssignAttr

V ` es [
√
c]
′

V ` create {t} · n (es)
√
c
′ Create

V ` e
√
c
′∧ V >> e ` es [

√
c]
′

V ` e · n (es)
√
c
′ Call

V ` e1
√
c
′∧ V >> e1 ` e2

√
c
′

V ` e1 ;; e2
√
c
′ Seq

V ` e
√
c
′∧ V >> e ` b

√
c
′

V ` until e loop b end
√
c
′ Loop

V ` c
√
c
′∧ V >> c ` e1

√
c
′∧ V >> c ` e2

√
c
′

V ` if c then e1 else e2 end
√
c
′ If

V ` e
√
c
′

V ` attached t e as n
√
c
′ Test

V ` Exception
√
c
′ Exception

V ` [] [
√
c]
′ ArgNil

V ` e
√
c
′∧ V >> e ` es [

√
c]
′

V ` e · es [
√
c]
′ ArgCons

Figure 5.7. A predicate that tells if an expression is valid in a cre-
ation procedure of a system S in the context with a set of
unattached attributes V .

70 Th e O b j e c t I n i t i a l i z at i o n I s s u e

class COUNTER_AREA inherit TEXT_AREA
create

make
feature {NONE} −− Creation

make (other: TEXT_AREA)
do

default_create
other.change_actions.extend (agent do put

(other.item.count) end)
end

end

Figure 5.8. A counter widget.

attributes with a new set computed for the first expression (Seq).
The similar technique applies to other expressions with several
subexpressions: Create, Call, If, Loop. ArgCons. There is no
context change if an expression or an instruction has only one
subexpression: AssignLocal, AssignAttr, Test. Finally, the con-
text is irrelevant for exceptions (Exception) and an empty list of
arguments (ArgNil).
The next section demonstrates that the required initialization or-
der sometimes cannot be achieved straightaway. But it is feasible
if dynamic binding is exploited.

5.1.3 Initialization order in presence of inheritance

Suppose, the widget text of type TEXT_AREA from the example
of section 5.1.1 may have a limit on the number of entered char-
acters. The limit is enforced by an application domain, and it is
important to show to a user how many characters the text area
contains. Assuming this functionality is common, we want to add
a new widget type COUNTER_AREA that can be associated with
a text area and show a current number of entered characters (fig-
ure 5.8).

5.1 Attribute access safety 71

class CHILD_B inherit CHILD_A redefine make end
create

make
feature {NONE} −− Creation

make (original_text: STRING; set_text: PROCEDURE
[STRING])

require
not original_text.is_empty

do
−− Too early: ‘text‘ from CHILD_A is not

created yet.
create counter.make (text)
make (original_text, set_text)

−− Too late: ‘counter‘ should have been set
−− before calling ‘create_implementation‘

by ‘make‘.
create counter.make (text)

end
feature −− Access: user interface

counter: COUNTER_AREA
end

Figure 5.9. A child dialog class (B).

5.1.3.1 Coding guidelines

Unfortunately, it is impossible to create the new widget before all
other widgets like it was done for DIALOG_A because it requires
the text area widget as an argument of the creation procedure,
but creating the widget after calling parent’s creation procedure
is too late, validity rule 5.1 would be violated (figure 5.9).
In order to fulfill the conditions specified in validity rule 5.1, the
code has to follow certain coding guidelines:

1. Create all required objects and set all class attributes.
2. Call features that need Current.
3. Operate in the context were all objects are completely ini-

tialized.
One particular source of accesses to Current is indirectly via
unqualified agents. An unqualified agent of the form agent foo

72 Th e O b j e c t I n i t i a l i z at i o n I s s u e

(arguments) or an inline agent agent (arguments) do end implicitly
passes Current to create the agent object. This happens because
such an agent can access attributes of the current class. In case of
mutual dependencies and if the agent is attached to an attribute
it might be problematic to satisfy validity rule 5.1. Given that
agents are frequently used for callbacks, means of a subscriber
pattern and alike, it is more flexible to use a collection of agent
objects instead of a single attribute of an attached agent type.
This way it is easier to implement subscribe/unsubscribe inter-
face, providing for more agile interface to clients. Moreover, in
terms of void safety it becomes sufficient to create empty con-
tainers at object creation time. The required agent objects can be
registered later at any suitable moment.

5.1.3.2 GUI library pattern

Applying specified coding principles to the design of a GUI li-
brary, every window or widget is initialized and starts its opera-
tion by implementing 3 features:

• create_interface_objects – Creates all nested objects and ini-
tializes all attributes.

• create_implementation – Creates a bridge between the inter-
face classes and underlying window toolkit, this is the first
time Current is used.

• initialize – Initializes previously created widgets, e. g., by
registering event handlers.

The top-level GUI library class implements a creation procedure
default_create with exactly the following definition:

default_create
do

create_interface_objects
create_implementation
initialize

end

Then the corrected modular version of the dialog classes would
look like in figure 5.10.

5.1 Attribute access safety 73

class CHILD_A inherit PARENT_DIALOG
redefine create_interface_objects, initialize, on_reset end

create make feature {NONE} −− Creation
make (original_text: STRING; set_text: PROCEDURE

[STRING])
require not original_text.is_empty
do

default_text := original_text
default_create

end
create_interface_objects

do
Precursor
create text

end
initialize

do
Precursor
ok_actions.extend (agent do set_text (text.item) end)

end
...

end

class CHILD_B inherit CHILD_A
redefine create_interface_objects end

create make feature {NONE} −− Creation
create_interface_objects

do
Precursor
create counter.make (text)

end
feature −− Access: user interface

counter: COUNTER_AREA
end

Figure 5.10. Child dialog classes (A) and (B).

74 Th e O b j e c t I n i t i a l i z at i o n I s s u e

5.1.4 Modification of existing structures

Convenience of the ability to invoke regular procedures inside a
creation procedure can be demonstrated with a mediator pattern
([20]). The purpose of the pattern is to decouple objects so that
they do not know about each other, but still can communicate
using an intermediate object, called mediator. The concrete setup
can be different and the set of participating objects can be fixed
or can change dynamically. In the first case creation of objects
structure can be fixed and all objects can be recursively created
in a single creation procedure. In the second case this is scenario
is impossible. Some objects can still be created at the beginning,
but the rest will be added as program runs.
Because all interacting objects should have access to the mediator
object, its type is attached. The number of communicating ob-
jects is unknown and references to them are stored in a container
that is extended with new items as required. In general, concrete
types of the communicating objects are unknown to the media-
tor. Therefore, creation of these objects cannot be specified in the
mediator class. It is done in some client’s code.
On the other hand, communicating objects know about the medi-
ator and can register in it according to their role. The registration
can be conveniently done inside their creation procedures, so that
clients do not need to clutter the code with a call to a special fea-
ture register every time they create a new communicating object:

create communicating_object.make (mediator)
communicating_object.register (mediator)

For clarity and to avoid errors with setting up object communica-
tion, it would be much cleaner to write just

create communicating_object.make (mediator)

To be more specific, consider a simplified example of a chat room
adapted from [44]. The room of type ROOM may have a number
of participants that can register in the chat by calling a feature join
(see figure 5.11). Participants are abstract communicating agents
of type USER. Their creation procedure records a reference to the
chat room for future use and registers the user in the room.
When feature join is called, all attributes of the class USER or the
corresponding descendant class should be set. Feature join of the
class ROOM adds a new participant to the list of the registered

5.1 Attribute access safety 75

class ROOM create make feature
users: ARRAYED_LIST [USER]
make

do
create users.make (0)

end
join (a: USER)

do
users.extend (a)

end
send (s: STRING)

do
across users as u loop

u.item.receive (s)
end

end
end

class USER create make
feature

room: ROOM
make (r: ROOM)

do
room := r
r.join (Current)

end
send (s: STRING)

do
room.send (s)

end
receive (s: STRING)

do
io.put_string (s)
io.put_new_line

end
end

Figure 5.11. An example of a mediator pattern.

users. Because this is done only after the user object is completely
initialized, there are no issues with leaking an uninitialized ob-
ject. As discussed in section 5.4 most existing type-system-based
proposals fail to detect that the code is safe. They report it as
erroneous instead. The difficulty for those methods is in the fact
that the new object registers in the existing one before its cre-
ation procedure finishes. Approaches based on type declarations
fail to capture that at some point the new object is completely ini-
tialized and can be safely used in the context that does not expect
uninitialized objects. Only with masked types ([62]) it is possible
to make the code compile at the expense of sophisticated type
annotations.

5.1.5 Implementation

Evaluation of the transfer function as well as of the validity pred-
icate is done in one pass over an abstract syntax tree. Because
sets of currently attached attributes computed by the transfer

76 Th e O b j e c t I n i t i a l i z at i o n I s s u e

x := a
if c then

y := d
z := b

elseif e then
y := f

else
z := h
y := g

end

∅
x

◦ x
◦ x
◦ x
◦ x
◦ x
◦ x
◦ x
◦ x

x, y

• x
x, y
x, y, z
x, y, z
x, y, z
x, y
x, y
x, y

• x
x, y

• x
x, z
x, y, z

Legend: ◦ an outer scope used to initialize a nested inner
scope

• an initial value of an inner scope, copied from the
outer one

values merged at the next step

an intermediate or final value for a branching
expression obtained by merging values of sub-
branches

Figure 5.12. An example of using a stack to compute currently set at-
tributes.

function are used immediately, there is no need to store them.
This allows for a very efficient implementation with low memory
footprint and little computational overhead. The sets are repre-
sented by bit vectors with a single bit per an attribute indicating
whether the attribute is set or not. When a total number of at-
tributes in a class is below a certain value, the bit vectors are
mapped to the built-in integer numbers with fast bitwise opera-
tions. This is the case almost all the time, because there are not
that many classes with more than 60 attributes. Usually the sets
fit into NATURAL_64.
For code without branching instructions it is sufficient to have
just one value representing a set of properly-set attributes. When
there are branching instructions, the sets for different branches
have to be computed separately. An example how this is done is
shown in figure 5.12.
At the beginning of a conditional instruction the current set of
attached attributes is marked as an outer for the instruction (◦ x).
A new copy of this value is used every time a new branch is an-

5.1 Attribute access safety 77

alyzed. The copy is marked in the picture with a bullet (• x). In-
ner sequential blocks are processed as usual, updaing a set of at-
tached attributes as required. When a block is finished, the value
computed so far is merged with values of other branches. If this
is the first branch, its value is just kept unchanged (x, y, z). If this
is the second or any subsequent branch the value is merged with
the one computed for previous branches. The result replaces the
current inner value (x, y). Because there is just a single “merged”
value and a single value for a branch being processed, at most
two values for inner scopes have to be stored in addition to the
outer scope value.
A natural choice to support this is a stack. In figure 5.12 the top
of the stack corresponds to the right-most non-empty column.
Nested branching instructions treat the top element of the stack
as an outer scope and proceed as described above. After complet-
ing analysis of the last branch of a conditional instruction, the
“merged” value is used as a result for the instruction as a whole
and is propagated to the higher level replacing the current value
of the outer scope (the last line in the example).
In addition to instructions and expressions that are always part
of a program, Eiffel has instructions and expressions that are ex-
ecuted optionally, depending on some external settings. This in-
cludes assertion monitoring and debug instructions. In order to
make sure void safety is not compromised by these instructions,
they are also subject to validity checks. However, for such op-
tional instructions a scheme similar to branching instructions is
used. A current set of attached attributes is duplicated on the
stack and the analysis is done using this new stack element.
But unlike branching instructions, on completion, the value com-
puted for an optional instruction is simply discarded and the
analysis proceeds with the value as if the optional instruction
had no effect. This ensures void safety guarantees do not depend
on whether assertion monitoring and debug instructions are on
or off.
Memory required to preform the analysis can be estimated if the
number of nested branching and optional instructions is known.
As we have seen, a branching instruction uses at most two addi-
tional slots on the stack. A nested optional instruction uses one
additional slot. So, if there are Nb nested branching instructions
andNo nested optional instructions, the total number of required
slots is limited by 1 +No + 2Nb. Provided that creation proce-

78 Th e O b j e c t I n i t i a l i z at i o n I s s u e

dures do not use many branching instructions, the real number
remains very small and the whole initialization analysis can be
performed using preallocated memory with fast bitwise opera-
tions very quickly.

5.1.6 Practical experience

Even though validity rule 5.1 seems to be pretty restrictive, 4254

classes of public libraries (all libraries listed in table A.4) have
been successfully converted (some – with modifications, some –
without) to complete void safety relying on this rule. This com-
prises 822487 lines of code and 3194 explicit creation procedures
(some classes do not declare any explicit creation procedure and
use a default one instead). 59% of these creation procedures (1894

in absolute numbers) perform regular direct or indirect qualified
calls and might be in danger if not all attributes were set before
Current was used. However, it was possible to refactor all the
classes to satisfy the rule.
This refactoring involved almost 44% of all classes (figure 5.13)
that indicates that the original code did not follow the order-
ing of initialization required by validity rule 5.1. This number
is twice smaller than the total number of classes that needed to
be changed to add attachment marks to the source code. In terms
of affected lines of code the change is even smaller – only 4.66%
(figure 5.14), where about 2% corresponds to inserted lines, 1.6%
– to deleted lines and 1.1% to modified lines (table 3.1). This is
less than one third of code changes caused by applying confor-
mance rules. The amount of changes was smaller because only
creation procedures were involved.
On average, the number of inserted lines is slightly higher than
the number of deleted lines due to the refactoring that addresses
application of validity rule 5.1 to classes that reuse initialization
code from parents (libraries WEL and Vision2) as explained in
section 5.1.3.2.
There seems to be no strong correlation between library size and
required changes. However, relatively more changes were needed
in the libraries that work with text (diff, parse, preferences, i18n,
lex) as well as in the database library store because the original
versions did not care about proper order of attribute initialization
and allowed for using Current before all attributes have been set.

5.1 Attribute access safety 79

go
bo

_e
xt

en
si

on
ev

en
t

uu
id

km
p_

m
at

ch
er

di
ff

lib
ev

en
t

lo
gg

in
g

ap
i_

w
ra

pp
er

vi
si

on
2
_e

xt
en

si
on

pa
rs

e
w

eb
_b

ro
w

se
r

ip
ho

ne
ba

se
_e

xt
en

si
on

th
re

ad ed
k

w
eb

en
co

di
ng cu
rl

xm
l_

tr
ee

ei
ff

el
2
ja

va
xm

l_
pa

rs
er le
x

ob
je

ct
iv

e_
c

te
st

in
g

ar
gu

m
en

t_
pa

rs
er

ti
m

e
ri

bb
on

te
st

in
g_

ew
ea

se
l

pr
oc

es
s

pr
ef

er
en

ce
s

i1
8

n
ne

t
co

co
a

st
or

e
w

el
ba

se
vi

si
on

2

0%

20%

40%

60%

80%

100%

43.89%

C
ha

ng
ed

cl
as

se
s

Modified
Average

Figure 5.13. Changes in transitionally void-safe public libraries to make
them completely void-safe ordered by library size.

go
bo

_e
xt

en
si

on
ev

en
t

uu
id

km
p_

m
at

ch
er

di
ff

lib
ev

en
t

lo
gg

in
g

ap
i_

w
ra

pp
er

vi
si

on
2
_e

xt
en

si
on

pa
rs

e
w

eb
_b

ro
w

se
r

ip
ho

ne
ba

se
_e

xt
en

si
on

th
re

ad ed
k

w
eb

en
co

di
ng cu
rl

xm
l_

tr
ee

ei
ff

el
2
ja

va
xm

l_
pa

rs
er le
x

ob
je

ct
iv

e_
c

te
st

in
g

ar
gu

m
en

t_
pa

rs
er

ti
m

e
ri

bb
on

te
st

in
g_

ew
ea

se
l

pr
oc

es
s

pr
ef

er
en

ce
s

i1
8

n
ne

t
co

co
a

st
or

e
w

el
ba

se
vi

si
on

2

0%

10%

20%

4.66%

C
ha

ng
ed

LO
C

Inserted
Deleted
Modified
Average

Figure 5.14. Changes in transitionally void-safe public libraries to make
them completely void-safe ordered by library size.

80 Th e O b j e c t I n i t i a l i z at i o n I s s u e

The rule was too restrictive for two more advanced libraries
though in most cases the source code could have been refactored
to meet the requirements. To be more specific, only 77 creation
procedures (less than 2%) of all libraries code took advantage
of a more sophisticated and therefore more permissive rule dis-
cussed in the next section. Still, breaking some design guidelines,
it should be possible to refactor all code by exploiting multiple in-
heritance and discarding separation of concern principle, to meet
the requirements of validity rule 5.1. This indicates that in prac-
tice the code does not use all potential possibilities, and even
simple rules can be practically useful to achieve safety.

5.1.7 Conclusion

Validity rule 5.1 introduced in this section has the following ben-
efits:
No annotations. It does not require any additional annotations

for both method signatures and types of arguments except
for attachment marks used in type declarations.

Modularity. Type checking is modular, i. e., no additional infor-
mation is required when analyzing creation procedures of
a class. Because Eiffel does not have dedicated notion of a
constructor and any procedure can be used as a creation
procedure, access to parent code is required to perform the
checks of inherited creation procedures or features that are
called by the creation procedures with unqualified feature
calls.

Simplicity. The analysis requires only tracking for attributes that
are not properly set and for use of Current.

High coverage. In practice, the rule is suitable for 98% of code.
Much higher acceptance rate can be achieved if some code
patterns can be ignored and a group of classes is allowed
to be replaced with a single class with more responsibilities.
Alternatively, the responsibilities could be moved to parent
classes if a language supports multiple inheritance. Then a
common descendant would inherit from all of these classes
and would be used instead of them when required. This
may go against some design patterns though ([20]).

The main drawbacks of the rule are:

5.2 Circular references 81

Certain coding pattern. The code has to follow certain coding
guidelines in terms of initialization order. This enforces
some structure on the code. Fortunately, it is easy to follow
even in presence of (multiple) inheritance with the require-
ment of code reuse. On the other hand, the requirement to
initialize all attributes in a creation procedure seems to be
unavoidable. Therefore, some kind of code discipline would
be required anyway, and this pitfall is not necessary specific
to the proposed rule.

Insufficient flexibility. The rule does not allow for creating ob-
jects with mutual references of attached types. Indeed,
when one object is created, it cannot initialize a reference
to another object before that other object is created. Unless
some stub objects are used, there is no way to satisfy the
rule. This issue is addressed in the next section.

5.2 Circular references

5.2.1 Motivating example

According to the XML specification [7] an XML document has
exactly one XML element that could have nested elements. It is
called a root element. On the other hand, every XML element has
a parent. A parent of a root element is the document it is con-
tained in. It would be convenient to have an attribute root of an
attached type in the class DOCUMENT to refer to the associated
root element, and, conversely, to have an attribute parent of an at-
tached type in the class ELEMENT to refer to the parent element,
the document for the root element. In order to set both attributes
root and parent, creation of a document should come along with
creation of a root element. Ideally it should be done in a single
step, so that there are no inconsistencies. Unfortunately modern
languages do not provision for simultaneous object creation and
initialization of their fields via an atomic operation. The creation
and initialization is done step-by-step as shown in figure 5.15:

1. The document object is created (figure 5.15a). All fields are
set by the run-time to respective default values. Because
there are no meaningful values for fields of attached types,
they are initialized with Void like any other reference field.

82 Th e O b j e c t I n i t i a l i z at i o n I s s u e

...

root
...

Document

(a)

...

root
...

Document

parent
...

Element

(b)

...

root
...

Document

parent
...

Element

(c)

...

root
...

Document

parent
...

Element

(d)

Figure 5.15. Stages of creating objects with circular references.

Legend:
– not all attributes are properly set
– all attributes are properly set, but they can (recursively) refer to an

object with not all attributes properly set
– all attributes of all reachable objects are properly set .

These fields should not be accessed, or, at least, their type
should not be considered as attached until they are actually
set.

2. The creation procedure of the document object executes a
creation procedure for the root element object and passes
the document object Current as an argument. The element
object is created (figure 5.15b) like in the previous step with
all fields of attached types not in a valid state. In particular,
the field parent is Void.

3. The attribute parent of the root element object is set to ref-
erence the document object passed as an argument (fig-
ure 5.15c). It is now acceptable to use the field parent and
to rely on the fact that it is of an attached type. What is not
acceptable is to access the fields of the object accessible by
reference parent. E. g., parent.root would yield Void although
the type of the expression is attached. Any other fields of
the element object should be properly set before completion
of the creation procedure.

5.2 Circular references 83

4. On return from the creation procedure of the root element,
the document creation procedure sets the attribute root to
point to the newly created element object. As soon as all
other fields of the document object are properly initialized,
both objects become fully usable and any attribute can be
accessed without a problem.

This scenario violates validity rule 5.1 in step 2: the current object
Current is used before all attributes are initialized. Indeed, it is
passed to the creation procedure of the root element before its
attribute root is set. Moreover, the attribute cannot be set because
the root element object is not created at this point yet. So, there
should be some way to deal with objects before all their fields are
completely initialized.

5.2.2 Solution

When an object of a particular type does not guarantee properties
of this type, there is a type mismatch. In other words, the type of
the object is different from what is declared. This is exactly the
case with an incompletely initialized object, in particular, with ob-
jects Document and Element from the previous section in steps 1–3.
Solutions proposed before (see [17, 62, 70]) introduce a notion of
incompletely initialized types to a void-safe language. However,
as noted in section 5.1.6 a lot of libraries can be made void-safe
without any need for additional type annotations. So, in order to
keep annotation burden limited it would be reasonable to find
validity rules that would prevent from unsafe use of objects that
are not completely set up.
The dangerous part is access to object’s fields that are not at-
tached to objects yet. As soon as a reference to an incompletely
initialized object is released (i. e., reattached to some variable),
the task to identify such an object becomes almost intractable
not only in theory, but also due to complexity of implementing
alias analysis correctly (see [75]). Use of explicit type annotations
serves as a way to simplify the analysis and to move the detection
of incompletely initialized objects from static analysis methods to
a type system.
In this work I propose to avoid performing alias analysis and
extending the type system in favor of preventing the use of in-
completely initialized objects in the first place. As we have seen

84 Th e O b j e c t I n i t i a l i z at i o n I s s u e

before, access to such objects is fine inside associated creation pro-
cedures: their attributes can be read and written according to the
corresponding validity rules. It is even fine to pass such objects
as arguments provided that access to them is still controlled, i. e.,
field reads should either be prohibited or be processed without
an assumption that they are properly set (definition 4.2).
The key source of obscurity in an object-oriented environment is
polymorphism when execution of a feature call depends on the
run-time type of the target object which is not statically known.
Because creation procedures are associated with specific classes,
no polymorphism is involved when they are checked. It is even
possible to perform checks of unqualified features they call be-
cause the classes checked for creation validity are known. The
checks will make sure that class fields are not accessed before
they are set and Current is completely initialized. The only issue
is with qualified calls:

• a call on an incompletely initialized object cannot assume
all attributes are properly set

• a qualified call does not allow seeing what operations on
an incompletely initialized object are performed

The solution is to prevent making qualified calls when some ob-
jects are not completely uninitialized:

Validity rule 5.2 (Creation procedure). A creation procedure is valid
if any of the following is false at the same execution point:

• Current is used before all attributes have been properly set and not
all attributes are properly set after that.

• The expression at the execution point is one of
– a qualified feature call;
– a creation expression that makes a qualified call.

The difference from validity rule 5.1 is that it allows for using
Current before all attributes are properly set. But this can be done
only when no qualified calls are performed in these conditions.
The timeline of creation procedure execution corresponding to va-
lidity rule 5.2 is depicted in figure 5.16. Comparing to figure 5.4,
there is now a gray area between the moment Current is used and
the moment all attributes are properly set. There are no restric-
tions on making qualified calls before of after these moments. But
qualified calls are prohibited between them, i. e., in the gray area.

5.2 Circular references 85

Time

Current is unused Current is fully initialized

Current is used All attributes are set

Creation procedure

Figure 5.16. Timeline during object initialization according to validity
rule 5.2.

To define the validity rule formally, in addition to the previously
defined transfer function that computes a set of unattached at-
tributes, several new are required:

• to see if Current is referenced before all attributes are set
• to determine if a routine body has any qualified calls
• to collect all creation procedures that can be called when

not all attributes are set and when Current is used
Unlike validity rule 5.1 this assumes that there is information
about other classes, in particular whether their creation proce-
dures make direct or indirect qualified feature calls. This infor-
mation could be explicitly or implicitly specified in creation pro-
cedure signatures. However, given that in most cases the type
used in a creation expression is known statically, this additional
annotation seems to be unnecessary, and the information can be
inferred from the code.

5.2.2.1 Safe use of Current

Two conditions have to be checked to make sure expressions use
Current safely:

• if a reference to Current is obtained before or after all at-
tributes of the current class are properly set

• if all attributes of the current class are properly set for a
given expression

If Current is never referenced, there are no problems because the
incompletely initialized object is never passed to program parts
that are unaware about its initialization status. If Current is ref-
erenced when all attributes are set, there is no problem as well:

86 Th e O b j e c t I n i t i a l i z at i o n I s s u e

B.25.4
p. 285

safe Current V = V = ∅
safe (e1 ;; e2) V = safe [e1, e2] V

safe (n :=L e) V = safe e V

safe (n :=A e) V = safe e V ∨ V >> n :=A e = ∅
safe (create {t} · n (es)) V = safe es V

safe (e · n (es)) V = safe (e · es) V

safe (if c then e1 else e2 end) V = safe [c, e1] V ∧ safe [c, e2] V

safe (until e loop b end) V = safe [e, b] V

safe (attached t e as n) V = safe e V

safe _ V = True

safe [] V = True

safe (e · es) V = safe e V ∧ safe es (V >> e) ∨ V >> (e · es) = ∅

Figure 5.17. A function that tells if uses of Current (if any) are safe.

once an object is completely initialized, it remains completely ini-
tialized and can be freely used. Finally, if Current is referenced
when not all attributes of the current class are set, but can escape
only at the current execution point (i. e., all previous expressions
do not make any qualified calls, thus excluding the possibility to
access this incompletely initialized object), it is possible that all
attributes are set now and therefore the object is completely ini-
tialized regardless of its status when the reference to it was used.
The formal function equations following these informal observa-
tions are specified in figure 5.17.
An expression Current is safe if and only if all attributes are prop-
erly set (i. e., there are no unattached attributes). If the expression
is an assignment to an attribute, it is possible that the attribute
would be the last one to initialize, so the result will be true if
either the source expression is safe or there are no unattached
attributes left after the assignment.
For a list of expressions, the first expression in the initial con-
text should be safe as well as the subsequent expressions in the
context of unattached attributes obtained for the first expression
should be true. Alternatively all attributes should be set for the

5.2 Circular references 87

whole list. Similar rules are used for a sequence of expressions, a
feature call and a creation expression.
For a conditional expression the checks should be done for both
branches, and the use of Current is safe if it is safe in both
branches. For a loop the check is done for its exit condition and
for the loop body like for a sequence of expressions to make sure
that if Current escapes from the loop, all attributes should be set
when it may reach code that expects only completely initialized
objects.
For expressions that have a single subexpression, this subexpres-
sion is checked for safety. And for the remaining expressions the
function returns True.
If after an expression a set of unattached attributes is empty, the
use of Current is safe because the corresponding object will be
completely initialized:

Lemma 5.2. B.25.4
p. 285

V >> e = ∅ =⇒ safe e V

Similarly, if an expression does not refer to Current, there is no
way to access an incompletely initialized object, and therefore
the expression is safe:

Lemma 5.3. B.25.4
p. 286

¬ has_current e =⇒ safe e V

B.25.3
p. 283

Here the function has_current tells if a given expression references
Current. (The formal definition can be found in appendix B.)
Finally, if an expression satisfies the validity predicate from sec-
tion 5.1.2, then it is safe:

Lemma 5.4. B.25.4
p. 286

V ` e
√
c
′=⇒ safe e V

All the proofs are carried out by induction.
In general, the reverse statement of lemma 5.4 is incorrect. Con-
sider the following code snippet:

if c then
b := Current
a := b

else
b := d

end

Assume that a is an attribute variable, b is a local variable and
before the conditional instruction the set of unattached attributes

88 Th e O b j e c t I n i t i a l i z at i o n I s s u e

is {a}. Then according to the definition of the validity predicate
from section 5.1.2 it will give False because Current is used before
all attributes are initialized. On the other hand, the assignment
instruction a := b finishes initialization of the current object and
therefore Current assigned to b can be safely used without any
specific restrictions.
Also, note that the function safe cannot be obtained as a combi-
nation of the function has_current and the transfer function >>.
Indeed, for the code snippet above, has_current will evaluate to
True because Current is referenced in the first branch, and the set
of unattached attributes will not be empty because the second
branch does not set attribute a. So, using their combination would
render the code as unsafe that differs from the result of the func-
tion safe. In other words, this function is more permissive than
the validity predicate used earlier. The restrictions come from
the other condition that ensures that uninitialized objects do not
reach features that do not expect them.
Function safe is monotone: if more attributes are set for a given
expressions, the chances to use Current unsafely are lower:

Lemma 5.5 (Monotonicity of function safe).B.25.4
p. 287

antimono (safe e)

Proof. By induction relying on monotonicity of transfer function
>> (lemma 5.1).

Even though formally the function is anti-monotone (the predi-
cates mono and antimono differ by the conditions when they are
true – for monotonically non-descreasing and for monotonically
non-increasing functions respectively), using a set of attached at-
tributes instead of unattached ones reverses the order, hence the
lemma name.

5.2.2.2 Detection of qualified feature calls

For telling if a feature makes a qualified feature call, it is sufficient
to analyze the corresponding abstract syntax tree as shown in
figure 5.18.
It evaluates to True if any construct has an immediate qualified
call in at least one of its subexpressions. Otherwise, it evaluates to
False. In the real implementation it also takes care about qualified
feature calls present in the features that are called from a current
creation procedure using an unqualified feature call. This is done

5.2 Circular references 89

B.25.4
p. 284

Q (e1 ;; e2) = Q e1 ∨ Q e2
Q (n :=L e) = Q e

Q (n :=A e) = Q e

Q (create {t} · n (es)) = Qs es

Q (e · n (es)) = True

Q (if c then e1 else e2 end) = Q c ∨ Q e1 ∨ Q e2
Q (until e loop b end) = Q e ∨ Q b

Q (attached t e as n) = Q e

Q _ = False

Qs [] = False

Qs (e · es) = Q e ∨ Qs es

Figure 5.18. A function to detect presence of an immediate qualified call.

recursively with registering features that have been processed to
avoid infinite recursion at compile time.
In a given system S the check whether a creation procedure f in
a class c makes an immediate qualified feature call can be done
with a function:

B.25.4
p. 285

has_immediate_qualified_in_routine S (c, f) =

case routine_body S c f of None⇒ False | bbc ⇒ Q b

Here the function routine_body gives an optional routine body for
a feature of name f in a class c of a system S. When the body is
found, the function Q is called.
Qualified feature calls can potentially lead to execution of arbi-
trary code, including accesses to incompletely initialized objects
if that were permitted and causing access on void target for at-
tributes that were not properly set. So, when Current is used, all
class attributes should be initialized, or qualified feature calls
should not be allowed. Such qualified calls can appear not only
in the current creation procedure, but also in creation procedures
called from the current one to create other objects. The creation
procedure calls could lead to execution of other creation proce-
dures recursively.

90 Th e O b j e c t I n i t i a l i z at i o n I s s u e

B.25.4
p. 283

S (e1 ;; e2) = S e1 ∪ S e2
S (n :=L e) = S e

S (n :=A e) = S e

S (create {c} · n (es)) = {(c, n)} ∪ Ss es

S (e · n (es)) = S e ∪ Ss es

S (if c then e1 else e2 end) = S c ∪ S e1 ∪ S e2
S (until e loop b end) = S e ∪ S b

S (attached t e as n) = S e

S _ = ∅
Ss [] = ∅
Ss (e · es) = S e ∪ Ss es

Figure 5.19. A function that collects all creation procedure calls.

A set of creation procedures that can be called by the current one
is computed by the function S (figure 5.19). It returns a set of
pairs class_type × feature_name for all creation expressions with
the corresponding class type and creation procedure name.
Using current system information it is possible to compute a set
of creation procedures that can be called from a creation proce-
dure of a given name from a given class:

B.25.4
p. 283

creation_reachable1 S (c, f) =

case routine_body S c f of None⇒ ∅ | bxc ⇒ S x

Because the set of classes is known at compile time and is
bounded, all recursively reachable creation procedures can be
computed as a least fixed point using the previous function:

B.25.4
p. 284

creation_reachable S (c, f) =

lfp (λx. {(c, f)} ∪ x ∪ (
⋃

y∈x creation_reachable1 S y))

Together with the function that tells whether a creation procedure
has immediate qualified calls the function has_qualified tells if a
creation procedure can (indirectly) lead to a qualified call:

B.25.4
p. 285

5.2 Circular references 91

has_qualified S c =

∃ x∈creation_reachable S c. has_immediate_qualified_in_routine S x

5.2.2.3 Validity predicate

With the function safe that tells whether Current is used only
when all attributes are properly set and the function has_qualified
that tells whether a creation procedure may (directly or indi-
rectly) make a qualified call, it is now possible to define a formal
predicate for validity rule 5.2. The rules are shown in figure 5.20.
They are quite similar to the ones of the stronger predicate de-
scribed earlier (figure 5.7).
The differences are:

• The rule for an expression Current is now an axiom, i. e.,
this expression is always valid.

• The rule for a creation expression has an additional premise
that usage of Current should be safe or, alternatively, the
called creation procedure should not make any qualified
calls.

• The rule for a qualified call has an additional premise that
Current is used safely.

Here is a detailed analysis of an example using the specified pred-
icate. The first column shows a set of unattached attributes before
the expression. The second column contains the source code. The
third column reports a value of the function safe for the given ex-
pression in the given context. And the last column indicates if the
validity predicate is True or False. It is assumed that the variable
a is an attribute and the variables b, c and d are locals and that
Current is not referenced in the code before this code snippet:

92 Th e O b j e c t I n i t i a l i z at i o n I s s u e

B.25.5
p. 287 S, V ` Value v

√
c

Value

S, V ` Current
√
c

Current

S, V ` Local n
√
c

Local

n /∈ V
S, V ` Attribute n

√
c

Attr

S, V ` e1
√
c ∧ S, V >> e1 ` e2

√
c

S, V ` e1 ;; e2
√
c

Seq

S, V ` e
√
c

S, V ` n :=L e
√
c

AssignLocal

S, V ` e
√
c

S, V ` n :=A e
√
c

AssignAttr

S, V ` es [
√
c] ∧ (safe es V ∨ ¬ has_qualified S (c, n))
S, V ` create {c} · n (es)

√
c

Create

S, V ` e
√
c ∧ S, V >> e ` es [

√
c] ∧ safe (e · es) V

S, V ` e · n (es)
√
c

Call

S, V ` c
√
c ∧ S, V >> c ` e1

√
c ∧ S, V >> c ` e2

√
c

S, V ` if c then e1 else e2 end
√
c

If

S, V ` e
√
c ∧ S, V >> e ` b

√
c

S, V ` until e loop b end
√
c

Loop

S, V ` e
√
c

S, V ` attached t e as n
√
c

Test

S, V ` Exception
√
c

Exception

S, V ` [] [
√
c]

ArgNil

S, V ` e
√
c ∧ S, V >> e ` es [

√
c]

S, V ` e · es [
√
c]

ArgCons

Figure 5.20. A predicate that tells if an expression is valid in a cre-
ation procedure of a system S in the context with a set of
unattached attributes V .

5.2 Circular references 93

Unset
attr.

Source code Value
of safe

Is valid?

{a} if c then True Yes

{a} b := Current False Yes: no qualified calls

{a} create a.make (b) True Yes if ¬ has_qualified ... make

No otherwise

∅ else True Yes: all attributes are now set

{a} b := d True Yes: Current is not referenced

{a} end True Yes: safe for both branches

{a} b.foo (d) True Yes: safe

Note that the last instruction can be reached at run-time in two
states: when all fields of the current object are completely set
and when they are not. However, in the second case there is no
reference to the incompletely initialized object, because there is
no reference to Current in the “else” branch, therefore the code
remains safe.
It turns out that validity rule 5.1 implies validity rule 5.2:

Lemma 5.6. B.25.5
p. 288

V ` e
√
c
′=⇒ S, V ` e

√
c

Proof. By induction on the definition of the predicate used in the
premise.

The reverse implication does not hold when V is non-empty and
e is Current. Therefore, validity rule 5.1 is less permissive than
validity rule 5.2.
Coming back to the motivating example, the code of the creation
procedure of class DOCUMENT would look like

... −− Initialize some attributes.
create root.make (Current)
... −− Initialize some other attributes if

required.

and the creation procedure of class ELEMENT would look like

94 Th e O b j e c t I n i t i a l i z at i o n I s s u e

make (p: like parent)
do

parent := p
... −− Initialize other attributes if required
... −− but do not make qualified calls.

end

As soon as the creation procedure of class ELEMENT does not
make any qualified calls, the code satisfies the validity predicate
and compiles successfully.
For formal proofs it is important to know if the predicate is mono-
tone. Then it is sufficient to analyze loops and unqualified feature
calls just once, because any subsequent iterations or recursive
feature calls would be analyzed with a larger set of properly-set
attributes. Therefore, there is no need to perform the analysis
iteratively and recursively. The property is indeed true for this
predicate:

Lemma 5.7 (Validity predicate monotonicity).B.25.5
p. 288 A ⊆ B ∧ S, B ` e

√
c =⇒ S, A ` e

√
c

Proof. By induction using monotonicity of transfer function >>

(lemma 5.1). In inductive cases for qualified calls and creation
procedures, monotonicity of function safe (lemma 5.5) is used as
well.

5.2.2.4 Remaining matters

Formal generics. Validity rule 5.2 implies that for every cre-
ation procedure call the corresponding creation procedure is ac-
cessible for analysis. The analysis has not to be performed ev-
ery time. But as soon as Current has been referenced before all
attributes have been set, it should be feasible. This is a valid
assumption when the target type of a creation expression is a
class type. When the type is a formal generic parameter of the
current class, only creation procedures of the formal generic con-
straint classes can be analyzed. In general this is insufficient. For
example, if the creation procedures of the constraint classes are
deferred or do not make any qualified calls, descendant classes
can redefine the procedures and introduce qualified calls in the
redeclarations.

5.2 Circular references 95

Possible solutions to the issue include
• Changing validity rule 5.2 by rephrasing the condition “a

creation expression that makes a qualified call” into “a creation
expression that makes a qualified call or when its creation type is
a formal generic”. This is the approach taken in the current
implementation.

• Introducing a convention that if the formal generic con-
straint creation procedure does not make a qualified call,
the corresponding actual generic class creation procedure
should not make a qualified call. This rule might be too re-
strictive because it could forbid generic instantiations not
related to formal generic creation.

Class invariants. A standard class invariant of class ANY (see
[16])

reflexive_equality: standard_is_equal (Current)

makes a call to the function standard_is_equal with the following
postcondition

symmetric: Result implies other.standard_is_equal
(Current)

If a rule of checking for class invariant is applied according to De-
sign by Contract™, validity rule 5.2 should take this into account
and require that class invariants of the corresponding classes are
also checked. This would inevitably lead to detection of the quali-
fied call in the postcondition symmetric. If the creation procedure
is called in unsafe conditions, such as creation with the target of
type ELEMENT during XML document creation, the class invari-
ant will be invalid due to the qualified call.
The issue can be solved by

• Noticing that the feature standard_is_equal does not make
any qualified calls itself, i. e., cannot lead to access on void
target. So, it can be ignored when detecting qualified fea-
ture calls.

• Realizing that this is an instance of a general issue with
class invariants described in [48] when a class invariant may
be violated if there are mutual references between two ob-
jects and the class invariant is checked when at least one of
the objects is in an unstable state. One possible solution is

96 Th e O b j e c t I n i t i a l i z at i o n I s s u e

to delay evaluation of class invariants until all attributes of
all objects are properly set. On the language specification
side it means that class invariants should not be subject to
static checks when first two conditions of validity rule 5.2
are True.

Once features. Validity rule 5.2 guarantees no qualified calls
can ever receive an incompletely initialized object either as a tar-
get of a call or as an argument. This ensures incompletely initial-
ized objects cannot be accessed as a part of regular program exe-
cution, but only during object creation. Are there any other ways
for incompletely initialized objects to become accessible outside
of object initialization process? Yes, this can happen if they can
be shared via some non-object variables. In Java and C# these are
static fields, in Eiffel – once features, or, to be more precise, once
functions.
For example, if the following once function is called when not all
attributes of a class FOO are set, it still can be saved for the next
time the function is called:

f (arg: FOO): FOO
once

Result := arg
end

If, for some reason, the creation procedure that called f passing
Current, when not all attributes have been set, fails before it sets
all attributes, the reference to the object is still there: any subse-
quent call to the function f will yield this same object. Because
not all callers of the feature f expect to get an incompletely initial-
ized object, void safety can be compromised. Of course, real-life
scenarios could be more complicated. E. g., a passed argument
could be used to create another object rather than to assign the
argument to the result. But the idea remains the same: as soon as
an incompletely initialized object is passed to a once function, its
result may depend on it and can make it reachable.
The following restriction on once functions prevents this from
happening:

Validity rule 5.3 (Once function in a creation procedure). An un-
qualified call to a once function is valid in a creation procedure if the
creation procedure remains valid according to validity rule 5.2 after

5.2 Circular references 97

adding a fictitious qualified call to an identity function on the once
function result.

(Instead of introducing the new validity rule, validity rule 5.2 can
be amended by replacing all occurrences of a qualified (feature) call
with: a qualified (feature) call or an unqualified call to a once function.)
This validity rule mimics the situation when a qualified feature
call on a result of a once function occurs in some code outside
of a particular creation procedure. If the resulting object is not
completely initialized, such a call could compromise void safety
guarantees.
Like with qualified feature calls, calls to once functions could
happen indirectly, inside other creation procedure calls. There-
fore, the technique to detect such situations is similar to the one
used to detect qualified calls, i. e., relies on computation of a tran-
sitive closure.
A consequence of the rule is that once functions can return only
completely initialized objects.

5.2.3 Implementation

Evaluation of the functions safe and Q is similar to evaluation
of the functions described earlier for a simpler solution in sec-
tion 5.1.5 and can be done in one pass over an abstract syntax tree.
What becomes problematic is a function has_qualified that tells if a
particular creation procedure of a particular class can directly or
indirectly make a qualified call. It might look like a potential rea-
son to perform whole system analysis and to break the require-
ment of modularity. Fortunately, the proposed scheme does not
trigger massive recompilation of everything when small changes
are applied to a large system. Let’s see how this is achieved.
Every class is compiled separately as before. If, when checking a
creation procedure, a qualified call appears in the AST at the po-
sition where the function safe gives False, the compiler triggers an
error. Otherwise, the qualified feature call is allowed. Similarly,
when safe is True, the corresponding creation expression is safe.
What remains to check is that, when the function safe gives False
and there is a creation expression, the function has_qualified for
the corresponding creation procedure gives False. To this end ev-
ery creation expression create c.n (es) is recorded for the current

98 Th e O b j e c t I n i t i a l i z at i o n I s s u e

creation procedure as a pair (c, n), where c and n are the creation
expression class name and the creation procedure name respec-
tively, in either of the following tables:

• safe – when the creation expression appears at the position
where the function safe gives True;

• unsafe – otherwise.
Also, information whether the current creation procedure makes
any qualified calls is recorded together with other meta-informa-
tion of the class for future use. During recompilation, if there
are any changes to the class, this information together with the
entries in the tables safe and unsafe is recomputed.
As soon as the current class and all classes it depends on are
analyzed, the compiler checks if there are any entries in the table
unsafe. If there are none, the class is void-safe.
If the table unsafe is not empty, all its entries are checked one-
by-one to see if has_qualified for each entry is False. Instead of
computing the transitive closure directly, the tables safe and un-
safe are used to figure out what creation procedures are called
directly or by some other reachable creation procedure. If at least
one of them makes a qualified call, an error is reported explain-
ing what attributes are not set in the initial creation procedure
from the table unsafe. Otherwise, the initial creation procedure
passes the check.
Whether some intermediate checks use entries from a particu-
lar table does not matter, but from the programmer’s perspective
accesses to the table unsafe correspond to nested creations of mu-
tually dependent objects, allowing for making more complicated
structures than just two objects referencing each other.

5.2.4 Empirical results

As of time of writing only two libraries take advantage of the
more relaxed rule introduced in this section: Gobo and an unre-
leased void-safe version of a library Docking. From the perspec-
tive of the validity rule definition the following metrics are of
interest:

• How many creation procedures have qualified calls?
• How often is Current passed before all attributes of a class

are properly set?

5.2 Circular references 99

Table 5.1. Creation procedures classified by use of qualified calls and
incompletely initialized objects.

Library Creation
Qualified Uninitialized

abs. rel. abs. rel.

Docking 2062 1365 66.2% 16 0.8%

Gobo 1258 726 57.7% 61 4.8%

Others 3194 1894 59.3% 0 0.0%

Total (cumulative) 4045 2442 60.4% 77 1.9%
Legend:
Creation – total number of explicit creation procedures (including sup-

plier libraries).
Qualified – total number and percentage of creation procedures that

have qualified calls.
Uninitialized – total number and percentage of creation procedures that

pass Current before all attributes are initialized.

• What is a relation between classes that pass Current before
all attributes are set?

On average the total number of creation procedures that make
qualified calls is about 60% (see table 5.1). It means that the re-
maining 40% do not use any qualified calls and set attributes
using supplied arguments or by creating new objects. In theory
these 40% of creation procedures could be unconditionally (and
even automatically) marked with annotations as safe for use with
incompletely initialized objects.
In contrast to this, just a tiny fraction of all creation procedures –
less than 2% – do pass uninitialized objects. In other words, if the
specific annotations were used, at most 5% (remember that more
than 40% of creation procedures can be marked as not relying on
whether the arguments are completely initialized or not) of the
annotations would be useful, the rest would just clutter the code.
Closer look at the cases when Current is passed before all at-
tributes are set reveals the following major families of uses:
Internal cursors. 59 of 61 cases in Gobo library. Internal cursors

are associated with containers to perform traversal abstract-
ing away particular container implementation and are avail-
able through the whole container life cycle without the
need to create new objects for traversal. In practice, they

100 Th e O b j e c t I n i t i a l i z at i o n I s s u e

cause programming errors if the same container needs to
be traversed multiple times and one of the traversals is per-
formed while some other traversal is still active. To avoid
unexpected behavior the cursor state has to be recorded
before doing any other traversal. The main benefit of us-
ing internal cursors is that unlike external cursors they can
work when the underlying container changes, e. g., by in-
serting or removing elements ([5]). In Gobo external cur-
sors are aware about changes in associated containers, so
they are more robust and can replace internal cursors al-
together. Also, the use of internal cursors implemented in
separate classes is a design decision. The same functionality
is provided in the library EiffelBase without any additional
classes, directly in the containers.

Domain structure. 2 of 61 cases in Gobo. These cases correspond
to the example with XML document and root element
classes described in this section. The structure is suggested
by the XML standard specifying a logical composition of an
XML document. In theory the root element can be a descen-
dant of a general XML element class with additional prop-
erties specific for a document, i. e., removing separation of
concern can remove the need for two different classes.

Helper classes. All cases in Docking library. The library deals
with many aspects of user interface, allows for storing and
retrieving layout, animates placeholders, etc. All this func-
tionality could be moved to just one class, but for maintain-
ability it was distributed among different classes. Because
interaction between classes is bi-directional, they need to re-
fer to each other circularly. The classes are tightly coupled
and could be replaced by larger monolithic classes if the
principle of separation of concerns was not an issue.

To summarize, the need to pass Current before all attributes are
properly set arises only for classes that are closely related. It
could even be avoided altogether if the code is allowed to be
refactored discarding the principle of separation of concern. The
rate of cases when qualified features are used in creation proce-
dures and when they are not used is pretty high, therefore rely-
ing solely on additional annotations describing when objects are
passed incompletely initialized would be problematic because of
high annotation burden.

5.2 Circular references 101

Table 5.2. Compilation time increase due to additional checks for object
initialization.

Library
Compilation time Relative

slowdownw/o checks with checks

Docking 42.89 43.52 1.5%

Gobo 19.14 19.35 1.1%

Others 53.32 52.85 -0.9%

Total (cumulative) 74.06 74.54 0.7%
Legend:
Compilation time – time to compile all classes without generating code

in seconds
Relative slowdown – relative increase of compilation time when compar-

ing compilation with and without checks.

The additional check for the validity rule for creation procedures
is pretty light. In order to measure it, the libraries were compiled
with two void safety levels (section 3.3.1): transitional and com-
plete. The main difference between them is that in transitional
mode validity rule 5.2 is not checked and in complete mode it is
checked. The compilation involved only parsing and type check-
ing, including void safety checks, but not code generation. It was
done on a machine with 64-bit Windows 10 Pro, Intel® Core™ i7-
3720QM, 16GB of RAM and SSD hard drive using EiffelStudio
16.11 rev.99675. The first run was ignored, from the subsequent
10 runs, 2 with the longest time were discarded to get rid of the
runs when the operating system started its own tasks that caused
general slowdown. There was also a 20-second interval between
runs for cooling down the system. Under these conditions rela-
tive corrected sample standard deviation was below 2.4%. The
relative compilation time increase is listed in table 5.2. Its max-
imum value is 1.5% for Docking library. The compilation time
for libraries that do not trigger additional checks (Other) is even
lower in this case. Most probably this is caused by different cache
state or other accidental factors and does not reflect any real dif-
ference. For all libraries the slowdown is just 0.7% that seems to
be more than acceptable.

102 Th e O b j e c t I n i t i a l i z at i o n I s s u e

5.3 Object disposal

Many object-oriented languages provide a hook for developers
to catch an event when object’s memory is about to be reclaimed.
This happens when there are no more references to an object or
when a system terminates. In Java [21, 22] and C# [26] this is done
via methods finalize and Finalize of the class Object. In Eiffel
the same functionality is available via a procedure dispose of the
class DISPOSABLE.
If a class redefines the feature dispose, a run-time memory man-
ager registers the corresponding object for custom disposal. This
is done before an associated creation procedure is executed. If
the creation procedure terminates with an exception, or if the ob-
ject creation is initiated by another creation procedure that passes
Current to the current one, does not complete initialization and
terminates exceptionally, the object can be in any of the following
states:

• All fields of the current object and of all objects reachable
from it are properly set.

• All fields of the current object are properly set, but some
fields of objects reachable from the current one are not prop-
erly set.

• Some fields of the current object are not properly set.
Unfortunately, there is no way to determine, which stage the
current object is in, when dispose is called, unless some special
compile-time and run-time machinery is used to track the ob-
ject’s state. Nevertheless, any unsafe operations should be pre-
vented. And the unsafe operations include all accesses to refer-
ence fields regardless of their attachment status, because the state
of objects they may refer to is also unknown. This leads to the fol-
lowing rule for the feature dispose (fields in the discussion above
are run-time memory locations, but the rule is specified in terms
of compile-time abstractions – attributes in this case):

Validity rule 5.4. A redeclaration of a feature dispose of a class
DISPOSABLE is valid if this redeclaration or any feature called from
it by an unqualified call does not access any attribute except, possibly,
for attributes of expanded types that (recursively) have no attributes of
reference types.

5.4 Related work 103

I believe this is the first time the issue of void safety in class fi-
nalizers is considered. Formalizations used to prove soundness
of void-safe type systems usually abstract away garbage collector
part of automatic memory management and take into account
only object creation. But for the language specification it is im-
portant to cover all parts of object’s life cycle.

5.4 Related work

Null pointer dereferencing is long-standing issue in object-ori-
ented programs, but it attracted attention only in early 2000’s
with increasing adoption of popular object-oriented languages
Java and C#. A bit earlier researchers started to look at type safety
properties of languages, including formalization of their type sys-
tems and formal safety proofs. Therefore, several proposals were
made to extend existing type systems with a new notion of types
to identify objects that are not completely initialized.

Raw types. Manuel Fähndrich and K. Rustan M. Leino in [17]
denote attached types with T− and detachable types with T+

and propose to add raw types Traw− to be used for partially
initialized objects. For an object of that type there is no guarantee
that a field of an attached type will always have a non-null value.
In other words, if class C has an attribute of a type T and some
entity has a type Craw− then a qualified call to this attribute
has a type T+ regardless of original attachment status of that
attribute. The other rule is that an assignment to an entity of a
raw type accepts only a source expression of a non-raw non-null
type. This restriction is introduced to make sure that if an object
becomes fully initialized, it cannot be uninitialized. It takes care
about potential aliasing. If during object initialization the same
reference is attached to two variables, one of type T− and another
of type Traw−, the rule makes sure the variable of type T− cannot
always have non-null values in the associated fields of attached
types. The other rule is that by the end of every constructor, every
non-null field should be assigned.
Then they further refine the definition of the raw types by intro-
ducing class frames. Every frame corresponds to a superclass. A
constructor is responsible for initialization of fields declared in
this class only because all the fields from the parent classes are

104 Th e O b j e c t I n i t i a l i z at i o n I s s u e

initialized by super-class constructors that are called automati-
cally on object creation according to the language rules of C# and
Java ([21, 26]). So, inside a constructor of a class C, the special
entity this has type Craw−, and when the constructor finishes,
the type becomes C−. In a constructor of a super-class A the type
of this is Craw(A)−. The conformance rules in this type system
for a subclass S of a class R (i. e., S <: R) are:

• S+ <: R+

• S− <: R−

• Traw(S)− <: Traw(R)−

• Traw(S)− <: T−

• T− <: Traw−

• T− <: T+

The rules for super-class constructors seem to be tightly coupled
with the design of Java and C# supporting only single class in-
heritance and may not be directly applicable to the languages
with multiple class inheritance like Eiffel. At least the super-class
types Traw(R)− would be useless.
An implementation of the proposal demonstrated that further
extensions are required to deal with real code, in particular
to access fields that have been initialized ([Raw(except="field
names")]) and to indicate that a method initializes certain fields
([Inits("field names")]). Compared to the solution proposed
in this chapter, the raw type approach shows the following differ-
ences:

• It requires 2 additional annotations ([Raw] and [Init]), pos-
sibly extended with additional data to indicate when fields
are set and what methods set them.

• Conformance rules for raw types do not allow for creation
of circular references.

The authors also identified several language-specific issues that
prevent from efficient support of null-safe object initialization.
One of these problems is value types that do not have default
user-defined constructors. As a result, it is impossible to declare
a value type with attached fields. They propose to add a new
notion of a value type with an invariant that allows to define a
default constructor. Because Eiffel requires expanded classes to
define a default creation procedure default_create that is called to

5.4 Related work 105

class A create make_a feature
name: attached STRING
make_a (s: STRING)

do
name := s
m (55)

end
m (x: INTEGER)

do
end

end

class B inherit A redefine m end
create make_b feature

path: attached STRING
make_b (p: STRING; s:

STRING)
do

path := p
make_a (s)

end
m (x: INTEGER)

do
io.put_string (path)

end
end

Figure 5.21. A corrected example from [17].

initialize them, there is no such an issue with initialization of
attributes in expanded classes.
The example used to demonstrate usefulness of raw types seems
to be specific to the languages with strict order of constructor
calls. Simple change in the order of assignment in the constructor
solves the issue without requiring any annotations. The corrected
version of the example in Eiffel is shown in figure 5.21.

Masked types. Xin Qi and Andrew C. Myers in [62] address a
more general problem, not just object initialization: the complete
object life cycle. They propose to instrument the type system with
so called “masks” representing sets of fields that are not currently
initialized. The masks are general enough to express a prop-
erty that a field is initialized as soon as some other field of an-
other object is initialized. This allows to state naturally when an
object becomes completely initialized by specifying conditional
masks that indicate what fields complete object initialization.
For example, the notation Node\parent!\Node.sub[l.parent] ->

*[this.parent] for an argument l tells that it has a type Node

and on entry requires that its field parent is not set and at the
same time fields declared in subclasses of Node are not set unless
l.parent is initialized. On exit the actual argument conforms to

106 Th e O b j e c t I n i t i a l i z at i o n I s s u e

the type Node*[this.parent] that indicates that the node object
will be completely initialized as soon as its field parent is set.
The notation is very powerful and goes far beyond null safety.
Even though the notation mentioned above is too complicated
for daily use, authors explain that it is not sufficient for real pro-
grams. One of the issues is information hiding, when mask con-
ditions cannot be expressed because concrete fields may differ
from one concrete implementation of a general interface to an-
other. For this reason they propose to use abstract masks that
are updated in descendant classes as required. The idea seems
to be similar to the data groups approach proposed by Rustan
Leino in [39]. To allow for modular processing of abstract masks,
subclass masks and mask constraints are introduced. In order to
express initialization state abstractly, union and difference opera-
tions are defined on masks. The code in this dialect of Java called
J\Mask is full of annotations equipped with non-trivial rules to
ensure soundness. While this approach might be useful for rigor-
ous checks of object initialization, their use seems to be problem-
atic.
However, masked types capture one of the ideas employed in
this section: flow-sensitive type system. Like with masked types,
validity rule 5.2 depends on what class attributes are properly
set and whether a reference to Current object escapes before all
attributes have been set. In both cases flow-sensitive type analy-
sis is performed without special annotations on the source code
side. However, with masked types the results are finally checked
against provided specifications, while in the approach proposed
in my work the results are used to check whether all conditions
of the validity rule are satisfied.
The work discusses two examples. Eiffel version of the first one
is shown in figure 5.22. It demonstrates an initialization bug. The
issue is easily detected with validity rule 5.2 and is reported for
the line marked with (*) with the explanation that the attribute
color is not properly set.
The second example applies masked annotations to a binary tree.
The original version does not set the attribute parent in construc-
tors of classes Leaf and Binary. For leafs, it is set in the constructor
of the class Binary. For binary nodes it is set outside the construc-
tors, demonstrating flexibility of the mechanism. With validity

5.4 Related work 107

class POINT
create make feature

x, y: INTEGER
make (x0, y0:

INTEGER)
do

x := x0
y := y0
display

end
display

do
io.put_string

(x.out + " " +
y.out)

end
end

class COLORED_POINT inherit
POINT redefine display end

create make_colored feature
color: COLOR
make_colored (x0, y0: INTEGER; c:

COLOR)
do

make (x0, y0)
color := c

end
display

do
io.put_string

(x.out + " " + y.out + " " +
color.name) −− (*)

end
end

Figure 5.22. Eiffel version of buggy code from [62].

rule 5.2 all attributes have to be set in a creation procedure. The
adapted version of the example is shown in figure 5.23.
Depending on whether it is allowed to have non-parented leaf
nodes or not, the implementation provides two creation proce-
dures in class BINARY. Creation procedure make_root_1 supports
the convention that leaf nodes should always be parented. This
closely resembles behavior of the original code. Creation proce-
dure make_root_2 allows for creating leaf nodes before creating
a binary root node. This makes the client code look similar to
the original one at an expense of moving an assignment to the
attribute parent inside the creation procedure with a different or-
der: this attribute is now set before parent attributes of leaf nodes
are updated.

Free and committed types. Alexander J. Summers and Peter
Müller address 4 design goals of safe object initialization in [70]:

• Modularity – each class can be checked separately from its
subclasses and clients.

108 Th e O b j e c t I n i t i a l i z at i o n I s s u e

deferred class NODE feature
parent: NODE assign

set_parent
set_parent (p: NODE)

do
parent := p

end
end

class LEAF inherit NODE create
make, set_parent

feature
make

do
parent := Current

end
end

class TEST create make
feature

make
local

root: BINARY
do

create root.make_root_1
create root.make_root_2

(create
{LEAF}.make,

create
{LEAF}.make)

end
end

class BINARY inherit NODE
create

make_root_1, make_root_2
feature

left, right: NODE
make_root_1

do
create {LEAF}

left.set_parent
(Current)

create {LEAF}
right.set_parent

(Current)
parent := Current

end
make_root_2 (l, r: NODE)

do
left := l
right := r
parent := Current
l.parent := Current
r.parent := Current

end
end

Figure 5.23. An adapted example of a binary tree from [62].

5.4 Related work 109

• Soundness – objects considered fully initialized do exhibit
this property at run-time.

• Expressiveness – creation of cyclic data structures is sup-
ported.

• Simplicity – the type system is simple and has little annota-
tion overhead.

Unlike the solution with masked types they propose to distin-
guish just two object states: under initialization and completely
initialized. So, the object life cycle is divided into 2 stages. A
newly allocated object has a so called “free” type meaning that
not all object fields might be set, or, if they are set, might ref-
erence only completely initialized objects. When an object is
deeply initialized, i. e., all its fields are set to deeply initialized
objects, it is said to have a “committed” type. When it is un-
known whether the object has free or committed type, it is con-
sidered “unclassified”. By default, all variables are committed.
Variables of free and unclassified types are marked with [Free]

and [Unclassified] annotations respectively. The annotations
do not apply to class attributes. Instead, the actual field type in
a qualified call is computed using the type of the qualifier. If the
qualifier has a committed type, the type of the whole expression
matches the type of the field. Otherwise, it is treated as an unclas-
sified detachable type. It is permitted to assign any expression to
an attribute of a free type and to assign an expression of a com-
mitted type to an attribute of any type. In all cases the attachment
status of the target should be respected.
The commitment point that logically changes the type of an ob-
ject from free to committed is defined as the end of a constructor
that takes only committed arguments. The soundness of this def-
inition is based on the rule that all non-null class fields should be
initialized at the end of the corresponding constructor. Because
all fields of all created objects are set and the only reachable ob-
jects are the new ones and those accessible through the passed
arguments, all newly created objects are deeply initialized. Ac-
cording to the definition of a commitment point, the special en-
tity this has a free type until the end of the constructor where it
is used. The possible aliasing between free and committed types
is prevented by not having a subtyping relation between free and
committed types. This differs from the convention for raw types
described in [17].

110 Th e O b j e c t I n i t i a l i z at i o n I s s u e

The convention that this has a free type until the end of a con-
structor may require to annotate all methods that are called from
the constructor using unqualified calls or are passed this or any
of the class fields with [Free] and [Unclassified] annotations.
The empirical data collected for libraries converted to complete
void safety as well as results reported in [17] show that a good
number of features are called from inside a constructor. (Side
note: in Eiffel a program execution starts by creating an object
of a root class and executing a specified root creation procedure.
Therefore, the solution with free and committed types would ren-
der the root object as free all the time. All the objects that have
a reference to the root object would be “infected” as well and
will be considered as having an unclassified type. So, all features
of the root class would have to be marked as [Unclassified],
the same applies to all features where the root object is passed.
This goes against the goal of the proposal to avoid annotation
overhead as much as possible.)
Validity rule 5.2 is very close in spirit to the idea of free and com-
mitted types. However, it relies on a flow-sensitive analysis for
class attributes and does not allow for propagating the free type
status beyond the point when all attributes are set. This allows for
creating cyclic data structures if needed. Lack of additional anno-
tations does not permit sophisticated code when features can be
called on incompletely initialized objects. Therefore, it might be
the best to combine both approaches: use the flow sensitive type
analysis to detect when Current becomes completely initialized
and allow passing it as a free type before this moment. Fortu-
nately, so far it was possible to refactor all code to avoid the need
for handling free types in real programs. Moreover, the experi-
mental results reported in [70] confirm that even with the pro-
posed annotations some code refactoring is required and some
feature calls have to be moves outside of constructors.
A slight variation of committed and free types is imple-
mented in the Checker Framework [72] using annotations
@UnknownInitialization and @UnderInitialization that also sup-
port type frames like @UnderInitialization (A.class) to tell that
all fields specified in a (super-)class A have been initialized. In
particular, the annotations are required because the tool performs
only intraprocedural analysis and, unlike my solution proposed
for Eiffel, fails to detect whether all attributes of a class are set
in its super-class constructor. For the same reason there is no

5.4 Related work 111

way to use this in a class constructor as @Initialized. Authors of
the Checker Framework mention that using this as @Initialized

would be sound at least for final classes, but at the time of writ-
ing it is not implemented. Another deviation from the original
work on free and committed types comes in adding an annota-
tion @NotOnlyInitialized that should be used when a target field
is assigned a value that may reference a non-completely initial-
ized object. This makes it possible to distinguish between com-
pletely initialized and non-completely initialized fields at the cost
of more annotation overhead.

class C create make feature
f, g: C
set_f (q: C)

do
f := q

end
make (p: C)

do
set_f (p)
f.set_f (Current) −− (*)
g := p.f.g.f

end
end

Figure 5.24. An Eiffel version of a
buggy example from
[70].

The translated version of the
buggy example from [70] of in-
correct access to a field, per-
formed before current object is
completely initialized, is shown
in figure 5.24. As expected, it
is invalid according to validity
rule 5.2. The compiler reports
an error at line (*) telling that
an attribute g is not set yet.
Alexander J. Summers and Pe-
ter Müller also discuss a dou-
bly-linked list example that re-
quires an annotation for the
constructor in class Node used
to create a sentinel. The same
example in the Checker Frame-
work additionally requires an-
notations @NotOnlyInitialized for all fields except data. Fig-
ure 5.25 shows the same code rewritten in Eiffel that passes valid-
ity rule 5.2 and demonstrates the ability to instantiate structures
with cyclic references without any annotations.
In addition, they consider the binary tree example from [62]. The
proposed version of the example is adjusted to initialize all at-
tributes inside creation procedures like in one of the already dis-
cussed forms in figure 5.23. It corresponds to the variant that uses
creation procedure make_root_2.
According to the authors the idea with free and committed types
does not extend nicely to array types in constructors. The corre-
sponding array objects could not be filled in with objects depend-

112 Th e O b j e c t I n i t i a l i z at i o n I s s u e

class NODE
create make, make_with_data

feature
parent: LIST
prev, next: NODE
data: detachable ANY
make (list: LIST)

do
parent := list
prev := Current
next := Current

end
make_with_data (p, n:

NODE;
v: detachable ANY)
do

parent := p.parent
prev := p
next := n
data := v

end
insert_after (v: detachable

ANY)
local

n: NODE
do

create
n.make_with_data

(Current, next, v)
next.set_prev (n)
next := n

end
set_prev (n: NODE)

do
prev := n

end
end

class LIST create make feature
sentinel: NODE
make

do
create sentinel.make

(Current)
end

insert (v: detachable ANY)
do

sentinel.insert_after (v)
end

end

Figure 5.25. A doubly-linked list example from [70] without any
initialization-specific type annotations.

5.4 Related work 113

ing on this because its type inside a constructor is [Free] and
only committed objects can be stored in an array. This breaks the
whole scheme described in section 5.1.3.2 and used in the GUI
library EiffelVision to create and setup widgets because widget
agents are registered as event handlers in the last part of initial-
ization process. The underlying storage for efficiency reasons is
usually based on an array-like structure, and agents depend on
the widget objects or the current object being constructed. The
similar issue arises with the example of a mediator pattern de-
scribed in section 5.1.4: use of free and committed types requires
moving registration of participants outside of constructors and
may lead to programming mistakes. A possible remedy of the
limitation would be to take the proposed analysis of object ini-
tialization state into account and to treat the object as committed
before the end of a constructor when possible.
It is worth to note that all the goals enunciated in the work about
free and committed types seem to be achieved by validity rule 5.2:
there is no need to check descendants and clients of a class to
ensure its safety, the mechanism is sound, cyclic data structures
can be created and no annotations are required. Of course, the
expressiveness does not come for free: the code may need to fol-
low certain patterns and require some refactoring to satisfy the
validity rule. Fortunately, such cases are rare.

Other approaches. A different mechanism relying on so called
“targeted expressions” was explored by Bertrand Meyer in [49].
Any additional type annotations are avoided by introducing a no-
tion of creation-involved features. A feature is creation-involved
if it is called from a creation procedure or from another creation-
involved feature. This includes not only features declared in the
classes that correspond to targets of feature calls, but also their
redeclarations to take polymorphism into account. The analy-
sis then becomes somewhat similar to the abstract interpreta-
tion approach used in [67] and should be applied to the system
as a whole, thus sacrificing modularity. In other words, adding
new classes to the system may break safety guarantees of pre-
viously considered safe classes, making it difficult to develop
self-contained libraries. The advantage of using “targeted expres-
sions” is in selective detection of variables that are not completely
initialized. Validity rule 5.2 is too strong in this respect: it forbids
any qualified calls when an incompletely initialized reference es-

114 Th e O b j e c t I n i t i a l i z at i o n I s s u e

capes during object creation. Targeted expressions, on the other
hand, track if incompletely initialized references may be actually
used as targets of qualified feature calls. The validity rule speci-
fies that targeted expressions, i. e., expressions that could be used
as targets of qualified calls, are never aliased with incompletely
initialized Current. Compared to raw types and free-committed
types, now the information sticks to all variables, not only to
locals and arguments. Moreover, now every attribute can be con-
sidered targeted or not, not just the whole object. So, it is like
with masked types, but with inferring annotations from the code.
This should allow for more precise analysis. Unfortunately, the re-
quirement to perform whole system analysis makes the approach
difficult to apply in practice.

Rules for dispose. None of the publications discuss object
reclamation that triggers a call to a finalizer and may cause all
the issues usually coming out at object initialization time. Formal
models do not usually cover garbage collection and therefore can-
not make use of the finalizers. It is surprising that even informal
discussions of various approaches in papers do not mention this
problem.

5.5 Conclusion

Validity rule 5.2 has the following benefits:
No annotations. Like validity rule 5.1 it does not require any

other type annotations in addition to attachment marks
attached and detachable.

Flexibility. It enables creation of objects with fields of attached
types mutually referencing each other.

Simplicity. The analysis requires only tracking for attributes that
are not properly set, for use of Current and for checking
whether certain conditions are satisfied when (direct or in-
direct) qualified feature calls are performed.

Coverage. It was possible to refactor all libraries to meed the re-
quirements of the rule without changing design decisions,
in particular without breaking separation of concerns be-
tween classes in complex cases. Also, all examples from
[17, 62, 70] were rewritten in Eiffel and passed the checks

5.5 Conclusion 115

against the validity rule with the expected compilation re-
sults, including both validity error reports and success-
ful compilations. Moreover, among reviewed initialization
rules, only the proposed one and masked types [62] (with
a complicated annotation system) can be used to express
the design pattern from section 5.1.4 without the need to
introduce helper features.

Modularity. The rule depends on properties of creation proce-
dures from other classes. Because these creation procedures
are known at compile time, the checks do not depend on
classes that are not directly reachable from the one being
checked. As a result it is possible to check a library as a
standalone entity without the need to recheck it after inclu-
sion in some other project.

Performance. Experiments demonstrate very moderate increase
of total compilation time, below 1% on sample libraries
with more than 2 millions lines of code.

Incrementality. Fast recompilation can be supported if informa-
tion about reachable creation procedures and whether they
perform qualified calls is recorded for every class. Provided
the number of cases when Current is passed before all at-
tributes are set is low, the checks for violations of the rule
are very quick.

The main drawbacks of the rule are:
Certain coding pattern. Like with validity rule 5.1 the code still

has to follow certain coding guidelines in terms of initial-
ization order. In particular, the rule may forbid qualified
calls even on completely initialized objects when the cur-
rent object is not completely initialized. This may require
to refactor code by moving these calls before or after initial-
ization phase depending on whether the results of the calls
are used for initialization itself.

Disallowing legitimate qualified calls. It is unnecessary for a
qualified call to leak a reference to an uninitialized object.
Lack of additional annotations does not allow for distin-
guishing between legitimate and non-legitimate qualified
calls. In order to preserve soundness all qualified calls are
considered as potentially risky.

Special convention for formal generics. As described in sec-
tion 5.2.2.4 if a target type of a creation expression is a

116 Th e O b j e c t I n i t i a l i z at i o n I s s u e

formal generic parameter, special convention should be
used to indicate whether a creation procedure of an actual
generic parameter satisfies the validity rule requirements.
It is unclear whether the observation that passing incom-
pletely initialized Current indicates tight coupling between
classes implies that use of formal generics in such situations
is improbable. At least this was not an issue so far.

None of the previous work considered object disposal. This is
now covered:
Validity rule for finalizers. Validity rule 5.4 specifies the condi-

tions that ensure void safety at object’s disposal time.

Further improvements. The issue with disallowing legitimate
qualified calls in validity rule 5.2 can be alleviated by noticing
that the issue with an incompletely initialized object realizes only
when the reference is passed somewhere else where it is not con-
trolled anymore. The current rule assumes that access to Current
implies leaking a reference to it. Similarly, if Current is passed
to some creation procedure before all attributes are properly set,
it is assumed that the newly created object cannot be used in a
qualified call because it can leak a previously passed reference
to current object. The rule makes sure no aliases to the current
object exist. However, it does not take into account the fact that
not every access to Current leads to creation of an alias. More
specifically, not every access to Current is involved in object reat-
tachment. In particular, reference equality does not create new
aliases. So, the rule can be relaxed by making sure Current or a
qualified call are not used in object reattachment and are not part
of a nested qualified call.
More qualified calls can be allowed by introducing a notion of
immediately-initialized types that are similar to self-initializing
types in terms of guarantees of their initialization. These are ex-
panded or attached frozen types that may rely on explicit creation
procedure calls to initialize associated class attributes, but none
of these attributes are of a reference type or have (recursively)
attributes of a reference type. For example, all basic types like
INTEGER and BOOLEAN fall in this category. Because objects
of immediately-initialized types do not reference any other ob-
jects, there is also no way for them to reference an incompletely
initialized object. As a result, a qualified call that involves only

5.5 Conclusion 117

immediately-initialized types for its target and arguments cannot
access an incompletely initialized object and is safe.

6
C e r t i f i e d At ta c h m e n t

Pat t e r n s

6.1 Overview

Existing proposals ([6, 51, 70]) that address void safety issues
in languages supporting null references use a type system ex-
tended with a notion of detachable and attached types for expres-
sions that may and may not produce a null value. This extended
type system is then uniformly applied to the language (e. g., [12])
meaning that types of variables are specified explicitly. The type
information is then used to check reattachment validity rules. For
example, an assignment x := y would be valid only when the type
of y conforms to the type of x. If the type of x is attached, the type
of y should be attached as well.
This rule makes perfect sense for class attributes that can be ac-
cessed in different features. Type information is essential in that
case because objects can be aliased at run-time and it would be
impossible to do type checks at compile time modularly. How-
ever, for local variables there is no aliasing, or, more precisely,
locals can be changed only in a current feature. As a result it
should be possible to get rid of type annotations altogether: certi-
fied attachment patterns (CAPs) are absolutely sufficient for local
variables and attachment annotations can be safely discarded.
Moreover, CAPs allow for accepting code that is rejected by type-
based rules. For example, consider the following declaration of a
feature color:

119

120 C e r t i f i e d At ta c h m e n t Pat t e r n s

color: COLOR
−− Color used for painting.

do
Result := user_selected_color
if not attached Result then

Result := default_color
end

end

user_selected_color: detachable COLOR
−− Color selected by a user (if any).

default_color: COLOR
−− Color used when user did not select a

color.
once

...
end

The type of Result in color is attached (there is always some color
to be used for painting). However, a user could have picked a
color (user_selected_color is attached) or not yet (user_selected_color
is Void). The assignment

Result := user_selected_color

violates type rules because a detachable type (declared for
user_selected_color) does not conform to an attached type (de-
clared for Result). On the other hand, the code is absolutely void-
safe, because after the assignment it checks whether Result is at-
tached or not. If it is not attached, a default color is used with a
value known to be attached. There are similar examples for local
variables of an attached type. It is possible to write some boiler-
plate code to make the code null-safe relying only on type rules.
For example, the code above can be changed into

6.1 Overview 121

color: COLOR
−− Color used for painting.

do
if attached user_selected_color as c then

Result := c
else

Result := default_color
end

end

This introduces a new variable c and therefore increases the
overall code complexity. With several detachable expressions the
number of temporary variables will grow proportionally. The in-
creased complexity can lead to errors, not to mention that pro-
gramming with void safety in mind becomes tedious, requires
more code and prevents from keeping some legacy code un-
changed just to please a type checker.
A certified attachment pattern addresses this issue by bridging
the gap between detachable and attached types with a set of rules
that permit expressions of a detachable type to be used in the
context when only attached types are allowed. The rules for them
were introduced in [12, 27] for read-only entities and had limited
expressiveness.
For example, certified attachment patterns described in [12, 27]
treat every boolean connective separately from each other: their
combinations or nesting are not supported. Even though it might
be a good practice to avoid complex expressions and to replace
them with short and simple ones, when the first version of
the compiler supporting void-safety was released, some users
complained about missing cases. Moreover, complex expressions
might be useful when code is not written by a human but is gener-
ated automatically – then it can be arbitrary complex. This work
addresses the demand by replacing arbitrary boolean connectives
with conditional expressions and specifying CAPs in terms of
these expressions. Consequently, expressions of any complexity
or nesting can be supported.
Although simple branches and loop conditions were taken care
of by the original CAPs, the rules did not cover loop bodies. It
was impossible to say whether a variable was attached or not af-
ter a loop and therefore it was considered detachable to preserve
soundness. Similar-looking analyses like definite assignment re-

122 C e r t i f i e d At ta c h m e n t Pat t e r n s

quired by Java [21, 22] are specified in a form that can be imple-
mented in one pass over source code because on every iteration a
variable can only become assigned, not the reverse. This is not the
case for void safety. A local variable can become attached or void
on different iterations, or even to flip-flop on every iteration from
attached state to detached and back as shown in the example in
figure 6.1.

from
x := something_attached
y := Void

until
whatever

loop
tmp := y
y := x
x := tmp

end
x.foo

Figure 6.1. An example of an
issue with loop
CAPs.

If safety checks rely only on type
declarations and x is of a detach-
able type, there are no guarantees
that it will be attached after the
loop (the original rules are quite
pessimistic). As demonstrated by
this work, the rules for loops could
be based on fixed-point computa-
tion to meet program developer’s
expectations. At the same time
thanks to monotonicity properties
they remain computable and effi-
ciently verifiable by a compiler.
A set of CAPs specified in [12, 27]
ensures void safety, but cannot be

used in practice for any large scale application without provi-
sioning for rules to escape void safety checks. It is just practically
impossible to write 285 (or any other number of) classes in one
go without intermediate compilation and testing. If at some point
a feature is returning a value of a deferred class (an abstract class
or an interface in Java/C# terms) and there are no effective de-
scendants of this class yet, the program will not compile. The
solution adopted in [15] is to rely on exceptions, including forced
checks of assertions. This triggers so called “design mode” when
the compiler ignores attachment status in the type checks.
Among other novelties of the thesis is specification of void safety
rules and program semantics with attachment properties in a
proof assistant environment. The model and its soundness is me-
chanically checked with Isabelle 2016. Such proofs do not leave a
space for missing cases or fuzzy specifications and are an impor-
tant step towards safe programming languages and safe software
in general.

6.2 Attachment state 123

All presented safety rules, though in a form, adapted to specifics
of Eiffel, have been implemented in a validity checker that al-
lowed for comparing quantitatively type-based and CAP-based
implementations. Benchmarks demonstrate 33% lower error rate
when using CAP-based rules. This serves as an indicator of their
superiority against type-based rules because they allow for more
code to be accepted without compromising void safety.

6.2 Attachment state

At every execution point a variable may be in one of two states:
attached or detachable. This applies to both compile time and run
time of a program. In order to avoid voidness checks at run-time,
a language should specify rules that, when satisfied at compile
time, guarantee that an expression considered attached at com-
pile time always produces an attached value at run-time. The
values produced by expressions depend solely on a state of a sys-
tem. The state, in turn, consists of states of all variables. There-
fore, attachment state of a program can be modeled by a set-like
structure that allows telling for every variable in a current scope
of program analysis whether it is attached or not.
The reason why sets cannot be used directly for this purpose
is explained in section 6.2.4 where the detailed specifications of
the operations are provided. For the time being we can look at
the attachment status of variables as on a set with the following
operations:

• Union: AtB
• Intersection: AuB
• Insertion: A⊕ x
• Removal: A	 x
• Membership test: x ∈> A

Union and intersection are familiar set-theoretical operations. In-
sertion and removal include and exclude a specific variable from
a set of attached variables. And membership test is used to test
whether a variable is attached in the given attachment state.

124 C e r t i f i e d At ta c h m e n t Pat t e r n s

6.2.1 Abstract syntax

Some languages, including C# [26], Eiffel [12, 27], Java [21, 22]
distinguish between constructs that produce a value at runtime,
known as expressions, and that do not produce a value at run-
time, known as statements or instructions. This division is con-
venient for language specification and for human readers but
breaks uniformity of language structure and complicates descrip-
tion of the language in formal systems such as Isabelle/HOL.
Both can be described uniformly using a special return value
unit from functional languages and denoting a singleton used
for constructs without a value. This is a standard technique used
for formalization of OOP languages (e. g., see Java-like language
formalizations in [32, 41, 57]).
The abstract language syntax is modeled in Isabelle/HOL with
appropriate constructors of a datatype expression (figure 6.2). In
most cases there is one-to-one relation between source language
and Isabelle/HOL terms with two important points of diver-
gence: one for voidness tests and the other one for operator ex-
pressions.

6.2.2 Scopes

6.2.2.1 Voidness tests

The notion of an attached variable scope is orthogonal to the no-
tion of attachment status in a sense that it does not depend on
the value of a variable known at compile time but on the execu-
tion pattern that involves an explicit check whether the variable
is attached or not. In simple cases the test is a comparison to a
predefined value Void signaling that there is no associated ob-
ject. They are called voidness tests. Some variants of the tests are
listed in table 6.1.
The first one is based on a regular equality operation and a prede-
fined constant denoting absence of an object. Given that there are
multiple forms of equality ([46] mentions reference equality, shal-
low equality, deep equality for non-concurrent programs, [56] dis-
cusses other forms that take into account object placement with
respect to active execution units for programs with structured
concurrency), any form of equality tests falls into a category of

6.2 Attachment state 125

B.6.1
p. 182

expression =

Value value | – Value (constant)

Local name | – Local variable

expression ; ; expression | – Sequence

name ::= expression | – Assignment

create name | – Creation instruction

expression.name (expression list) | – Feature call

if expression

then expression

else expression end | – Conditional

until expression loop expression end | – Loop

attached type expression as name | – Object test

Exception – Exception

Figure 6.2. Datatype expression.

Table 6.1. Voidness tests.

Meaning

Eiffel Syntax

Equality
Object test

Reference Value

Is expression attached? x /= Void x /∼ Void attached x

Is expression detached? x = Void x ∼ Void not attached x

126 C e r t i f i e d At ta c h m e n t Pat t e r n s

suitable voidness tests as soon as they can tell whether a given
expression is associated with an object or not. Therefore, possible
voidness tests from table 6.1 can be extended with the standard
library calls:

deep_equal (x, Void) deep_equal (Void, x)

equal (x, Void) equal (Void, x)

standard_equal (x, Void) standard_equal (Void, x)

They are called library voidness tests.
Contemporary Eiffel specification [12, 27] defines certified attach-
ment patterns using voidness tests listed in table 6.1. They are
direct, i. e., compare expressions with Void. An alternative ap-
proach is to compare expressions with values that are known to
be attached. They could be constant expressions (numbers, string
literals, truth values) or arbitrary expressions that are definitely
attached at run-time. Such non-voidness tests are less obvious
and rare, but they can still appear in code and can be used to
deduce attachment status of a variable. One of the most useful
tests of this kind are equality tests for strings, e. g.:

s ∼ "−option_a" or s ∼ "−option_b"

If the test above passes, then string s is attached.
Unlike comparisons to Void, non-voidness tests are limited to
equality operators because the second operand has an associ-
ated value and inequality to this value does not mean the first
operand is detached, it can just have a different value. Therefore,
non-voidness tests are equivalent in terms of attachment status to
voidness tests of the form “Is expression attached?” from table 6.1.
The key difference between the two forms of tests can be demon-
strated by the following two statements:

∀x.(V x ⇐⇒ attached x)∧ ∀x.(not attached x ⇐⇒ not V x)

∨ ∀x.(V x ⇐⇒ not attached x)∧ ∀x.(attached x ⇐⇒ not V x)

∀x.(N x =⇒ attached x)∧ ∀x.(not attached x =⇒ not N x)

where V stands for a voidness test and N stands for a non-
voidness test. Non-voidness tests are weaker compared to void-
ness tests because they give only half of the guarantees. However,
they still can be used in CAPs.

6.2 Attachment state 127

Similar to regular voidness tests, non-voidness tests can be ex-
pressed with library calls where one of the operands is known
to be attached while the other one is checked for equality to its
counterpart, for example, equal (x, attached_expression). The corre-
sponding CAP is again limited to the case when equality is es-
tablished. If the test evaluates to False there is no information
whether this happens because there is no object attached to x
or because this object is different from the value returned by
attached_expression.
Non-voidness tests are not covered explicitly in my Isabelle/HOL
formalization for clarity. However, they are similar to the case of
object tests with explicit type specification (see section 6.2.2.2).

6.2.2.2 Object test

The most general form of an object test has 3 parts: a type, an
expression and an object test variable:

attached {SOME_TYPE} expression as my_variable

The type is used to determine whether an expression is attached
to an object of a type that conforms to the given one. If this is
the case then the expression value is attached to the variable
my_variable and the object test evaluates to True. Otherwise, it
evaluates to False. The key observation here is that if the object
test succeeds, both expression and my_variable are attached. There-
fore, the type part of object test is irrelevant in most of the fol-
lowing discussion. However, it is worth to note that when the
type part is present, object test behaves like a non-voidness test
described in section 6.2.2.1, and when the type part is absent, it
behaves like a regular voidness test. So the test expression /= Void
is translated into

attached None expression as unique_variable

where unique_variable is a unique name not used anywhere else
in the code.
The optional type part is reflected in the formal semantics of the
object test expression (see section 7.3).
The object test local declaration is optional and can be omitted.
The omission is useful when the value of the expression is not
used, or when the expression itself is a variable. While the vari-
able is unchanged, it can be safely used without the need for an

128 C e r t i f i e d At ta c h m e n t Pat t e r n s

additional object test local. Talking about attachment status of
variables the cases ([12, 27]) that affect it include

• only Expression part is present and it is a variable
• Object_test_local part is present and Expression is not a vari-

able
• Object_test_local part is present and Expression is a variable

In the first two cases the set of attached variables is extended
with a single element. In the last case it is extended with two
elements.
Because it would be cumbersome to formalize all possible forms
of the object test construct, the most general form is used in the
model. Then the optional object test local part can be modeled
by using an identifier that does not appear anywhere in source
code.

6.2.2.3 Scope kinds

To get some feeling of a variable scope, consider the following
code fragment:

if attached x then
. . . −− (1)

else
. . . −− (2)

end

Regardless of a state of variable x, after the voidness test, it is
known to be attached in compound (1) and detached in com-
pound (2).
The effect of voidness tests is not limited to constructs that expect
a boolean value used to decide which execution path to take at
run-time. They can influence attachment status of a variable in-
side an expression when used together with semistrict operators.
These boolean operators lead to evaluation of only first operand
and can perform or skip evaluation of the second operand de-
pending on the value of the first one. In Eiffel these operators are
and then, or else and implies.
For example, in the expression

attached x and then expression

6.2 Attachment state 129

1

if attached x and . . . then . . . else . . . end

if . . . and [then] attached x then . . . else . . . end

2 if attached x and then . . . then . . . else . . . end

3

if not attached x or . . . then . . . else . . . end

if . . . or [else] not attached x then . . . else . . . end

if . . . implies not attached x then . . . else . . . end

4

if not attached x or else . . . then . . . else . . . end

if attached x implies . . . then . . . else . . . end

Figure 6.3. Scope combinations (code fragments where variable x is con-
sidered attached are marked with . . .).

the variable x can be safely used in expression because if the first
operand of the operator and then evaluates to True the variable
x is attached. On the other hand, if the first operand gives False,
the value of the expression as a whole is False as well and the
second operand is never evaluated. Therefore, even if the second
operand depends on x, it is safe to reference it. Moreover, if the
second operand is evaluated, the variable x inside it is always
attached.
A source code snippet where a variable is considered attached
because of an associated voidness test for this variable is called
an attachment scope of this variable. The two examples above
correspond to two mechanisms to make scopes:

1. Control flow scope – an attachment scope based on lan-
guage constructs that change execution flow.

2. Operator scope – an attachment scope based on semistrict
operators.

In practice both kinds of attachment scopes are applied together.
An exhaustive list of scope combinations involving at most one
unary and at most one binary boolean operator in a conditional
instruction is given in figure 6.3.
The third variant of a scope – assertion scope – is used in asser-
tions where assertions clauses of the same assertion are logically
combined using and then operator.

130 C e r t i f i e d At ta c h m e n t Pat t e r n s

6.2.2.4 Generalization of scopes

The language standard [12, 27] specifies scopes of object test lo-
cals in terms of instructions and boolean operators, there are 8

clauses in total: 3 for expressions, 2 for conditional instructions
and expressions, 1 for loops and 2 for assertion clauses. It might
be tempting to mimic the rules in the logical framework and then
to prove that they are sound. But this approach has several draw-
backs:

• The formalization would be limited to the selected set of
boolean operators. Applying results to another language
with a different set of boolean operators would not be
straightforward if some operators of that other language
are not covered.

• There are 3 semistrict boolean operators, 2 regular opera-
tors and one unary operator. Adding them to the formaliza-
tion would mean either addition of 6 new constructors to
the datatype expression (figure 6.2) or addition of Binary and
Unary constructors with accompanying datatypes for oper-
ators (like in [33]). In both cases all induction-based proofs
would have to be performed for the new constructors.

• There is already some redundancy in the current operators
because some of them can be expressed in terms of others
using, for example, properly adapted De Morgan’s laws.

• The rules as specified in the standard are not general
enough and do not allow for deeper analysis of expres-
sions. For example, they do not cover code like if not not
attached x then ... end but cover its equivalent if attached x
then ... end.

Generalization can be done with just 3 variants of expression:
truth constants, conditional expressions and sequences. It is
based on the observation that every boolean expression can be
translated into a conditional expression with nested boolean con-
stants and optional sequences. It is tightly coupled to semantics
of the operators. Consider conjunction as an example in both
forms, semistrict and regular.
Informally a semistrict conjunction e1 and then e2 is evaluated as
follows:

1. Evaluate e1.

6.2 Attachment state 131

2. If result of this evaluation is False, use it as a value of the
expression.

3. Otherwise, evaluate e2 to get the value.
This algorithm can be written as

if e1 then
e2

else
False

end

With such a replacement the following two code fragments are
equivalent:

if
attached x and then
attached y

then
x.foo
y.bar

end

if
if attached x then

attached y
else

False
end

then
x.foo
y.bar

end

The algorithm for a regular conjunction e1 and e2 is a bit more
complicated:

1. Evaluate e1.
2. Evaluate e2.
3. If either result is False, use it as a value of the expression.
4. Otherwise, use True as a result.

In the current formulation the algorithm requires temporary vari-
ables to be used in a conditional expression. In order to avoid it,
it can be recast as follows:

1. Evaluate e1.
2. If result of this evaluation is False, evaluate e2, but use False

as a value of the expression.
3. Otherwise evaluate e2 to get the value.

132 C e r t i f i e d At ta c h m e n t Pat t e r n s

This can be written as

if e1 then
e2

else
e2.do_nothing; False

end

Here do_nothing is a standard library feature that has no effect
and serves as a no-op to consume a value produced by e2. In
the languages that do not have a rule that elements of a sequence
should be instructions (that should not produce any value) rather
than expressions (that produce some value) this call is redundant
and can be omitted. Also, note that even if a language does not
allow for compound expressions (i. e., expressions formed from
a sequence of nested expressions), it can be easily achieved by us-
ing specially crafted functions. In the example above the function
would return a value of its second argument. The convention to
omit explicit calls to such functions that simply return value of
their last argument is used throughout the later discussion unless
specified otherwise.
Applying the described conversion the following code fragments
are equivalent:

if
attached x and
attached y

then
x.foo
y.bar

end

if
if attached x then

attached y
else

attached y; False
end

then
x.foo
y.bar

end

Conversions for the boolean operators mentioned earlier and
some others added for completeness are listed in figure 6.4. Fol-
lowing the terminology used in [12, 27] they are called unfolded
forms of boolean operators.

6.2 Attachment state 133

Operator
Original

Translation
expression

Negation not e if e then False else True end (2)

Conjunction e1 and then e2 if e1 then e2 else False end (3)

e1 and e2 if e1 then e2 else e2; False end (4)

Disjunction e1 or else e2 if e1 then True else e2 end (5)

e1 or e2 if e1 then e2; True else e2 end (6)

Implication e1 implies e2 if e1 then e2 else True end (7)

not e1 or e2 if e1 then e2 else e2; True end (8)

Converse not e1 and then e2 if e1 then False else e2 end (9)

nonimplication not e1 and e2 if e1 then e2; False else e2 end (10)

Figure 6.4. Unfolded forms of boolean operators.

It turns out that all unfolded forms of boolean operators are vari-
ants of the following patterns:

if x then y; Const else z end
if x then y else z; Const end

where Const is either True or False. So, instead of reasoning in
terms of various forms of boolean operators and their combina-
tions it is sufficient to reason in terms of special forms of condi-
tional expressions. This approach does not only go beyond single-
level scope definitions, but also allows for ternary operations in
addition to unary and binary ones.
The special form of the branches ending with a boolean constant
is captured by two functions defined in Isabelle/HOL as:

B.6.3
p. 183

is_false (c ;; Falsec) = True is_true (c ;; Truec) = True

is_false _ = False is_true _ = False

The cases from figure 6.4 when there is no expression followed
by a constant, but just a constant False or True in a branch are rep-
resented by sequences unit ;; Falsec or unit ;; Truec respectively.
It would be possible to handle constants False and True directly,
however it would just add one more case in the function defini-
tions without any additional benefit.

134 C e r t i f i e d At ta c h m e n t Pat t e r n s

The functions is_false and is_true can be also generalized by
adding other variants of expressions that knowingly produce
fixed boolean constants, for example

is_true (if b then e1 else e2 end)

= (if (is_true b) then is_true e1)

∨ (if (is_false b) then is_true e2)

∨ (is_true e1 ∧ is_true e2)

This and other more complicated cases, however, are covered by
optimization and code transformation techniques familiar from
compiler technology, such as common sub-expression elimina-
tion, constant propagation, invariant code motion and others ([1,
53, 54]).

6.2.3 Transfer function

A variable can be attached to an object at run-time or be null.
To track its status at compile time, we need to compute sets of
variables that are always attached at particular execution points.
This is done with a transfer function A B e that gives a set of
attached variables for an expression e from the set of variables A
that are known to be attached before e. It is defined inductively
by 5 mutually recursive functions:

· B · the transfer function itself (figure 6.5)
· B+ ·
· B− ·

computes a set of attached variables with an assump-
tion that the expression evaluates to true/false (posi-
tive/negative scope) (figure 6.8)

· BB · computes a set of attached variables for a given list of
expressions (used to model arguments in feature calls)
(figure 6.7)

· ↪→ · tells if a given expression is attached (figure 6.6)

The first argument of all functions has a type topset that is simi-
lar to a conventional set, but has an additional value describing
an unreachable state (section 6.2.4). It corresponds to a set of at-
tached variables before an expression e is evaluated. The second
argument for all functions has a type expression, except for the
function BB that takes a list of expressions expression list instead.
All functions return sets of attached variables of the type topset

6.2 Attachment state 135

B.18.2
p. 217

A B Value v = A

A B Local n = A

A B e1 ;; e2 = A B e1 B e2
A B create n = A ⊕ n

A B attached t e as n = A B e

A B Exception = >

A B n ::= e =

(A B e) ⊕ n if A ↪→ e

(A B e) 	 n otherwise

A B e · f (a) = A B e BB a

A B if c then e1 else e2 end = A B+ c B e1 u A B− c B e2
A B until e loop b end = A B∗ (− e B b) B+ e

Figure 6.5. Transfer function.

after the expression or the expression list are evaluated, except
for the last function ↪→ returning a boolean value.

6.2.3.1 Regular cases

Accessing a value or a local variable does not change a set of
attached variables (figure 6.5).
For a sequence, the result is computed as an application of the
transfer function to the second expression with a set of attached
variables obtained for the first expression (the operator B is left-
associative).
For a creation instruction it always adds an associated variable
to the set of attached variables because the instruction attaches a
newly created object to the variable at run-time.
For an object test used in a non-branching construct, the attach-
ment set is the one obtained for its expression. A different trans-
fer function is used in a context when an object test value is
known to be True (section 6.2.3.2).
For an assignment, a variable is added to a set of attached vari-
ables after the assignment if the source expression is attached
and is removed from the set otherwise.

136 C e r t i f i e d At ta c h m e n t Pat t e r n s

B.18.2
p. 217

A ↪→ Value v = v 6= Voidv

A ↪→ Local n = n ∈> A

A ↪→ if c then e1 else e2 end = A B+ c ↪→ e1 ∧ A B− c ↪→ e2
A ↪→ _ = True

Figure 6.6. Attachment status function.

B.18.2
p. 217

A BB [] = A

A BB (e · es) = A B e BB es

Figure 6.7. Transfer functions for argument lists.

The definition for an assignment instruction uses a function com-
puting an attachment status of an expression. It returns True if
its argument is a value other than Void, a local in the set of at-
tached variables, or a conditional expression with both branches
attached (figure 6.6). Note that an attachment status of a condi-
tional branch takes into account whether the branch is positive
or negative. In other words the attachment status of the positive
branch e1 is computed with an assumption that the condition
c evaluates to True, the attachment for the negative branch e2 –
with the assumption that c evaluates to False, and then their con-
junction is used to determine whether the whole expression is
attached.
Arguments of a call are subject to chained processing (figure 6.7).
The transfer function for an argument is evaluated in the con-
text of a previous one or in the context of a target (for the first
argument).
A simplified version of the function that does not chain argu-
ments would fail to capture attachment properties for the follow-
ing code:

x.foo (if attached a then x else failed end, a.bar)

where failed has a postcondition False, and thus never returns
normally. If the argument a.bar would be checked without tak-
ing attachment status of a into account, it would be flagged as

6.2 Attachment state 137

erroneous. Given that evaluation of a.bar is possible only when
previous argument evaluated successfully (arguments in Eiffel
are computed left-to-right), the target a is attached according to
the current transfer function definition and does not cause any
rule violations.
The rules for an expression list (figure 6.7) model arguments. Ar-
guments of a call are subject to chained processing even though it
might seem unnecessary. The reason is that an attachment status
of an object test local could be affected by the rules for “design
mode” (section 6.2.4). The transfer function for an argument is
evaluated in the context of a previous one or in the context of a
target (for the first argument). The same effect can be achieved
by using the Isabelle/HOL function fold:

A BB es = fold (λ e X. X B e) es A

According to [33] for subsequent proofs it is more convenient to
use the direct definition of the transfer function rather than the
one based on fold. This work adopts the same approach.

6.2.3.2 Branching

Transfer functions for positive and negative scopes (figure 6.8)
differ from the regular transfer function by taking into account a
boolean value produced by the expression used in the condition.
The only expressions of the model language that can produce a
boolean value and affect resulting set of attached variables are
object tests and conditional expressions.
If an object test evaluates to True (positive scope function), the
corresponding object test variable n is attached. Moreover, if the
object test expression is itself a variable n’, it is also known to
be attached. So, the resulting set includes n and, in the second
case, n’.
Two other definitions cover general conditional expressions. The
positive and negative scope functions recursively depend on each
other. If a conditional expression does not evaluate to a boolean
constant in at least one of its branches, nothing can be said about
attachment status of nested object test locals. The reason is that
the information whether an object test succeeded, be it a condi-
tional expression c or one of the branch expressions e1 or e2, is
lost in that case.

138 C e r t i f i e d At ta c h m e n t Pat t e r n s

B.18.2
p. 217

A B+ attached T Local n ′ as n = A ⊕ n ′⊕ n (11)

A B+ attached T e as n = A B e ⊕ n (12)

if e is not a local

A B+ if c then e1 else e2 end = (13)

=

A B− c B+ e2 if is_false e1

A B+ c B+ e1 if is_false e2

A B if c then e1 else e2 end otherwise

A B− if c then e1 else e2 end = (14)

=

A B− c B− e2 if is_true e1

A B+ c B− e1 if is_true e2

A B if c then e1 else e2 end otherwise

A B+ e =

> if is_false e

A B e otherwise
(15)

A B− e =

> if is_true e

A B e otherwise
(16)

Figure 6.8. Transfer functions for positive and negative scopes.

6.2 Attachment state 139

Let’s consider one of the cases when a branch expression meets
a condition to produce a known constant value, for example,
is_false e1. This is a rule for the positive scope function A B+

if c then e1 else e2 end. The resulting set corresponds to the case
when the conditional expression evaluates to True. From the con-
dition is_false e1 we know that c could not have been evaluated to
True. Also, we know that the only case to get True for the whole
expression is to get True for e2. Therefore, the set of attached vari-
ables in this case is a result of application of the positive scope
function for e2 to a result of application of the negative scope
function for c to the initial set A.
Other cases can be explained similarly. As an example let’s see
how the rules work for double negation:

A B+ not not attached x

= A B+ if not attached x then False else True end by (2)

= A B− not attached x t A B+ True by (13)

= A B− not attached x by (15)

= A B− if attached x then False else True end by (2)

= A B+ attached x t A B− False by (14)

= A B+ attached x by (16)

= A ⊕ x by (11)

What if for a given conditional expression both is_false e1 and
is_false e2 would give True? Would the positive scope function
yield a consistent result? From is_false e1 and is_false e2 it follows
that the whole conditional expression evaluates to False. This con-
tradicts the assumption that the positive scope function is com-
puted with the assumption that the whole expression evaluates
to True. Therefore, such inconsistency is impossible.

6.2.3.3 Loops

For a loop the transfer function is specified using a loop operator.
The loop body is evaluated in the negative branch of the exit
condition and the effect of the loop as a whole is evaluated in
the positive branch of the same condition. The loop operator for
a loop with an exit condition e and a loop body b is defined as a
greatest fixed point:

B.17
p. 213

A B∗ (− e B b) ≡ gfp (λX. A u X B− e B b)

140 C e r t i f i e d At ta c h m e n t Pat t e r n s

It is known that a greatest fixed point of a monotone function
defined on a complete lattice exists (Tarski proved it in [71]) and
can be computed by iterating over the result until it stabilizes (the
theorem is often referred to as Kleene’s fixed point theorem, but the
exact authorship is unclear [38]). This ensures termination of the
function in a static analyzer. The type topset forms a complete lat-
tice (section 6.2.4.1), so it remains to prove monotonicity of a loop
function. Instead of proving lemmas with a specific loop function,
a generalized version is used: loop_operator f A ≡ gfp (λx. A u f x).
The loop function λ A x. A u f x is monotone on both arguments,
but we need monotonicity only on the last one:

Lemma 6.1 (Loop function monotonicity).B.17
p. 213 mono f =⇒ mono (λX. A u f X)

The loop operator is monotone and idempotent on both argu-
ments:

Lemma 6.2 (Loop operator monotonicity).B.17
p. 213

mono (loop_operator f)
Proof. From monotonicity of greatest fixed point.

Lemma 6.3 (Loop operator unfolding).B.17
p. 213 mono f =⇒ loop_operator f A = loop_function f A (loop_operator f A)

Lemma 6.4 (Loop operator idempotence).B.17
p. 213 mono f =⇒ loop_operator f (loop_operator f x) = loop_operator f x

The shape of the loop function is derived from the following al-
gorithm that can be used to compute sets of attached variables:

Aprev := >;

while (Aprev 6= A)
{

Aprev := Aprev uA;

A := Aprev B− e B b;

}

On every iteration the current set of attached variables is com-
pared to the previous one. If they are the same, the greatest fixed
point is reached and can be used for subsequent analysis. If they
are different, the intersection of two sets is used as a previous
attachment set and a new attachment set is computed for a sin-
gle loop iteration. This generates a monotone chain A, A u f A,

6.2 Attachment state 141

A u f A u f (A u f A), . . . , where f = λ X. X B− e B b. The chain
corresponds to the loop function λ A x. A u f x.
Detection of an infinite loop that indicates unreachable code (sec-
tion 6.2.4) is captured indirectly by (15) where the loop exit con-
dition meets is_false predicate. In this case, the transfer function
for the loop gives >.
As one would expect, an application of a loop operator produces
a smaller set of attached variables:

Lemma 6.5. B.17
p. 215

mono f =⇒ loop_operator f A 6 A

B.17
p. 215

loop_operator f A 6 loop_operator f (f A)

Using monotonicity of the loop operator and the loop function
itself (lemmas 6.1 and 6.2) and the definition of the transfer func-
tion, the latter can be proved to be monotone:

Lemma 6.6 (Transfer function monotonicity). B.18.2
p. 223

mono (λX. X B e)

Intuitively this means that the more variables are attached before
an expression, the more are attached after the expression.

6.2.4 Design mode

As mentioned in section 6.1, there should be means to develop
void-safe applications gradually. The most important issue is
with features that take or return values of attached types. If there
are no suitable effective classes yet, one cannot call such features
or properly initialize their results. The idea to address such a
need is to treat some code as unreachable. If the code is unreach-
able, there is no harm to skip void safety checks. In [15] the fol-
lowing constructs are used as indicators of unreachable code:

• enforced check: check False then end

• infinite loop: from ... until False loop ... end

• false postcondition: ensure False

Note that in general assertion checks are optional at run-time.
However, to preserve soundness of void safety rules the asser-
tion ensure False is always checked at run-time and triggers an
exception. As a result, clients calling a feature with such a post-
condition can rely on the fact that it never returns normally.

142 C e r t i f i e d At ta c h m e n t Pat t e r n s

X v > = True

> v dAe = False

dAe v dBe = A ⊆ B

B.16
p. 203

x ∈> > = True

x ∈> dAe = x ∈ A

B.16
p. 198

X t> = >
>tX = >
dAe t dBe = dA∪ Be

X u> = X

>uX = X

dAe u dBe = dA∩ Be

Figure 6.9. Operations on topset.

6.2.4.1 Modeling unreachable code

In [33] Gerwin Klein proposed to model definite assignment
property of Jinja, a Java-like programming language, with for-
mally specified semantics using type set option. A value None cor-
responds to an exceptional state and a value Some x – to a normal
state. x is then a set of names of local variables that are definitely
assigned.
The idea behind definite assignment in Java [21, 22] is that a (lo-
cal) variable should be assigned prior to its use. This is a weaker
notion compared to attachment status of a variable because once
assigned, a variable remains assigned in all subsequent instruc-
tions and nested blocks of the same block. On the contrary, assign-
ing Void to a variable changes its attachment status to detachable
or unset in terms of definite assignment property in cases when
subsequent instructions expect an attached type of the variable.
Moreover, nested blocks can also change the attachment property
in a similar way.
However, I found the idea quite suitable for modeling exceptional
cases and unreachable code during attachment analysis. But in-
stead of using somewhat ad hoc rules to handle set option I intro-
duced a new type topset that is obtained from a regular set type
by adding a new top (see theoryB.16

p. 198
TopSet). The operations on topset

are defined as shown in figure 6.9.
The topset type is proved to be a complete lattice and a distribu-
tive lattice. However unlike regular set it is not a boolean algebra
because it does not provide the minus operator with the proper-
ties required by a boolean algebra.

6.2 Attachment state 143

Transitions of a local variable status from detachable to attached
and back is modeled by two operations similar to insertion to a
set and removal from a set:

B.16
p. 207

A⊕ x = At d{x}e

A	 x = Au d{x}e

The key difference is the case of a top element >. Neither inser-
tion nor removal changes it:

B.16
p. 208

>⊕ x = >
>	 x = >

An example of a diagram that shows all possible transitions be-
tween different states of topset for three variables a, b and c is
shown in figure 6.10.

>

a, b, c

a, b a, c b, c

a b c

∅

Figure 6.10. Insertion and removal in
topset.

If the analysis identifies
some code as unreachable,
there is no reason to enforce
void safety rules on variables.
In particular, they can be as-
sumed to have arbitrary at-
tachment status. From prac-
tical point of view it is con-
venient to see all variables
as being attached in that
case. This enables writing
code that compiles without
an error even when some
variables cannot be initial-
ized with actual objects, e. g.,
when there are no suitable
effective classes yet in the
system being designed. In-
deed, in such cases, execu-
tion points, where a variable
is expected to be attached according to validity rules, are not
reached and the expectations need not be fulfilled.
A common scenario is a function of an attached deferred type
that cannot be instantiated with an effective one yet. According
to void safety validity rules at the end of the function a special

144 C e r t i f i e d At ta c h m e n t Pat t e r n s

local entity Result should be attached to an existing object. To
deal with that a programmer can put an instruction guaranteed
to raise an exception or to never terminate, e. g., a call to a feature
(used to mark a place for further refactoring) with a postcondi-
tion False, before the function end. Execution points following
this instruction are never reached at run-time. In particular, the
function never returns normally and its result is never accessed.
So, it is irrelevant if Result is attached at the end of the function
or not. However, given that the function has an attached type,
Result should be attached according to validity rules.
There are at least two ways to satisfy this requirement. One is to
augment the rules with special treatment of unreachable code, an-
other one is to consider all variables in this situation as attached.
I chose the second variant because, on the one hand, it keeps va-
lidity rules simple, and on the other hand, it decouples detection
of unreachable code from void safety rules. As a result, detec-
tion of unreachable code can be based on other mechanisms, not
necessary related to void safety.
To summarize, proposed static analysis injects the special top
for “design mode” that enables development of incomplete sys-
tems, making the whole framework practically useful. The formal
proofs in chapter 7 rely solely on topset to track attached variables
rather than on regular sets to ensure the “design mode” does not
break soundness.

6.2.4.2 Reachability properties

The top element that models an attachment state for unreachable
code is called an unreachable attachment state. This corresponds
to the case when some piece of code is unreachable, i. e., the code
is never executed at run-time. If evaluation of the attachment
state resulted in a top element, then no subsequent computations
can ever be performed at run-time. Therefore, the top element
should be preserved by any subsequent computation:

Lemma 6.7 (Preservation of unreachable attachment state).B.18.2
p. 224

An
unreachable attachment state induces itself by any computation:

> B e = >

There are few cases when the unreachable attachment state
comes into play during analysis:

6.3 Validity rules 145

• An explicit instruction that triggers an exception, like throw

new MyException(); in Java.
• An implicit code pattern that leads to an exception at run-

time, such as a missing Else_part in a multi-branch instruc-
tion in Eiffel.

• Specially crafted code that is known as a certified attach-
ment pattern (CAP) and that is known to never trigger a
subsequent computation, such as an infinite loop or an as-
sertion with a constant value False.

B.18.2
p. 217

For all such cases the analysis should produce an unreachable
attachment state, e. g.: A B Exception = >. Note that the state
before such a computation does not matter.
What if attachment analysis of an expression does not always
produce a top element? Are subsequent expressions still reach-
able with some other initial state? Intuitively, if a new state is
more defined, some potential execution paths may become im-
possible and the analysis may detect an unreachable state. On
the other hand, if the initial state is smaller, i. e., we know less
about attachment status of variables, the same or larger set of ex-
ecutions paths is possible and therefore the analysis cannot result
in the unreachable attachment state. This brings us to the lemma
complementary to lemma 6.7:

Lemma 6.8 (Preservation of reachable attachment state). B.18.2
p. 225

If B B e
6= > ∧ A 6 B then A B e 6= >.

Proof. Follows from monotonicity of attachment transfer function
(lemma 6.6).

6.3 Validity rules

6.3.1 Expression validity

An expression e is void safe for an attachment set A if it satisfies
an inductive predicate

B.19.1
p. 226

A ` e : T

where T – either Attached or Detachable – is an attachment type
of the expression e, with inductive cases formally specified in
figure 6.11. If the predicate is true, the expression satisfies void
safety rules, otherwise an error is reported.

146 C e r t i f i e d At ta c h m e n t Pat t e r n s

B.19.1
p. 226

v 6= Voidv
A ` Value v : Attached

Valueatt

v = Voidv
A ` Value v : Detachable

Valuedet

n ∈> A
A ` Local n : Attached

Localatt

¬ n ∈> A
A ` Local n : Detachable

Localdet

A ` Exception : Attached
Exception

A ` create n : Attached
Create

A ` e : T
A ` n ::= e : Attached

Assign

A ` e : T
A ` attached t e as n : Attached

Test

A ` e1 : Attached ∧ A B e1 ` e2 : Attached
A ` e1 ;; e2 : Attached

Seq

A ` e : Attached ∧ A B e ` a [:] Ts
A ` e · f (a) : Attached

Call

A ` [] [:] []
ArgNil

A ` e : T ∧ A B e ` es [:] Ts
A ` e · es [:] T · Ts

ArgCons

A ` b : Attached ∧

A B+ b ` e1 : T1 ∧ A B− b ` e2 : T2
A ` if b then e1 else e2 end : sup T1 T2

If

A B∗ (− e B b) ` e : Attached ∧

A B∗ (− e B b) B− e ` b : Attached
A ` until e loop b end : Attached

Loop

Figure 6.11. Void safety rules.

6.3 Validity rules 147

If an expression is a value, it is void safe and detachable if the
value is Voidv (Valuedet) and is void safe and attached other-
wise (Valueatt).
If an expression is a local variable, it is void safe and its attach-
ment type depends on whether the variable name is in the set of
attached variables. When it is there, the corresponding expression
is of an attached type (Localatt), otherwise it is of a detachable
type (Localdet).
An attachment type of a conditional expression is computed as
an upper bound of attachment types of both positive and neg-
ative branches (If). The upper bound is Detachable if any of the
operands is Detachable, and Attached otherwise.
Validity of a loop exit condition and of a loop body is checked
in the context of an attachment set obtained by applying a loop
operator that reflects minimal set of attached variables after exe-
cuting the loop any number of times (Loop).
All other language constructs are void safe as soon as all their
components are void safe.
The validity predicate is properly defined, i. e., it cannot be true
for attached and detachable types at the same time:

Lemma 6.9 (Attachment type uniqueness). A valid expression has
one attachment type: B.19.2

p. 227
A ` e : T ∧ A ` e : T ′=⇒ T = T ′

If an input set of attached variables becomes larger, computed
attachment type for an expression may only become “more at-
tached”. Therefore, an attachment type computed for a larger at-
tachment set conforms to the attachment type for a smaller one.

Lemma 6.10 (Attachment type anti-monotonicity). B.19.2
p. 229

A 6 B ∧ A `
e : TA =⇒ ∃TB. B ` e : TB ∧ TB 6 TA

Proof. The proof is done by structural induction on the predi-
cate definition. It relies on monotonicity of the transfer function
(lemma 6.6) for compound expressions such as sequences and
calls. For a conditional expression, types of both branches can be
obtained thanks to lemma 6.9 and the resulting type will be com-
puted as their upper bound, preserving monotonicity property.
Validity of a loop expression follows from monotonicity of a loop
operator (lemma 6.2).

148 C e r t i f i e d At ta c h m e n t Pat t e r n s

If a loop is valid in a given context, it is valid in the context
obtained by a single or multiple application of the loop exit con-
dition and the loop body:

Lemma 6.11.B.19.2
p. 232

A loop remains valid after applying its transfer function
to a set of attached variables one or any number of times:

A ` until e loop c end : T =⇒ A B− e B c ` until e loop c end : T

A ` until e loop c end : T =⇒ A B∗ (− e B c) ` until e loop c end : T

Proof. Follows from monotonicity of the transfer function
(lemma 6.6), anti-monotonicity of the expression validity predi-
cate (lemma 6.10), idempotence of loop operator (lemma 6.4) and
loop operator inequalities (lemma 6.5).

A notion of void-safe expressions is defined using the expression
validity predicate with or without an associated context:

Definition 6.1 (Void-safe expression). An expression e is void-safe
with type T iff there is type that satisfies expression validity predicate
with an empty set of attached variables:

B.19.2
p. 233

` e : T ≡ d∅e ` e : T

An expression e is void-safe iff there is a type T with which e is void-safe:

B.19.2
p. 233

` e
√
e ≡ ∃T. ` e : T

6.3.2 Beyond void safety

A dual check that an expression is always attached to an object at
run-time is a check that an expression is always Void. Of course,
such static analysis has fewer applications compared to attach-
ment analysis because there are fewer operations that may be
performed on “no object” value. However, it is quite suitable in
the following scenarios:

1. Evaluation optimization. Access to an expression that is
always detachable can be replaced with Void provided that
the expression has no side effect. Such a simplification may
trigger further optimizations.

2. Unreachable code removal. If at the same code point a vari-
able is detected to be both attached and detached, this code
is unreachable and can be safely removed.

6.3 Validity rules 149

3. Logical error detection. When detected in non-inherited
and non-inlined code the situation described in item 2 may
indicate a logical error because the code contains two mu-
tually exclusive conditions.

6.3.3 Implementation

The core part of the local code analysis described in section 6.3.1
is implemented in 19 Eiffel classes of about 2.5KLOC in total.
Branching instructions, such as loops, and conditional instruc-
tions and expressions, share the same code that explains a form
of the loop transfer function (section 6.2.3). Sets of attached local
variables are computed similarly to sets of attached attributes in
creation procedures described in section 5.1.5 with the new op-
erations to remove variables from the set when they become de-
tachable. In addition, the rules for attributes do not distinguish
between positive and negative scopes. Therefore, for local vari-
ables there are dedicated classes that take care about scopes. All
code is open source and is available at https://dev.eiffel.com/
Source_Code. The proposed rules to compute attachment status
of local variables are in production starting from EiffelStudio 16.05
official release.

6.3.3.1 Type checks

In section 6.2.2 boolean operators were described as given in
source code. This is indeed the case for some languages. E.g.,
in Java [21, 22] boolean operators && and || are dedicated for log-
ical operations only. This is not true in general case. Even though
there is a restriction on redeclaring conditional operators && and
|| in C# [26] and semistrict operators in Eiffel [12, 27], other kinds
of operators operating on boolean values such as logical opera-
tors &, | and ! in C# and boolean operators and, or and not in
Eiffel can be redefined by a user.
Therefore, attachment rules involving scopes have to be applied
after the code is analyzed and types of operands are computed.
Then the scope rules are applied only when the first operand is of
a BOOLEAN type. In all other cases the attachment algorithm still
works but is cannot take advantage of the additional knowledge
provided by these rules.

https://dev.eiffel.com/Source_Code
https://dev.eiffel.com/Source_Code

150 C e r t i f i e d At ta c h m e n t Pat t e r n s

6.3.3.2 Error reporting

When reporting errors related to attachment status, it becomes
important to avoid chains of similar errors for the same variable.
For example, if there are two subsequent calls with a target vari-
able foo and the first call turns out to be invalid because the vari-
able is not attached, in addition to the error report it makes per-
fect sense to include the variable in the set of attached variables.
Clearly, the developer assumed that the variable is non-void due
it its type declaration or because of a particular CAP, but this as-
sumption turned out to be wrong. There is no way to make this
assumption correct for the second call. As soon as the cause of
the error for the first call is fixed, it is very likely to be fixed si-
multaneously for the second one, so there is no reason to report
the second error in the first place.

6.4 Practical experience

In order to benchmark validity rules based on certified attach-
ment patterns rather than on type declarations two experiments
were performed. In the first experiment a large code base (the
complete EiffelStudio suite, including libraries, IDE, user and
development tools, examples – several millions lines of code)
known to be void-safe according to type-based validity rules was
checked by the analyzer that applied CAP-based validity rules
for local variables. All the code was compiled without an issue.
The experiment demonstrated that CAP-based validity rules are
as permissive as type-based ones.
In the second experiment several open-source void-unsafe li-
braries were used to see what kind of validity rules is more per-
missive. A general-purpose POSIX-based library ePosix was not
void-safe at the moment of this writing, so, the most recent ver-
sion 3.2.1 was used. Other libraries have been adapted for void
safety already, so the versions that predated void safety changes
were used: Gobo 3.8 and EiffelStudio 6.2. The measurements were
performed by checking only conformance rules and initializa-
tion rules that are relevant to this work using Initialization

as a configuration setting for void safety. Results are shown in
table 6.2.

6.4 Practical experience 151

Table 6.2. Number of void-safety errors reported for void-unsafe open-
source libraries depending on used validity rules.

Library Lines
of code

Number of reported errors Relative
Type rules CAP rules difference

Total Inner Total Inner Total Inner

base 89648 144 144 118 118 18.1% 18.1%
base_extension 1157 157 13 126 8 19.7% 38.5%
com 14391 608 464 406 288 33.2% 37.9%
diff 795 150 6 122 4 18.7% 33.3%
docking 57757 12185 1257 8166 434 33.0% 65.5%
editor 20126 11309 157 7942 106 29.8% 32.5%
eiffel2java 5233 158 14 131 13 17.1% 7.1%
encoding 1391 150 6 124 6 17.3% 0.0%
eposix 92714 8839 601 6923 501 21.7% 16.6%
event 384 2825 0 1422 0 49.7% 0.0%
gobo 803826 8238 8070 6422 6286 22.0% 22.1%
gobo_extension 84 8238 0 6422 0 22.0% 0.0%
graph 8976 11124 205 7812 86 29.8% 58.0%
i18n 11543 8269 31 6447 25 22.0% 19.4%
lex 5495 170 26 142 24 16.5% 7.7%
mel 49037 395 251 291 173 26.3% 31.1%
memory_analyzer 6958 11180 56 7852 40 29.8% 28.6%
net 12769 577 92 485 73 15.9% 20.7%
parse 1453 174 4 146 4 16.1% 0.0%
patterns 459 148 4 121 3 18.2% 25.0%
preferences_reg 8726 11126 207 7812 86 29.8% 58.5%
process 8024 492 33 418 30 15.0% 9.1%
store 22806 354 160 236 76 33.3% 52.5%
thread 1982 144 0 118 0 18.1% 0.0%
time 7146 168 24 136 18 19.0% 25.0%
uuid 394 168 0 136 0 19.0% 0.0%
vision 88178 1827 1368 1332 944 27.1% 31.0%
vision2 366384 2825 2366 1422 1034 49.7% 56.3%
vision2_extension 1303 2834 9 1428 6 49.6% 33.3%
web 3210 161 17 132 14 18.0% 17.6%
wel 90989 459 315 388 270 15.5% 14.3%
wizard 2767 10971 45 7769 36 29.2% 20.0%

Summary 1786105 – 15945 – 10706 – 32.9%

• Total denotes errors reported by the validity checker.

• Inner is obtained as Total reduced by the number of dependent library errors.

• Relative difference is computed as
Errors(Type rules)−Errors(CAP rules)

Errors(Type rules)

152 C e r t i f i e d At ta c h m e n t Pat t e r n s

The validity checkers reported errors for all classes, not just those
discovered in the library itself. In order to get results only for the
current library classes, the total number of errors was decreased
by the number of errors reported for all (recursively) dependent
libraries. To avoid duplicated errors, checks for inherited features
were disabled, i. e., only immediate features were subject to valid-
ity checks. In total the code base had more than 1.7 millions of
lines with library sizes varying from a few hundred to a few hun-
dred thousand lines of code.
For all libraries the analysis based on type rules reported larger
number of errors compared to the analysis based on CAPs. In
order to see the effect, the relative difference was computed be-
tween the number of reported errors for two kinds of analyses. It
ranges from 15% to 50% for aggregate code and from 0% to 65%
for individual libraries. On average the CAP-based analysis trig-
gers about 33% fewer spurious errors than the type-based one.
This includes all types of errors, i. e., void safety errors for at-
tributes, arguments and feature calls in addition to errors related
to local variables. Therefore, the net effect for local variables is
even higher.
The results were normalized and sorted by code size (figure 6.12)
to see if there is any correlation between library size and num-
ber of detected errors as well as between library size and im-
provement demonstrated by CAP-based analysis. It appears to
be none. However, there seems to be a correlation with an ab-
straction level of a library. The effect of CAP-based rules is much
higher for more abstract libraries such as a general graph pro-
cessing library (graph), multi-platform GUI toolkit (vision and vi-
sion2), preferences management (preference_reg), multi-platform
persistent library (store) or GUI docking (docking). The libraries
that are closer to an underlying platform – such as a general
threading library (thread), Java connector (eiffel2java), external
process launching library (process), Windows API wrapper (wel),
POSIX API wrapper (eposix) – exhibit much less effect. The rea-
son is that they operate on lower level that requires expanded
rather than reference types and therefore are more immune to
null pointer dereferencing at the library level.
The results demonstrate significant improvements in terms of ac-
cepted code that translates into lower cost required to adapt an
existing library to void safety or to develop a new library due
to less demanding validity rules. Consequently, the CAP-based

6.4 Practical experience 153

8
4

3
8

4
3

9
4

4
5

9

7
9

5

1
1

5
7

1
3

0
3

1
3

9
1

1
4

5
3

1
9

8
2

2
7

6
7

3
2

1
0

5
2

3
3

5
4

9
5

6
9

5
8

7
1

4
6

8
0

2
4

8
7

2
6

8
9

7
6

1
1

5
4

3

1
2

7
6

9
1

4
3

9
1

2
0

1
2

6

2
2

8
0

6
4

9
0

3
7

5
7

7
5

7

8
8

1
7

8

8
9

6
4

8

9
0

9
8

9
9

2
7

1
4

3
6

6
3

8
4

8
0

3
8

2
6

Lines of Code

go
bo

_e
xt

en
si

on
ev

en
t

uu
id

pa
tt

er
ns di
ff

ba
se

_e
xt

en
si

on
vi

si
on

2
_e

xt
en

si
on

en
co

di
ng

pa
rs

e
th

re
ad

w
iz

ar
d

w
eb

ei
ff

el
2

ja
va le

x
m

em
or

y_
an

al
yz

er
ti

m
e

pr
oc

es
s

pr
ef

er
en

ce
s_

re
g

gr
ap

h
i1

8
n

ne
t

co
m

ed
it

or
st

or
e

m
el

do
ck

in
g

vi
si

on
ba

se
w

el
ep

os
ix

vi
si

on
2

go
bo

0

5

10

15

20

25

30

35

8.93

5.99

N
um

be
r

of
re

po
rt

ed
er

ro
rs

pe
r

1
K

LO
C

(l
ow

er
is

be
tt

er
)

Type-based
CAPs-based
Type-based Average
CAPs-based Average

Figure 6.12. Relative number of errors reported for void-unsafe open-
source libraries with type-based and CAP-based local void
safety rules.

154 C e r t i f i e d At ta c h m e n t Pat t e r n s

analysis replaced type-based analysis for local variables in the
compiler implementation in [15].

6.5 Related work

As we have seen in chapter 4, most null safety solutions rely on
additional type marks to denote attachment status of a type. The
approach is applied uniformly without any distinction to class at-
tributes, arguments and local variables ([6, 17, 51, 62, 70]). While
all the solutions are perfectly sound, usability and user experi-
ence are not considered a top priority for the language rules. This
work inspects if the type-based void safety rules for local vari-
ables are reasonable for real life code or if they can be relaxed.
It demonstrates that all required information in this case can be
derived from code. This is similar to intraprocedural analysis per-
formed by various static analyzers like the Checker Framework
[72].
Also, other void safety proposals do no discuss any methodology
to enable development of large systems where a complete set
of classes is not readily available. My work addresses the issue
by respecting exceptional behavior and explaining how it can be
used when only a partial subset of concrete classes is available.
Formalizations of language type systems are not new. Ger-
win Klein and Tobias Nipkow formalized a subset of Java in
Isabelle/HOL ([33]). Later in [41] Andreas Lochbihler formalized
Java memory model for concurrency. In either case the goal was
to demonstrate absence of “method not found” errors in pro-
grams that are valid for a statically typed object-oriented lan-
guage. Void safety rules formalized in this work cover a differ-
ent aspect, absence of “object not found” errors that seems to
be less demanding, because it is easier to deal with such types
of errors. Nevertheless, it remains an important source of bugs
in modern software, and formalizing safety rules in a machine-
checkable way is an important step towards verified and safe soft-
ware systems.
An algorithm to compute a set of attached variables might seem
to be quite similar to definite assignment rules of [21] and for-
malized in [33]. However, it differs in several important aspects.
Contemporary definite assignment and presented here transfer

6.6 Conclusion 155

functions do take into account context of branches with different
outcome of preceding conditions, while formalization in [33, 41]
does not. Moreover, a set of definitely assigned variables does
not depend on initial set of variables. Such a set is useless be-
cause an uninitialized variable cannot be used as a source of a
reattachment. This is different for void safety. Both attached and
detachable variables can be used as a source or as a target of
a reattachment. Therefore, unlike definite assignment, changes
of a variable attachment state is two-way. Moreover, described
here void safety rules rely on computation of greatest fixed points
for loops. This is not needed for definite assignment checks. Fur-
thermore, monotonicity of a transfer function becomes essential
not only for soundness proofs, but also for showing that validity
rules can be programmatically checked by a compiler.

6.6 Conclusion

In contrast to the previous solutions, this work proposes to re-
frain from using type declarations of local variables to check that
they are not Void and relies solely on certified attachment pat-
terns that allow for deriving attachment status from the code
itself. It presents formally specified void safety rules using the
Isabelle/HOL proof assistant and demonstrates superiority of the
proposed validity rules compared to the type-based rules using
benchmarks on real source code. Main contributions of this work
are:
CAP-based safety rules for local variables Specification of void

safety rules for local variables is done solely in terms of
certified attachment patterns rather than a type system.

Machine-checkable formalization of void safety rules Void
safety validity rules for local variables are formally spec-
ified in Isabelle/HOL that enables machine-checkable
proofs of their soundness (see chapter 7). In particular the
formalization includes:
Generalization of boolean operators A general represen-

tation of arbitrary boolean operators is proposed in a
form of specially crafted conditional expressions that
greatly simplifies formalization and makes it applica-
ble to languages with different sets of the operators.

156 C e r t i f i e d At ta c h m e n t Pat t e r n s

Introduction of “design mode” When designing large
real-world programs, it is essential to enable devel-
opment without a complete set of concrete classes.
Unlike regular typing rules, void safety does not allow
for leaving uninitialized variables of an attached type.
The proposed mechanism allows for dealing with
such gradual development without disabling validity
rules during the design phase.

Addition of positive and negative scopes The rules for
branching constructs take into account which branch
is taken. A similar scheme can be used to adapt defi-
nite assignment rules described in [33] and later used
in [41] to prove Java -like type system soundness to
match current Java rules [21].

Specification of rules for loops. This work gives a de-
tailed specification of transfer function equations and
a validity predicate used for loops and proves why
they can be used in the language specification preserv-
ing finiteness of the static analysis.

Quantitative comparison to a type-based solution Practical
uselessness of attachment annotations for local variables
is demonstrated on a real representative open source code
base that shows practical advantages of using CAP-based
rules instead of type-based ones.

7
S o u n d n e s s :
M e c h a n i c a l ly -
C h e c k e d

P r o o f s

7.1 Overview

A complete proof that a void-safe program does not cause ac-
cess on void target at run-time involves all three elements of
the mechanism: a type system, restrictions for object initializa-
tion and certified attachment patterns. A soundness proof for
the void-safe type system is similar to class-based type system
soundness proofs and relies on the conformance principle that a
variable of an attached type may be assigned only an expression
of an attached type. This establishes an invariant that as soon as a
variable of an attached type receives a value, it remains attached
all the time. The proof can be carried out similar to regular type
system soundness proofs, including those done in proof assis-
tants like [33, 41].
The soundness proof for object initialization is similar to the one
described in [69] with two major differences. Firstly, the free sta-
tus of a current object does not last until the end of a creation
procedure, but only up to the point when all attributes are set,
with the reservation that the creation procedure is not called by
another one with an incompletely initialized Current. Secondly,
annotations are replaced with the requirement to avoid qualified
feature calls in the context with incompletely initialized objects.
For initialization of Current two situations are possible. In the first
case all attributes of the current class are set and there are no in-
completely initialized objects in the current context. Because all
reachable objects are fully initialized and all attributes of the cur-
rent class are properly set, the current object is deeply initialized

157

158 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

and can be freely used before the creation procedure finishes. In
the second case either some attributes of the current class are not
properly set or the context has references to objects that are not
completely initialized. Because qualified calls are disallowed in
these conditions, the uninitialized attributes cannot be accessed
and access on void target is impossible. Due to the requirement
to set all attributes at the end of a creation procedure, all these
objects will have all attributes set, and, taking into account that
the only reachable objects are either previously fully initialized
or are new with all attributes pointing to the old or new objects,
i. e., also fully initialized, all objects become fully initialized in
the context where all attributes of the current class are set and no
callers passed an uninitialized Current.
In terms of [69] a reference to the current object is in the free
state and all calls on it and all arguments of features, where it
is passed, should be marked respectively. Given that qualified
feature calls are forbidden in this case, we are left with unqual-
ified feature calls and creation procedure calls. For unqualified
calls, the effect of the special notation is achieved by preventing
accesses on uninitialized attributes (according to the rules, all fea-
tures involved in unqualified feature calls in a creation procedure
are subject to the same checks as the ones applied to this creation
procedure). For creation procedure calls, the requirement to have
no direct or indirect qualified feature calls ensures the uninitial-
ized objects do not escape into code not related to object creation.
The rest of the proof is similar to the one described in [69].
The soundness proof for certified attachment patterns is based
on the invariant that any local variable in the set of attached vari-
ables has an associated non-void value at run-time. The main dis-
similarity from the type system and object initialization sound-
ness proofs is that if a variable is attached before an expression,
there is no guarantee it will be attached after the expression.
Therefore, the corresponding equations of the transfer functions
are much more complicated (e. g., compare figure 5.6 and fig-
ures 6.5 to 6.8). As explained in section 6.3.3, the implementation
for certified attachment patterns uses the same code as the one for
object initialization, augmented with removal of variables from
the set of attached variables and with the new rules for scopes.
Because there is no previous work with a mechanically-checked
soundness proof for certified attachment patterns, in this chapter
I focus on this part of the soundness proofs only. It covers several

7.1 Overview 159

important aspects of the model not reflected previously in one
piece, namely:

• formalization in a proof assistant – none of the existing
work on null safety is accompanied with a mechanically-
checked proof, though there are such proofs for a type sys-
tem ([33, 41]);

• “design mode” – exceptions are an essential part of the se-
mantics and a methodology to work with incomplete sets of
classes in a void-safe setting (section 6.2.4) and significantly
affect proofs, in particular, when combined with scopes (see
next), however they are not reflected in some models of null-
safe programs ([42]);

• positive and negative scopes – different branches of condi-
tional expressions are not reflected in the definite assign-
ment analysis in [33, 41], a very simplified version of con-
ditions is used in [43], the rules are formulated in terms of
generated byte code rather than source code in [42, 67], and
branching instructions are commonly ignored by authors of
object initialization proposals ([3, 61, 64, 69]);

• non-monotone single step – unlike transfer functions for
definite variable assignment in [33, 41] or object initializa-
tion in [69] where a set of variables that are initialized be-
fore an expression is a subset of the set after this expression,
sets of attached variables before and after an expresson can-
not be ordered, in particular, this leads to the requirement
to find a fixed point for a loop that is not required in other
analyses.

In order to cover all elements of void safety, a soundness proof
has to involve a void-safe type system, object initialization rules
and certified attachment patterns. Provided that the proofs for
the first two are similar to previous work, this chapter is devoted
to the soundness proofs for certified attachment patterns only.
The proofs have been checked with Isabelle 2016. Isabelle/HOL
theories form a structure similar to an acyclic inheritance graph
in an object-oriented language (see [74]). Figure 7.1 gives a birds-
eye overview of theory dependencies. The complete theories code
is available in appendix B.
The theory names in the picture are truncated for brevity. The
names marked with an apostrophe (’) correspond to the theo-
ries that take attachment status into account. As one can see, the

160 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

Type

ValueType’

Env

Env’

Value’ Expr Mem State

TranFun

BigStep

Mem’

ExprValid StateValid

Safe

Figure 7.1. Simplified graph of theories.

big-step semantics theory does not depend on attachment prop-
erties. Indeed, except for program reflection and generic types, at-
tachment properties do not change run-time behavior. They just
guarantee absence of calls on void target. The theories structure
confirms that attachment-aware theories are mostly subject for
compile time checks and have no effect on execution apart from
making it safe.
The formalization is done with a big-step semantics style that is
known to be suitable for proving preservation properties (“noth-
ing bad ever happens”), but has issues with proving progress
properties (“something good always happens”). This limitation
is addressed by considering two different semantics: void-unsafe
and void-safe. Both demonstrated to be equivalent as soon as
void safety rules are satisfied. A similar proof scheme can be ap-
plied to small-step semantics to prove progress property in that
formalism if required.

7.2 State validity 161

7.2 State validity

A property that a local variable considered attached at compile
time has an associated object at run-time is captured by the no-
tion of a valid state. A state of a program is modeled by two func-
tions: a function that maps local variable names to their values
(a stack) and a function that maps memory addresses to object
values (a heap). This work discusses only local variables, so the
heap part can be arbitrary. Information about local variable types
is available from an environment Γ .

Definition 7.1. B.20.1
p. 233

A local state l is valid with respect to an environment
Γ iff for every local in Γ the state l has a value for this local:

Γ ` l
√
s
E ≡ ∀ n T. Γ n = bTc −→ (∃ v. l n = bvc)

Definition 7.2. B.20.1
p. 234

A local state l is valid with respect to an attachment
set A iff for any local variable name in A there is a local variable of this
name in l attached to an object provided that A is not >:

A ` l
√
s
A ≡

A 6= > −→ (∀ n. n ∈> A −→ (∃ v. l n = bvc ∧ v 6= Voidv))

Definition 7.3 (Void-safe state). For an environment Γ and an at-
tachment set A, a state (l, h) is void-safe iff it is valid with respect to Γ
and A at the same time:

B.20.1
p. 236

Γ , A ` (l, h)
√
s ≡ Γ ` l

√
s
E ∧ A ` l

√
s
A

For an environment Γ , a state s is attachment-valid iff it is void-safe for
Γ and an empty attachment set:

B.20.3
p. 238

Γ ` s
√
s ≡ Γ , d∅e ` s

√
s

Most important properties of the state validity function are anti-
monotonicity and state validity preservation when the corre-
sponding attachment set changes:

Lemma 7.1 (Attachment state anti-monotonicity). B.20.1
p. 235

B 6 A ∧ A 6= > ∧ A ` l
√
s
A =⇒ B ` l

√
s
A

Lemma 7.2. B.20.1
p. 235

Detaching, attaching and updating a local:

A ` l
√
s
A =⇒ A 	 name ` l(name 7→ value)

√
s
A

value 6= Voidv ∧ A ` l
√
s
A =⇒ A ⊕ name ` l(name 7→ value)

√
s
A

value 6= Voidv ∧ A ` l
√
s
A =⇒ A ` l(name 7→ value)

√
s
A

162 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

7.3 The semantics

The language semantics is defined in a big-step style as an
Isabelle/HOL inductive predicate on transitions from an initial
expression-state pair to a resulting one (figures 7.2 and 7.3). The
rules are similar to those used in type system soundness proofs
(e. g., [32, 33, 41]). The key differences are in the additional rules
for object tests and in a modified rule for feature calls.
An object test evaluates to True if the expression evaluates to an
object of an expected type (TestTrue). In this case the local stor-
age is updated for the object test local with the computed object.
The specification uses an abstract function has_type that is not
instantiated. Therefore, the proofs do not depend on the actual
run-time type check.
If either of the conditions is not met, e. g., the expression evalu-
ates to Void or to an object of a non-conforming type, the state is
not changed and the object test evaluates to False (TestFalse).
Note that there is only one (non-exceptional) rule for a feature
call. This is the major difference from the traditional big-step
semantics specifications. What if a target of a call will be Void?
Would not it mean that execution may be stuck? The answer is
given in section 7.4.2.
The exception propagation rules (figure 7.3) are similar to the
rules used in type soundness proofs.
Conventionally the big-step semantics is shown to end up for a
given expression in a final state, meaning an exception or a value.

Definition 7.4 (Final expression).B.6.2
p. 182

An expression is called final if it
is an exception or a value:

Final e = ((∃ v. e = Value v) ∨ e = Exception)

Lemma 7.3 (Finality of big-step semantics).B.9.2
p. 186

If there is a big-step
transition for an expression e from state s to an expression e’ and state
s’ then e’ is final:

Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒ Final e ′

7.3 The semantics 163

B.9.1
p. 184Γ ` 〈Value v, (l, m)〉 ⇒ 〈Value v, (l, m)〉

Value

l n = bvc
Γ ` 〈Local n, (l, m)〉 ⇒ 〈Value v, (l, m)〉

Local

Γ ` 〈e1, s〉 ⇒ 〈unit, s ′〉 ∧ Γ ` 〈e2, s ′〉 ⇒ 〈e2 ′, s ′ ′〉
Γ ` 〈e1 ;; e2, s〉 ⇒ 〈e2 ′, s ′ ′〉

Seq

Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉
Γ ` 〈n ::= e, s〉 ⇒ 〈unit, (l(n 7→ v), m)〉

Assign

Γ n = bTc ∧ instance m T = b(m ′, v)c
Γ ` 〈create n, (l, m)〉 ⇒ 〈unit, (l(n 7→ v), m ′)〉

Create

Γ n = bTc ∧ instance m T = None
Γ ` 〈create n, (l, m)〉 ⇒ 〈Exception, (l, m)〉

Createfail

Γ ` 〈e, s〉 ⇒ 〈Value v, se〉 ∧ v 6= Voidv ∧

Γ ` 〈es, se〉 [⇒] 〈map Value vs, s ′〉
Γ ` 〈e · f (es), s〉 ⇒ 〈unit, s ′〉

Call

Γ ` 〈b, s〉 ⇒ 〈Truec, s ′〉 ∧ Γ ` 〈e1, s ′〉 ⇒ 〈e1 ′, s ′ ′〉
Γ ` 〈if b then e1 else e2 end, s〉 ⇒ 〈e1 ′, s ′ ′〉

IfTrue

Γ ` 〈b, s〉 ⇒ 〈Falsec, s ′〉 ∧ Γ ` 〈e2, s ′〉 ⇒ 〈e2 ′, s ′ ′〉
Γ ` 〈if b then e1 else e2 end, s〉 ⇒ 〈e2 ′, s ′ ′〉

IfFalse

Γ ` 〈e, s〉 ⇒ 〈Truec, s ′〉
Γ ` 〈until e loop b end, s〉 ⇒ 〈unit, s ′〉

LoopTrue

Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉 ∧ Γ ` 〈b, se〉 ⇒ 〈unit, sc〉 ∧
Γ ` 〈until e loop b end, sc〉 ⇒ 〈c ′, s ′〉
Γ ` 〈until e loop b end, s〉 ⇒ 〈c ′, s ′〉

LoopFalse

Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉 ∧ v 6= Voidv ∧ v has_type T
Γ ` 〈attached T e as n, s〉 ⇒ 〈Truec, (l(n 7→ v), m)〉

TestTrue

Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉 ∧
¬ (v 6= Voidv ∧ v has_type T)

Γ ` 〈attached T e as n, s〉 ⇒ 〈Falsec, (l, m)〉
TestFalse

Γ ` 〈[], s〉 [⇒] 〈[], s〉
ArgNil

Γ ` 〈e, s〉 ⇒ 〈Value v, se〉 ∧ Γ ` 〈es, se〉 [⇒] 〈es ′, s ′〉
Γ ` 〈e · es, s〉 [⇒] 〈Value v · es ′, s ′〉

ArgCons

Figure 7.2. Big-step semantics: regular cases.

164 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

B.9.1
p. 184 Γ ` 〈Exception, s〉 ⇒ 〈Exception, s〉

Exception

Γ ` 〈e1, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈e1 ;; e2, s〉 ⇒ 〈Exception, s ′〉

Seqex

Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈n ::= e, s〉 ⇒ 〈Exception, s ′〉

Assignex

Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉

Callex

Γ ` 〈e, s〉 ⇒ 〈Value v, se〉 ∧
Γ ` 〈es, se〉 [⇒] 〈map Value vs @ (Exception · es ′), s ′〉

Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉
CallArg-ex

Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈e · es, s〉 [⇒] 〈Exception · es, s ′〉

Argex

Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈attached t e as n, s〉 ⇒ 〈Exception, s ′〉

Testex

Γ ` 〈b, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈if b then e1 else e2 end, s〉 ⇒ 〈Exception, s ′〉

Ifex

Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉
Γ ` 〈until e loop b end, s〉 ⇒ 〈Exception, s ′〉

Loopex

Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉∧ Γ ` 〈b, se〉 ⇒ 〈Exception, s ′〉
Γ ` 〈until e loop b end, s〉 ⇒ 〈Exception, s ′〉

LoopFalse-ex

Figure 7.3. Big-step semantics: exception propagation.

7.4 Safety

7.4.1 Preservation theorem

Anti-monotonicity of an attachment state allows to prove that as
soon as the state is valid in one of the branches of a conditional
expression, it is valid for the expression as a whole. Intuitively
there is more information in one branch of a conditional expres-
sion and therefore there are more attached variables, so if a state
is valid for one branch it is valid for the whole expression with
less attached variables.

7.4 Safety 165

Lemma 7.4. B.21.1
p. 248

If a local state l is valid in a context of either branch of a
conditional expression, it is valid in the context of the whole expression:

A B+ c B e1 ` l
√
s
A ∧ A B+ c B e1 6= > =⇒

A B if c then e1 else e2 end ` l
√
s
A

A B− c B e2 ` l
√
s
A ∧ A B− c B e2 6= > =⇒

A B if c then e1 else e2 end ` l
√
s
A

Proof. Follows from the definition of the transfer function and
lemma 7.1.

The big-step semantics preserves valid state for both exceptional
(denoted by >, see section 6.2.4) and non-exceptional attachment
sets (denoted by dae):

Lemma 7.5. B.21.1
p. 240

Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 ∧ Γ , > ` s
√
s =⇒ Γ , > ` s ′

√
s

Lemma 7.6. B.21.1
p. 241

Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 ∧ Γ , dae ` s
√
s =⇒ ∃ b. Γ , dbe `

s ′
√
s

On the other hand, if a final expression (definition 7.4) is not an
exception, the attachment set for the initial expression remains
non-exceptional. If there is a transition from an initial state for a
void-safe expression to a final state that generates a value rather
than an exception, then the code after the expression is reachable.
Therefore, if void-safe analysis of the expression starts with an
attachment set different from a top element, it produces a non-
top attachment set:

Lemma 7.7 (Reachability preservation). B.21.1
p. 242

Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 ∧ A ` e : T ∧ e ′ 6= Exception ∧ A 6= >
=⇒ A B e 6= >

Proof. By structural induction on the big-step semantics predicate
for all mutually recursive transfer functions.

The main result of this section is an attachment preservation the-
orem telling that if an expression is void-safe and its evaluation
starts in a void-safe state and completes, then it either results in
an exception or in a value that is not Void if the expression type
is attached. The following lemma states this formally.

166 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

Lemma 7.8 (Attachment preservation step).B.21.2
p. 268

Γ , A ` s
√
s ∧

A = dae ∧

Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 ∧
A ` e : T ∧

e ′ 6= Exception =⇒ ∃T ′. A B e ` e ′ : T ′∧ T ′6 T

Proof. The proof is done by structural induction on the big-step
semantics predicate and uses lemmas 7.2 to 7.4. For every induc-
tion case it shows that a state remains valid using lemmas 7.5
and 7.6 and taking into account preservation of non-exceptional
attachment set (lemma 7.7) and applying an inductive hypothesis
to finish the proof.

Replacing variables with initial state values, the lemma gives:

Theorem 7.1 (Attachment preservation).B.21.2
p. 272

Γ ` 〈e, ∅〉 ⇒ 〈e ′, s ′〉 ∧ ` e : Attached

=⇒ e ′= Exception ∨ (∃ v. e ′= Value v ∧ v 6= Voidv)

7.4.2 Equivalence of safe and unsafe semantics

Ideally void safety should be a corollary of two theorems: preser-
vation and progress. The third safety theorem – determinism –
makes no sense for most concurrent environments. Unfortunately
the progress theorem cannot be proved with classical big-step se-
mantics because it deals only with final states (lemma 7.3) and
cannot describe intermediate ones. To address this issue there
are at least two options:

• Use “clocked” big-step semantics [65] or a similar abstrac-
tion that distinguishes between a stuck state and divergence
([2, 59, 66]).

• Use small-step semantics.
The first option is straightforward: the current rules can be
adapted accordingly. The main drawback is missing support for
concurrency that cannot be easily expressed with big-step seman-
tics.
The second option is more attractive because it allows for prov-
ing the progress theorem directly and can enable concurrency in

7.4 Safety 167

the semantics. Unfortunately, it is not applicable to the current
formalization because it does not provide type information. In
the big-step rules for conditional expressions and loops the se-
mantics is specified with an assumption that a branch or exit con-
dition is evaluated to a boolean value. Intermediate proof steps
involving the branch or exit condition in small-step semantics
need to be accompanied with type information to make sure the
resulting value is indeed of the boolean type.
Can the requirement to have type information in the semantics
rules be avoided, so that only the part of interest is kept for con-
sideration? Here is an idea. Let’s assume that the type system is
sound. Then both type preservation and progress theorems are
true with respect to the associated small-step semantics. Assume
that the original semantics is specified not taking void safety
into account. Then consider semantics that expects void safety. If
both, void-safety aware and void-safety unaware, semantics can
be shown to be equivalent for programs that satisfy void safety
rules, preservation and progress theorems can be derived for the
void-safe semantics from their void-unsafe counterparts.
The approach can be demonstrated with big-step semantics as
well. To this end two semantics definitions are considered. The
void-safe version is the one described in section 7.3. The void-
unsafe version differs from the safe one just by a single rule. The
rule makes sure that if in a void-unsafe program a target of a call
is Void, an exception is raised (figure 7.4). The exception here is
the famous NullPointerException.
The void-safe version does not handle the case when the target
of a call is Void. Therefore, it can become stuck if at some step it
encounters such a target. From the programming language point
of view this corresponds to undefined behavior at run-time. On
the other hand, the void-unsafe version raises an exception in
the same situation and proceeds. The following theorem connects
both versions for void-safe programs and shows that void-safe
semantics is never stuck because of null pointer dereferencing.

Lemma 7.9. B.22
p. 277

Void-unsafe semantics has the same effect as a void-safe
one for a void-safe expression in a void-safe state: A ` e : T ∧ Γ , A ` s√
s ∧ A 6= > =⇒

Γ ` 〈e, s〉 ⇒ ′ 〈e ′, s ′〉 =⇒ Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉

Proof. By structural induction on the unsafe version of the se-
mantics. In the case Call

unsafe
fail a call target’s type is Attached

168 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

B.9.1
p. 184

Safe:

Γ ` 〈e, s〉 ⇒ 〈Value v, se〉 ∧ v 6= Voidv ∧

Γ ` 〈es, se〉 [⇒] 〈map Value vs, s ′〉
Γ ` 〈e · f (es), s〉 ⇒ 〈unit, s ′〉

Call

B.10.1
p. 188

Unsafe:

Γ ` 〈e, s〉 ⇒ ′ 〈Value v, se〉 ∧ v 6= Voidv ∧

Γ ` 〈es, se〉 [⇒] ′ 〈map Value vs, s ′〉
Γ ` 〈e · f (es), s〉 ⇒ ′ 〈unit, s ′〉

Call
unsafe

Γ ` 〈e, s〉 ⇒ ′ 〈Value v, s ′〉 ∧ v = Voidv
Γ ` 〈e · f (es), s〉 ⇒ ′ 〈Exception, s ′〉

Call
unsafe
fail

Figure 7.4. Feature call rule in safe and unsafe big-step semantics.

because the call expression is void-safe. With the induction hy-
pothesis we get that the target evaluates to a non-void value. This
contradicts a premise of Call

unsafe
fail .

For Loopex from the premise of void-safety of a loop we have
that its exit condition e is void-safe in A B∗ (− e B c).
Using lemma 6.5 with monotonicity of the validity predicate
(lemma 6.10) the expression e appears to be void-safe in A. With
the induction hypothesis this proves the case.
Proofs for compound instructions such as conditional, sequence,
etc. in addition rely on lemma 7.7.

So, if an expression is void-safe, it gives exactly the same result
regardless of the semantics behind. This effectively demonstrates
absence of NullPointerException in null-safe programs.

Theorem 7.2 (Semantics equivalence).B.22
p. 277

Void-safe (⇒) and void-
unsafe (⇒ ′) semantics of a void-safe program with an initial void-safe
state are equivalent: ` e

√
e ∧ Γ ` s0

√
s =⇒ Γ ` 〈e, s0〉 ⇒ ′ 〈v, s〉 =

Γ ` 〈e, s0〉 ⇒ 〈v, s〉

Proof. Safe semantics trivially implies unsafe one because it has
fewer rules. The reverse is proved using lemma 7.9.

The complete theory code can be found in appendix B. All the
scripts have been checked with Isabelle 2016.

7.5 Related work 169

7.5 Related work

Type system soundness of conventional object-oriented lan-
guages became a hot research area with a release of Java that
claimed to be absolutely type-safe (cf. [29] that explicitly states
undefined behavior of C++ in certain cases). Gerwin Klein and
Tobias Nipkow in [33] presented a formal proof for a subset
of Java in Isabelle/HOL using big-step semantics. Unfortunately
big-step semantics is not good for reasoning about concurrent
programs. Andreas Lochbihler in [41] updated the proof to use
small-step semantics instead and formalized Java memory model.
The current work focuses on void safety rules for Eiffel described
in chapter 6. The concurrency model of Eiffel is quite different
from Java. Even though Benjamin Morandi et al. in [52] formal-
ized the concurrency semantics in Maude, its correctness is not
formally proved. Therefore, this work uses big-step semantics to
describe and to reason about void safety guarantees.
Leaving concurrency aside, big-step semantics does not distin-
guish between stuck and diverging states. Jeremy Siek in [65,
66] demonstrated how to deal with that, so the big-step seman-
tics could be changed accordingly. Instead, this work shows that
safe and unsafe versions of big step semantics become equivalent
when void safety rules are satisfied.
Soundness proofs for null-safe analyses of object-oriented lan-
guages either consider branching expressions in a very limited
form or do not consider them at all. Manuel Fahndrich and
Songtao Xia in [18] specify a conditional expression in the form
ifnull x then y else z that is quite similar to non-voidness tests.
Unfortunately, they do not consider how to handle nesting of
such expressions, ignore loops, do not include exceptions in the
formal model and do not provide a complete soundness proof
for their delayed types proposal.
Xin Qi and Andrew C. Myers describe in [61, 62] masked types as
a type-based solution to the problem of object initialization. Their
formal model omits branching expressions and exceptions alto-
gether. The formal model used by Yoav Zibin et al. in [76] and the
one used by Marco Servetto et al. [64], both to prove soundness
of object initialization, suffer from the same issues. Branching ex-
pressions are also omitted by Alexander J. Summers and Peter
Müller in [69, 70]. Therefore, these models cannot be used for cer-

170 S o u n d n e s s : M e c h a n i c a l ly - C h e c k e d P ro o f s

tified attachment patterns. However, Alexander J. Summers and
Peter Müller provide a detailed soundness proof for a very sim-
ple language that can be extended with missing constructs and
modified to replace annotation-based typing rules with dataflow-
analysis-based ones.
Chris Male et al. describe a Java bytecode verifier in [42]. The for-
mal model misses exceptions, though it has a conditional instruc-
tion ifceq and a control transfer operator goto. Fausto Spoto
proposes in [67] a way to deal with exceptions in Java bytecode,
but does not include the goto instruction that is needed to model
loops. Amogh Margoor and Raghavan Komondoor in [43] pro-
pose two techniques to improve precision of null-dereference ver-
ification, but their formal model does not include exceptions,
loops and nested conditional expressions. Because in all three
cases the analysis is done on bytecode, there is no immediate cor-
respondence with the source code rules. In fact, in the second
and the third analyses no language rules are employed at all and
potential null pointer dereferencing is checked using abstract in-
terpretation.

7.6 Conclusion

Certified attachment patterns are an essential part of void safety
guarantees in modern OO languages. This work formalizes them
in Isabelle/HOL and proves some safety properties with respect
to big-step semantics. The main contributions of the work are:
Mechanical verification of the preservation theorem for void-

safe programs The preservation theorem for void-safe pro-
grams is formally specified and mechanically checked in a
proof assistant environment with the accompanying defini-
tions and formal property proofs for a valid execution state.

Formal proof of conditional equivalence of safe and unsafe se-
mantics Void-safe and void-unsafe big-step operational se-
mantics are formally specified and proved to be equivalent
for void-safe programs.

A
C o d e M i g r at i o n

A.1 General information

Legend:
N – non-void-safe code
T – transitional void safety
C – complete void safety

171

172 C o d e M i g r at i o n

Table A.1. Void safety status of public libraries.

Library 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7.0 7.1 7.2 7.3 13.11 14.05 15.01 15.08 15.12 16.05

api-wrapper T N T T T T T T C C C C C C C
argument_parser N T N T T T C C C C C C C C C C
base N T T N T T T C C C C C C C C C C
base_extension N N T N T T T C C C C C C C C C C
base_original N N N N
cocoa T T T T T T T T C C C C C C
com N N N N N N N N N N N N N N N N N
curl N N T N T T T T T T T T C C C C C
diff N N T N T T T T T T T T C C C C C
docking N N N N T T T T T T T T T T T T T
editor N N N N T T T T T T T T T T T T T
edk T T T T T T T T T T T C
eiffel2java N N T N T T T T T T C C C C C C C
encoding N N T N T T T T T T C C C C C C C
event N N N N T T T T T T T T C C C C C
gobo_extension N N N N T N N N N N T T C C C C C
graph N N N N T T T T T T T T T T T T T
i18n N N T N T T T T T T T T C C C C C
iphone T T T T T T T C C C C C
kmp_matcher N T T T C C C C C C C C C C
lex N N T N T T T T T T T T C C C C C
libevent T T T T T T T C C C C C
logging T T T T C C C C C C C
mel N N N N N N N N N N N N N N N
memory_analyzer N N N N T T T T T T T T T T T T T
net N N T N T T T T T T T T C C C C C
net_ipv6 N
objective_c T T T T T T T T C C C C C C
parse N N T N T T T T T T T T C C C C C
patterns N N N N N N N N N N N N N N N N N
preferences N N T N T T T T T T T T C C C C C
process N N T N T T T T T T T T C C C C C
ribbon T T T T T T C C C C C
store N N T N T T T T T T T T C C C C C
testing N T N T T T T T T T T C C C C C
testing_eweasel T T T T T T T C C C C C
thread N N T N T T T C C C C C C C C C C
time N N T N T T T C C C C C C C C C C
uri C C C C C
uuid N N N N T T T C C C C C C C C C C
vision N N N N
vision2 N N T N T T T T T T C C C C C C C
vision2_extension N T N T T T T T T T C C C C C C
vision2_for_gtk12 N T N N N
web N N T N T T T T T T C C C C C C C
web_browser T T T T T C C C C C C C
wel N N T N T T T T T T C C C C C C C
wizard N N N N N N N N N N N N N N N N N
xml_parser T T C C C C C C C C C C
xml_tree T T T C C C C C C C C C
zmq C C C C C C

A.1 General information 173

Table A.2. LOC in public libraries in different releases.

Library 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7.0 7.1 7.2 7.3 13.11 14.05 15.01 15.08 15.12 16.05

api-wrapper 0 0 1386 1445 1445 1448 1448 1448 1445 1447 1447 1447 1447 1447 1447 1447 1447

argument_parser 0 5657 6505 6523 6605 6625 6625 6645 6566 6798 6798 6798 6798 6798 6797 6797 6797

base 89648 95311 91844 92302 96851 98396 99567 100113 101337 110379 111965 113921 122960 123037 120725 120731 121422

base_extension 1157 1157 1174 2667 2706 2713 2713 2766 2869 3026 3555 3555 3541 3538 3538 3538 3573

base_original 80905 80905 0 0 80905 80905 0 0 0 0 0 0 0 0 0 0 0

cocoa 0 0 12080 0 23049 23049 23049 23049 23049 23102 23102 23129 23169 23169 23169 23169 23169

com 14391 14391 14462 14462 14462 14463 14463 14463 14270 14318 14318 14318 14318 14318 14318 14318 14318

curl 1817 2107 2199 2214 2259 2259 2259 2993 3517 3517 3521 3529 3556 3556 3556 3556 3556

diff 795 795 1047 1047 1044 1059 1059 1059 1059 1064 1064 1064 1041 1041 1041 1041 1041

docking 57757 58378 60842 61282 64287 64493 64718 64679 64307 64592 64592 64584 64585 64585 64545 64545 64517

editor 20126 20588 21598 21672 22669 22489 22511 22586 22728 22734 22768 23243 23262 23262 23270 23269 23267

edk 0 0 0 0 0 3110 3110 3111 3113 3113 3113 3113 3113 3113 3113 3113 3171

eiffel2java 5233 5233 5259 5259 5259 5259 5259 5259 5259 5259 5260 5260 5260 5260 5260 5260 5260

encoding 1391 2567 2924 2924 2985 3353 3393 3433 3433 3490 3488 3514 3515 3516 3516 3516 3516

event 384 384 384 384 384 384 384 390 390 390 390 390 390 390 390 390 390

gobo_extension 84 296 299 299 299 299 299 299 299 285 290 290 290 290 290 290 290

graph 8976 8979 8979 8979 9354 9375 9476 9471 9309 9345 9345 9345 9345 9345 9345 9345 9316

i18n 11543 11564 12996 12996 13157 13163 13163 13170 13165 13489 13499 13499 13333 13334 13334 13334 13334

iphone 0 0 0 0 0 2720 2720 2722 2722 2722 2722 2722 2722 2722 2722 2722 2722

kmp_matcher 0 0 0 873 953 953 953 953 953 945 945 946 946 946 946 946 946

lex 5495 5495 5963 5963 5991 5992 5992 5992 5992 5992 5993 5993 5857 5857 5857 5857 5857

libevent 0 0 0 0 0 1047 1047 1054 1054 1054 1054 1054 1124 1124 1124 1124 1124

logging 0 0 0 0 0 0 1261 1307 1307 1307 1307 1307 1605 1605 1605 1605 1605

mel 49037 49037 0 0 49037 49037 49037 49037 0 0 0 0 0 0 0 0 0

memory_analyzer 6958 7828 7826 7826 8120 8120 8120 8120 8124 8126 8131 8131 8131 8131 8228 8228 8228

net 12769 12769 14891 14882 14949 14943 14951 14978 14982 14980 14980 14980 14905 14905 15455 15455 15455

net_ipv6 0 14634 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

objective_c 0 0 1255 0 6061 6061 6061 6047 6047 6049 6049 6071 6081 6081 6081 6081 6081

parse 1453 1453 1660 1660 1660 1660 1660 1660 1660 1660 1668 1668 1689 1689 1689 1689 1689

patterns 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459 459

preferences 8756 8768 8905 8925 8961 9024 9038 9040 9011 10838 10838 10838 10870 10870 10918 10930 10930

process 8024 8459 8970 8969 9404 9409 9438 9448 9108 9232 9232 9232 8999 8999 8999 8999 8999

ribbon 0 0 0 0 0 0 5546 7062 7062 7799 7688 7688 7653 7650 7650 7650 7650

store 22806 22806 23712 23715 24666 24497 25470 26486 30033 30719 30697 30697 32646 32618 32612 32612 32612

testing 0 4129 6110 6168 6347 6110 6118 6119 6139 6253 6249 6249 6230 6237 6235 6235 6235

testing_eweasel 0 0 0 0 0 7815 7815 7815 7815 7800 7800 7800 7758 7758 7758 7758 7758

thread 1982 1987 2656 2656 3158 3117 3117 3122 3104 3104 3104 3104 3104 3104 3104 3104 3104

time 7146 7146 7244 7244 7250 7250 7250 7220 7255 7298 7768 7768 7768 7768 7768 7768 7768

uri 0 0 0 0 0 0 0 0 0 0 0 0 3191 3191 3206 3222 3222

uuid 394 394 521 521 519 519 519 519 519 525 525 525 525 525 525 525 525

vision 88178 88178 0 0 88178 88178 0 0 0 0 0 0 0 0 0 0 0

vision2 355384 355670 376537 376641 387511 387568 388177 378748 421957 422993 424111 277289 278142 278380 278690 278690 278582

vision2_extension 0 1303 1303 1303 1324 1324 1324 1324 1308 1527 1527 1527 1521 1521 1521 1521 1521

vision2_for_gtk12 0 15320 15320 15320 15320 15320 0 0 0 0 0 0 0 0 0 0 0

web 3210 3210 3243 3243 3243 3243 3243 3243 3243 3239 3235 3235 3235 3235 3235 3235 3235

web_browser 0 0 0 0 0 2400 2400 2375 2351 2371 2371 2287 2406 2406 2406 2406 2406

wel 90989 92015 93790 93795 94008 94007 94396 95875 96850 97105 97421 97429 97960 97960 97975 97975 97985

wizard 2767 2767 2767 2767 2762 2762 2762 2762 2766 2454 2454 2454 2454 2454 2454 2454 2454

xml_parser 0 0 0 0 0 5474 5480 5480 5553 8105 8105 8115 9357 9357 9357 9366 9366

xml_tree 0 0 0 0 0 3705 3991 4056 4068 4422 4422 4422 4422 4422 4422 4460 4463

zmq 0 0 0 0 0 0 0 0 0 0 0 2222 2223 2223 2223 2223 2223

174 C o d e M i g r at i o n

A.2 Migration from void-unsafe to transi-
tional level of void safety

Table A.3. Migration of non-void-safe code to transitional void safety.

Library LOC Classes
Inserted Deleted Modified Total Modified Total

api_wrapper 0 0 0 1447 12 12

argument_parser 21 1 18 6645 3 38

base 9859 9313 927 100113 100 398

base_extension 53 0 13 2766 5 22

cocoa 30 3 7 23129 3 123

curl 27 0 1 3556 1 18

diff 0 23 259 1041 2 8

edk 98 40 67 3171 10 35

eiffel2java 1 0 11 5260 2 22

encoding 0 2 15 3488 20 20

event 0 0 0 390 0 2

gobo_extension 0 0 0 290 0 4

i18n 67 233 498 13333 17 70

iphone 0 0 0 2722 0 23

kmp_matcher 0 0 0 953 0 3

lex 100 236 488 5857 13 20

libevent 70 0 0 1124 1 11

logging 0 0 0 1307 9 9

net 57 132 584 14905 23 80

objective_c 26 4 14 6071 5 44

parse 33 12 138 1689 6 9

preferences 99 67 229 10870 17 57

process 35 268 209 8999 12 38

ribbon 114 149 19 7653 9 71

store 3500 1551 2411 32646 95 184

testing 38 57 153 6230 12 35

testing_eweasel 10 52 140 7758 11 61

thread 6 1 4 3122 2 26

time 0 30 39 7220 4 36

uuid 0 0 0 519 0 3

vision2 1662 544 2663 424111 1358 2078

vision2_extension 0 0 0 1527 0 18

web 0 4 31 3235 1 24

web_browser 0 0 0 2371 7 7

wel 385 69 263 97421 103 582

xml_parser 3 3 4 5480 2 35

xml_tree 12 0 4 4068 2 28

Total 53867 10659 60525 788984 2912 3825

A.2 Migration from void-unsafe to transitional level of void safety 175

go
bo

_e
xt

en
si

on
ev

en
t

uu
id

km
p_

m
at

ch
er

di
ff

ba
se

_e
xt

en
si

on
vi

si
on

2
_e

xt
en

si
on

pa
rs

e
cu

rl
th

re
ad

en
co

di
ng

w
eb

ei
ff

el
2

ja
va le

x
te

st
in

g
ar

gu
m

en
t_

pa
rs

er
ti

m
e

m
em

or
y_

an
al

yz
er

pr
ef

er
en

ce
s

pr
oc

es
s

gr
ap

h
i1

8
n

ne
t

ed
it

or
st

or
e

do
ck

in
g

w
el

ba
se

vi
si

on
2

1

10

100

1 000

10 000

100 000

1 000 000

2
9

9

3
8

4

5
1

9 9
5

3

1
0

4
7

1
1

7
4

1
3

0
3

1
6

6
0

2
1

9
9

2
6

5
6

2
9

2
4

3
2

4
3

5
2

5
9

5
9

6
3

6
1

1
0

6
5

0
5

7
2

4
4

8
1

2
0

8
9

0
5

8
9

7
0

9
3

5
4

1
2

9
9

6

1
4

8
9

1

2
2

6
6

9

2
3

7
1

2

6
4

2
8

7

9
3

7
9

0

9
5

3
1

1 3
7

6
5

3
7

LO
C

Inserted
Deleted
Modified
Library size

Figure A.1. Number of lines (LOC) changed in non-void-safe public li-
braries to bring them to transitional void safety level.

176 C o d e M i g r at i o n

A.3 Migration from transitional to complete
level of void safety

Table A.4. Migration from transitional to complete void safety.

Library LOC Classes
Inserted Deleted Modified Total Modified Total

argument_parser 996 148 1200 6505 37 37

base 8422 2759 1280 95311 147 375

base_extension 19 3 113 1174 6 6

curl 398 306 248 2199 17 14

diff 273 22 151 1047 8 8

docking 3880 875 6048 64287 183 223

editor 1198 201 1222 22669 53 80

eiffel2java 36 10 835 5259 22 22

encoding 415 58 261 2924 17 17

event 0 0 0 384 0 2

gobo_extension 0 0 0 299 0 4

graph 393 18 621 9354 33 42

i18n 2670 1238 1334 12996 73 69

kmp_matcher 90 10 99 953 3 3

lex 524 56 869 5963 20 20

memory_analyzer 316 22 330 8120 24 35

net 2797 675 2137 14891 80 80

parse 208 1 275 1660 9 9

preferences 352 215 1467 8905 40 40

process 1254 743 966 8970 45 36

store 1005 99 2926 23712 128 128

testing 4833 2852 220 6110 47 31

thread 690 21 232 2656 24 24

time 108 10 1074 7244 36 36

uuid 0 2 15 519 2 3

vision2 20977 110 22895 376537 1254 1877

vision2_extension 0 0 82 1303 15 15

web 127 94 483 3243 24 24

wel 1886 111 13142 93790 565 565

Total 16306 12794 9209 822487 1867 4254

A.3 Migration from transitional to complete level of void safety 177

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

gobo_extension
event
uuid

kmp_matcher
diff

libevent
logging

api_wrapper
vision2_extension

parse
web_browser

iphone
base_extension

thread
edk
web

encoding
curl

xml_tree
eiffel2java

xml_parser
lex

objective_c
testing

argument_parser
time

ribbon
testing_eweasel

process
preferences

i18n
net

cocoa
store

wel
base

vision2

290

390

519

953

1041

1124

1307

1447

1527

1689

2371

2722

2766

3122

3171

3235

3488

3556

4068

5260

5480

5857

6071

6230

6645

7220

7653

7758

8999

10870

13333

14905

23129

32646

97421

100113

424111

LOC

Modified
Inserted
Deleted
Library size

Figure A.2. Number of lines (LOC) changed in transitionally void-safe
public libraries to make them completely void-safe.

B
Th e o r i e s c o d e

B.1 Common definitions

theory Common imports Main
∼∼/src/HOL/Library/LaTeXsugar
∼∼/src/HOL/Library/OptionalSugar

begin

no_notation floor (b_c)
no_notation ceiling (d_e)
notation Some (b_c)

end

B.2 Identifiers

theory Name imports Common begin

— Local variable name
type_synonym vname = string

— Feature name
type_synonym fname = string

— Class name
type_synonym cname = string

end

B.3 Types

theory Type imports Name begin

type_synonym ′a generic_list = ′a list

— A type is either a unit type (no value) or a class type (some value).
datatype ′a type =

179

180 Th e o r i e s c o d e

UnitType |
ClassType ′a cname ′a type generic_list

end

B.4 Type environment

theory Environment imports Type begin

type_synonym ′a environment = vname⇒ ′a type option

end

B.5 Values

theory Value imports Type begin

datatype ′basic_value object_value =
Basic ′basic_value |
Boolean bool |
User

datatype ′basic_value reference_value =
Void |

AttachedObject ′basic_value object_value

datatype ′basic_value value =
Unit |
Object ′basic_value object_value |
Reference ′basic_value reference_value

definition is_value v ≡ v 6= Unit

primrec is_expanded :: ′basic_value value⇒ bool where
is_expanded Unit←→ False |
is_expanded (Object _)←→ True |
is_expanded (Reference _)←→ False

primrec is_reference :: ′basic_value value⇒ bool where
is_reference Unit←→ False |
is_reference (Object _)←→ False |
is_reference (Reference _)←→ True

lemma is_reference v =⇒ ¬ is_expanded v

B.5 Values 181

by (cases v, simp_all)

lemma is_expanded v =⇒ ¬ is_reference v
by (cases v, simp_all)

lemma value_is_expanded_or_reference:
is_value v =⇒ is_expanded v ∨ is_reference v

by (cases v, simp_all add: is_value_def)

primrec is_attached :: ′basic_value value⇒ bool where
is_attached Unit = True |
is_attached (Object _) = True |
is_attached (Reference x) = (case x of AttachedObject _⇒ True | _⇒ False)

abbreviation Voidv ≡ Reference Void

lemma is_attached_if_not_void [iff]: is_attached x←→ x 6= Voidv
by (cases x, insert reference_value.exhaust, force+)

primrec is_basic :: ′basic_value value⇒ bool where
is_basic Unit = False |
is_basic (Object x) = (case x of Boolean _⇒ True | Basic _⇒ True | _⇒

False) |
is_basic (Reference x) = False

primrec is_boolean :: ′basic_value value⇒ bool where
is_boolean Unit = False |
is_boolean (Object x) = (case x of Boolean _⇒ True | _⇒ False) |
is_boolean (Reference x) = False

lemma expanded_is_attached: is_expanded v =⇒ is_attached v
by (cases v, simp_all)

lemma basic_is_expanded: is_basic v =⇒ is_expanded v
by (cases v, simp_all)

lemma boolean_is_basic: is_boolean v =⇒ is_basic v
proof (cases v)

case (Object x)
moreover assume is_boolean v
ultimately show ?thesis by (cases x, simp_all)

qed simp_all

lemma basic_is_attached: is_basic v =⇒ is_attached v
by auto

182 Th e o r i e s c o d e

lemma boolean_is_expanded: is_boolean v =⇒ is_expanded v
by (simp add: boolean_is_basic basic_is_expanded)

lemma boolean_is_attached: is_boolean v =⇒ is_attached v
by auto

end

B.6 Expression

theory Expression imports Value begin

b.6.1 Expressions

Abstract syntax.

datatype (′b, ′t) expression =

Value ′b value |
Local vname |
Sequence (′b, ′t) expression (′b, ′t) expression (_ ;; _ [80, 81] 80) |
Assignment vname (′b, ′t) expression (_ ::= _ [1000, 81] 81) |
Creation vname (create _ [81] 81) |
Call (′b, ′t) expression fname (′b, ′t) expression list
(_ · _ ′(_ ′) [90, 99, 0] 90) |

If (′b, ′t) expression (′b, ′t) expression (′b, ′t) expression
(if _ then _ else _ end [80, 80, 80] 81) |

Loop (′b, ′t) expression (′b, ′t) expression (until _ loop _ end [80, 81] 81) |
Test ′t option (′b, ′t) expression vname (attached _ _ as _ [80, 81, 81] 81) |
Exception

lemma value_neq_exception[simp, intro]: (Value v) 6= Exception
by simp

abbreviation unit ≡ Value Unit

lemma inj_Value [simp]: inj Value
by (simp add: inj_on_def)

b.6.2 Final computations

Is an expression final?

inductive final :: (′b, ′t) expression⇒ bool where
final (Value v) |
final Exception

B.7 Object heap 183

declare final.cases [elim]

declare final.intros [simp]

lemmas finalE [consumes 1, case_names Value Exception] = final.cases

lemma final_iff : final e = (∃ v. e = Value v) ∨ (e = Exception)
by auto

b.6.3 Boolean expressions

abbreviation Falsec ≡ Value (Object (Boolean False))
abbreviation Truec ≡ Value (Object (Boolean True))

Does an expression definitely evaluate to False?

fun is_false where
is_false_true: is_false (c ;; Falsec)←→ True |
is_false_false: is_false _←→ False

Does an expression definitely evaluate to True?

fun is_true where
is_true_true: is_true (c ;; Truec)←→ True |
is_true_false: is_true _←→ False

end

B.7 Object heap

theory Memory imports Value begin

locale memory =

fixes
instantiated :: ′memory⇒ ′a type ⇒ (′memory × ′b value) option

assumes
direct_instance: instantiated m t = b(m ′, v)c =⇒ v 6= Unit ∧ is_attached v

begin
end

definition
instantiated :: ′memory⇒ ′a type⇒ (′memory × ′b value) option

where
instantiated m t = Some (m, Reference (AttachedObject User))

declare instantiated_def [simp]

interpretation basic_memory: memory

184 Th e o r i e s c o d e

instantiated
by (unfold_locales, auto)

definition instance ≡ instantiated ::
′memory⇒ ′a type⇒ (′memory × ′b value) option

consts is_instance_of :: ′b value⇒ ′t⇒ bool

end

B.8 Memory state

theory State imports Value begin

type_synonym ′value_type local_state =
vname⇒ ′value_type value option

type_synonym (′value_type, ′memory) state =
′value_type local_state × ′memory

end

B.9 Void-safe Big-step semantics

theory BigStep imports
Environment
Expression
Memory
State

begin

b.9.1 Big-step semantics rules

abbreviation has_type_rep (infix has ′_type 60) where
has_type_rep v T ≡ (T = None ∨ is_instance_of v T)

Void-safe big-step semantics predicate: there is no rule for a call when
its target is void.

inductive
big_step :: ′a environment⇒ (′b, ′t) expression⇒ (′b, ′m) state⇒
(′b, ′t) expression⇒ (′b, ′m) state⇒ bool
(_ ` 〈_, _〉 ⇒ 〈_, _〉 [80, 0, 0] 81)

and
big_steps :: ′a environment⇒ (′b, ′t) expression list⇒ (′b, ′m) state⇒

B.9 Void-safe Big-step semantics 185

(′b, ′t) expression list⇒ (′b, ′m) state⇒ bool
(_ ` 〈_, _〉 [⇒] 〈_, _〉 [80, 0, 0] 81)

for
Γ :: ′a environment

where
Value: Γ ` 〈Value v, (l, m)〉 ⇒ 〈Value v, (l, m)〉 |
Local: l n = bvc =⇒ Γ ` 〈Local n, (l, m)〉 ⇒ 〈Value v, (l, m)〉 |
Seq: [[Γ ` 〈e1, s〉 ⇒ 〈unit, s ′〉; Γ ` 〈e2, s ′〉 ⇒ 〈e2 ′, s ′ ′〉]] =⇒
Γ ` 〈e1;; e2, s〉 ⇒ 〈e2 ′, s ′ ′〉 |

Assign: [[Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉]] =⇒
Γ ` 〈n ::= e, s〉 ⇒ 〈unit, (l (n 7→ v), m)〉 |

Create: [[Γ n = bTc; instance m T = b(m ′, v)c]] =⇒
Γ ` 〈create n, (l, m)〉 ⇒ 〈unit, (l (n 7→ v), m ′)〉 |

Createfail: [[Γ n = bTc; instance m T = (None::(′m × ′b value) option)]] =⇒
Γ ` 〈create n, (l, m)〉 ⇒ 〈Exception, (l, m)〉 |

Call: [[
Γ ` 〈e, s〉 ⇒ 〈Value v, se〉;
v 6= Voidv;
Γ ` 〈es, se〉 [⇒] 〈map Value vs, s ′〉
]] =⇒ Γ ` 〈e · f (es), s〉 ⇒ 〈unit, s ′〉 |

If true: [[Γ ` 〈b, s〉 ⇒ 〈Truec, s ′〉; Γ ` 〈e1, s ′〉 ⇒ 〈e1 ′, s ′ ′〉]] =⇒
Γ ` 〈if b then e1 else e2 end, s〉 ⇒ 〈e1 ′, s ′ ′〉 |

If false: [[Γ ` 〈b, s〉 ⇒ 〈Falsec, s ′〉; Γ ` 〈e2, s ′〉 ⇒ 〈e2 ′, s ′ ′〉]] =⇒
Γ ` 〈if b then e1 else e2 end, s〉 ⇒ 〈e2 ′, s ′ ′〉 |

Looptrue: [[Γ ` 〈e, s〉 ⇒ 〈Truec, s ′〉]] =⇒
Γ ` 〈until e loop b end, s〉 ⇒ 〈unit, s ′〉 |

Loopfalse: [[
Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉;
Γ ` 〈b, se〉 ⇒ 〈unit, sc〉;
Γ ` 〈until e loop b end, sc〉 ⇒ 〈c ′, s ′〉

]] =⇒ Γ ` 〈until e loop b end, s〉 ⇒ 〈c ′, s ′〉 |
Testtrue: [[Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉; v 6= Voidv ∧ v has_type T]] =⇒
Γ ` 〈attached T e as n, s〉 ⇒ 〈Truec, (l (n 7→ v), m)〉 |

Testfalse: [[Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉; ¬ (v 6= Voidv ∧ v has_type T)]] =⇒
Γ ` 〈attached T e as n, s〉 ⇒ 〈Falsec, (l, m)〉 |

Nil: Γ ` 〈[], s〉 [⇒] 〈[], s〉 |
Cons: [[Γ ` 〈e, s〉 ⇒ 〈Value v, se〉; Γ ` 〈es, se〉 [⇒] 〈es ′, s ′〉]] =⇒
Γ ` 〈e # es, s〉 [⇒] 〈(Value v) # es ′, s ′〉 |

— Exception propagation
Exception: Γ ` 〈Exception, s〉 ⇒ 〈Exception, s〉 |
SeqEx: [[Γ ` 〈e1, s〉 ⇒ 〈Exception, s ′〉]] =⇒ Γ ` 〈e1;; e2, s〉 ⇒ 〈Exception, s ′〉 |
AssignEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈n ::= e, s〉 ⇒ 〈Exception, s ′〉 |

CallEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉 |

CallArgEx: [[

186 Th e o r i e s c o d e

Γ ` 〈e, s〉 ⇒ 〈Value v, se〉;
Γ ` 〈es, se〉 [⇒] 〈map Value vs @ Exception # es ′, s ′〉
]] =⇒ Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉 |

IfEx: [[Γ ` 〈b, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈if b then e1 else e2 end, s〉 ⇒ 〈Exception, s ′〉 |

LoopEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈until e loop b end, s〉 ⇒ 〈Exception, s ′〉 |

LoopfalseEx: [[
Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉;
Γ ` 〈b, se〉 ⇒ 〈Exception, s ′〉

]] =⇒ Γ ` 〈until e loop b end, s〉 ⇒ 〈Exception, s ′〉 |
TestEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈attached t e as n, s〉 ⇒ 〈Exception, s ′〉 |

ConsEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈e # es, s〉 [⇒] 〈Exception # es, s ′〉

lemmas big_step_induct =
big_step_big_steps.inducts[split_format(complete)]
declare big_step_big_steps.intros[simp,intro]
inductive_cases ValueE[elim]: Γ ` 〈Value v, s〉 ⇒ 〈c ′, s ′〉
inductive_cases LocalE[elim!]: Γ ` 〈Local n, s〉 ⇒ 〈c ′, s ′〉
inductive_cases SeqE[elim!]: Γ ` 〈c1;; c2, s〉 ⇒ 〈c ′, s ′〉
inductive_cases AssignE[elim!]: Γ ` 〈v::=x, s〉 ⇒ 〈c ′, s ′〉
inductive_cases CreateE[elim!]: Γ ` 〈create v, s〉 ⇒ 〈c ′, s ′〉
inductive_cases CallE[elim!]: Γ ` 〈v · f (a), s〉 ⇒ 〈c ′, s ′〉
inductive_cases IfE[elim!]: Γ ` 〈if b then c1 else c2 end, s〉 ⇒ 〈c ′, s ′〉
inductive_cases LoopE[elim!]: Γ ` 〈until e loop c end, s〉 ⇒ 〈c ′, s ′〉
inductive_cases TestE[elim!]: Γ ` 〈attached t e as x, s〉 ⇒ 〈c ′, s ′〉
inductive_cases ExceptionE[elim!]: Γ ` 〈Exception, s〉 ⇒ 〈c ′, s ′〉
inductive_cases ConsE[elim]: Γ ` 〈e # es, s〉 [⇒] 〈es ′, s ′〉

b.9.2 Final state

Is an expression final?

definition Final :: (′b, ′t) expression⇒ bool where
Final e←→ (∃ v. e = Value v) ∨ e = Exception

Are expressions final?

definition
Finals es←→
(∃ vs. es = map Value vs) ∨
(∃ vs es ′ . es = map Value vs @ (Exception # es ′))

If there is a transition according to the big-step predicate, the resulting
expression is final.

B.10 Void-unsafe Big-step semantics 187

lemma
fixes
e e ′ :: (′b, ′t) expression and es es ′ :: (′b, ′t) expression list

shows
big_step_final: Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒ Final e ′ and
big_step_finals: Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉 =⇒ Finals es ′

proof (induction rule: big_step_big_steps.inducts)
case Cons then show ?case using Finals_def append_Cons
by (metis (no_types) list.simps(9))

next
case ConsEx then show ?case using Finals_def map_append by blast

qed (simp_all add: Final_def Finals_def)

There is only an identity transition from a final expression.

lemma no_progress:
assumes Final e
shows Γ ` 〈e, s〉 ⇒ 〈e, s〉

using assms
by (metis Value Exception Final_def prod.collapse)

If final expression is not an exception, it is a value.

lemma big_step_final_value:
assumes

HS: Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 and
HE: e ′ 6= Exception

obtains v where e ′= Value v
proof −

from HS have Final e ′ by (rule big_step_final)
with HE have ∃ v. e ′= Value v by (simp add: Final_def)
then show ?thesis using that by auto

qed

end

B.10 Void-unsafe Big-step semantics

theory BigStep_unsafe imports
Environment
Expression
Memory
State

begin

188 Th e o r i e s c o d e

b.10.1 Big-step semantics rules

abbreviation has_type_rep (infix has ′_type 60) where
has_type_rep v T ≡ (T = None ∨ is_instance_of v T)

Void-unsafe big-step semantics predicate: there is a rule for a call when
its target is void.

inductive
big_step :: ′a environment⇒ (′b, ′t) expression⇒ (′b, ′m) state⇒
(′b, ′t) expression⇒ (′b, ′m) state⇒ bool
(_ ` 〈_, _〉 ⇒ 〈_, _〉 [80, 0, 0] 81)

and
big_steps :: ′a environment⇒ (′b, ′t) expression list⇒ (′b, ′m) state⇒
(′b, ′t) expression list⇒ (′b, ′m) state⇒ bool
(_ ` 〈_, _〉 [⇒] 〈_, _〉 [80, 0, 0] 81)

for
Γ :: ′a environment

where
Value: Γ ` 〈Value v, (l, m)〉 ⇒ 〈Value v, (l, m)〉 |
Local: l n = bvc =⇒ Γ ` 〈Local n, (l, m)〉 ⇒ 〈Value v, (l, m)〉 |
Seq: [[Γ ` 〈c1, s〉 ⇒ 〈unit, s ′〉; Γ ` 〈c2, s ′〉 ⇒ 〈c2 ′, s ′ ′〉]] =⇒
Γ ` 〈c1;; c2, s〉 ⇒ 〈c2 ′, s ′ ′〉 |

Assign: [[Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉]] =⇒
Γ ` 〈n ::= e, s〉 ⇒ 〈unit, (l (n 7→ v), m)〉 |

Create: [[Γ n = bTc; instance m T = b(m ′, v)c]] =⇒
Γ ` 〈create n, (l, m)〉 ⇒ 〈unit, (l (n 7→ v), m ′)〉 |

Createfail: [[Γ n = bTc; instance m T = (None::(′m × ′b value) option)]] =⇒
Γ ` 〈create n, (l, m)〉 ⇒ 〈Exception, (l, m)〉 |

Call: [[
Γ ` 〈e, s〉 ⇒ 〈Value v, se〉;
v 6= Voidv;
Γ ` 〈es, se〉 [⇒] 〈map Value vs, s ′〉
]] =⇒ Γ ` 〈e · f (es), s〉 ⇒ 〈unit, s ′〉 |

Callfail: [[Γ ` 〈e, s〉 ⇒ 〈Value v, s ′〉; v = Voidv]] =⇒
Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉 |

If true: [[Γ ` 〈b, s〉 ⇒ 〈Truec, s ′〉; Γ ` 〈c1, s ′〉 ⇒ 〈c1 ′, s ′ ′〉]] =⇒
Γ ` 〈if b then c1 else c2 end, s〉 ⇒ 〈c1 ′, s ′ ′〉 |

If false: [[Γ ` 〈b, s〉 ⇒ 〈Falsec, s ′〉; Γ ` 〈c2, s ′〉 ⇒ 〈c2 ′, s ′ ′〉]] =⇒
Γ ` 〈if b then c1 else c2 end, s〉 ⇒ 〈c2 ′, s ′ ′〉 |

Looptrue: [[Γ ` 〈e, s〉 ⇒ 〈Truec, s ′〉]] =⇒
Γ ` 〈until e loop c end, s〉 ⇒ 〈unit, s ′〉 |

Loopfalse: [[
Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉;
Γ ` 〈c, se〉 ⇒ 〈unit, sc〉;
Γ ` 〈until e loop c end, sc〉 ⇒ 〈c ′, s ′〉

]] =⇒ Γ ` 〈until e loop c end, s〉 ⇒ 〈c ′, s ′〉 |

B.10 Void-unsafe Big-step semantics 189

Testtrue: [[Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉; v 6= Voidv ∧ v has_type T]] =⇒
Γ ` 〈attached T e as n, s〉 ⇒ 〈Truec, (l (n 7→ v), m)〉 |

Testfalse: [[Γ ` 〈e, s〉 ⇒ 〈Value v, (l, m)〉; ¬ (v 6= Voidv ∧ v has_type T)]] =⇒
Γ ` 〈attached T e as n, s〉 ⇒ 〈Falsec, (l, m)〉 |

Nil: Γ ` 〈[], s〉 [⇒] 〈[], s〉 |
Cons: [[Γ ` 〈e, s〉 ⇒ 〈Value v, se〉; Γ ` 〈es, se〉 [⇒] 〈es ′, s ′〉]] =⇒
Γ ` 〈e # es, s〉 [⇒] 〈(Value v) # es ′, s ′〉 |

— Exception propagation
Exception: Γ ` 〈Exception, s〉 ⇒ 〈Exception, s〉 |
SeqEx: [[Γ ` 〈c1, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈c1;; c2, s〉 ⇒ 〈Exception, s ′〉 |

AssignEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈n ::= e, s〉 ⇒ 〈Exception, s ′〉 |

CallEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉 |

CallArgEx: [[
Γ ` 〈e, s〉 ⇒ 〈Value v, se〉;
Γ ` 〈es, se〉 [⇒] 〈map Value vs @ Exception # es ′, s ′〉
]] =⇒ Γ ` 〈e · f (es), s〉 ⇒ 〈Exception, s ′〉 |

IfEx: [[Γ ` 〈b, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈if b then c1 else c2 end, s〉 ⇒ 〈Exception, s ′〉 |

LoopEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈until e loop c end, s〉 ⇒ 〈Exception, s ′〉 |

LoopfalseEx: [[
Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉;
Γ ` 〈c, se〉 ⇒ 〈Exception, s ′〉

]] =⇒ Γ ` 〈until e loop c end, s〉 ⇒ 〈Exception, s ′〉 |
TestEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈attached _ e as _, s〉 ⇒ 〈Exception, s ′〉 |

ConsEx: [[Γ ` 〈e, s〉 ⇒ 〈Exception, s ′〉]] =⇒
Γ ` 〈e # es, s〉 [⇒] 〈Exception # es, s ′〉

no_notation big_step (_ ` 〈_, _〉 ⇒ 〈_, _〉 [80, 0, 0] 81)
no_notation big_steps (_ ` 〈_, _〉 [⇒] 〈_, _〉 [80, 0, 0] 81)
abbreviation big_step_rep (_ ` 〈_, _〉 ⇒ ′ 〈_, _〉 [80, 0, 0] 81)
where big_step_rep ≡ big_step

abbreviation big_steps_rep (_ ` 〈_, _〉 [⇒] ′ 〈_, _〉 [80, 0, 0] 81)
where big_steps_rep ≡ big_steps

declare big_step_big_steps.intros[simp,intro]

end

190 Th e o r i e s c o d e

B.11 Types with attachment status

theory TypeAttachment imports Type begin

b.11.1 Type abstraction describing attachment status

datatype attachment_type =
Attached | — Expanded or attached reference type
Detachable — Detachable reference type

b.11.1.1 Attachment types lattice

instantiation attachment_type :: complete_lattice
begin
definition Inf X ≡ (if Attached ∈ X then Attached else Detachable)
definition Sup X ≡ (if Detachable ∈ X then Detachable else Attached)
definition inf A B ≡ (if A = Attached then Attached else B)
definition sup A B ≡ (if A = Detachable then Detachable else B)
definition [simp]: bot ≡ Attached
definition [simp]: top ≡ Detachable
definition less_eq A B ≡ A = B ∨ (A = Attached ∧ B = Detachable)
definition less A B ≡ A = Attached ∧ B = Detachable

instance proof
fix x y :: attachment_type
show (x < y) = (x 6 y ∧ ¬ y 6 (x::attachment_type))
using less_attachment_type_def less_eq_attachment_type_def by auto

show x 6 x
by (simp add: less_eq_attachment_type_def)

show inf x y 6 x
by (metis attachment_type.exhaust inf_attachment_type_def

less_eq_attachment_type_def)
show inf x y 6 y
by (metis attachment_type.exhaust inf_attachment_type_def

less_eq_attachment_type_def)
show x 6 sup x y
by (metis attachment_type.exhaust sup_attachment_type_def

less_eq_attachment_type_def)
show y 6 sup x y
by (metis attachment_type.exhaust sup_attachment_type_def

less_eq_attachment_type_def)
show Inf {} = (top :: attachment_type)
by (simp add: Inf_attachment_type_def)

show Sup {} = (bot :: attachment_type)
by (simp add: Sup_attachment_type_def)

next

B.11 Types with attachment status 191

fix x y z :: attachment_type
assume x 6 y y 6 z
then show x 6 z using less_eq_attachment_type_def by auto

next
fix x y :: attachment_type
assume x 6 y y 6 x
then show x = y using less_eq_attachment_type_def by auto

next
fix x y z :: attachment_type
assume x 6 y x 6 z
then show x 6 inf y z using inf_attachment_type_def by auto

next
fix x y z :: attachment_type
assume y 6 x z 6 x
then show sup y z 6 x using sup_attachment_type_def by auto

next
fix x :: attachment_type and A
assume x ∈ A
then show Inf A 6 x
by (metis Inf_attachment_type_def attachment_type.exhaust

less_eq_attachment_type_def)
next
fix x :: attachment_type and A
assume x ∈ A
then show x 6 Sup A
by (metis Sup_attachment_type_def attachment_type.exhaust

less_eq_attachment_type_def)
next
fix z :: attachment_type and A
assume

∧
x. x ∈ A =⇒ z 6 x

then show z 6 Inf A
using Inf_attachment_type_def attachment_type.exhaust
less_eq_attachment_type_def by auto

next
fix z :: attachment_type and A
assume

∧
x. x ∈ A =⇒ x 6 z

then show Sup A 6 z
using Sup_attachment_type_def attachment_type.exhaust
less_eq_attachment_type_def by auto

qed
end

instantiation attachment_type :: distrib_lattice
begin

instance proof
fix x y z :: attachment_type

192 Th e o r i e s c o d e

show sup x (inf y z) = inf (sup x y) (sup x z)
using sup_attachment_type_def by auto

qed
end

abbreviation (input) attachment_type_less_eq_rep (_→a _ [90, 90] 90)
where A→a B ≡ A 6 (B :: attachment_type)

b.11.1.2 Conformance of attachment types

lemma attachment_conforming_to_transitive [trans]:
[[A→a B; B→a C]] =⇒ A→a C
by simp

lemma attachment_conforming_to_reflexive [simp]: A→a A
by simp

lemma attachment_conforming_to_antisymmetric:
[[A→a B; B→a A]] =⇒ A = B

by simp

lemma attachment_conforming_to_asymmetric: ¬ A→a B =⇒ B→a A
using less_eq_attachment_type_def
by (metis (full_types) attachment_type.exhaust)

lemma conforms_to_detachable [simp]: T →a Detachable
using attachment_conforming_to_asymmetric less_eq_attachment_type_def
by auto

lemma conforms_to_attached [intro?]: T →a Attached =⇒ T = Attached
by (simp add: less_eq_attachment_type_def)

lemma attached_conforms_to: Attached→a T
using attachment_type.exhaust less_eq_attachment_type_def by auto

b.11.1.3 Conformance of attachment type lists

fun list_conformance :: attachment_type list⇒ attachment_type list⇒ bool
((_/ [6] _) [51, 51] 50)

where
[] [6] []←→ True
| A # As [6] B # Bs←→ A 6 B ∧ As [6] Bs
| _ [6] _←→ False

lemma conformant_lists_zip1_length:
As [6] Bs =⇒ length As = length (zip As Bs)

B.11 Types with attachment status 193

proof (induction As arbitrary: Bs, simp)
fix A As Bs
assume
A # As [6] Bs

then obtain B ′ Bs ′where B ′ # Bs ′= Bs and A 6 B ′∧ As [6] Bs ′

by (metis list.discI list.inject list_conformance.elims(2))
moreover assume∧

Bs. As [6] Bs =⇒ length As = length (zip As Bs)
ultimately show length (A # As) = length (zip (A # As) Bs) by auto

qed

lemma conformant_lists_zip2_length:
As [6] Bs =⇒ length Bs = length (zip As Bs)

proof (induction Bs arbitrary: As, simp)
fix As B Bs
assume
As [6] B # Bs

then obtain A ′ As ′where A ′ # As ′= As and A ′6 B ∧ As ′ [6] Bs
by (metis list.discI list.inject list_conformance.elims(2))

moreover assume∧
As. As [6] Bs =⇒ length Bs = length (zip As Bs)

ultimately show length (B # Bs) = length (zip As (B # Bs)) by auto
qed

lemma conformant_lists_length: As [6] Bs =⇒ length As = length Bs
by (simp only: conformant_lists_zip1_length conformant_lists_zip2_length)

b.11.1.4 Upper bound of attachment status

abbreviation (input) upper_bound A B ≡ sup A (B :: attachment_type)

abbreviation (input) lower_bound A B ≡ inf A (B :: attachment_type)

lemma upper_bound_left: A→a upper_bound A B
by simp

lemma upper_bound_right: B→a upper_bound A B
by simp

lemma upper_bound_definition:
A→a upper_bound A B ∧ B→a upper_bound A B
by simp

lemma upper_bound_commute: upper_bound A B = upper_bound B A
by (rule sup_commute)

194 Th e o r i e s c o d e

lemma upper_bound_assoc: upper_bound (upper_bound A B) C =

upper_bound A (upper_bound B C)
by (rule sup_assoc)

lemma upper_bound_conf :
A→a B =⇒ upper_bound A C→a upper_bound B C
using sup.mono by blast

lemma upper_bound_bot_left:
upper_bound A B→a Attached =⇒ A = Attached
by (simp add: conforms_to_attached)

lemma upper_bound_bot_right:
upper_bound A B→a Attached =⇒ B = Attached
by (simp add: conforms_to_attached)

lemma upper_bound_bot_left ′:
upper_bound A B = Attached =⇒ A = Attached
by (metis bot_attachment_type_def sup_eq_bot_iff)

lemma upper_bound_bot_right ′:
upper_bound A B = Attached =⇒ B = Attached
by (metis bot_attachment_type_def sup_eq_bot_iff)

lemma upper_bound_absorb_right [simp]: upper_bound Attached A = A
by (simp add: sup_attachment_type_def)

lemma upper_bound_absorb_left [simp]: upper_bound A Attached = A
by (metis bot_attachment_type_def sup_bot.right_neutral)

definition attachment_type_Union :: attachment_type set⇒ attachment_type
where

attachment_type_Union A =

(if Attached ∈ A then Attached else Detachable)

definition attachment_type_Inter :: attachment_type set⇒ attachment_type
where

attachment_type_Inter A =

(if (Detachable ∈ A) then Detachable else Attached)

b.11.1.5 Attached type properties

definition is_attached_type :: attachment_type⇒ bool where
is_attached_type t←→ t = Attached

lemma attached_is_attached [simp]: is_attached_type Attached

B.12 Values with attachment status 195

by (simp only: is_attached_type_def)

lemma is_attached_conforms_to [simp]: is_attached_type A =⇒ A→a B
by (simp add: attached_conforms_to is_attached_type_def)

lemma is_attached_not_upper_bound [simp]:
is_attached_type A =⇒ upper_bound A B = B and
is_attached_type A =⇒ upper_bound B A = B

by (auto simp add: attachment_conforming_to_antisymmetric)

lemma is_attached_conformance:
is_attached_type B −→ is_attached_type A =⇒ A→a B
using attachment_conforming_to_asymmetric is_attached_type_def
less_eq_attachment_type_def by auto

lemma conformance_consistency:
A→a B =⇒ is_attached_type B −→ is_attached_type A
using less_eq_attachment_type_def by auto

b.11.2 Attachment status of types

datatype attachment_mark =

No_attachment_mark |

Attached_mark |

Detachable_mark

type_synonym attachable_type = attachment_mark type

end

B.12 Values with attachment status

theory ValueAttachment imports TypeAttachment Value begin

b.12.1 Attachment type of simple expressions

definition declared_attachment_type_of_constant ::
′a value⇒ attachment_type (Tc)

where
Tc v = (case v of

Unit⇒ Attached |

Object _⇒ Attached |

Reference x⇒ (case x of AttachedObject _⇒ Attached | _⇒ Detachable))
declare declared_attachment_type_of_constant_def [simp]

196 Th e o r i e s c o d e

lemma expanded_attachment: is_expanded v =⇒ Tc v = Attached
by (cases v, simp_all)

lemma reference_attachment:
is_reference v =⇒ Tc v = Attached ∨ Tc v = Detachable

proof (cases v)
case (Reference x) thus ?thesis by (cases x, simp_all)

qed simp_all

definition is_attached_value :: ′a value⇒ bool where
is_attached_value v = is_attached_type (Tc v)

declare is_attached_value_def [simp]

lemma attached_value_is_attached_constant [iff]:
is_attached v←→ is_attached_value v

proof (cases v)
case (Reference x)
then show ?thesis by (cases x) (simp_all add: is_attached_type_def)

qed simp_all

lemma attached_value_is_not_void [iff]: is_attached_value v←→ v 6= Voidv
using is_attached_if_not_void by fastforce

lemma attached_typed_value_is_not_void [iff]:
Tc v = Attached←→ v 6= Voidv
using attached_value_is_not_void is_attached_type_def by auto

lemma detachable_typed_value_is_void [iff]:
Tc v = Detachable←→ v = Voidv

proof (cases v)
case (Reference x) then show ?thesis
by (cases x) (simp_all add: is_attached_type_def)

qed simp_all

end

B.13 Attachment properties of object heap

theory MemoryAttachment imports Memory ValueAttachment begin

lemma instance_is_attached:
instance m t = b(m ′, v)c =⇒ is_attached_value v

proof −
assume instance m t = b(m ′, v)c

B.14 Type environment with attachment marks 197

then have
HA: Value.is_attached v by (auto simp add: instance_def)

then show ?thesis
proof (cases v)

case (Reference x)
then show ?thesis by (cases x, insert Reference HA, simp_all)

qed simp_all
qed

lemma instance_is_not_void: instance m t = b(m ′, v)c =⇒ v 6= Voidv
using instance_is_attached using attached_value_is_not_void by simp

lemma instance_is_value: instance m t = b(m ′, v)c =⇒ is_value v
proof −

assume instance m t = b(m ′, v)c
moreover hence is_attached_value v by (rule instance_is_attached)
ultimately show ?thesis

by (simp add: basic_memory.direct_instance instance_def is_value_def)
qed

end

B.14 Type environment with attachment marks

theory EnvironmentAttachment imports TypeAttachment Environment
begin

type_synonym attachment_environment = attachment_mark environment

end

B.15 Expression with attached types

theory ExpressionAttachment imports Expression TypeAttachment begin

type_synonym ′b attachable_expression = (′b, attachable_type) expression

end

B.16 Set with absorbing top element

theory TopSet imports
∼∼/src/HOL/Lattice/Orders

198 Th e o r i e s c o d e

Common
begin

datatype ′a topset =
Top |

Set (the: ′a set) (d_e)

declare [[coercion λx:: ′a set. Set x]]

definition topset_subset :: ′a topset⇒ ′a topset⇒ bool
where

topset_subset A B ≡
case B of Top⇒ True | dbe ⇒ (case A of Top⇒ False | dae ⇒ a ⊆ b)

instantiation topset :: (type) complete_lattice
begin

definition less_eq_topset_def : less_eq_topset ≡ topset_subset
definition less_topset_def :
less n1 n2 ≡ (topset_subset n1 n2) ∧ ¬ (topset_subset n2 n1)

definition topset_union :: ′a topset⇒ ′a topset⇒ ′a topset (infixl t 65)
where

A t B ≡
case A of Top⇒ Top | Set a⇒ (case B of Top⇒ Top | Set b⇒ Set (a ∪ b))

definition topset_inter :: ′a topset⇒ ′a topset⇒ ′a topset (infixl u 70)
where

A u B ≡
case A of Top⇒ B | Set a⇒ (case B of Top⇒ A | Set b⇒ Set (a ∩ b))

definition topset_Union :: ′a topset set⇒ ′a topset where
topset_Union A = (if Top ∈ A then Top else d

⋃
{a. dae ∈ A}e)

definition topset_Inter :: ′a topset set⇒ ′a topset where
topset_Inter A = (if (∃ a. dae ∈ A) then d

⋂
{a. dae ∈ A}e else Top)

definition [simp]: Inf = topset_Inter
definition [simp]: Sup = topset_Union
definition [simp]: bot = Set {}
definition [iff]: top = Top
definition [simp]: inf = topset_inter
definition [simp]: sup = topset_union
instance proof

fix x y :: ′a topset
show (x < y) = (x 6 y ∧ ¬ y 6 x)

B.16 Set with absorbing top element 199

by (simp add: less_topset_def less_eq_topset_def)
next

fix x y :: ′a topset
show x 6 x
by (cases x, simp_all add: topset_subset_def less_eq_topset_def)

next
fix x y z :: ′a topset
assume x 6 y y 6 z
then show x 6 z
apply (cases x)
apply (cases y)

apply simp
apply (simp add: less_eq_topset_def topset_subset_def)
apply (cases z)
apply (simp add: less_eq_topset_def topset_subset_def)
apply (cases y)
apply (simp add: less_eq_topset_def topset_subset_def)
by (metis less_eq_topset_def order.trans topset.simps(5) topset_subset_def)

next
fix x y :: ′a topset
assume x 6 y y 6 x
then show x = y

apply (cases x)
apply (cases y)
apply (simp_all add: topset_subset_def less_eq_topset_def)
apply (cases y)
apply simp_all

done
next

fix x y :: ′a topset
show inf x y 6 x

apply (cases x)
apply (simp add: topset_subset_def less_eq_topset_def)
apply (cases y)
apply (simp_all add: less_eq_topset_def topset_inter_def

topset_subset_def)
done

next
fix x y :: ′a topset
show inf x y 6 y

apply (cases y)
apply (simp add: topset_subset_def less_eq_topset_def)
apply (cases x)
apply (simp_all add: topset_inter_def topset_subset_def

less_eq_topset_def)
done

200 Th e o r i e s c o d e

next
fix x y z :: ′a topset
assume x 6 y x 6 z
then show x 6 inf y z

apply (cases y)
apply (simp add: topset_inter_def)
apply (cases z)
apply (simp add: topset_inter_def)
apply (cases x)
apply (simp_all add: topset_inter_def topset_subset_def

less_eq_topset_def)
done

next
fix x y :: ′a topset
show x 6 sup x y

by (simp add: less_eq_topset_def topset_union_def topset.case_eq_if
topset_subset_def)

next
fix x y :: ′a topset
show y 6 sup x y

apply (cases x)
apply (simp add: topset_subset_def topset_union_def less_eq_topset_def)
apply (cases y)
apply (simp_all add: topset_subset_def topset_union_def

less_eq_topset_def)
done

next
fix x y z:: ′a topset
assume y 6 x z 6 x
then show sup y z 6 x

apply (cases y)
apply (simp add: topset_union_def)
apply (cases z)
apply (simp add: topset_union_def)
apply (cases x)
apply (simp_all add: topset_subset_def topset_union_def

less_eq_topset_def)
done

next
fix x:: ′a topset and A
assume x ∈ A
then show Inf A 6 x
proof (cases x)

case Top then show ?thesis by (simp add: topset_subset_def
less_eq_topset_def)

next

B.16 Set with absorbing top element 201

case (Set s)
moreover then have

⋂
{a. dae ∈ A} ⊆ s using 〈x ∈ A〉 by blast

ultimately show ?thesis using 〈x ∈ A〉 by
(auto simp add: topset_subset_def topset_Inter_def less_eq_topset_def)

qed
next

fix z:: ′a topset and A
assume

H:
∧

x. x ∈ A =⇒ z 6 x
then show z 6 Inf A
proof (cases z)

case Top with H show ?thesis
by (metis Inf_topset_def less_eq_topset_def topset.simps(4)

topset.simps(5) topset_Inter_def topset_subset_def)
next

case (Set s)
assume z = dse
with H have

∧
x. dxe ∈ A =⇒ s 6 x

using topset_subset_def less_eq_topset_def
by (metis topset.simps(5))

then have s 6
⋂

{x. dxe ∈ A} by auto
then have

HH: dse 6 d
⋂

{x. dxe ∈ A}e
by (simp add: less_eq_topset_def topset_subset_def)

show ?thesis
proof (cases Inf A)

case Top then show ?thesis
by (simp add: less_eq_topset_def topset_subset_def)

next
case (Set a)
have z = dse by (simp add: 〈z = dse〉)
also have . . . 6 d

⋂
{x. dxe ∈ A}e using HH by simp

also have . . . = Inf A using Set
by (metis Inf_topset_def topset.distinct(1) topset_Inter_def)

finally show ?thesis by simp
qed

qed
next

fix x:: ′a topset and A
assume x ∈ A
then show x 6 Sup A
proof (cases x)

case Top then show ?thesis using 〈x ∈ A〉 topset_Union_def
by (simp add: less_eq_topset_def topset_subset_def)

next
case (Set s)

202 Th e o r i e s c o d e

moreover then have s ⊆
⋃

{a. dae ∈ A} using 〈x ∈ A〉 by blast
ultimately show ?thesis using 〈x ∈ A〉

by (simp add: topset_Union_def topset_subset_def less_eq_topset_def)
qed

next
fix z:: ′a topset and A
assume

H:
∧

x. x ∈ A =⇒ x 6 z
then show Sup A 6 z
proof (cases z)

case Top with H show ?thesis
by (simp add: topset_subset_def less_eq_topset_def)

next
case (Set s)
assume z = dse
with H have

∧
x. dxe ∈ A =⇒ dxe 6 z by simp

with Set have
∧

x. dxe ∈ A =⇒ x 6 s
by (simp add: less_eq_topset_def topset_subset_def)

then have
⋃

{x. dxe ∈ A} 6 s by auto
then have

HH: d
⋃

{x. dxe ∈ A}e 6 dse
by (simp add: topset_subset_def less_eq_topset_def)

show ?thesis
proof (cases Sup A)

case Top then show ?thesis using H HH Set topset_Union_def by force
next

case (Set a)
then have Sup A = d

⋃
{x. dxe ∈ A}e

by (metis Sup_topset_def topset.distinct(1) topset_Union_def)
also have . . . 6 dse using HH by simp
also have . . . = z by (simp add: 〈z = dse〉)
finally show ?thesis by simp

qed
qed

next
show Inf {} = (top:: ′a topset) by (simp add: topset_Inter_def)

next
show Sup {} = (bot:: ′a topset) by (simp add: topset_Union_def)

qed

declare
Inf_topset_def
Sup_topset_def
bot_topset_def
inf_topset_def
sup_topset_def [simp del]

B.16 Set with absorbing top element 203

notation Top (>)

end

instantiation topset :: (type) distrib_lattice
begin

instance proof
fix x y z:: ′a topset
show sup x (inf y z) = inf (sup x y) (sup x z)

apply (cases x)
apply (metis inf_sup_absorb sup_top_left top_topset_def)
apply (cases y)
apply (metis inf_top_left sup_top_right top_topset_def)
apply (cases z)
apply (metis inf_top_right sup_top_right top_topset_def)
apply (simp add: topset_inter_def topset_union_def Un_Int_distrib

sup_topset_def)
done

qed
end

definition topset_member :: ′a⇒ ′a topset⇒ bool (infix ∈> 50)
where
x ∈> A ≡ (case A of Top⇒ True | dae ⇒ x ∈ a)

lemma topset_member_top [simp]: c ∈> >
by (simp add: topset_member_def)

lemma topset_member_set [iff]: c ∈> dae ←→ c ∈ a
by (simp add: topset_member_def)

definition topset_insert :: ′a⇒ ′a topset⇒ ′a topset where
topset_insert a B = (case B of Top⇒ Top | Set b⇒ d{x. x = a ∨ x ∈ b}e)

lemma topset_subsetI [intro!]: [[
∧

x. x ∈> A =⇒ x ∈> B; A 6= >]] =⇒ A 6 B
proof −

assume
H1:

∧
x. x ∈> A =⇒ x ∈> B and

H2: A 6= >
then obtain a where

H3: A = dae using topset.exhaust by auto
show ?thesis
proof (cases B)

case Top then show ?thesis using top_greatest [of A] by simp
next

204 Th e o r i e s c o d e

case (Set b)
with H1 H3 topset_member_def have

∧
x. x ∈ a =⇒ x ∈ b by fastforce

then have a ⊆ b by auto
with H3 Set show ?thesis
by (simp add: less_eq_topset_def topset_subset_def)

qed
qed

lemma topset_subsetD [elim, intro?]: [[A 6 B; c ∈> A]] =⇒ c ∈> B
proof (cases A)

case Top
assume

Hle: A 6 B and
Hin: c ∈> A and
HA: A = Top

then have A = > by simp
with Hle have B = > using dual_order.antisym by fastforce
then show ?thesis using Hin HA by simp

next
case (Set a)
assume

Hle: A 6 B and
Hin: c ∈> A and
HA: A = dae

show ?thesis
proof (cases B)

case Top
have c ∈> > by (rule topset_member_top)
with Top show ?thesis by simp

next
case HB: (Set b)
with Hin Hle HA show ?thesis

by (simp add: less_eq_topset_def set_mp topset_member_def
topset_subset_def)

qed
qed

lemma rev_topset_subsetD [intro?]: [[c ∈> A; A 6 B]] =⇒ c ∈> B
by (simp add: topset_subsetD)

lemma topset_subsetCE [elim]:

A 6 B =⇒ (¬ c ∈> A =⇒ P) =⇒ (c ∈> B =⇒ P) =⇒ P
— Classical elimination rule.
by (meson topset_subsetD)

lemma topset_subset_eq: A 6= > =⇒ A 6 B = (∀ x. x ∈> A −→ x ∈> B)

B.16 Set with absorbing top element 205

by blast

lemma contra_topset_subsetD: A 6 B =⇒ ¬ c ∈> B =⇒ ¬ c ∈> A by blast

lemma topset_insert_top [simp]: topset_insert x > = >
by (simp add: topset_insert_def)

lemma topset_insert_set: topset_insert x dae = dinsert x ae
by (simp add: insert_compr topset_insert_def)

lemma topset_insertI1: a ∈> topset_insert a B
by (cases B, simp_all add: topset_insert_def topset_member_def)

lemma topset_insertI2: a ∈> B =⇒ a ∈> topset_insert b B
by (cases B, simp_all add: topset_insert_def topset_member_def)

lemma topset_subset_insertI: B 6 topset_insert a B
by (cases B) (auto simp add: topset_insertI2)

lemma topset_subset_insertI2: A 6 B =⇒ A 6 topset_insert b B
apply (cases B)
apply simp

by (meson order.trans topset_subset_insertI)

lemma topset_subset_insert:
¬ x ∈> A =⇒ (A 6 topset_insert x B) = (A 6 B)

proof (cases A)

assume
H: ¬ x ∈> A

case Top with H show ?thesis by (simp add: topset_member_def)
next

case (Set a)
assume

H: ¬ x ∈> A and
HA: A = dae

then have
HM: x /∈ a by (simp add: topset_member_def)

show ?thesis
proof (cases B)

case Top then show ?thesis by (simp add: topset_member_def)
next

case (Set b)
from HM have (a ⊆ insert x b) = (a ⊆ b) by (simp add: subset_insert)
with HA Set show ?thesis

by (simp add: less_eq_topset_def topset_insert_set topset_subset_def)

206 Th e o r i e s c o d e

qed
qed

lemma topset_le_top [simp]: A 6 >
using top_greatest [of A] by simp

lemma topset_top_le [simp]: > 6 A =⇒ A = >
by (simp add: dual_order.antisym)

lemma topset_union_assoc: A t (B t C) = A t B t C
by (metis sup.assoc sup_topset_def)

lemma topset_inter_assoc: A u (B u C) = A u B u C
by (metis inf .assoc inf_topset_def)

lemma topset_union_commute: A t B = B t A
using sup.commute sup_topset_def by metis

lemma topset_inter_commute: A u B = B u A
using inf .commute inf_topset_def by metis

lemma topset_union_idem [simp]: A t A = A
by (metis sup.idem sup_topset_def)

lemma topset_inter_idem [simp]: A u A = A
by (metis inf .idem inf_topset_def)

lemma topset_union_bot_right [simp]: A t d{}e = A
by (simp add: topset.case_eq_if topset_union_def)

lemma topset_union_bot_left [simp]: d{}e t A = A
by (simp add: topset.case_eq_if topset_union_def)

lemma topset_inter_bot_right [simp]: A u d{}e = d{}e
by (metis bot_topset_def inf_bot_right inf_topset_def)

lemma topset_inter_bot_left [simp]: d{}e u A = d{}e
by (metis bot_topset_def inf_bot_left inf_topset_def)

lemma
topset_union_top_right [simp]: A t > = > and
topset_union_top_left [simp]: > t A = >
by (cases A) (simp_all add: topset_union_def)

lemma topset_union_topD1: A t B 6= > =⇒ A 6= (>:: ′a topset)

B.16 Set with absorbing top element 207

by auto

lemma topset_union_topD2: A t B 6= > =⇒ B 6= (>:: ′a topset)
by auto

lemma topset_union_topI [intro]:
[[A 6= >; B 6= >]] =⇒ A t B 6= (>:: ′a topset)

by (simp add: topset.case_eq_if topset_union_def)

lemma
topset_inter_top_right [simp]: A u > = A and
topset_inter_top_left [simp]: > u A = A
by (cases A) (simp_all add: topset_inter_def)

lemma topset_inter_topD1: A u B = > =⇒ A = (>:: ′a topset)
apply (cases A)

apply simp
apply (cases B)
apply (simp_all add: topset_inter_def)

done

lemma topset_inter_topD2: A u B = > =⇒ B = (>:: ′a topset)
apply (cases B)
apply simp
apply (cases A)

apply (simp_all add: topset_inter_def)
done

lemma topset_inter_subset_iff : C 6 A u B = (C 6 A ∧ C 6 B)
proof −

have (C 6 inf A B) = (C 6 A ∧ C 6 B) by (fact le_inf_iff)
then show ?thesis by simp

qed

definition topset_add :: ′a topset⇒ ′a⇒ ′a topset (infixl ⊕ 65)
where

A ⊕ b ≡ case A of Top⇒ Top | Set a⇒ dinsert b ae

definition topset_rem :: ′a topset⇒ ′a⇒ ′a topset (infixl 	 65)
where

A 	 b ≡ case A of Top⇒ Top | Set a⇒ da − {b}e

lemma topset_add_insert: A ⊕ b = topset_insert b A
by (cases A) (simp_all add: topset_add_def topset_insert_set)

lemma topset_add_union: A ⊕ b = A t d{b}e

208 Th e o r i e s c o d e

by (cases A) (simp_all add: topset_add_insert topset_insert_set
topset_union_def)

lemma topset_top_add [simp]: > ⊕ x = >
by (simp add: topset_add_def)

lemma topset_top_rem [simp]: > 	 x = >
by (simp add: topset_rem_def)

lemma topset_set_add: dae ⊕ b = dinsert b ae
by (simp add: topset_add_def)

lemma topset_set_rem: dae 	 b = da − {b}e
by (simp add: topset_rem_def)

lemma topset_add_subset: A 6 A ⊕ b
proof (cases A)

case Top then show ?thesis using topset_member_top by simp
next

case (Set a)
have a ⊆ insert b a by (rule subset_insertI)
then have dae 6 topset_insert b dae using topset_subset_insertI by fastforce
with Set show ?thesis using topset_set_add
by (simp add: topset_add_insert)

qed

lemma topset_rem_subset: A 	 b 6 A
by (cases A) (simp_all add: Diff_subset topset_subset_def

topset_set_rem less_eq_topset_def)

lemma topset_add_absorb [iff]: A ⊕ b = > ←→ A = >
by (simp add: topset.case_eq_if topset_add_def)

lemma topset_rem_absorb [iff]: A 	 b = > ←→ A = >
by (simp add: topset.case_eq_if topset_rem_def)

lemma topset_add_right_commute [iff]: A ⊕ x ⊕ y = A ⊕ y ⊕ x
by (metis topset_add_union topset_union_assoc topset_union_commute)

lemma topset_rem_right_commute [iff]: A 	 x 	 y = A 	 y 	 x
by (cases A) (simp, metis Diff_insert Diff_insert2 topset_set_rem)

lemma topset_union_upper1: A 6 A t B
by (metis sup_ge1 sup_topset_def)

lemma topset_union_upper2: B 6 A t B

B.16 Set with absorbing top element 209

by (metis sup_ge2 sup_topset_def)

lemma topset_inter_lower1 [simp]: A u B 6 A
by (metis inf_le1 inf_topset_def)

lemma topset_inter_lower2 [simp]: A u B 6 B
by (metis inf_le2 inf_topset_def)

lemma topset_insert_absorb: a ∈> A =⇒ topset_insert a A = A
by (cases A) (simp_all add: insert_absorb

topset_insert_set topset_member_def)

lemma topset_union_mono [simp]:
assumes A 6 B and C 6 D
shows A t C 6 B t D

using assms
by (metis sup_mono sup_topset_def)

lemma topset_union_mono1 [simp]:
assumes A 6 B
shows A t C 6 B t C

proof −
have C 6 C by simp
from assms this show ?thesis by (rule topset_union_mono)

qed

lemma topset_union_mono2 [simp]:
assumes A 6 B
shows C t A 6 C t B

proof −
have C 6 C by simp
from this assms show ?thesis by (rule topset_union_mono)

qed

lemma topset_inter_mono [simp]:
assumes A 6 B and C 6 D
shows A u C 6 B u D

using assms
by (metis inf_mono inf_topset_def)

lemma topset_inter_mono1 [simp]:
assumes A 6 B
shows A u C 6 B u C

proof −
have C 6 C by simp
from assms this show ?thesis by (rule topset_inter_mono)

210 Th e o r i e s c o d e

qed

lemma topset_inter_mono2 [simp]:
assumes A 6 B
shows C u A 6 C u B

proof −
have C 6 C by simp
from this assms show ?thesis by (rule topset_inter_mono)

qed

lemma topset_inter_mono_arg1: mono (λ A. A u B)
by (simp add: monoI)

lemma topset_inter_mono_arg2: mono (λ B. A u B)
by (simp add: monoI)

lemma topset_add_mono: A 6 B =⇒ A ⊕ x 6 B ⊕ x
proof −

assume
HS: A 6 B

then have
x ∈> A ⊕ x
x ∈> B ⊕ x by (simp_all add: topset_add_insert topset_insertI1)

with HS have
HS ′: ∀ y. y ∈> A ⊕ x −→ y ∈> B ⊕ x

by (auto simp add: topset.case_eq_if topset_add_def topset_member_def)
show ?thesis
proof (cases A)

case Top
then have B = > using HS by simp
then show ?thesis by simp

next
case Set
then show ?thesis by (simp add: HS ′ topset_subsetI)

qed
qed

lemma topset_rem_mono: A 6 B =⇒ A 	 x 6 B 	 x
proof (cases A)

case Top then show A 6 B =⇒ A 	 x 6 B 	 x
by (simp add: topset.case_eq_if topset_rem_def)

next
case (Set a)
assume

H: A 6 B and
HA: A = dae

B.16 Set with absorbing top element 211

show ?thesis
proof (cases B)

case Top then show ?thesis using topset_member_top by simp
next

case (Set b)
with H HA have a ⊆ b
by (simp add: topset_subset_def less_eq_topset_def)

then have a − {x} ⊆ b − {x} by (simp add: Diff_mono)
with HA Set show ?thesis
by (simp add: topset_rem_def topset_subset_def less_eq_topset_def)

qed
qed

lemma topset_add_rem_mono: A 6 B =⇒ A 	 x 6 B ⊕ y
proof−

assume
H: A 6 B

have A 	 x 6 A by (rule topset_rem_subset)
also have A 6 B by (rule H)

also have B 6 B ⊕ y by (rule topset_add_subset)
finally show ?thesis by simp

qed

lemma topset_add_rem_mono1: A 6 B =⇒ A 	 x 6 B ⊕ x
using topset_add_rem_mono by (simp add: less_eq_topset_def)

lemma topset_inter_union_distrib: A u (B t C) = (A u B) t (A u C)
using inf_sup_distrib1 by (metis inf_topset_def sup_topset_def)

lemma topset_inter_union_distrib2: (B t C) u A = (B u A) t (C u A)

by (simp add: topset_inter_commute topset_inter_union_distrib)

lemma topset_union_inter_distrib: A t (B u C) = (A t B) u (A t C)
using sup_inf_distrib1 by (metis inf_topset_def sup_topset_def)

lemma topset_union_inter_distrib2: (B u C) t A = (B t A) u (C t A)

by (simp add: topset_union_commute topset_union_inter_distrib)

lemma topset_inter_add_distrib: (A ⊕ c) u (B ⊕ c) = (A u B) ⊕ c
by (simp add: topset_add_union topset_union_inter_distrib2)

lemma topset_inter_rem_distrib: (A 	 c) u (B 	 c) = (A u B) 	 c
proof (cases A)

case Top then show ?thesis by simp
next

case HA: (Set a)

212 Th e o r i e s c o d e

thus ?thesis
proof (cases B)

case Top
then have B 	 c = > and A u B = A by simp_all
then show ?thesis using topset_inter_def topset_rem_def
by simp

next
case HB: (Set b)
from HA have A 	 c = da − {c}e using topset_set_rem by simp
moreover from HB have B 	 c = db − {c}e using topset_set_rem by simp
ultimately have (A 	 c) u (B 	 c) = da − {c}e u db − {c}e by simp
also have . . . = d(a − {c}) ∩ (b − {c})e by (simp add: topset_inter_def)
also have . . . = d(a ∩ b) − {c}e by blast
moreover from HA HB have A u B = da ∩ be
by (simp add: topset_inter_def)

then have (A u B) 	 c = d(a ∩ b) − {c}e using topset_set_rem by simp
ultimately show ?thesis by simp

qed
qed

lemma topset_inter_rem: B 6= > =⇒ A u (B 	 c) = (A u B) 	 c
apply (cases A)

apply simp
apply (cases B)
apply (simp_all add: Int_Diff topset_inter_def topset_set_rem)

done

lemma topset_add_rem: A ⊕ x 	 x = A 	 x
by (simp add: topset_add_def topset_rem_def topset_union_def

topset.case_eq_if)

lemma topset_gfp_inter_left: gfp (λ x. A u f x) 6 A
proof −

have gfp (λ x. A u f x) 6 gfp (λ B. A) by (simp add: gfp_mono)
then show ?thesis by (simp add: gfp_unfold monoI)

qed

lemma topset_lfp_inter_left: lfp (λ x. A u f x) 6 A
proof −

have lfp (λ x. A u f x) 6 lfp (λ B. A) by (simp add: lfp_mono)
then show ?thesis by (simp add: lfp_unfold monoI)

qed

end

B.17 Loop operator 213

B.17 Loop operator

theory LoopOperator imports TopSet begin

definition loop_function f A = (λ X. A u f X)

declare loop_function_def [simp]

lemma loop_function_mono1: mono (loop_function f)
by (simp add: le_funI monoI)

lemma loop_function_mono2: mono f =⇒ mono (loop_function f A)

by (simp add: mono_def)

definition loop_operator f A = gfp (loop_function f A)

declare loop_operator_def [simp]

lemma loop_operator_mono: mono (loop_operator f)
by (rule monoI) (simp add: gfp_mono)

lemma loop_operator_mono ′:
A 6 B =⇒ loop_operator f A 6 loop_operator f B

using loop_operator_mono by (rule monoD) simp

lemma loop_operator_unfold:
mono f =⇒ loop_operator f A = loop_function f A (loop_operator f A)

proof −
let ?F = loop_function f A
assume

mono f
then have mono ?F using loop_function_mono2 by simp
then have gfp ?F = ?F (gfp ?F) by (rule gfp_unfold)
then show ?thesis by simp

qed

lemma loop_operator_idem:

assumes mono f
shows loop_operator f (loop_operator f x) = loop_operator f x

proof −
{ fix tt :: ′a topset

obtain
tta :: (′a topset⇒ ′a topset)⇒ ′a topset and
ttb :: (′a topset⇒ ′a topset)⇒ ′a topset where
ff1: ∀ f . tta f 6 ttb f ∧ ¬ f (tta f) 6 f (ttb f) ∨ mono f
by (metis (no_types) monoI)

have ff2: ∀ f . ¬ mono f ∨

Sup {t. (t :: ′a topset) 6 f t} 6 f (Sup {t. t 6 f t})

214 Th e o r i e s c o d e

by (metis gfp_def gfp_lemma2)
have ff3: ∀ t f . ¬ (t :: ′a topset) 6 f t ∨ t 6 Sup {t. t 6 f t}

by (metis (full_types) gfp_def gfp_upperbound)
have ff4: ∀ t ta. (t :: ′a topset) u ta 6 ta

by (metis order_refl topset_inter_subset_iff)
have ff5: ∀ t. gfp (λt. x u f t) u f t 6 Sup {t. t 6 x u f t}

by (simp add: gfp_def)
have ff6: ∀ t. gfp (λt. x u f t) u f t 6 f t

using ff4 by metis
have ff7: ∀ t ta. (t :: ′a topset) u ta = ta u t

using ff4 by (simp add: eq_iff topset_inter_subset_iff)
have ff8: ∀ fa. x u f (tta fa) 6 x u f (ttb fa) ∨ mono fa

using ff4 ff1 by (metis (no_types) assms dual_order.trans monoD
topset_inter_lower1 topset_inter_subset_iff)

then have ff9: mono (λt. x u f t)
using ff1 by metis

then have ff10: Sup {t. t 6 x u f t} 6 x u f (Sup {t. t 6 x u f t})
using ff2 by meson

then have ff11: Sup {t. t 6 x u f t} 6 x
by (meson topset_inter_subset_iff)

then have ff12: ∀ t. gfp (λt. x u f t) u f t 6 x
using ff5 by (meson dual_order.trans)

then have ff13:
∀ t. gfp (λt. x u f t) u f (gfp (λt. x u f t) u f t) 6 f x

using ff6 by (meson assms dual_order.trans monoD)

have ∀ t. gfp (λt. x u f t) u f t 6 f x
using ff10 ff9 ff5
by (meson dual_order.trans monoD topset_inter_subset_iff)

then have ff14:
∀ t. gfp (λt. x u f t) u f t 6 gfp (λt. x u f t) u f x

using ff5 by (simp add: gfp_def topset_inter_subset_iff)
have Sup {t. t 6 x u f t} 6 f x

using ff11 ff10 ff9
by (meson dual_order.trans monoD topset_inter_subset_iff)

then have Sup {t. t 6 x u f t} 6 f x u Sup {t. t 6 x u f t}
by (meson order_refl topset_inter_subset_iff)

then have ff15: Sup {t. t 6 x u f t} = gfp (λt. x u f t) u f x
using ff7 by (metis (no_types) eq_iff gfp_def topset_inter_lower1)

then have ff16: ∀ t ta. ¬ gfp (λt. x u f t) u f t 6 ta ∨

gfp (λt. x u f t) u f t 6 ta u (gfp (λt. x u f t) u f x)
by (simp add: gfp_def topset_inter_subset_iff)

have ff17: gfp (λt. x u f t) u f x 6
gfp (λt. x u f t) u f (gfp (λt. x u f t) u f x)

using ff15 ff10 by (simp add: gfp_def topset_inter_subset_iff)
then have ff18: gfp (λt. x u f t) u f x 6
Sup {t. t 6 gfp (λt. x u f t) u f t}

B.17 Loop operator 215

using ff3 by meson
have ff19: gfp (λt. x u f t) u f x =

gfp (λt. x u f t) u f (gfp (λt. x u f t) u f x)
using ff17 ff13 ff5
by (simp add: eq_iff gfp_def topset_inter_subset_iff)

have ff20: ∀ t. gfp (λt. x u f t) u f t =
x u f t u (gfp (λt. x u f t) u f x)

using ff16 ff12 by (meson eq_iff topset_inter_subset_iff)
have ∀ fa. mono fa ∨ gfp (λt. x u f t) u f (tta fa) 6
x u f (ttb fa) u (gfp (λt. x u f t) u f x)

using ff16 ff12 ff8 ff6
by (meson dual_order.trans topset_inter_subset_iff)

then have ff21: mono (λt. gfp (λt. x u f t) u f t)
using ff20 ff1 by (metis (no_types))

then have ff22: gfp (λt. x u f t) u f (gfp (λt. x u f t) u f x) 6
gfp (λt. x u f t) u f (Sup {t. t 6 gfp (λt. x u f t) u f t})

using ff18 by (meson monoD)

have ff23: Sup {t. t 6 gfp (λt. x u f t) u f t} 6
gfp (λt. x u f t) u f (Sup {t. t 6 gfp (λt. x u f t) u f t})

using ff21 ff2 by meson
have gfp (λt. x u f t) u f x =

gfp (λt. x u f t) u f (Sup {t. t 6 gfp (λt. x u f t) u f t})
using ff22 ff19 ff14 eq_iff by auto

then have Sup {t. t 6 gfp (λt. x u f t) u f t} =
gfp (λt. x u f t) u f x

using ff23 ff18 by auto
then have gfp (λt. x u f t) = gfp (λt. gfp (λt. x u f t) u f t) ∨
x u f tt = gfp (λt. x u f t) u f tt

using ff15 by (simp add: gfp_def) }
then have gfp (λt. gfp (λt. x u f t) u f t) = gfp (λt. x u f t)

by metis
then show ?thesis by (simp only: loop_operator_def loop_function_def)

qed

lemma loop_operator_le0: mono f =⇒ loop_operator f A 6 A
by (metis eq_iff loop_function_def loop_operator_unfold

topset_inter_subset_iff)

lemma loop_operator_le1:
mono f =⇒ loop_operator f A 6 loop_operator f (f A)

by (simp only: loop_operator_def loop_function_def)
(smt gfp_least gfp_upperbound mono_sup sup.absorb_iff2 sup.boundedE
topset_inter_subset_iff)

end

216 Th e o r i e s c o d e

B.18 Transfer function

theory TransferFunction imports
ValueAttachment LoopOperator Environment Expression

begin

b.18.1 Transfer function without scopes

fun
A ′ :: (′b, ′t) expression⇒ vname topset⇒ vname topset and
As ′ :: (′b, ′t) expression list⇒ vname topset⇒ vname topset and
AT ′ :: (′b, ′t) expression⇒ vname topset⇒ bool

where

— Access

A ′_Value: A ′ (Value v) A = A |

A ′_Local: A ′ (Local n) A = A |

— Reattachment

A ′_Assign: A ′ (n ::= e) A = (if AT ′ e A then A ′ e A ⊕ n else A ′ e A 	 n) |
A ′_Create: A ′ (create n) A = A ⊕ n |

A ′_Call: A ′ (e · f (a)) A = As ′ a (A ′ e A) |

— Compound instructions

A ′_Seq: A ′ (c1;; c2) A = A ′ c2 (A ′ c1 A) |

A ′_If : A ′ (if b then c1 else c2 end) A = A ′ c1 (A ′ b A) u A ′ c2 (A ′ b A) |

A ′_Loop:
A ′ (until e loop c end) A = A ′ e (loop_operator (λ B. A ′ c (A ′ e B)) A) |

A ′_Exception: A ′ Exception A = > |

— Boolean expressions

A ′_Test: A ′ (attached t e as n) A = A ′ e A |

— List of expressions

As ′_Nil: As ′ [] A = A |

As ′_Cons: As ′ (e # es) A = As ′ es (A ′ e A) |

— Is value attached?

AT ′_Value: AT ′ (Value v) A←→ v 6= Voidv |

B.18 Transfer function 217

AT ′_Local: AT ′ (Local n) A←→ n ∈> A |

AT ′_If : AT ′ (if b then c1 else c2 end) A←→
AT ′ c1 (A ′ b A) ∧ AT ′ c2 (A ′ b A) |

— Fallback

AT ′_Other: AT ′ _ A←→ True

abbreviation (output) A ′_rep (infixl B 72)
where A ′_rep A c ≡ A ′ c A

abbreviation (output) As ′_rep (infixl BB 72)
where As ′_rep A es ≡ As ′ es A

abbreviation (output) AT ′_rep (infixl ↪→ 71)
where AT ′_rep A c ≡ AT ′ c A

abbreviation (output) loop_computation_rep ′ (_ B∗ ′(_ B _ ′) [73, 73, 73])
where loop_computation_rep ′ A e c ≡ loop_operator (λX. A ′ c (A ′ e X)) A

b.18.2 Transfer function with scopes

fun
A :: (′b, ′t) expression⇒ vname topset⇒ vname topset and
At :: (′b, ′t) expression⇒ vname topset⇒ vname topset and
Af :: (′b, ′t) expression⇒ vname topset⇒ vname topset and
As :: (′b, ′t) expression list⇒ vname topset⇒ vname topset and
AT :: (′b, ′t) expression⇒ vname topset⇒ bool

where

— Access

A_Value: A (Value v) A = A |

A_Local: A (Local n) A = A |

— Reattachment

A_Assign: A (n ::= e) A = (if AT e A then A e A ⊕ n else A e A 	 n) |
A_Create: A (create n) A = A ⊕ n |

A_Call: A (e · f (a)) A = As a (A e A) |

— Compound instructions

A_Seq: A (e1;; e2) A = A e2 (A e1 A) |

A_If : A (if c then e1 else e2 end) A = A e1 (At c A) u A e2 (Af c A) |

At_If : At (if c then e1 else e2 end) A =

(if is_false e1 then At e2 (Af c A) else
(if is_false e2 then At e1 (At c A) else

218 Th e o r i e s c o d e

A (if c then e1 else e2 end) A)) |

Af_If : Af (if c then e1 else e2 end) A =

(if is_true e1 then Af e2 (Af c A) else
(if is_true e2 then Af e1 (At c A) else
A (if c then e1 else e2 end) A)) |

A_Loop:
A (until e loop b end) A = At e (loop_operator (λ B. A b (Af e B)) A) |

A_Exception: A Exception A = > |

— Boolean expressions

A_Test: A (attached t e as n) A = A e A |

At_Test2: At (attached T (Local n ′) as n) A = A ⊕ n ′⊕ n |

At_Test1: At (attached T e as n) A = A e A ⊕ n |

— List of expressions

As_Nil: As [] A = A |

As_Cons: As (e # es) A = As es (A e A) |

— Is value attached?

AT_Value: AT (Value v) A←→ v 6= Voidv |

AT_Local: AT (Local n) A←→ n ∈> A |

AT_If : AT (if c then e1 else e2 end) A←→
AT e1 (At c A) ∧ AT e2 (Af c A) |

— Fallback

At_Other: At e A = (if is_false e then > else A e A) |

Af_Other: Af e A = (if is_true e then > else A e A) |

AT_Other: AT _ A←→ True

lemmas A_induct = A_At_Af_As_AT.induct[split_format(complete)]

abbreviation A_rep (infixl B 72) where A B c ≡ A c A
abbreviation A_true_rep (infixl B+ 72) where A B+ b ≡ At b A
abbreviation A_false_rep (infixl B− 72) where A B− b ≡ Af b A
abbreviation As_rep (infixl BB 72) where As_rep A es ≡ As es A
abbreviation AT_rep (infixl ↪→ 71) where A ↪→ c ≡ AT c A

definition loop_step_def [simp]: loop_step e c A = A B− e B c
abbreviation (input) loop_computation
where loop_computation e c A ≡ loop_operator (λX. X B− e B c) A

abbreviation loop_computation_rep (_ B∗ ′(− _ B _ ′) [73, 73, 73])

B.18 Transfer function 219

where A B∗ (− e B c) ≡ loop_operator (λX. X B− e B c) A

lemma transfer_fold: A BB es = fold (λ e X. X B e) es A
by (induction es arbitrary: A) simp_all

lemma transfer_unfold: A B e BB es = A BB (e # es)
by simp

lemma unreachable_if_false: is_false e =⇒ A B+ e = >
by (cases e) simp_all

lemma unreachable_if_true: is_true e =⇒ A B− e = >
by (cases e) simp_all

lemma
fixes e :: (′b, ′t) expression and es :: (′b, ′t) expression list
shows
A_mono ′:

∧
X Y. X 6 Y =⇒ X B e 6 Y B e and

At_mono ′:
∧

X Y. X 6 Y =⇒ X B+ e 6 Y B+ e and
Af_mono ′:

∧
X Y. X 6 Y =⇒ X B− e 6 Y B− e and

As_mono ′:
∧

X Y. X 6 Y =⇒ X BB es 6 Y BB es and
AT_mono ′:

∧
X Y. X 6 Y =⇒ X ↪→ e −→ Y ↪→ e

proof (induction rule: A_At_Af_As_AT.induct)
fix v :: ′b value and A X Y :: vname topset
assume

H: X 6 Y
from H show X B (Value v) 6 Y B Value v by simp
from H show X B+ (Value v) 6 Y B+ Value v by simp
from H show X B− (Value v) 6 Y B− Value v by simp
from H show X ↪→ (Value v) −→ Y ↪→ Value v by auto
fix n
from H show X B (Local n) 6 Y B Local n by simp
from H show X B+ (Local n) 6 Y B+ Local n by simp
from H show X B− (Local n) 6 Y B− Local n by simp
from H show X ↪→ (Local n) −→ Y ↪→ Local n
by (auto simp add: topset_subsetD)

from H show X B create n 6 Y B create n by (simp add: topset_add_mono)
then show X B+ create n 6 Y B+ create n by simp
then show X B− create n 6 Y B− create n by simp
then show X ↪→ create n −→ Y ↪→ create n by simp
then show X B Exception 6 Y B Exception using topset_member_top
by simp

then show X B+ Exception 6 Y B+ Exception using topset_member_top
by simp

then show X B− Exception 6 Y B− Exception using topset_member_top
by simp

220 Th e o r i e s c o d e

then show X ↪→ Exception −→ Y ↪→ Exception by simp
fix c1 c2 :: (′b, ′t) expression
from H show X ↪→ c1 ;; c2 −→ Y ↪→ c1 ;; c2 by simp
assume∧

X Y. X 6 Y =⇒ X B c1 6 Y B c1∧
X Y. X 6 Y =⇒ X B c2 6 Y B c2

with H show X B c1 ;; c2 6 Y B c1 ;; c2 by simp
next

fix c1 c2 :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. [[¬ is_false (c1 ;; c2); X 6 Y]] =⇒ X B c1 ;; c2 6 Y B c1 ;; c2
X 6 Y

then show X B+ c1 ;; c2 6 Y B+ c1 ;; c2 by simp
next

fix c1 c2 :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. [[¬ is_true (c1 ;; c2); X 6 Y]] =⇒ X B c1 ;; c2 6 Y B c1 ;; c2
X 6 Y

then show X B− c1 ;; c2 6 Y B− c1 ;; c2 by simp
next

fix n and e :: (′b, ′t) expression and A X Y :: vname topset
assume

H: X 6 Y
then show X ↪→ n ::= e −→ Y ↪→ n ::= e by simp
assume∧

X Y. X 6 Y =⇒ X ↪→ e −→ Y ↪→ e∧
X Y. [[A ↪→ e; X 6 Y]] =⇒ X B e 6 Y B e∧
X Y. [[¬ A ↪→ e; X 6 Y]] =⇒ X B e 6 Y B e

with H show X B n ::= e 6 Y B n ::= e
using topset_add_rem_mono1 topset_add_mono topset_rem_mono

by (metis (no_types) A_Assign)

next
fix
e :: (′b, ′t) expression and f and
a :: (′b, ′t) expression list and A X Y :: vname topset

assume
H: X 6 Y

then show X ↪→ e · f (a) −→ Y ↪→ e · f (a) by simp
assume∧

X Y. X 6 Y =⇒ X B e 6 Y B e∧
X Y. X 6 Y =⇒ X BB a 6 Y BB a

with H show X B e · f (a) 6 Y B e · f (a) by simp
next

fix e :: (′b, ′t) expression and n a and A X Y :: vname topset
assume

B.18 Transfer function 221

∧
X Y. [[¬ is_false (e · n (a)); X 6 Y]] =⇒ X B e · n (a) 6 Y B e · n (a)

X 6 Y
then show X B+ e · n (a) 6 Y B+ e · n (a) by simp

next
fix e :: (′b, ′t) expression and n a and A X Y :: vname topset
assume∧

X Y. [[¬ is_true (e · n (a)); X 6 Y]] =⇒ X B e · n (a) 6 Y B e · n (a)
X 6 Y

then show X B− e · n (a) 6 Y B− e · n (a) by simp
next

fix b c1 c2 :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. X 6 Y =⇒ X B+ b 6 Y B+ b∧
X Y. X 6 Y =⇒ X B c1 6 Y B c1∧
X Y. X 6 Y =⇒ X B− b 6 Y B− b∧
X Y. X 6 Y =⇒ X B c2 6 Y B c2

X 6 Y
then show X B if b then c1 else c2 end 6 Y B if b then c1 else c2 end
by simp

next
fix b e1 e2 :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. [[is_false e1; X 6 Y]] =⇒ X B− b 6 Y B− b∧
X Y. [[is_false e1; X 6 Y]] =⇒ X B+ e2 6 Y B+ e2∧
X Y. [[¬ is_false e1; is_false e2; X 6 Y]] =⇒ X B+ b 6 Y B+ b∧
X Y. [[¬ is_false e1; is_false e2; X 6 Y]] =⇒ X B+ e1 6 Y B+ e1∧
X Y. [[¬ is_false e1; ¬ is_false e2; X 6 Y]] =⇒

X B if b then e1 else e2 end 6 Y B if b then e1 else e2 end
X 6 Y

then show X B+ if b then e1 else e2 end 6 Y B+ if b then e1 else e2 end
by simp

next
fix b e1 e2 :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. [[is_true e1; X 6 Y]] =⇒ X B− b 6 Y B− b∧
X Y. [[is_true e1; X 6 Y]] =⇒ X B− e2 6 Y B− e2∧
X Y. [[¬ is_true e1; is_true e2; X 6 Y]] =⇒ X B+ b 6 Y B+ b∧
X Y. [[¬ is_true e1; is_true e2; X 6 Y]] =⇒ X B− e1 6 Y B− e1∧
X Y. [[¬ is_true e1; ¬ is_true e2; X 6 Y]] =⇒

X B if b then e1 else e2 end 6 Y B if b then e1 else e2 end
X 6 Y

then show X B− if b then e1 else e2 end 6 Y B− if b then e1 else e2 end
by simp

next
fix b c1 c2 :: (′b, ′t) expression and A X Y :: vname topset
assume

222 Th e o r i e s c o d e

∧
X Y. X 6 Y =⇒ X B+ b 6 Y B+ b∧
X Y. X 6 Y =⇒ X ↪→ c1 −→ Y ↪→ c1∧
X Y. X 6 Y =⇒ X B− b 6 Y B− b∧
X Y. X 6 Y =⇒ X ↪→ c2 −→ Y ↪→ c2

X 6 Y
then show X ↪→ if b then c1 else c2 end −→ Y ↪→ if b then c1 else c2 end

by (meson AT_If)
next

fix e b :: (′b, ′t) expression and A X Y :: vname topset
assume

H: X 6 Y
then show X ↪→ until e loop b end −→ Y ↪→ until e loop b end by simp
assume

lHi:
∧

x X Y. [[X 6 Y]] =⇒ X B− e 6 Y B− e and
lHb:

∧
x X Y. [[X 6 Y]] =⇒ X B b 6 Y B b and

lHe:
∧

X Y. [[X 6 Y]] =⇒ X B+ e 6 Y B+ e
then have mono (λx. x B− e B b) if ¬ is_false e using that
by (simp add: monoI)

with H have X B∗ (− e B b) 6 Y B∗ (− e B b) using
loop_operator_mono ′

by simp
then have X B∗ (− e B b) B+ e 6 Y B∗ (− e B b) B+ e using lHe
by simp

then show X B until e loop b end 6 Y B until e loop b end by simp
next

fix e b :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. [[¬ is_false (until e loop b end); X 6 Y]] =⇒
X B until e loop b end 6 Y B until e loop b end

X 6 Y
then show X B+ until e loop b end 6 Y B+ until e loop b end by simp

next
fix e b :: (′b, ′t) expression and A X Y :: vname topset
assume∧

X Y. [[¬ is_true (until e loop b end); X 6 Y]] =⇒
X B until e loop b end 6 Y B until e loop b end

X 6 Y
then show X B− until e loop b end 6 Y B− until e loop b end by simp

next
fix t and e :: (′b, ′t) expression and n n ′ and A X Y :: vname topset
show X ↪→ attached t e as n −→ Y ↪→ attached t e as n by simp
assume

X 6 Y
then show X B+ attached t (Local n ′) as n 6
Y B+ attached t (Local n ′) as n
by (simp add: topset_add_mono)

B.18 Transfer function 223

assume∧
X Y. X 6 Y =⇒ X B e 6 Y B e

X 6 Y
then show X B attached t e as n 6 Y B attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n
by (cases e) (simp_all add: topset_add_mono)

then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp
then show X B+ attached t e as n 6 Y B+ attached t e as n by simp

next
fix A X Y :: vname topset
assume

H: X 6 Y
then show X BB [] 6 Y BB [] by simp
fix e :: (′b, ′t) expression and es :: (′b, ′t) expression list
assume∧

X Y. X 6 Y =⇒ X B e 6 Y B e∧
X Y. X 6 Y =⇒ X BB es 6 Y BB es

with H show X BB (e # es) 6 Y BB (e # es) by simp
qed simp_all

lemma A_mono: mono (λ X. X B e) by (simp add: monoI A_mono ′)
lemma At_mono: mono (λ X. X B+ e) by (simp add: monoI At_mono ′)
lemma Af_mono: mono (λ X. X B− e) by (simp add: monoI Af_mono ′)
lemma As_mono: mono (λ X. X BB e) by (simp add: monoI As_mono ′)
lemma AT_mono: mono (λ X. X ↪→ e) by (simp add: monoI AT_mono ′)

lemma loop_computation_le0:
fixes e b :: (′b, ′t) expression
shows loop_computation e b A 6 A

proof −
have

∧
X. A u (X B− e B b) 6 A by simp

then show ?thesis
by (metis gfp_least loop_function_def loop_operator_def

topset_inter_subset_iff)
qed

lemma loop_step_mono: mono (loop_step e b)
by (simp add: A_mono ′Af_mono ′monoI)

lemma loop_computation_mono: mono (loop_computation e b)

224 Th e o r i e s c o d e

by (metis loop_operator_mono ′monoI)

lemma loop_computation_le1:
fixes e b :: (′b, ′t) expression
shows loop_computation e b A 6 A B− e B b

proof −
let ?f = (λX. X B− e B b)
have

lHm: mono ?f by (simp add: A_mono ′Af_mono ′monoI)
then have loop_operator ?f A = loop_function ?f A (loop_operator ?f A)

by (rule loop_operator_unfold)
also from lHm have . . . 6 loop_function ?f A A

using loop_function_mono2 loop_operator_le0 by (metis monoD)

finally show ?thesis by (simp add: topset_inter_subset_iff)
qed

lemma loop_application1:
A B until e loop b end 6 A B− e B b B until e loop b end

proof −
let ?f = (λX. X B− e B b)
have mono ?f by (simp add: A_mono ′Af_mono ′monoI)
then have loop_operator ?f A 6 loop_operator ?f (?f A)

by (rule loop_operator_le1)
then show ?thesis by (simp add: A_mono ′At_mono ′)

qed

lemma
A_to_all [simp]: A e > = > and
At_to_all [simp]: At e > = > and
Af_to_all [simp]: Af e > = >

proof (induction e)
case (Loop b c)

then show A (until b loop c end) > = >
by (simp_all add: topset_Union_def gfp_def)

then show At (until b loop c end) > = >
by (simp_all add: topset_Union_def gfp_def)

then show Af (until b loop c end) > = >
by (simp_all add: topset_Union_def gfp_def)

case (Test t e n)
then show

lHt: A (attached t e as n) > = > by (cases e) simp_all
then show At (attached t e as n) > = > by (cases e) simp_all
from lHt show Af (attached t e as n) > = > by simp

case (Call e f a)
then show > B e · f (a) = > by (induction a, simp_all)
then show > B+ e · f (a) = > by simp

B.18 Transfer function 225

then show > B− e · f (a) = > by simp
qed simp_all

lemma reachability:
assumes

HR: B B e 6= > and
HS: A 6 B

shows
A B e 6= >

proof
assume

lH: A B e = >
from HS have A B e 6 B B e by (rule A_mono ′)
with lH have > 6 B B e by simp
then have B B e = > using topset_top_le by simp
with HR show False by simp

qed

lemma
scope_true_ge: A B e 6 A B+ e and
scope_false_ge: A B e 6 A B− e

proof (induction e arbitrary: A)

fix A
case (Test t e n)
then show A B (attached t e as n) 6 A B+ (attached t e as n)

by (cases e) (simp_all add: topset_add_insert topset_subset_insertI2)
then show A B (attached t e as n) 6 A B− (attached t e as n) by simp

next
case (If b c1 c2)
fix A
show A B (if b then c1 else c2 end) 6 A B+ (if b then c1 else c2 end)
using If .IH by (metis A_If At_If eq_iff order.trans

topset_inter_lower1 topset_inter_lower2)
show A B (if b then c1 else c2 end) 6 A B− (if b then c1 else c2 end)
using If .IH by (metis A_If Af_If eq_iff order.trans

topset_inter_lower1 topset_inter_lower2)
qed simp_all

lemma
reachability_with_scope_true: A B+ e 6= > −→ A B e 6= > and
reachability_with_scope_false: A B− e 6= > −→ A B e 6= >
by (metis scope_true_ge topset_top_le) (metis scope_false_ge topset_top_le)

lemma attachment_loop_condition: A B until e loop b end 6 A B+ e
proof −

let ?F = λ B. B B− e B b

226 Th e o r i e s c o d e

have mono ?F
by (simp add: A_mono ′Af_mono ′monoD monoI topset_inter_mono_arg2)

then have
loop_computation e b A 6 loop_function ?F A (loop_computation e b A)

using loop_operator_unfold by (metis order_refl)
then have loop_computation e b A 6 A
by (simp add: topset_inter_subset_iff)

then have ?thesis by (simp add: A_mono ′At_mono ′)
moreover have A B+ e = > if is_false e
using unreachable_if_false that by blast

then have A B until e loop b end = A B+ e if is_false e
using unreachable_if_false that by simp

ultimately show ?thesis by simp
qed

end

B.19 Expression void safety

theory ExpressionValidity imports
EnvironmentAttachment
ExpressionAttachment
TransferFunction

begin

b.19.1 Attachment validity rules and type checks

A predicate that tells if an expression is valid with respect to
attachment rules and what is the expected type of the expression.

inductive
AT :: vname topset⇒ ′b attachable_expression⇒ attachment_type⇒ bool
(_ ` _ : _ [60, 0, 60] 60) and

ATs :: vname topset⇒ ′b attachable_expression list⇒
attachment_type list⇒ bool
(_ ` _ [:] _ [60, 0, 60] 60)

where
AT_ValueDet: v = Voidv =⇒ A ` Value v: Detachable |
AT_ValueAtt: v 6= Voidv =⇒ A ` Value v: Attached |

AT_LocalAtt: n ∈> A =⇒ A ` Local n: Attached |

AT_LocalDet: ¬ n ∈> A =⇒ A ` Local n: Detachable |
AT_Seq: [[A ` e1: Attached; A e1 A ` e2: Attached]] =⇒
A ` (e1;; e2): Attached |

AT_Assign: A ` e: T =⇒ A ` (n ::= e): Attached |

AT_Create: A ` (create n): Attached |

B.19 Expression void safety 227

AT_Call: [[A ` e: Attached; A e A ` a [:] Ts]] =⇒
A ` (e · f (a)): Attached |

AT_If : [[
A ` b: Attached;
A B+ b ` e1: T1;
A B− b ` e2: T2

]] =⇒ A ` if b then e1 else e2 end: upper_bound T1 T2 |

AT_Loop: [[
loop_computation e b A ` e: Attached;
loop_computation e b A B− e ` b: Attached

]] =⇒ A ` until e loop b end: Attached |

AT_Test: A ` e: T =⇒ A ` (attached t e as n): Attached |

AT_Exception: A ` Exception: Attached |

ATs_Nil: A ` [] [:] [] |

ATs_Cons: [[A ` e: T; A e A ` es [:] Ts]] =⇒ A ` e # es [:] T # Ts

declare AT_ATs.intros[intro!]

inductive_simps ATs_iffs [iff]:
A ` [] [:] Ts
A ` e#es [:] T#Ts
A ` e#es [:] Ts

lemmas at_induct = AT_ATs.induct[split_format(complete)]
inductive_cases ValueE[elim!]: A ` Value v: T
inductive_cases LocalE[elim!]: A ` Local n: T
inductive_cases SeqE[elim!]: A ` c1 ;; c2: T
inductive_cases AssignE[elim!]: A ` n ::= e: T
inductive_cases CreateE[elim!]: A ` create n: T
inductive_cases CallE[elim!]: A ` n · f (a): T
inductive_cases IfE[elim!]: A ` if b then c1 else c2 end: T
inductive_cases LoopE[elim!]: A ` until e loop c end: T
inductive_cases TestE[elim!]: A ` attached t e as x: T
inductive_cases ExceptionE[elim!]: A ` Exception: T

b.19.2 Type checks properties

If an expression is void-safe with two types, these types are the same.

lemma attachment_unique:
fixes
e :: ′b attachable_expression and es :: ′b attachable_expression list

shows
attachment_unique_e: [[A ` e : T; A ` e : T ′]] =⇒ T = T ′ and
attachment_unique_es: [[A ` es [:] Ts; A ` es [:] Ts ′]] =⇒ Ts = Ts ′

by (induction arbitrary: T ′ and Ts ′ rule: AT_ATs.inducts)

228 Th e o r i e s c o d e

((blast?, fastforce)+)

If an expression has an attached type, it is attached in the same context.

lemma checked_attached_is_attached:
A ` e: Attached =⇒ A ↪→ e

proof (induction e arbitrary: A)

case (If b c1 c2)
then have

A ` b : Attached by blast
from If .prems

obtain T1 T2 where
A B+ b ` c1 : T1 A B− b ` c2 : T2 upper_bound T1 T2 = Attached

by force
moreover then have T1 = Attached and T2 = Attached

using upper_bound_bot_left ′ upper_bound_bot_right ′ by blast+
ultimately have

A B+ b ↪→ c1 and
A B− b ↪→ c2 using AT_mono ′ If .IH topset_union_upper1 by blast+

then show ?case by simp
qed auto

lemma list_attachment_length:
A ` es [:] Ts =⇒ length es = length Ts
by (induction es arbitrary: A Ts) (insert ATs.cases, fastforce, auto)

lemma list_attachment_validity:
A ` es1 @ es2 [:] Ts =⇒ A BB es1 ` es2 [:] drop (length es1) Ts

proof (induction es1 arbitrary: A Ts)
case Nil then show ?case by simp

next
fix es :: ′a attachable_expression list
case (Cons e es A Ts)
then obtain es ′where es ′= es @ es2 by simp
moreover with Cons have A ` [e] @ es ′ [:] Ts by simp
ultimately have A BB [e] ` es @ es2 [:] drop 1 Ts by auto
then show ?case
by (metis Cons.IH One_nat_def TransferFunction.As_Nil drop_drop

list.size(4) transfer_unfold)
qed

lemma list_attachment_validity_head:
A ` e # es [:] Ts =⇒ A ` e : hd Ts
by (induction Ts) auto

lemma list_attachment_validity_tail:
A ` e # es [:] Ts =⇒ A B e ` es [:] tl Ts

B.19 Expression void safety 229

by auto

The void safety predicate is monotone.

lemma
fixes
e :: ′b attachable_expression and
es :: ′b attachable_expression list

shows
AT_mono: A ` e: TA =⇒ (

∧
B. A 6 B =⇒ ∃ TB. B ` e: TB ∧ TB 6 TA)

and
ATs_mono: A ` es [:] Tsa =⇒ (

∧
B. A 6 B =⇒ ∃ Tsb. B ` es [:] Tsb)

proof (induction arbitrary: rule:AT_ATs.inducts)
case AT_LocalAtt then show ?case using attached_conforms_to by blast

next
case AT_LocalDet then show ?case using conforms_to_detachable by blast

next
case (AT_Seq A c1 c2)
with A_mono ′ have A B c1 6 B B c1 by metis
with AT_Seq show ?case using conforms_to_attached by blast

next
case AT_Assign then show ?case using attached_conforms_to by blast

next
case (AT_Call A e es Ts)
with A_mono ′ have A B e 6 B B e by metis
with AT_Call show ?case using conforms_to_attached
by (metis AT_ATs.AT_Call)

next
case (AT_If A c e1 T1 e2 T2)
then have
lHc: B ` c : Attached using conforms_to_attached by auto

from AT_If obtain T1 ′ T2 ′where
lHe1: A B+ c ` e1 : T1 ′ and
lHT1: T1 ′→a T1 and
lHe2: A B− c ` e2 : T2 ′ and
lHT2: T2 ′→a T2 using is_attached_conformance by blast+

from AT_If have
A B+ c 6 B B+ c
A B− c 6 B B− c
by (simp_all add: At_mono ′Af_mono ′)

with lHe1 lHe2 AT_If have
∃Tb. B B+ c ` e1 : Tb ∧ Tb→a T1 ′

∃Tb. B B− c ` e2 : Tb ∧ Tb→a T2 ′

using attachment_unique_e by force+
then obtain Tb1 Tb2 where
lHBe1:B B+ c ` e1 : Tb1 and
lHTb1: Tb1→a T1 ′ and

230 Th e o r i e s c o d e

lHBe2: B B− c ` e2 : Tb2 and
lHTb2: Tb2→a T2 ′ by blast

with lHc have
lHB: B ` if c then e1 else e2 end : upper_bound Tb1 Tb2 by auto

from lHT1 lHTb1 lHT2 lHTb2 have
Tb1→a T1 and
Tb2→a T2
using attachment_conforming_to_transitive by blast+

then have upper_bound Tb1 Tb2→a upper_bound T1 T2 using sup.mono
by blast

then show ?case using lHB by meson
next
case (AT_Loop e b A)

then have loop_computation e b B ` e : Attached
using conforms_to_attached loop_operator_mono ′ by metis

moreover from AT_Loop have loop_computation e b B B− e ` b : Attached
using Af_mono ′ conforms_to_attached loop_operator_mono ′ by metis

ultimately show ?case using attached_conforms_to by blast
next
case AT_Test then show ?case using attached_conforms_to by blast

next
case (ATs_Cons A e T es Ts)
with A_mono ′ have A B e 6 B B e by metis
with ATs_Cons show ?case by auto

qed auto

If the source expression of an assignment instruction is of an attached
type, the set of attached variables after the expression includes the
target variable.

lemma attached_assignment_set:
assumes

HA: A ` (n ::= e): Attached and
HE: A ` e: Attached

shows A (n ::= e) A = (A e A) ⊕ n
using HE HA
proof (induction e arbitrary: Γ A)

case (If b c1 c2)
moreover then have

lHA1: A B+ b ` c1 : Attached and
lHA2: A B− b ` c2 : Attached

apply (metis IfE upper_bound_bot_left ′)
by (metis IfE calculation(4) upper_bound_bot_right ′)

moreover with If have
A B+ b ` n ::= c1 : Attached and
A B− b ` n ::= c2 : Attached

using AT_Assign AssignE IfE by blast+

B.19 Expression void safety 231

ultimately have A (n ::= c1) (A B+ b) = (A c1 (A B+ b)) ⊕ n and
A (n ::= c2) (A B− b) = (A c2 (A B− b)) ⊕ n by simp_all

from lHA1 have
lHA1 ′: A B+ b ↪→ c1 by (rule checked_attached_is_attached)

from lHA2 have
lHA2 ′: A B− b ↪→ c2 by (rule checked_attached_is_attached)

have A B n ::= (if b then c1 else c2 end) =
(if (A ↪→ (if b then c1 else c2 end)) then
(A B (if b then c1 else c2 end)) ⊕ n else
(A B (if b then c1 else c2 end)) 	 n) by simp

also have . . . = (if ((A B+ b ↪→ c1) ∧ (A B− b ↪→ c2)) then
((A B+ b B c1) u (A B− b B c2)) ⊕ n else
((A B+ b B c1) u (A B− b B c2)) 	 n) by simp

also with lHA1 ′ lHA2 ′ have . . . = ((A B+ b B c1) u (A B− b B c2)) ⊕ n
by simp

finally show ?case by simp
qed auto

If a void-safe expression has a detachable type, it is not attached.

lemma checked_detachable_is_detachable ′:
assumes

HA: A ` e: T and
HT: T = Detachable

shows
¬ A ↪→ e

using assms
proof (induction e arbitrary: A T)

case (Value v)
then show ?case by auto

next
case (If c e1 e2)
moreover then obtain T1 T2 where
A ` c: Attached
A B+ c ` e1: T1
A B− c ` e2: T2
T = upper_bound T1 T2

using IfE by auto
moreover with If .prems have T1 = Detachable ∨ T2 = Detachable
by (metis sup_attachment_type_def)
ultimately have ¬ A B+ c ↪→ e1 ∨ ¬ A B− c ↪→ e2 by force
then show ?case using AT_If by simp

qed auto

lemma checked_detachable_is_detachable: A ` e: Detachable =⇒ ¬ A ↪→ e
by (simp add: checked_detachable_is_detachable ′)

232 Th e o r i e s c o d e

If the source expression of an assignment instruction is of a detachable
type, the set of attached variables after the expression does not include
the target variable.

lemma detachable_assignment_set:
assumes

HA: A ` (n ::= e): Attached and
HE: A ` e: Detachable

shows A (n ::= e) A = (A e A) 	 n
using HE HA
proof (induction e arbitrary: Γ A)

case (Value v)
then show ?case by auto

next
case (If b c1 c2)
then show ?case using checked_detachable_is_detachable

using A_Assign by metis
next

case (Loop e c)
then show ?case by auto

qed auto

If a loop expression is void-safe, it is void-safe in the context of its
complete evaluation.

lemma AT_loop: A ` until e loop c end : T =⇒
loop_computation e c A ` until e loop c end : T

proof −
assume

lH: A ` until e loop c end : T
then have

lHe: loop_computation e c A ` e: Attached and
lHc: loop_computation e c A B− e ` c: Attached and
lHt: T = Attached by auto

have mono (λX. X B− e B c) by (simp add: A_mono ′ Af_mono ′monoI)
then have
loop_computation e c (loop_computation e c A) = loop_computation e c A

using loop_operator_idem by auto
with lHe lHc have

loop_computation e c (loop_computation e c A) ` e: Attached and
loop_computation e c (loop_computation e c A) B− e ` c: Attached
by simp_all

with lHt show ?thesis by (simp add: AT_Loop)
qed

If a loop expression is void-safe, it is void-safe in the context of its
single-iteration evaluation.

B.20 Memory state validity 233

lemma AT_loop_step: A ` until e loop c end : T =⇒
A B− e B c ` until e loop c end : T

by (metis AT_loop AT_mono LoopE loop_computation_le1)

A predicate that tells if an expression is void-safe with a given
attachment type.

definition attachment_type_valid_expression (` _ : _ [60, 60] 60) where
attachment_type_valid_expression e T = ExpressionValidity.AT ∅ e T

A predicate that tells if an expression is void-safe.

definition attachment_valid_expression (` _
√
e) where

attachment_valid_expression e =
(∃ T. attachment_type_valid_expression e T)

end

B.20 Memory state validity

theory StateValidity imports
EnvironmentAttachment
State
TopSet
Value

begin

type_synonym
′local_type local_state = ′local_type State.local_state

type_synonym
(′local_type, ′memory) state = (′local_type, ′memory) State.state

b.20.1 Run-time attachment status

Function valid_local_values tells if a given state of local variables is valid.

definition valid_local_values::
′local_type local_state⇒ bool — Notation: ` local_state

where
` loc←→ (∀ name value. loc name = bvaluec −→ value 6= Unit)

definition local_has_value:: ′local_type local_state⇒ vname⇒ bool where
local_has_value l name←→ (∃ v. l name = bvc)

definition valid_local_state::
attachment_environment⇒ ′local_type local_state⇒ bool

where

234 Th e o r i e s c o d e

valid_local_state Γ l←→
(∀ name T. Γ name = bTc −→ local_has_value l name)

lemma local_has_value ′: [[valid_local_state Γ l; Γ n = bTc]] =⇒ ∃ v. l n = bvc
by (simp add: valid_local_state_def local_has_value_def)

lemma local_state_upd:
[[valid_local_state Γ l]] =⇒

valid_local_state Γ (l (name 7→ value))
using assms

by (simp add: valid_local_state_def local_has_value_def)

definition valid_local_attachment_state::
vname topset⇒ ′local_type local_state⇒ bool

where
valid_local_attachment_state A l←→

A 6= > −→ (∀ name. name ∈> A −→
(∃ value. l name = bvaluec ∧ value 6= Voidv))

lemma local_attachment_state_top [simp]: valid_local_attachment_state > l
by (simp add: valid_local_attachment_state_def)

lemma local_attachment_state_bottom [simp]:
valid_local_attachment_state d∅e l

by (simp add: valid_local_attachment_state_def)

lemma local_attachment_state_union:
[[valid_local_attachment_state A l; valid_local_attachment_state B l]] =⇒

valid_local_attachment_state (A t B) l
proof (cases A, simp, cases B, simp)

fix a b
assume

HA: A = dae and
HB: B = dbe and
VA: valid_local_attachment_state A l and
VB: valid_local_attachment_state B l

then have
HAB: A t B = da ∪ be using topset_union_def
by (metis topset.simps(5))

{
fix name
assume
∗: name ∈> A t B

with HAB have name ∈ a ∪ b by simp
moreover from ∗ HA VA have
∃ value. l name = bvaluec ∧ value 6= Voidv if name ∈> A

B.20 Memory state validity 235

using that valid_local_attachment_state_def by blast
moreover from ∗ HB VB have
∃ value. l name = bvaluec ∧ value 6= Voidv if name ∈> B

using that valid_local_attachment_state_def by blast
ultimately have ∃ value. l name = bvaluec ∧ value 6= Voidv
using HA HB by blast

}
then have ∀ name. name ∈> A t B −→
(∃ value. l name = bvaluec ∧ value 6= Voidv) by simp

then show valid_local_attachment_state (A t B) l
using valid_local_attachment_state_def by blast

qed

lemma local_attachment_state_exc:
assumes

valid_local_attachment_state A l and
¬ name ∈> A

shows valid_local_attachment_state A (l (name 7→ value))
using assms valid_local_attachment_state_def
by (metis (mono_tags) fun_upd_other)

lemma local_attachment_state_anti_mono:
assumes

B 6 A and
A 6= >

shows
valid_local_attachment_state A l =⇒ valid_local_attachment_state B l
using assms
by (simp add: topset_subsetD valid_local_attachment_state_def)

lemma local_attachment_state_sub:
valid_local_attachment_state A l =⇒
valid_local_attachment_state (A 	 name) (l (name 7→ value))
apply (cases A)

apply simp
apply (simp add: topset_member_def valid_local_attachment_state_def

topset_rem_def)
done

lemma local_attachment_state_add:
assumes

HA: value 6= Voidv and
HV: valid_local_attachment_state A l

shows valid_local_attachment_state (A ⊕ name) (l (name 7→ value))
proof (cases A)

case Top then show ?thesis

236 Th e o r i e s c o d e

by (simp add: valid_local_attachment_state_def)
next

case (Set a)
with HV have ∀ n. n ∈> A −→ (∃ v. l n = bvc ∧ v 6= Voidv)

using valid_local_attachment_state_def by auto
with Set HA have ∀ n. n ∈ (a ∪ {name}) −→
(∃ v. (l (name 7→ value)) n = bvc ∧ v 6= Voidv)

by (simp add: topset_member_def)
with Set have ∀ n. n ∈> (A ⊕ name) −→
(∃ v. (l (name 7→ value)) n = bvc ∧ v 6= Voidv)

by (simp add: topset_add_def topset_member_def)
with Set show ?thesis using valid_local_attachment_state_def by blast

qed

lemma local_attachment_state_upd:
assumes

HA: value 6= Voidv and
HV: valid_local_attachment_state A l

shows valid_local_attachment_state A (l (name 7→ value))
using assms local_attachment_state_add local_attachment_state_exc
topset_add_insert topset_insert_absorb by metis

Function valid_state tells if a given run-time state conforms to a
specified attachment status of variables.

primrec valid_state::
attachment_environment⇒ vname topset⇒ (′l, ′m) state⇒ bool
(_, _ ` _

√
s [60, 60, 60] 60)

— Notation: environment, attached_vars ` state
√
s

where
Γ , A ` (loc, mem)

√
s ←→

valid_local_state Γ loc ∧
valid_local_attachment_state A loc

lemma valid_stateI [intro]:
[[valid_local_state Γ loc; valid_local_attachment_state A loc]] =⇒
Γ , A ` (loc, mem)

√
s

by simp

lemma valid_stateD1 [dest?]: Γ , A ` (loc, mem)
√
s =⇒

valid_local_state Γ loc by simp

lemma valid_stateD2 [dest?]: Γ , A ` (loc, mem)
√
s =⇒

valid_local_attachment_state A loc by simp

lemma valid_state_anti_mono:

B.20 Memory state validity 237

assumes
B 6 A and
A 6= >

shows Γ , A ` s
√
s =⇒ Γ , B ` s

√
s

proof −
obtain l m where
∗: s = (l, m) by fastforce

moreover assume
Γ , A ` s

√
s

ultimately have
valid_local_state Γ l and
valid_local_attachment_state A l

by auto
then have

valid_local_state Γ l and
valid_local_attachment_state B l
using assms local_attachment_state_anti_mono by auto

with ∗ show ?thesis by simp
qed

lemma valid_state_union:
[[Γ , A ` (loc, mem)

√
s; Γ , B ` (loc, mem)

√
s]] =⇒ Γ , A t B ` (loc, mem)

√
s

by (simp add: local_attachment_state_union)

b.20.2 Run-time state decomposition.

lemma local_has_value: [[Γ , A ` s
√
s; Γ n = bTc]] =⇒ ∃ v. fst s n = bvc

proof −
assume Γ , A ` s

√
s and Γ n = bTc

moreover obtain l m where l = fst s and m = snd s by simp
moreover have [[Γ , A ` (l, m)

√
s; Γ n = bTc]] =⇒ ∃ v. l n = bvc

by (auto simp add: local_has_value ′)
ultimately show ?thesis by simp

qed

lemma local_is_attached:
[[Γ , A ` s

√
s; A 6= >; n ∈> A]] =⇒ ∃ v. fst s n = bvc ∧ v 6= Voidv

proof −
assume Γ , A ` s

√
s and A 6= > and n ∈> A

moreover obtain l m where l = fst s and m = snd s by simp
moreover have
[[Γ , A ` (l, m)

√
s; A 6= >; n ∈> A]] =⇒ ∃ v. l n = bvc ∧ v 6= Voidv

by (auto simp add: valid_local_attachment_state_def)
ultimately show ?thesis by simp

qed

238 Th e o r i e s c o d e

b.20.3 Run-time state updates.

lemma attachment_set_sub:
assumes Γ , A ` (l, m)

√
s

shows Γ , A 	 name ` (l (name 7→ value), m)
√
s

using assms by (simp add: local_state_upd local_attachment_state_sub)

lemma attachment_set_add:
assumes

value 6= Voidv and
Γ , A ` (l, m)

√
s

shows Γ , A ⊕ name ` (l (name 7→ value), m)
√
s

using assms local_attachment_state_add local_state_upd by auto

lemma attachment_set_int1:
assumes

HV: Γ , A1 ` (l1, m1)
√
s and

HD1: A1 6= > and
HD2: A2 6= >

shows
Γ , A1 u A2 ` (l1, m1)

√
s

proof −
from HD1 HD2 have A1 u A2 6= > using topset_inter_topD1 by auto
moreover have A1 u A2 6 A1 by (rule topset_inter_lower1)
with HV HD1 HD2 show ?thesis using valid_state_anti_mono by blast

qed

lemma attachment_set_int2:
assumes

HV: Γ , A2 ` (l2, m2)
√
s and

HD2: A2 6= > and
HD1: A1 6= >

shows
Γ , A1 u A2 ` (l2, m2)

√
s

proof −
from assms have Γ , A2 u A1 ` (l2, m2)

√
s by (rule attachment_set_int1)

then show ?thesis by (simp add: topset_inter_commute)
qed

definition attachment_valid_state (_ ` _
√
s) where

attachment_valid_state Γ s = Γ , ∅ ` s
√
s

end

B.21 Attachment correctness 239

B.21 Attachment correctness

theory BigStepSafety imports
BigStep MemoryAttachment ExpressionValidity StateValidity

begin

no_notation floor (b_c)
no_notation Set.member ((_/ : _) [51, 51] 50)

b.21.1 Preservation of valid run-time state

A void-safe assignment instruction preserves a void-safe state.

lemma valid_state_preservation_by_value_assignment:
assumes
HS: Γ ` 〈n ::= Value v, (l, m)〉 ⇒ 〈c ′, (l ′, m ′)〉 and
VS: Γ , A ` (l, m)

√
s

shows Γ , A (n ::= Value v) A ` (l ′, m ′)
√
s

using assms
proof (cases A)

case (Set a)
show ?thesis
proof (cases v 6= Voidv)
case True

moreover with Set have A (n ::= Value v) A = A ⊕ n by simp
moreover from VS have Γ , A ` (l, m ′)

√
s by auto

with True have Γ , A ⊕ n ` (l (n 7→ v), m ′)
√
s using attachment_set_add

by fastforce
moreover from HS have ∗: l ′= l (n 7→ v) by auto
ultimately show ?thesis by auto

next
case False

moreover from False Set have A (n ::= Value v) A = A 	 n by simp
moreover from VS have Γ , A ` (l, m ′)

√
s by auto

then have Γ , A 	 n ` (l (n 7→ v), m ′)
√
s by (rule attachment_set_sub)

moreover from HS have ∗: l ′= l (n 7→ v) by auto
ultimately show ?thesis by auto

qed
next

case Top
with assms A_to_all show ?thesis using local_state_upd by fastforce

qed

A void-safe creation instruction preserves a void-safe state.

lemma valid_state_preservation_by_creation:
assumes

240 Th e o r i e s c o d e

HS: Γ ` 〈create n, (l, m)〉 ⇒ 〈c ′, (l ′, m ′)〉 and
HT: A ` create n : T and
VS: Γ , A ` (l, m)

√
s and

HE: c ′ 6= Exception
shows Γ , A (create n) A ` (l ′, m ′)

√
s

proof −
from HS HE obtain Tn v where
Γ n = bTnc and

instance m Tn = Some (m ′, v) and
∗: l ′= l (n 7→ v) by auto

hence v 6= Voidv by (auto simp add: instance_def)
moreover from VS have Γ , A ` (l, m ′)

√
s by auto

ultimately have Γ , A ⊕ n ` (l (n 7→ v), m ′)
√
s

by (rule attachment_set_add)
with ∗ show ?thesis by auto

qed

If there is a transition from a local-valid state, the resulting state is
local-valid.

lemma valid_local_state_preservation:
fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

assumes
valid_local_state Γ (fst s)

shows
valid_local_state_preservation_e:
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒ valid_local_state Γ (fst s ′) and

valid_local_state_preservation_es:
Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉 =⇒ valid_local_state Γ (fst s ′)

using assms
by (induction rule: big_step_big_steps.inducts)
(simp_all add: instance_is_value local_state_upd option.case_eq_if)

lemma valid_local_state_preservation ′:
fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list
assumes
valid_local_state Γ l

shows
valid_local_state_preservation_e ′:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒ valid_local_state Γ l ′ and

valid_local_state_preservation_es ′:
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ valid_local_state Γ l ′

using assms valid_local_state_preservation by auto

If there is a transition from a valid state for unreachable code, the
resulting state is valid for unreachable code.

B.21 Attachment correctness 241

lemma indefinedness_preservation_e:
assumes
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉
Γ , > ` s

√
s

shows
Γ , > ` s ′

√
s

using assms local_attachment_state_top valid_local_state_preservation_e
valid_stateD1 valid_stateI by (metis prod.collapse)

lemma indefinedness_preservation_es:
assumes
Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉
Γ , > ` s

√
s

shows
Γ , > ` s ′

√
s

using assms local_attachment_state_top valid_local_state_preservation_es
valid_stateD1 valid_stateI by (metis prod.collapse)

If there is a transition from a valid state for reachable code, there is
some reachable code for which the new state is valid.

lemma
fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

shows
definedness_preservation_e:
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒ Γ , dae ` s

√
s =⇒ ∃ b. Γ , dbe ` s ′

√
s and

definedness_preservation_es:
Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉 =⇒ Γ , dae ` s

√
s =⇒ ∃ b. Γ , dbe ` s ′

√
s

using assms
proof (induction arbitrary: a and a rule: big_step_big_steps.inducts)

case (Assign e s v l m n a)
then obtain b::vname set where Γ , dbe ` (l, m)

√
s by blast

then have Γ , dbe 	 n ` (l(n 7→ v), m)
√
s by (rule attachment_set_sub)

thus ?case
by (metis topset.exhaust topset_inter_rem topset_inter_rem_distrib

topset_inter_top_right)
next

case (Create n T m m ′ v l a)
moreover with Create obtain Tn and v :: ′b value
where Γ n = bTnc instance m Tn = b(m ′, v)c by simp

moreover hence instance m Tn = b(m ′, v)c by simp
hence is_attached_value v by (rule instance_is_attached)

ultimately show ?case using local_state_upd
valid_local_attachment_state_def attached_value_is_not_void
by fastforce

next

242 Th e o r i e s c o d e

case (Loopfalse e c) then show ?case by meson
next

case (Testtrue e) then show ?case
by (metis attachment_set_sub topset.collapse topset_rem_absorb)

qed auto

If there is a transition from an expression known be True, the resulting
expression is either a value True or an exception.

lemma result_true:
[[is_true e; Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉]] =⇒ e ′= Truec ∨ e ′= Exception

using is_true.elims(2) by blast

If there is a transition from an expression known be False, the resulting
expression is either a value False or an exception.

lemma result_false:
[[is_false e; Γ ` 〈e, s〉 ⇒ 〈c, s ′〉]] =⇒ c = Falsec ∨ c = Exception

using is_false.elims(2) by blast

If there is a transition from a void-safe expression to an expression that
is not an exception, the static analysis treats code after that expression
as reachable if the code before the expression is reachable.

lemma
fixes
e :: ′b attachable_expression and es :: ′b attachable_expression list

assumes
A 6= >

shows
reachability_preservation:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′ 6= Exception =⇒
A B e 6= > and

reachability_preservation_scope_true:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′= Truec =⇒
A B+ e 6= > and

reachability_preservation_scope_false:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′= Falsec =⇒
A B− e 6= > and

reachability_preservation_es:
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒
A ` es [:] Ts =⇒

B.21 Attachment correctness 243

Exception /∈ set es ′=⇒
A BB es 6= > and
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ True and
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ True

using assms
proof (induction arbitrary: A T and A Ts rule: big_step_induct)

fix A :: vname topset and T
case (Value v l m)

assume A 6= >
then show A B (Value v) 6= > by simp
then show A B+ (Value v) 6= > by simp
then show A B− (Value v) 6= > by simp

next
fix A :: vname topset and T
case (Local l n v m)

assume A 6= >
then show A B (Local n) 6= > by simp
then show A B+ (Local n) 6= > by simp
then show A B− (Local n) 6= > by simp

next
fix A :: vname topset and T
case (Seq c1 l m l1 m1 c2 c2 ′ l ′m ′)
moreover assume

c2 ′ 6= Exception
A ` c1 ;; c2 : T
A 6= >

ultimately show A B c1 ;; c2 6= > by auto
next

fix A :: vname topset and T
case (Seq c1 l m l1 m1 c2 c2 ′ l ′m ′)
moreover assume

c2 ′= Truec
A ` c1 ;; c2 : T
A 6= >

ultimately show A B+ c1 ;; c2 6= >
using result_false by (cases is_false (c1 ;; c2)) fastforce+

next
fix A :: vname topset and T
case (Seq c1 l m l1 m1 c2 c2 ′ l ′m ′)
moreover assume

c2 ′= Falsec
A ` c1 ;; c2 : T
A 6= >

ultimately show A B− c1 ;; c2 6= >
using result_true by (cases is_true (c1 ;; c2)) fastforce+

next

244 Th e o r i e s c o d e

fix A :: vname topset and T n
case (Assign e l m v l ′m ′)
moreover assume

A ` n ::= e : T
A 6= >

ultimately show A B n ::= e 6= > by auto
then show A B+ n ::= e 6= > by simp
then show A B− n ::= e 6= > by simp

next
fix A :: vname topset and T
case (Create n Tn m m ′ v)
assume

A 6= >
then show A B create n 6= > by simp
then show A B+ create n 6= > by simp
then show A B− create n 6= > by simp

next
fix A :: vname topset and T
case (Createfail n Tn m)

assume
A 6= >

then show A B create n 6= > by simp
then show A B+ create n 6= > by simp
then show A B− create n 6= > by simp

next
fix A :: vname topset and T f
case (Call e l m v le me es vs l ′m ′)
moreover assume

lHc: A ` e · f (es) : T and
lHD: A 6= >

moreover with Call.IH have A B e 6= > by auto
moreover have Exception /∈ set (map Value vs) by auto
moreover from lHc obtain Ts where A B e ` es [:] Ts by blast
ultimately have A B e BB es 6= > by blast
then show A B e · f (es) 6= > by auto
then show A B+ e · f (es) 6= > by simp
then show A B− e · f (es) 6= > by simp

next
fix A :: vname topset and T c2
case (If true b l m lb mb c1 c1 ′ l1 m1)
moreover assume

lHc1: c1 ′ 6= Exception and
lHc: A ` if b then c1 else c2 end : T and
lHA: A 6= >

ultimately have A B+ b 6= > by auto
moreover from lHc obtain Tc where A B+ b ` c1 : Tc by auto

B.21 Attachment correctness 245

moreover from lHc1 have A B+ b B c1 6= >
using If true.IH(4) calculation by blast

ultimately show A B if b then c1 else c2 end 6= >
using topset_inter_topD1 by auto

next
fix A :: vname topset and T c2
case (If true b l m lb mb c1 c1 ′ l1 m1)
moreover assume

lHc1: c1 ′= Truec and
lHc: A ` if b then c1 else c2 end : T and
lHA: A 6= >

ultimately have A B+ b 6= > by auto
moreover from lHc obtain Tc where A B+ b ` c1 : Tc by auto
ultimately show A B+ if b then c1 else c2 end 6= >

using lHc1 If true topset_inter_topD1 A_If value_neq_exception
result_false At_If

by (metis expression.inject(1) object_value.inject(2) value.inject(1))
next

fix A :: vname topset and T c2
case (If true b l m lb mb c1 c1 ′ l1 m1)
moreover assume

lHc1: c1 ′= Falsec and
lHc: A ` if b then c1 else c2 end : T and
lHA: A 6= >

ultimately have A B+ b 6= > by auto
moreover from lHc obtain Tc where A B+ b ` c1 : Tc by auto
ultimately show A B− if b then c1 else c2 end 6= >

using lHc1 If true topset_inter_topD1 A_If value_neq_exception
unreachable_if_true Af_If by metis

next
fix A :: vname topset and T c1
case (If false b l m lb mb c2 c2 ′ l2 m2)
moreover assume

lHc1: c2 ′ 6= Exception and
lHc: A ` if b then c1 else c2 end : T and
lHA: A 6= >

ultimately have A B− b 6= > by auto
moreover from lHc obtain Tc where A B− b ` c2 : Tc by auto
moreover from lHc1 have A B− b B c2 6= >
using If false.IH(4) calculation by blast

ultimately show A B if b then c1 else c2 end 6= >
using topset_inter_topD2 by auto

next
fix A :: vname topset and T c1
case (If false b l m lb mb c2 c2 ′ l2 m2)
moreover assume

246 Th e o r i e s c o d e

lHc2: c2 ′= Truec and
lHc: A ` if b then c1 else c2 end : T and
lHA: A 6= >

ultimately have A B− b 6= > by auto
moreover from lHc obtain Tc where A B− b ` c2 : Tc by auto
ultimately show A B+ if b then c1 else c2 end 6= >

using lHc2 If false topset_inter_topD2 A_If value_neq_exception
unreachable_if_false At_If by metis

next
fix A :: vname topset and T c1
case (If false b l m lb mb c2 c2 ′ l2 m2)
moreover assume

lHc2: c2 ′= Falsec and
lHc: A ` if b then c1 else c2 end : T and
lHA: A 6= >

ultimately have A B− b 6= > by auto
moreover from lHc obtain Tc where A B− b ` c2 : Tc by auto
ultimately show A B− if b then c1 else c2 end 6= >

using lHc2 If false topset_inter_topD2 A_If value_neq_exception
unreachable_if_true Af_If by metis

next
fix A :: vname topset and T c
case (Looptrue e l m)

moreover assume
lHc: A ` until e loop c end : T and
lHA: A 6= >

then have gfp (λB. A u (B B− e B c)) ` e : Attached by auto
moreover have gfp (λB. A u (B B− e B c)) 6 A
by (meson gfp_least topset_inter_subset_iff)

ultimately have A ` e : Attached using AT_mono by blast
moreover have A B until e loop c end 6 A B+ e
by (rule attachment_loop_condition)

moreover from lHA have A B+ e 6= >
using Looptrue calculation by blast

ultimately show A B until e loop c end 6= >by auto
then show A B+ until e loop c end 6= > by simp
then show A B− until e loop c end 6= > by simp

next
fix A :: vname topset and T
case (Loopfalse e l m le me c lc mc c ′ l ′m ′)
moreover assume

lHc ′: c ′ 6= Exception and
lHc: A ` until e loop c end : T and
lHA: A 6= >

ultimately show A B until e loop c end 6= > by simp
next

B.21 Attachment correctness 247

fix A :: vname topset and T
case (Loopfalse e l m le me c lc mc c ′ l ′m ′)
moreover assume

lHc ′: c ′= Truec and
lHc: A ` until e loop c end : T and
lHA: A 6= >

ultimately show A B+ until e loop c end 6= > by simp
next

fix A :: vname topset and T
case (Loopfalse e l m le me c lc mc c ′ l ′m ′)
moreover assume

lHc ′: c ′= Falsec and
lHc: A ` until e loop c end : T and
lHA: A 6= >

ultimately show A B− until e loop c end 6= > by simp
next

fix A :: vname topset and T n
case (Testtrue e l m v l ′m ′ t)
moreover assume

lHv: v 6= Voidv ∧ v has_type t and
lHc: A ` attached t e as n : T and
lHA: A 6= >

moreover then obtain Te where A ` e : Te by blast
ultimately have

lHe: A B e 6= > using value_neq_exception by blast
from lHe show A B attached t e as n 6= > by auto
from lHe show A B+ attached t e as n 6= >
by (cases e) (simp_all add: topset_union_topI)

from lHe show A B− attached t e as n 6= >
by (cases e) (simp_all add: topset_union_topI)

next
fix A :: vname topset and T n
case (Testfalse e l m v l ′m ′ t)
moreover assume

lHv: ¬ (v 6= Voidv ∧ v has_type t) and
lHc: A ` attached t e as n : T and
lHA: A 6= >

moreover then obtain Te where A ` e : Te by blast
ultimately have

lHe: A B e 6= > using value_neq_exception by blast
from lHe show A B attached t e as n 6= > by auto
from lHe show A B+ attached t e as n 6= >
by (cases e) (simp_all add: topset_union_topI)

from lHe show A B− attached t e as n 6= >
by (cases e) (simp_all add: topset_union_topI)

qed auto

248 Th e o r i e s c o d e

lemma
reachability_preservation ′:
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒
A ` e : T =⇒
e ′ 6= Exception =⇒
A 6= > =⇒
A B e 6= > and

reachability_preservation_scope_true ′:
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒
A ` e : T =⇒
e ′= Truec =⇒
A 6= > =⇒
A B+ e 6= > and

reachability_preservation_scope_false ′:
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒
A ` e : T =⇒
e ′= Falsec =⇒
A 6= > =⇒
A B− e 6= > and

reachability_preservation_es ′:
Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉 =⇒
A ` es [:] Ts =⇒
Exception /∈ set es ′=⇒
A 6= > =⇒
A BB es 6= >

using reachability_preservation apply (metis prod.collapse)
using reachability_preservation_scope_true apply (metis prod.collapse)
using reachability_preservation_scope_false apply (metis prod.collapse)
using reachability_preservation_es apply (metis prod.collapse)
done

If there is a transition from a void-safe expression in reachable code
and the code after the expression is unreachable, the resulting
expression is an exception.

lemma exception_detection:
assumes
HS: Γ ` 〈c, (l, m)〉 ⇒ 〈c ′, (l ′, m ′)〉 and
HT: A ` c : T and

HD: A 6= > and
HE: A B c = >

shows
c ′= Exception

using reachability_preservation assms by fastforce

lemma local_attachment_state_if1:
assumes

B.21 Attachment correctness 249

HV: valid_local_attachment_state (A B+ c B e1) l and
HD: A B+ c B e1 6= >

shows valid_local_attachment_state (A B if c then e1 else e2 end) l
using assms topset_inter_lower1
by (metis A_If local_attachment_state_anti_mono)

lemma local_attachment_state_if2:
assumes

HV: valid_local_attachment_state (A B− c B e2) l and
HD: A B− c B e2 6= >

shows valid_local_attachment_state (A B if c then e1 else e2 end) l
using assms topset_inter_lower2 by (metis A_If
local_attachment_state_anti_mono)

If a transition from a void-safe expression of an attached type in a
void-safe state yields a value, this value is attached.

lemma valid_local_attachment_state_preservation ′ ′:
fixes
e :: ′b attachable_expression and es :: ′b attachable_expression list

assumes
HV: valid_local_attachment_state A l and
HD: A 6= >

shows

Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′= Value w =⇒
T = Attached =⇒
w 6= Voidv and

Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′= Value w =⇒
valid_local_attachment_state (A B e) l ′ and

Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′= Truec =⇒
valid_local_attachment_state (A B+ e) l ′ and

Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒
e ′= Falsec =⇒
valid_local_attachment_state (A B− e) l ′ and

Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒

250 Th e o r i e s c o d e

A ` es [:] Ts =⇒
es ′= map Value ws =⇒
Detachable /∈ set Ts =⇒
Voidv /∈ set ws and

Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒
A ` es [:] Ts =⇒
es ′= map Value ws =⇒
valid_local_attachment_state (A BB es) l ′ and
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ True and
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ True

using assms
proof (induction arbitrary: A T w and A Ts ws rule: big_step_induct)

fix A T w
case (Value v l m)

assume
lHt: A ` Value v : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: (Value v) = (Value w)

from lHv show valid_local_attachment_state (A B Value v) l by simp
then show valid_local_attachment_state (A B+ Value v) l by simp
then show valid_local_attachment_state (A B− Value v) l by simp
assume
T = Attached

with lHw lHt show w 6= Voidv by auto
next

fix A T w
case (Local l n v m)

assume
lHv: l n = bvc and
lHT: A ` Local n : T and
lHV: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: (Value v) = (Value w)

then show valid_local_attachment_state (A B Local n) l by simp
then show valid_local_attachment_state (A B+ Local n) l by simp
then show valid_local_attachment_state (A B− Local n) l by simp
assume
T = Attached

with lHA lHw lHT lHv lHV show w 6= Voidv
using valid_local_attachment_state_def ExpressionValidity.LocalE
by (metis attachment_type.distinct(1) expression.inject(1)

option.inject)
next

fix A T w

B.21 Attachment correctness 251

case (Seq c1 l m l1 m1 c2 c2 ′ l ′m ′)
assume

lHT: A ` c1 ;; c2 : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c2 ′= Value w

from lHT lHv lHA lHw show
lHS: valid_local_attachment_state (A B c1 ;; c2) l ′

using Seq.IH(2) Seq.IH(6) Seq.hyps(1) value_neq_exception
exception_detection by fastforce

from lHS show valid_local_attachment_state (A B+ c1 ;; c2) l ′ by simp
from lHS show valid_local_attachment_state (A B− c1 ;; c2) l ′ by simp
assume
T = Attached

with Seq.hyps Seq.IH lHT lHv lHA lHw show w 6= Voidv
using exception_detection by fastforce

next
fix A T and w :: ′b value and n
case (Assign e l m v le me)
assume

lHT: A ` n ::= e : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: unit = Value w

from lHT lHv lHA show
valid_local_attachment_state (A B n ::= e) (le(n 7→ v))

using attached_assignment_set detachable_assignment_set
local_attachment_state_add local_attachment_state_sub
by (metis (full_types) Assign.IH(1) Assign.IH(2)

ExpressionValidity.AssignE attachment_type.exhaust)
then show valid_local_attachment_state (A B+ n ::= e) (le(n 7→ v))
by simp

then show valid_local_attachment_state (A B− n ::= e) (le(n 7→ v))
by simp

assume
T = Attached

from lHw show w 6= Voidv by simp
next

fix A T and w :: ′b value and l :: ′b local_state
case (Create n Tn m m ′ v)
assume

lHT: A ` create n : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: unit = Value w

from lHv Create.hyps show

252 Th e o r i e s c o d e

valid_local_attachment_state (A B create n) (l(n 7→ v))
using local_attachment_state_add A_Create instance_is_not_void
by metis

then show valid_local_attachment_state (A B+ create n) (l(n 7→ v))
by simp

then show valid_local_attachment_state (A B− create n) (l(n 7→ v))
by simp

assume
T = Attached

from lHw show w 6= Voidv by simp
next

fix A T and w :: ′b value and l :: ′b local_state
case (Createfail n Tn m)

assume
lHT: A ` create n : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: Exception = Value w

then show w 6= Voidv by simp
from lHv lHw show valid_local_attachment_state (A B create n) l
by simp

then show valid_local_attachment_state (A B+ create n) l by simp
then show valid_local_attachment_state (A B− create n) l by simp

next
fix A T and w :: ′b value and f
case (Call e l m v le me es vs l ′m ′)
assume

lHT: A ` e · f (es) : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: unit = Value w

then show w 6= Voidv by blast
from lHT lHv lHA Call.IH show
valid_local_attachment_state (A B e · f (es)) l ′

using A_Call A_to_all local_attachment_state_top
by (metis ExpressionValidity.CallE)

then show valid_local_attachment_state (A B+ e · f (es)) l ′

by simp
then show valid_local_attachment_state (A B− e · f (es)) l ′

by simp
next

fix A T w c2
case H: (If true b l m lb mb c1 c1 ′ l1 m1)
assume

lHT: A ` if b then c1 else c2 end : T and
lHv: valid_local_attachment_state A l and

B.21 Attachment correctness 253

lHA: A 6= > and
lHw: c1 ′= Value w

from lHT lHv lHA lHw H.hyps H.IH show
valid_local_attachment_state (A B if b then c1 else c2 end) l1

using value_neq_exception exception_detection
local_attachment_state_if1 reachability_preservation_scope_true
by (metis ExpressionValidity.IfE)

assume
T = Attached

with H lHT lHv lHA lHw show w 6= Voidv
using reachability_preservation_scope_true upper_bound_bot_left ′

by (metis ExpressionValidity.IfE)
next

fix A T w c2
case (If true b l m lb mb c1 c1 ′ l1 m1)
moreover assume

lH1: c1 ′= Truec and
lHT: A ` if b then c1 else c2 end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c1 ′= Value w

then have valid_local_attachment_state (A B if b then c1 else c2 end) l1
using value_neq_exception exception_detection

local_attachment_state_if1 reachability_preservation_scope_true
by (metis If true.IH(3) If true.IH(6)

If true.hyps(1) If true.hyps(2) ExpressionValidity.IfE)
moreover from lH1 have ¬ is_false c1
using If true.hyps result_false by blast

ultimately show
valid_local_attachment_state (A B+ if b then c1 else c2 end) l1

using If true.IH lH1 lHT lHv by fastforce
next

fix A T w c2
case (If true b l m lb mb c1 c1 ′ l1 m1)
moreover assume

lH1: c1 ′= Falsec and
lHT: A ` if b then c1 else c2 end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c1 ′= Value w

then have valid_local_attachment_state (A B if b then c1 else c2 end) l1
using value_neq_exception exception_detection

local_attachment_state_if1 reachability_preservation_scope_true
by (metis If true.IH(3) If true.IH(6)

If true.hyps(1) If true.hyps(2) ExpressionValidity.IfE)
moreover from lH1 have ¬ is_true c1

254 Th e o r i e s c o d e

using If true.hyps result_true by blast
ultimately show
valid_local_attachment_state (A B− if b then c1 else c2 end) l1

using If true.IH lH1 lHT lHv by fastforce
next

fix A T w c1
case H: (If false b l m lb mb c2 c2 ′ l2 m2)
assume

lHT: A ` if b then c1 else c2 end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c2 ′= Value w

from lHT lHv lHA lHw H show
valid_local_attachment_state (A B if b then c1 else c2 end) l2

using value_neq_exception exception_detection
local_attachment_state_if2 reachability_preservation_scope_false
by (metis ExpressionValidity.IfE)

assume
T = Attached

with lHT lHv lHA lHw H show w 6= Voidv
using reachability_preservation_scope_false upper_bound_bot_right ′

by (metis ExpressionValidity.IfE)
next

fix A T w c1
case (If false b l m lb mb c2 c2 ′ l2 m2)
moreover assume

lH2: c2 ′= Truec and
lHT: A ` if b then c1 else c2 end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c2 ′= Value w

from lHT lHv lHA lHw have
valid_local_attachment_state (A B if b then c1 else c2 end) l2

using value_neq_exception exception_detection
local_attachment_state_if2 reachability_preservation_scope_false

by (metis If false.IH(4) If false.IH(6)
If false.hyps(1) If false.hyps(2) ExpressionValidity.IfE)

moreover from lH2 have ¬ is_false c2
using If false.hyps result_false by blast

ultimately show
valid_local_attachment_state (A B+ if b then c1 else c2 end) l2

using If false.IH lH2 lHT lHv by fastforce
next

fix A T w c1
case (If false b l m lb mb c2 c2 ′ l2 m2)
moreover assume

B.21 Attachment correctness 255

lH2: c2 ′= Falsec and
lHT: A ` if b then c1 else c2 end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c2 ′= Value w

from lHT lHv lHA lHw have
valid_local_attachment_state (A B if b then c1 else c2 end) l2

using value_neq_exception exception_detection
local_attachment_state_if2 reachability_preservation_scope_false

by (metis If false.IH(4) If false.IH(6)
If false.hyps(1) If false.hyps(2) ExpressionValidity.IfE)

moreover from lH2 have ¬ is_true c2
using If false.hyps result_true by blast

ultimately show
valid_local_attachment_state (A B− if b then c1 else c2 end) l2

using If false.IH lH2 lHT lHv by fastforce
next

fix A T and w :: ′b value and c
case (Looptrue e l m le me)
assume

lHT: A ` until e loop c end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: unit = Value w

then show w 6= Voidv by simp
from lHT have gfp (λ B. A u B B− e B c) ` e: Attached by blast
moreover have gfp (λ B. A u B B− e B c) 6 A
by (simp add: topset_gfp_inter_left)

ultimately have ∃ Tb. A ` e: Tb ∧ Tb→a Attached
using AT_mono by metis

then have
lHe: A ` e: Attached using conforms_to_attached by blast

with Looptrue.IH lHA lHv have
valid_local_attachment_state (A B+ e) le by simp

moreover from lHA Looptrue.hyps lHe have A B+ e 6= >
by (simp add: reachability_preservation_scope_true)

moreover have A B until e loop c end 6 A B+ e
by (rule attachment_loop_condition)

ultimately show
valid_local_attachment_state (A B until e loop c end) le

by (simp add: local_attachment_state_anti_mono)
then show
valid_local_attachment_state (A B+ until e loop c end) le by simp

then show
valid_local_attachment_state (A B− until e loop c end) le by simp

next

256 Th e o r i e s c o d e

fix A T w
case (Loopfalse e l m le me c lc mc c ′ l ′m ′)
assume

lHT: A ` until e loop c end : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: c ′= Value w

obtain sc s ′ f where
sc = (lc, mc) and s ′= (l ′, m ′) and
lHf : f = until e loop c end
by simp

with Loopfalse.hyps have
lHB: Γ ` 〈f , sc〉 ⇒ 〈c ′, s ′〉 by simp

from lHT have gfp (λ B. A u B B− e B c) ` e: Attached by auto
moreover have gfp (λ B. A u B B− e B c) 6 A
by (simp add: topset_gfp_inter_left)

ultimately have ∃ Tb. A ` e: Tb ∧ Tb→a Attached
using AT_mono by metis

then have
lHTe: A ` e: Attached using conforms_to_attached by blast

with Loopfalse.IH lHv lHA have
lHVe: valid_local_attachment_state (A B− e) le by simp

moreover from lHA Loopfalse.hyps lHTe have
lHDe: A B− e 6= > by (simp add: reachability_preservation_scope_false)

from lHT have (gfp (λB. A u (B B− e B c)) B− e) ` c : Attached by auto
moreover have (gfp (λB. A u (B B− e B c)) B− e) 6 A B− e

by (simp add: topset_gfp_inter_left Af_mono ′)
ultimately have ∃ Tb. (A B− e) ` c: Tb ∧ Tb→a Attached
using AT_mono by metis

then have
lHTc: (A B− e) ` c: Attached using conforms_to_attached by blast

with Loopfalse.IH lHDe lHVe have
valid_local_attachment_state (A B− e B c) lc by simp

moreover from Loopfalse.hyps lHDe lHTc have
lHDc: A B− e B c 6= > by (simp add: reachability_preservation)

moreover from lHT have T = Attached by auto
with lHT have

lHTc: A B− e B c ` until e loop c end: Attached
using AT_loop_step by metis

ultimately have
lHVc: valid_local_attachment_state (A B− e B c B until e loop c end) l ′

using Loopfalse.IH lHw by simp
from lHw have c ′ 6= Exception by simp
from Loopfalse.hyps lHTc lHDc this have

lHDl: A B− e B c B until e loop c end 6= >

B.21 Attachment correctness 257

using reachability_preservation(1) by metis
have A B until e loop c end 6 A B− e B c B until e loop c end
by (rule loop_application1)

from this lHDl lHVc show
valid_local_attachment_state (A B until e loop c end) l ′

using local_attachment_state_anti_mono by blast
then show
valid_local_attachment_state (A B+ until e loop c end) l ′ by simp

then show
valid_local_attachment_state (A B− until e loop c end) l ′ by simp

assume
T = Attached

moreover have
[[Γ ` 〈f , sc〉 ⇒ 〈c ′, s ′〉; f = until e loop c end; c ′= Value w]] =⇒
w = Unit
Γ ` 〈es, sc〉 [⇒] 〈es ′, s ′〉 =⇒ True
by (induction rule: big_step_big_steps.inducts) auto

moreover note lHf lHw lHB
ultimately have w = Unit by simp
then show w 6= Voidv by simp

next
fix A T and w :: ′b value and n
case (Testtrue e l m v le me t)
assume

lHa: v 6= Voidv ∧ v has_type t and
lHT: A ` attached t e as n : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: Truec = Value w

then show w 6= Voidv by auto
from lHA lHT lHa lHv show

lHVc: valid_local_attachment_state (A B attached t e as n) (le(n 7→ v))
using Testtrue.IH local_attachment_state_upd by fastforce

then have
lHVe: valid_local_attachment_state (A B e) le
using Testtrue.IH lHA lHT lHv by auto

moreover from lHa have
lHa ′: is_attached v by simp

ultimately have
lHVn: valid_local_attachment_state (A B e ⊕ n) (le(n 7→ v))

using local_attachment_state_add by auto
show valid_local_attachment_state (A B+ attached t e as n) (le(n 7→ v))
proof (cases ∃ x. e = Local x)

case True
then obtain x where e = Local x by blast
then have A B+ attached t e as n = A B e ⊕ x ⊕ n by simp

258 Th e o r i e s c o d e

then have A B+ attached t e as n = A B e ⊕ n ⊕ x by simp
moreover have le x = bvc
using Testtrue.hyps(1) 〈e = Local x〉 by blast

then have (le (n 7→ v)) x = bvcby simp
moreover from lHa ′ have v 6= Voidv by simp
moreover note lHVn
ultimately show ?thesis using local_attachment_state_add

by (metis fun_upd_triv)
next

case False
then have A B+ attached t e as n = A B e ⊕ n
by (cases e) simp_all

then show ?thesis using lHVn by simp
qed
from lHVc show
valid_local_attachment_state (A B− attached t e as n) (le(n 7→ v))
by simp

next
fix A T and w :: ′b value and n
case (Testfalse e l m v le me t)
assume

lHa: ¬ (v 6= Voidv ∧ v has_type t) and
lHT: A ` attached t e as n : T and
lHv: valid_local_attachment_state A l and
lHA: A 6= > and
lHw: Falsec = Value w

then show w 6= Voidv by auto
from lHA lHT lHv show

lHVc: valid_local_attachment_state (A B attached t e as n) le
using Testfalse.IH(2) by auto

then have valid_local_attachment_state (A B e) le by simp
from lHVc show
valid_local_attachment_state (A B− attached t e as n) le by simp

assume
Falsec = Truec

then show
valid_local_attachment_state (A B+ attached t e as n) le by simp

next
fix A Ts and ws :: ′b value list

case (Nil l m)

assume
lHV: valid_local_attachment_state A l and
lHA: A 6= >

show True by simp
show True by simp
assume

B.21 Attachment correctness 259

lHT: A ` [] [:] Ts and
lHw: [] = map Value ws

from lHV show valid_local_attachment_state (A BB []) l by simp
assume
Detachable /∈ set Ts

from lHw show Voidv /∈ set ws by simp
next

fix A Ts ws
case (Cons e l m v le me es es ′ l ′m ′)
assume
lHV: valid_local_attachment_state A l and
lHA: A 6= >

show True by simp
show True by simp
assume
lHT: A ` e # es [:] Ts and
lHw: (Value v) # es ′= map Value ws

from lHT obtain T ′ Ts ′where
lHeT: A ` e : T ′ and
lHesT:A B e ` es [:] Ts ′ and
lHTc: Ts = T ′ # Ts ′

using list_attachment_validity_tail by blast
moreover from lHw have
lHesv: es ′= map Value (tl ws) by auto

moreover from Cons.IH lHA lHV lHeT have
lHeV: valid_local_attachment_state (A B e) le by auto

moreover from Cons.hyps lHA lHeT have
lHAe: A B e 6= > using reachability_preservation by fastforce

moreover note Cons.IH lHesT
ultimately show
valid_local_attachment_state (A BB (e # es)) l ′ by auto

from lHw have
v = hd ws by auto

moreover assume
lHTsD: Detachable /∈ set Ts

with lHT lHTc have
lHeD: T ′= Attached using attachment_type.exhaust by auto

moreover note Cons.IH lHA lHV lHeT
ultimately have
lHwh: hd ws 6= Voidv by blast

from lHTsD lHTc have
lHesD: Detachable /∈ set Ts ′ by simp

with Cons.IH lHesT lHesv lHeV lHAe have Voidv /∈ set (tl ws) by simp
with lHwh lHw show Voidv /∈ set ws
using hd_Cons_tl Nil_is_map_conv by fastforce

qed auto

260 Th e o r i e s c o d e

A transition from a void-safe expression with a void-safe state that does
not lead to an exception preserves the void-safe status of the state.

lemma valid_local_attachment_state_preservation:
assumes
HS: Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 and
HT: A ` e : T and

HV: valid_local_attachment_state A l and
HE: e ′ 6= Exception

shows
valid_local_attachment_state (A e A) l ′

proof (cases A)

case Top thus ?thesis by (simp add: valid_local_attachment_state_def)
next

case (Set a)
from HS have Final e ′ by (simp add: big_step_final)
then obtain v where e ′= (Value v) ∨ e ′= Exception
by (auto simp add: Final_def)

hence e ′= Value v by (simp add: HE)
with HS HT HV Set show ?thesis
using valid_local_attachment_state_preservation ′ ′(2) by fastforce

qed

If there is a transition from a void-safe expression of an attached type in
reachable code with a void-safe state to a value, this value is not Void.

lemma local_attachment_type_preservation:
assumes
HS: Γ ` 〈c, (l, m)〉 ⇒ 〈Value v, (l ′, m ′)〉 and
HT: A ` c : Attached and

HV: valid_local_attachment_state A l and
HD: A 6= >

shows v 6= Voidv
using assms valid_local_attachment_state_preservation ′ ′(1) by fastforce

If there is a transition from a void-safe expression with a valid state to a
value, the resulting state is valid with respect to the context after the
expression.

lemma
fixes
e :: ′b attachable_expression and es :: ′b attachable_expression list

assumes
Γ , A ` (l, m)

√
s

shows
valid_state_preservation:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒

B.21 Attachment correctness 261

e ′= Value w =⇒
Γ , (A B e) ` (l ′, m ′)

√
s and

valid_state_preservation_scope_true:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒

e ′= Truec =⇒
Γ , (A B+ e) ` (l ′, m ′)

√
s and

valid_state_preservation_scope_false:
Γ ` 〈e, (l, m)〉 ⇒ 〈e ′, (l ′, m ′)〉 =⇒
A ` e : T =⇒

e ′= Falsec =⇒
Γ , (A B− e) ` (l ′, m ′)

√
s and

valid_state_preservation_es:
Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒
A ` es [:] Ts =⇒
es ′= map Value ws =⇒
Γ , A BB es ` (l ′, m ′)

√
s and

Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ True and

Γ ` 〈es, (l, m)〉 [⇒] 〈es ′, (l ′, m ′)〉 =⇒ True
using assms
proof (induction arbitrary: A T w and A Ts ws rule: big_step_induct)

fix A T w
case (Value v l m)

assume
A ` Value v : T
Γ , A ` (l, m)

√
s

(Value v) = (Value w)

then show Γ , A B Value v ` (l, m)
√
s by simp

then show Γ , A B+ Value v ` (l, m)
√
s by simp

then show Γ , A B− Value v ` (l, m)
√
s by simp

next
fix A T w
case (Local l n v m)

assume
l n = bvc
A ` Local n : T
Γ , A ` (l, m)

√
s

(Value v) = (Value w)

then show Γ , A B Local n ` (l, m)
√
s by simp

then show Γ , A B+ Local n ` (l, m)
√
s by simp

then show Γ , A B− Local n ` (l, m)
√
s by simp

next
fix A T w
case (Seq c1 l m l1 m1 c2 c2 ′ l ′m ′)

262 Th e o r i e s c o d e

assume
A ` c1 ;; c2 : T
Γ , A ` (l, m)

√
s

c2 ′= Value w
then show
S: Γ , A B c1 ;; c2 ` (l ′, m ′)

√
s

using TransferFunction.A_Seq Seq.IH by auto
from S show Γ , A B+ c1 ;; c2 ` (l ′, m ′)

√
s by simp

from S show Γ , A B− c1 ;; c2 ` (l ′, m ′)
√
s by simp

next
fix A T and w :: ′b value and n
case (Assign e l m v le me)
moreover assume

A ` n ::= e : T
Γ , A ` (l, m)

√
s

unit = Value w
ultimately show Γ , A B n ::= e ` (le(n 7→ v), me)

√
s

using A_to_all
attached_assignment_set detachable_assignment_set
attachment_set_add attachment_set_sub
valid_stateD1 valid_stateD2 valid_stateI
local_state_upd valid_local_attachment_state_def
local_attachment_type_preservation

by (metis (full_types) ExpressionValidity.AssignE
attachment_type.exhaust)

then show Γ , A B+ n ::= e ` (le(n 7→ v), me)
√
s by simp

then show Γ , A B− n ::= e ` (le(n 7→ v), me)
√
s by simp

next
fix A T and w :: ′b value and l :: ′b local_state
case (Create n Tn m m ′ v)
assume

A ` create n : T
Γ , A ` (l, m)

√
s

unit = Value w
then show Γ , A B create n ` (l(n 7→ v), m ′)

√
s

using value_neq_exception valid_state_preservation_by_creation
by (metis Create.hyps(1) Create.hyps(2) big_step_big_steps.Create)

then show Γ , A B+ create n ` (l(n 7→ v), m ′)
√
s by simp

then show Γ , A B− create n ` (l(n 7→ v), m ′)
√
s by simp

next
fix A T and w :: ′b value and l :: ′b local_state
case (Createfail n Tn m)

assume
A ` create n : T
Γ , A ` (l, m)

√
s

Exception = Value w

B.21 Attachment correctness 263

then show Γ , A B create n ` (l, m)
√
s by simp

then show Γ , A B+ create n ` (l, m)
√
s by simp

then show Γ , A B− create n ` (l, m)
√
s by simp

next
fix A T and w :: ′b value and f
case (Call e l m v le me es vs l ′m ′)
assume

A ` e · f (es) : T
Γ , A ` (l, m)

√
s

unit = Value w
then show Γ , A B e · f (es) ` (l ′, m ′)

√
s using Call.IH by auto

then show Γ , A B+ e · f (es) ` (l ′, m ′)
√
s by simp

then show Γ , A B− e · f (es) ` (l ′, m ′)
√
s by simp

next
fix A T w c2
case (If true b l m lb mb c1 c1 ′ l ′m ′)
assume

lHT: A ` if b then c1 else c2 end : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: c1 ′= Value w
then show

lHVc: Γ , A B if b then c1 else c2 end ` (l ′, m ′)
√
s

using A_to_all indefinedness_preservation_e
valid_local_attachment_state_preservation ′ ′(2)
valid_local_state_preservation_e ′

valid_stateD1 valid_stateD2 valid_stateI
by (metis If true.hyps(1) If true.hyps(2)

big_step_big_steps.If true)
assume

c1 ′= Truec
moreover with If true.IH lHT lHV have
Γ , A B+ b B+ c1 ` (l ′, m ′)

√
s by auto

ultimately show Γ , A B+ if b then c1 else c2 end ` (l ′, m ′)
√
s

using If true.hyps(2) lHVc result_false by fastforce
next

fix A T w c2
case (If true b l m lb mb c1 c1 ′ l ′m ′)
assume

lHT: A ` if b then c1 else c2 end : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: c1 ′= Value w
then have

lHVc: Γ , A B if b then c1 else c2 end ` (l ′, m ′)
√
s

using A_to_all indefinedness_preservation_e
valid_local_attachment_state_preservation ′ ′(2)
valid_local_state_preservation_e ′

264 Th e o r i e s c o d e

valid_stateD1 valid_stateD2 valid_stateI
by (metis If true.hyps(1) If true.hyps(2)

big_step_big_steps.If true)
assume

c1 ′= Falsec
with lHT lHV lHVc show Γ , A B− if b then c1 else c2 end ` (l ′, m ′)

√
s

using A_to_all Af_to_all
valid_local_attachment_state_preservation ′ ′(4)
valid_stateD1 valid_stateD2 valid_stateI

by (metis If true.hyps(1) If true.hyps(2)
big_step_big_steps.If true)

next
fix A T w c1
case (If false b l m lb mb c2 c2 ′ l ′m ′)
assume

lHT: A ` if b then c1 else c2 end : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: c2 ′= Value w
then show

lHVc: Γ , A B if b then c1 else c2 end ` (l ′, m ′)
√
s

using A_to_all indefinedness_preservation_e
valid_local_attachment_state_preservation ′ ′(2)
valid_local_state_preservation_e ′

valid_stateD1 valid_stateD2 valid_stateI
by (metis If false.hyps(1) If false.hyps(2)

big_step_big_steps.If false)
assume

c2 ′= Truec
with lHT lHV lHVc show Γ , A B+ if b then c1 else c2 end ` (l ′, m ′)

√
s

using A_to_all At_to_all
valid_local_attachment_state_preservation ′ ′(3)
valid_stateD1 valid_stateD2 valid_stateI

by (metis If false.hyps(1) If false.hyps(2)
big_step_big_steps.If false)

next
fix A T w c1
case (If false b l m lb mb c2 c2 ′ l ′m ′)
assume

lHT: A ` if b then c1 else c2 end : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: c2 ′= Value w
then have

lHVc: Γ , A B if b then c1 else c2 end ` (l ′, m ′)
√
s

using A_to_all indefinedness_preservation_e
valid_local_attachment_state_preservation ′ ′(2)
valid_local_state_preservation_e ′

B.21 Attachment correctness 265

valid_stateD1 valid_stateD2 valid_stateI
by (metis If false.hyps(1) If false.hyps(2)

big_step_big_steps.If false)
assume

c2 ′= Falsec
with lHT lHV lHVc show Γ , A B− if b then c1 else c2 end ` (l ′, m ′)

√
s

using A_to_all Af_to_all
valid_local_attachment_state_preservation ′ ′(4)
valid_stateD1 valid_stateD2 valid_stateI

by (metis If false.hyps(1) If false.hyps(2)
big_step_big_steps.If false)

next
fix A T and w :: ′b value and c
case (Looptrue e l m le me)
assume

lHT: A ` until e loop c end : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: unit = Value w
then have

lHTe: loop_computation e c A ` e: Attached by auto
moreover have

lHle: loop_computation e c A 6 A by (rule loop_computation_le0)
ultimately have A ` e: Attached
using AT_mono conforms_to_attached by blast

with lHTe lHV lHle show Γ , A B until e loop c end ` (le, me)
√
s

using A_to_all
valid_state_anti_mono Looptrue.IH Looptrue.hyps
attachment_loop_condition reachability_preservation_scope_true
by metis

then show Γ , A B+ until e loop c end ` (le, me)
√
s by simp

then show Γ , A B− until e loop c end ` (le, me)
√
s by simp

next
fix A T w
case (Loopfalse e l m le me c lc mc c ′ l ′m ′)
assume

lHT: A ` until e loop c end : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: c ′= Value w
then show Γ , A B until e loop c end ` (l ′, m ′)

√
s

using indefinedness_preservation_e
valid_local_attachment_state_preservation ′ ′(2)
valid_local_state_preservation_e ′

valid_stateD1 valid_stateD2 valid_stateI
by (metis Loopfalse.IH(7) Loopfalse.hyps(1)

Loopfalse.hyps(2) Loopfalse.hyps(3)
big_step_big_steps.Loopfalse)

266 Th e o r i e s c o d e

then show Γ , A B+ until e loop c end ` (l ′, m ′)
√
s by simp

then show Γ , A B− until e loop c end ` (l ′, m ′)
√
s by simp

next
fix A T and w :: ′b value and n
case (Testtrue e l m v le me t)
assume

lHT: A ` attached t e as n : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: Truec = Value w
then show

lHVc: Γ , A B attached t e as n ` (le(n 7→ v), me)
√
s

using value_neq_exception local_attachment_state_upd local_state_upd
valid_local_attachment_state_preservation
valid_local_state_preservation_e ′

valid_stateD1 valid_stateD2 valid_stateI
by (metis (no_types) Testtrue.hyps(1) Testtrue.hyps(2)

ExpressionValidity.TestE TransferFunction.A_Test)
with lHT lHV show Γ , A B+ attached t e as n ` (le(n 7→ v), me)

√
s

using A_to_all
reachability_with_scope_true
valid_local_attachment_state_preservation ′ ′(3)
valid_stateD1 valid_stateD2 valid_stateI

by (metis Testtrue.hyps(1) Testtrue.hyps(2)
big_step_big_steps.Testtrue)

from lHVc show
Γ , A B− attached t e as n ` (le(n 7→ v), me)

√
s by simp

next
fix A T and w :: ′b value and n
case (Testfalse e l m v le me t)
assume

lHT: A ` attached t e as n : T and
lHV: Γ , A ` (l, m)

√
s and

lHw: Falsec = Value w
with Testfalse.hyps(1) have

valid_local_state Γ le
by (meson valid_local_state_preservation_e ′ valid_stateD1)

then show
lHVc: Γ , A B attached t e as n ` (le, me)

√
s

using Testfalse.IH(1) lHT lHV by auto
from lHVc show Γ , A B− attached t e as n ` (le, me)

√
s by simp

assume
Falsec = Truec

then show Γ , A B+ attached t e as n ` (le, me)
√
s by simp

next
fix A Ts ws
case (Cons e l m v le me es es ′ l ′m ′)

B.21 Attachment correctness 267

assume
A ` e # es [:] Ts
(Value v) # es ′= map Value ws
Γ , A ` (l, m)

√
s

with Cons.IH show Γ , A BB (e # es) ` (l ′, m ′)
√
s by auto

next
fix A Ts ws
case (ConsEx e l m l ′m ′ es)
assume
A ` e # es [:] Ts
Exception # es = map Value ws
Γ , A ` (l, m)

√
s

then show Γ , A BB (e # es) ` (l ′, m ′)
√
s by blast

qed simp_all

lemma
assumes
Γ ` 〈c, s〉 ⇒ 〈c ′, s ′〉
A ` c : T
Γ , A ` s

√
s

shows
valid_state_preservation ′: c ′ 6= Exception =⇒ Γ , A B c ` s ′

√
s and

valid_state_preservation_scope_true ′:
c ′= Truec =⇒ Γ , A B+ c ` s ′

√
s and

valid_state_preservation_scope_false ′:
c ′= Falsec =⇒ Γ , A B− c ` s ′

√
s

proof −
obtain l m l ′m ′where

lHs: (l, m) = s and
lHs ′: (l ′, m ′) = s ′ using prod.collapse by blast

from valid_local_attachment_state_preservation
valid_local_state_preservation ′

show c ′ 6= Exception =⇒ Γ , A B c ` s ′
√
s

using assms lHs lHs ′ by fastforce
from valid_state_preservation_scope_true
show c ′= Truec =⇒ Γ , A B+ c ` s ′

√
s

using assms lHs lHs ′ by fastforce
from valid_state_preservation_scope_false
show c ′= Falsec =⇒ Γ , A B− c ` s ′

√
s

using assms lHs lHs ′ by fastforce
qed

b.21.2 Preservation of attachment property

lemma value_attachment: A ` Value v : Tc v

268 Th e o r i e s c o d e

by (cases v = Voidv) (fastforce, metis AT_ValueAtt
attached_typed_value_is_not_void)

lemma values_attachment: A ` map Value vs [:] map Tc vs
using value_attachment
by (induction vs arbitrary: A) (simp, fastforce)

If there is a transition from a void-safe expression with valid state in
reachable code to an expression different from an exception, the type of
the latter conforms to the type of the original expression in the context
after it.

theorem
fixes
e :: ′b attachable_expression and es :: ′b attachable_expression list

assumes
Γ , A ` s

√
s and

A = dae
shows
attachment_preservation_step: Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒
A ` e : T =⇒
e ′ 6= Exception =⇒
∃ T ′. A B e ` e ′ : T ′∧ T ′6 T and
attachment_preservation_step_s: Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉 =⇒
A ` es [:] Ts =⇒
Exception /∈ set es ′=⇒
∃ Ts ′. A ` es ′ [:] Ts ′

using assms
proof (induction arbitrary: A a T and A a Ts rule:

big_step_big_steps.inducts)
case (Value v l m A a)
then show ?case by blast

next
case (Local l n v m A a)
then show ?case
proof (cases T)

case Attached
with Local.hyps Local.prems show ?thesis
using valid_local_attachment_state_def topset.discI by fastforce

next
case Detachable
with Local show ?thesis by auto

qed
next

case (Seq c1 s s ′ c2 c2 ′ s ′ ′ A a)
then have

lHS1: Γ ` 〈c1, s〉 ⇒ 〈unit, s ′〉 and

B.21 Attachment correctness 269

lHV: Γ , A ` s
√
s

by simp_all
from Seq.prems have

lHT1: A ` c1: Attached and
lHT2: A B c1 ` c2: Attached and
lHT: T = Attached
by auto

from lHT1 lHS1 lHV have
lHV1: Γ , A c1 A ` s ′

√
s using valid_state_preservation ′ by blast

from lHS1 lHT1 〈A = dae〉 have A B c1 6= >
using reachability_preservation

by (metis value_neq_exception prod.collapse topset.distinct(1))
with Seq.prems lHT2 lHT lHV1 have
∃T ′. A B c1 B c2 ` c2 ′ : T ′∧ T ′→a Attached

using Seq.IH by (metis topset.collapse)
then show ∃T ′. (A B c1 ;; c2) ` c2 ′ : T ′∧ T ′→a T
by (simp add: lHT)

next
case Assign then show ?case by auto

next
case Create then show ?case by auto

next
case Call then show ?case by blast

next
case H: (If true b s s ′ c1 c1 ′ s ′ ′ c2 A a T)
then have

lHbT: A ` b: Attached by blast
with H.IH H.prems have
Γ , (A B b) ` s ′

√
s using value_neq_exception

by (simp add: valid_state_preservation ′)
from H.IH H.prems lHbT have

lHS: Γ , (A B+ b) ` s ′
√
s using valid_state_preservation_scope_true

by (metis prod.collapse)
then have A B b ` Truec : Attached by auto
from lHbT H.IH H.prems have

A B b 6= > using reachability_preservation
by (metis value_neq_exception prod.collapse topset.distinct(1))

with lHbT H.IH H.prems have
lHR: A B+ b 6= > using reachability_preservation_scope_true

by (metis prod.collapse topset.discI)
from H obtain T1 where

lHcT: A B+ b ` c1 : T1 and
lHcTT: T1→a T using upper_bound_left by auto

with lHR H.IH H.prems have A B+ b B c1 6= >
using reachability_preservation by (metis prod.collapse)

then obtain Tc where A B+ b B c1 = dTce

270 Th e o r i e s c o d e

using topset.exhaust by metis
with H.IH lHS lHcT H.prems obtain T ′where

lIH1: A B+ b B c1 ` c1 ′ : T ′∧ T ′→a T1
by (metis lHR topset.exhaust)

from H.prems H.IH obtain v where
c1 ′= Value v using Final_def big_step_final by metis

with lIH1 have
∃T ′. A B if b then c1 else c2 end ` c1 ′ : T ′∧ T ′→a T1 by auto

with lHcTT show ?case
using attachment_conforming_to_transitive by blast

next
case H: (If false b s s ′ c2 c2 ′ s ′ ′ c1 A a T)
then have

lHbT: A ` b: Attached by blast
with H.IH H.prems have
Γ , (A B b) ` s ′

√
s

using value_neq_exception by (simp add: valid_state_preservation ′)
from H.IH H.prems lHbT have

lHS: Γ , (A B− b) ` s ′
√
s using valid_state_preservation_scope_false

by (metis prod.collapse)
have A B b ` Truec : Attached by auto
from lHbT H.IH H.prems have

A B b 6= > using reachability_preservation
by (metis value_neq_exception prod.collapse topset.distinct(1))

with H.IH H.prems lHbT have
lHR: A B− b 6= > using reachability_preservation_scope_false

by (metis old.prod.exhaust topset.discI)
from H obtain T2 where

lHcT: A B− b ` c2 : T2 and
lHcTT: T2→a T using upper_bound_right by auto

with lHR H.IH H.prems have A B− b B c2 6= >
using reachability_preservation by (metis prod.collapse)

then obtain Tc where A B− b B c2 = dTce
using topset.exhaust by metis

with H.IH lHS lHcT H.prems obtain T ′where
lIH1: A B− b B c2 ` c2 ′ : T ′∧ T ′→a T2

by (metis lHR topset.exhaust)
moreover from H.prems H.IH obtain v where

c2 ′= Value v using Final_def big_step_final by metis
with lIH1 have
∃T ′. A B if b then c1 else c2 end ` c2 ′ : T ′∧ T ′→a T2 by auto

with lHcTT show ?case
using attachment_conforming_to_transitive by blast

next
case (Looptrue e s s ′ c A a) then show ?case by auto

next

B.21 Attachment correctness 271

case (Loopfalse e s se c sc c ′ s ′ A a T)
moreover then have

lHT: T = Attached by auto
with Loopfalse.prems have A ` until e loop c end: Attached by simp
with Loopfalse.prems have

lHTe0: loop_computation e c A ` e: Attached and
lHTc0: loop_computation e c A B− e ` c: Attached
by auto

then have
lHTe: A ` e: Attached

using AT_mono conforms_to_attached loop_computation_le0 by metis
ultimately have

lHVe: Γ , (A B− e) ` se
√
s using valid_state_preservation_scope_false ′

by metis
from Loopfalse.prems have A 6= > by simp
with Loopfalse.IH Loopfalse.prems lHTe have A B− e 6= >

using reachability_preservation_scope_false prod.collapse by metis
then obtain ae where

lHAe: A B− e = daee using topset.exhaust by auto
have loop_computation e c A 6 A using loop_computation_le0 by metis
then have loop_computation e c A B− e 6 A B− e
by (simp add: Af_mono ′)

with lHTc0 have
lHTc: A B− e ` c: Attached

using AT_mono conforms_to_attached by blast
have

lHEu: unit 6= Exception by simp
from Loopfalse.IH lHTc lHVe lHEu have

lHVc: Γ , (A B− e B c) ` sc
√
s

using valid_state_preservation ′ by metis
obtain le me lc mc where se = (le, me) and sc = (lc, mc) by fastforce
with Loopfalse.IH have Γ ` 〈c, (le, me)〉 ⇒ 〈unit, (lc, mc)〉 by simp
with lHAe lHTc lHEu have A B− e B c 6= >
by (simp add: reachability_preservation)

then obtain ac where
lHAc: A B− e B c = dace using topset.exhaust by auto

with Loopfalse.IH Loopfalse.prems AT_loop_step lHVc have
lHTl: ∃T ′. A B− e B c B until e loop c end ` c ′ : T ′∧ T ′→a T

by metis
with lHT have A B− e B c B until e loop c end ` c ′ : Attached

using conforms_to_attached by blast
with Loopfalse.IH Loopfalse.prems obtain v where

c ′= Value v using big_step_final_value by metis
with lHTl show ?case by blast

next

272 Th e o r i e s c o d e

case Testtrue then show ?case by auto
next

case Testfalse then show ?case by auto
next
case Nil then show ?case by simp

next
case (Cons e s v se es es ′ s ′)
from Cons.prems obtain Ts ′where
A B e ` es [:] Ts ′ using list_attachment_validity_tail by blast

moreover from Cons have Γ , A B e ` se
√
s

using value_neq_exception valid_state_preservation ′

by (metis ATs_iffs(3))
moreover from Cons obtain b where A B e = dbe
using value_neq_exception reachability_preservation
by (metis ATs_iffs(3) prod.collapse topset.exhaust_sel)

moreover note Cons
ultimately have ∃ a. A B e ` es ′ [:] a by auto
then obtain Ts ′ ′where
lHTs: A B e ` es ′ [:] Ts ′ ′ by auto

from Cons.prems have Exception /∈ set es ′ by simp
moreover from Cons.IH have Finals es ′ using big_step_finals by metis
ultimately have ∃ vs. map Value vs = es ′ using Finals_def
by (metis in_set_conv_decomp)

then obtain vs where es ′= map Value vs by auto
with lHTs have A ` es ′ [:] Ts ′ ′

using attachment_unique_es values_attachment by blast
moreover obtain Te where A B e ` Value v : Te by blast
ultimately have A ` (Value v) # es ′ [:] Te # Ts ′ ′ by auto
then show ?case by blast

qed simp_all

If there is a transition from a void-safe expression of an attached type
with an empty state, the resulting expression is either an exception or a
non-Void value.

theorem attachment_preservation:
Γ ` 〈e, (empty, empty)〉 ⇒ 〈e ′, s ′〉 =⇒
` e : Attached =⇒
e ′= Exception ∨ (∃ v. e ′= Value v ∧ v 6= Voidv)

using big_step_final_value local_attachment_state_bottom
attachment_type_valid_expression_def
local_attachment_type_preservation by (metis surj_pair topset.discI)

end

B.22 Conditional equivalence of void-safe and void-unsafe semantics 273

B.22 Conditional equivalence of void-safe and void-
unsafe semantics

theory BigStepEquivalence imports BigStepSafety BigStep_unsafe begin

If there is a transition according to the void-safe big-step semantics,
there is the same transition according to the void-unsafe one.

lemma
fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

shows
big_step_safe_implies_unsafe:
Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 =⇒ Γ ` 〈e, s〉 ⇒ ′ 〈e ′, s ′〉

and
big_steps_safe_implies_unsafe:
Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉 =⇒ Γ ` 〈es, s〉 [⇒] ′ 〈es ′, s ′〉

by (induction rule: BigStep.big_step_big_steps.inducts) simp_all

If there is a transition according to the void-unsafe big-step semantics
for a void-safe expression starting from a void-safe state, there is the
same transition according to the void-safe semantics.

lemma
fixes
e :: ′b attachable_expression and es :: ′b attachable_expression list

assumes
Γ , A ` s

√
s and

A 6= >
shows
big_step_unsafe_implies_safe_step:
Γ ` 〈e, s〉 ⇒ ′ 〈e ′, s ′〉 =⇒ A ` e : T =⇒ Γ ` 〈e, s〉 ⇒ 〈e ′, s ′〉 and

big_step_unsafe_implies_safe_steps:
Γ ` 〈es, s〉 [⇒] ′ 〈es ′, s ′〉 =⇒ A ` es [:] Ts =⇒ Γ ` 〈es, s〉 [⇒] 〈es ′, s ′〉

using assms
proof (induction arbitrary: A T and A Ts

rule: BigStep_unsafe.big_step_big_steps.inducts)
case Value then show ?case by simp

next
case Local then show ?case by simp

next
case (Seq c1 s s ′ c2 c2 ′ s ′ ′)
then have Γ ` 〈c1, s〉 ⇒ 〈unit, s ′〉 by auto
moreover from Seq have A B c1 6= >
using value_neq_exception reachability_preservation

by (metis ExpressionValidity.SeqE prod.collapse)
moreover with Seq have Γ ` 〈c2, s ′〉 ⇒ 〈c2 ′, s ′ ′〉

274 Th e o r i e s c o d e

using value_neq_exception valid_state_preservation ′ by blast
ultimately show ?case by simp

next
case Assign then show ?case by auto

next
case Create then show ?case by simp

next
case Createfail then show ?case by simp

next
case (Call e s v se es vs s ′ n)
then obtain Ts where
lHeT: A ` e : Attached and
lHesTs: A B e ` es [:] Ts by blast
with Call.IH Call.prems have
lHeS: Γ ` 〈e, s〉 ⇒ 〈Value v, se〉 by simp

moreover with lHeT Call.prems have Γ , A B e ` se
√
s

using value_neq_exception valid_state_preservation ′ by blast
moreover from lHeS lHeT Call.prems have A B e 6= >
using value_neq_exception reachability_preservation
by (metis prod.collapse)

moreover note Call.IH lHesTs
ultimately have Γ ` 〈es, se〉 [⇒] 〈map Value vs, s ′〉 by blast
with lHeS Call.hyps show ?case by auto

next
case (Callfail e s v s ′ f es)
from Callfail.prems have A ` e: Attached by auto
with Callfail.prems Callfail.IH have v 6= Voidv

using StateValidity.valid_stateD2 local_attachment_type_preservation
by (metis prod.collapse)

with Callfail.hyps show ?case by simp
next

case (If true b s s ′ c1 c1 ′ s ′ ′ c2)
then have

lHb: Γ ` 〈b, s〉 ⇒ 〈Truec, s ′〉 by auto
from If true.prems have A ` b : Attached by blast
with If true have A B+ b 6= >
using reachability_preservation_scope_true by (metis prod.collapse)

with lHb If true.prems If true.IH have Γ ` 〈c1, s ′〉 ⇒ 〈c1 ′, s ′ ′〉
using valid_state_preservation_scope_true ′ by blast

with lHb show ?case by simp
next

case (If false b s s ′ c2 c2 ′ s ′ ′ c1)
then have

lHb: Γ ` 〈b, s〉 ⇒ 〈Falsec, s ′〉 by auto
from If false.prems have A ` b : Attached by blast
with If false have A B− b 6= > using reachability_preservation_scope_false

B.22 Conditional equivalence of void-safe and void-unsafe semantics 275

by (metis prod.collapse)
with lHb If false.prems If false.IH have Γ ` 〈c2, s ′〉 ⇒ 〈c2 ′, s ′ ′〉

using valid_state_preservation_scope_false ′ by blast
with lHb show ?case by simp

next
case (Looptrue e s s ′ c)
then have TransferFunction.loop_computation e c A ` e: Attached by auto
moreover have

lHle: TransferFunction.loop_computation e c A 6 A
by (rule TransferFunction.loop_computation_le0)

ultimately have A ` e: Attached
using ExpressionValidity.AT_mono conforms_to_attached by blast

with Looptrue.prems Looptrue.IH have
lHSe: Γ ` 〈e, s〉 ⇒ 〈Truec, s ′〉 by simp

then show ?case by simp
next

case (Loopfalse e s se c sc c ′ s ′)
then have

lHLe: TransferFunction.loop_computation e c A ` e: Attached by auto
moreover have

lHle: TransferFunction.loop_computation e c A 6 A
by (rule TransferFunction.loop_computation_le0)

ultimately have
lHTe: A ` e: Attached
using ExpressionValidity.AT_mono conforms_to_attached by blast

with Loopfalse.prems Loopfalse.IH have
lHSe: Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉 by simp

from lHTe Loopfalse have
lHAe: A B− e 6= > using reachability_preservation_scope_false

by (metis prod.collapse)
from lHSe lHTe Loopfalse.prems have

lHVe: Γ , A B− e ` se
√
s

by (simp add: valid_state_preservation_scope_false ′)
from Loopfalse.prems have

lHLc: TransferFunction.loop_computation e c A B− e ` c: Attached by auto
with lHle have

lHTc: A B− e ` c : Attached
using ExpressionValidity.AT_mono conforms_to_attached Af_mono ′

by metis
with lHAe lHVe Loopfalse.IH have

lHSc: Γ ` 〈c, se〉 ⇒ 〈unit, sc〉 by simp
with lHTc lHAe have

lHAc: A B− e B c 6= >
using reachability_preservation value_neq_exception
by (metis prod.collapse)

from lHSc lHTc lHVe Loopfalse.prems have

276 Th e o r i e s c o d e

lHVc: Γ , A B− e B c ` sc
√
s by (simp add: valid_state_preservation ′)

with lHLe lHLc have A B− e B c ` until e loop c end : Attached
by (simp add: AT_ATs.AT_Loop ExpressionValidity.AT_loop_step)

with Loopfalse.IH lHAc lHSc lHSe lHVc show ?case by simp
next

case Testtrue then show ?case by auto
next

case Testfalse then show ?case by auto
next
case Nil then show ?case by simp

next
case Cons then show ?case
using value_neq_exception exception_detection valid_state_preservation ′

by (metis ATs_iffs(3) BigStep.big_step_big_steps.Cons prod.collapse)
next

case Exception then show ?case by simp
next

case SeqEx then show ?case by auto
next

case AssignEx then show ?case by auto
next

case CallEx then show ?case by auto
next

case (CallArgEx e s v se es vs es ′ s ′ n)
then have
lHeT: A ` e · n (es) : Attached by auto

then obtain Ts where A B e ` es [:] Ts by blast
from CallArgEx.IH CallArgEx.prems have
lHse: Γ , A B e ` se

√
s using valid_state_preservation ′ by blast

from CallArgEx have Γ ` 〈e, s〉 ⇒ 〈Value v, se〉 by blast
with lHeT lHse CallArgEx.IH CallArgEx.prems show ?case
using value_neq_exception exception_detection
BigStep.big_step_big_steps.CallArgEx ExpressionValidity.CallE
by (metis surj_pair)

next
case IfEx then show ?case by auto

next
case (LoopEx e s s ′ c)
then have TransferFunction.loop_computation e c A ` e: Attached by auto
moreover have

lHle: TransferFunction.loop_computation e c A 6 A
by (rule TransferFunction.loop_computation_le0)

ultimately have
A ` e: Attached using ExpressionValidity.AT_mono by blast

with LoopEx.IH LoopEx.prems show ?case by simp
next

B.22 Conditional equivalence of void-safe and void-unsafe semantics 277

case (LoopfalseEx e s se c s ′)
then have TransferFunction.loop_computation e c A ` e: Attached by auto
moreover have

lHle: TransferFunction.loop_computation e c A 6 A
by (rule TransferFunction.loop_computation_le0)

ultimately have
lHTe: A ` e: Attached
using ExpressionValidity.AT_mono conforms_to_attached by blast

with LoopfalseEx.prems LoopfalseEx.IH have
lHSe: Γ ` 〈e, s〉 ⇒ 〈Falsec, se〉 by simp

from lHTe LoopfalseEx have
lHAe: A B− e 6= > using reachability_preservation_scope_false

by (metis prod.collapse)
from lHSe lHTe LoopfalseEx.prems have

lHVe: Γ , A B− e ` se
√
s

by (simp add: valid_state_preservation_scope_false ′)
from LoopfalseEx.prems have
TransferFunction.loop_computation e c A B− e ` c: Attached

by auto
with lHle have A B− e ` c : Attached

using ExpressionValidity.AT_mono conforms_to_attached Af_mono ′ by
metis

with lHAe lHVe LoopfalseEx.IH have
Γ ` 〈c, se〉 ⇒ 〈Exception, s ′〉 by simp

with lHSe show ?case by simp
next

case TestEx then show ?case by auto
next
case ConsEx then show ?case by blast

qed

lemma big_step_unsafe_implies_safe:
assumes
Γ ` 〈p, s0〉 ⇒ ′ 〈v, s〉
` p
√
e

Γ ` s0
√
s

shows
Γ ` 〈p, s0〉 ⇒ 〈v, s〉

using assms big_step_unsafe_implies_safe_step using topset.discI
by (metis attachment_valid_expression_def attachment_valid_state_def

attachment_type_valid_expression_def)

There is a transition for a void-safe expression from a void-safe state
according to the void-unsafe semantics if and only if there is the same
transition according to the void-safe one.

lemma big_step_unsafe_safe_eq:

278 Th e o r i e s c o d e

assumes
` e
√
e

Γ ` s0
√
s

shows
Γ ` 〈e, s0〉 ⇒ ′ 〈v, s〉 ←→ Γ ` 〈e, s0〉 ⇒ 〈v, s〉

using big_step_unsafe_implies_safe big_step_safe_implies_unsafe
using assms by blast

end

B.23 Class declaration

theory Class imports Name begin

b.23.1 Declarations

datatype class_mark = NoMark | Deferred | Expanded

type_synonym ′t attribute_signature = ′t
type_synonym ′t attribute_declaration = fname × ′t
type_synonym ′t argument_declaration = vname × ′t

type_synonym ′t routine_signature = ′t argument_declaration list × ′t
— formal arguments, result type

type_synonym ′m routine_body = ′m option
— possible body

type_synonym (′t, ′m) routine_declaration =

fname × ′t routine_signature × ′m routine_body

type_synonym (′t, ′m) class_body =

class_mark × cname list × ′t attribute_declaration list ×
(′t, ′m) routine_declaration list × fname list
— class body = deferred mark, parent classes, attributes, routines,

creation procedure names

type_synonym (′t, ′m) class_declaration = cname × (′t, ′m) class_body
— class declaration = class name, class body

b.23.2 Routines

A feature name of a given routine declaration.

definition

B.24 System 279

feature_name_from_routine:: (′t, ′m) routine_declaration⇒ fname
where
feature_name_from_routine r = fst r

A routine declaration (if any) with the specified feature name in the
given class body.

fun
routine_of_class ::
(′t, ′m) class_body⇒ fname ⇀ (′t, ′m) routine_declaration

where
routine_of_class (_, _, _, [], _) f = None
| routine_of_class (d, p, a, r#rs, c) f =

(if feature_name_from_routine r = f then Some r
else routine_of_class (d, p, a, rs, c) f)

A routine body of a given routine declaration.

definition routine_body_from_routine_declaration ::

(′t, ′m) routine_declaration⇒ ′m routine_body
where
routine_body_from_routine_declaration d ≡ snd (snd d)

end

B.24 System

theory System imports Class begin

datatype (′t, ′m) system = System (′t, ′m) class_declaration list

b.24.1 Class properties

Retrieve a class body (if any) by its name from a system.

primrec class :: (′t, ′m) system⇒ cname ⇀ (′t, ′m) class_body
where

class (System s) = map_of s

b.24.1.1 Routines

Retrieve a routine body by the class and feature names from a system.

fun routine_body :: (′t, ′m) system⇒ cname⇒ fname⇒ ′m routine_body
where
routine_body S c f = (case class S c of
None⇒ None |

280 Th e o r i e s c o d e

Some b⇒ (case routine_of_class b f of
None⇒ None |
Some d⇒ routine_body_from_routine_declaration d))

end

B.25 Validity of creation procedures

theory CreationValidity imports State System begin

Abstract syntax.

datatype (′b, ′t) expression =

Value ′b value |
Current |
Local vname |
Attribute fname |
Sequence (′b, ′t) expression (′b, ′t) expression (_ ;; _ [80, 81] 80) |
LocalAssignment vname (′b, ′t) expression (_ :=L _ [1000, 81] 81) |
AttributeAssignment fname (′b, ′t) expression (_ :=A _ [1000, 81] 81) |
Creation cname fname (′b, ′t) expression list
(create {_} · _ ′(_ ′) [81, 82, 0] 81) |

Call (′b, ′t) expression fname (′b, ′t) expression list
(_ · _ ′(_ ′) [90, 99, 0] 90) |

If (′b, ′t) expression (′b, ′t) expression (′b, ′t) expression
(if _ then _ else _ end [80, 80, 80] 81) |

Loop (′b, ′t) expression (′b, ′t) expression (until _ loop _ end [80, 81] 81) |
Test ′t option (′b, ′t) expression vname (attached _ _ as _ [80, 81, 81] 81) |
Exception

b.25.1 Unattached attributes

A function that computes a set of unattached attributes for a given
expression and a set of unattached attributes before it.

fun
U :: (′b, ′t) expression⇒ fname set⇒ fname set and
Us :: (′b, ′t) expression list⇒ fname set⇒ fname set

where
U_Seq: U (e1;; e2) V = U e2 (U e1 V) |

U_AssignLocal: U (n :=L e) V = U e V |

U_AssignAttribute: U (n :=A e) V = (U e V) − {n} |
U_Create: U (create {t} · n (es)) V = Us es V |

U_QCall: U (e · n (es)) V = Us es (U e V) |

U_If : U (if c then e1 else e2 end) V = U e1 (U c V) ∪ U e2 (U c V) |

U_Loop: U (until c loop b end) V = U c V |

B.25 Validity of creation procedures 281

U_Test: U (attached t e as n) V = U e V |

U_Exception: U Exception V = {} |

U_Other: U _ V = V |

U_Nil: Us [] V = V |

U_Cons: Us (e # es) V = Us es (U e V)

abbreviation U_rep where U_rep A e ≡ U e A
notation (output) U_rep (infixl >> 72)
abbreviation Us_rep (infixl >> 72) where A >> es ≡ Us es A

The function that computes a set of unattached attributes is monotone.

lemma unattached_mono:
fixes
e:: (′b, ′t) expression and es:: (′b, ′t) expression list

shows
mono (U e) and mono (Us es)

by (induction rule: U_Us.induct)
(auto simp add: mono_def sup.coboundedI1 sup.coboundedI2)

lemma unattached_mono ′:
fixes
e:: (′b, ′t) expression and es:: (′b, ′t) expression list

assumes
A ⊆ B

shows
U e A ⊆ U e B and Us es A ⊆ Us es B

by (simp_all add: assms monoD unattached_mono)

A set of unattached attributes after an expression is not greater than
before it.

lemma unattached_decrease:
fixes
e:: (′b, ′t) expression and es:: (′b, ′t) expression list

shows
U e A = B =⇒ B ⊆ A and Us es A = B =⇒ B ⊆ A

by (induction arbitrary: B and B rule: U_Us.induct) fastforce+

If a set of unattached attributes is not empty after an expression, it is
not empty before it.

lemma unattached_non_empty:
fixes
e:: (′b, ′t) expression and es:: (′b, ′t) expression list

shows
U e V 6= {} =⇒ V 6= {} and Us es V 6= {} =⇒ V 6= {}

using unattached_decrease by fastforce+

282 Th e o r i e s c o d e

b.25.2 Validity rule: simple attribute access safety

type_synonym (′t, ′b) expression_system = (′t, (′b, ′t) expression) system

A predicate that tells if an expression is valid with respect to a set of
unattached attributes (simple strong version).

inductive
cV :: fname set⇒ (′b, ′t) expression⇒ bool (_ ` _

√
c
′ [60, 60] 60) and

cVs :: fname set⇒ (′b, ′t) expression list⇒ bool (_ ` _ [
√
c]
′ [60, 60] 60)

where
cV_Value: V ` Value v

√
c
′ |

cV_Current: V = {} =⇒ V ` Current
√
c
′ |

cV_Local: V ` Local n
√
c
′ |

cV_Attribute: ¬ n ∈ V =⇒ V ` Attribute n
√
c
′ |

cV_Seq: [[V ` e1
√
c
′; U e1 V ` e2

√
c
′]] =⇒ V ` e1 ;; e2

√
c
′ |

cV_AssignLocal: V ` e
√
c
′=⇒ V ` n :=L e

√
c
′ |

cV_AssignAttribute: V ` e
√
c
′=⇒ V ` n :=A e

√
c
′ |

cV_Create: V ` es [
√
c]
′=⇒ V ` create {t} · n (es)

√
c
′ |

cV_QCall: [[V ` e
√
c
′; U e V ` es [

√
c]
′]] =⇒ V ` e · n (es)

√
c
′ |

cV_If : [[V ` c
√
c
′; U c V ` e1

√
c
′; U c V ` e2

√
c
′]] =⇒

V ` if c then e1 else e2 end
√
c
′ |

cV_Loop: [[V ` e
√
c
′; U e V ` b

√
c
′]] =⇒ V ` until e loop b end

√
c
′ |

cV_Test: V ` e
√
c
′ =⇒ V ` attached t e as n

√
c
′ |

cV_Exception: V ` Exception
√
c
′ |

cV_Nil: V ` [] [
√
c]
′ |

cV_Cons: [[V ` e
√
c
′; U e V ` es [

√
c]
′]] =⇒ V ` e # es [

√
c]
′

declare cV_cVs.intros[intro!]

inductive_simps cVs_iffs [iff]:
V ` [] [

√
c]
′

V ` e # es [
√
c]
′

inductive_cases cV_ValueE[elim!]: V ` Value v
√
c
′

inductive_cases cV_CurrentE[elim!]: V ` Current
√
c
′

inductive_cases cV_LocalE[elim!]: V ` Local n
√
c
′

inductive_cases cV_AttributeE[elim!]: V ` Attribute n
√
c
′

inductive_cases cV_SeqE[elim!]: V ` e1 ;; e2
√
c
′

inductive_cases cV_AssignLocalE[elim!]: V ` n :=L e
√
c
′

inductive_cases cV_AssignAttributeE[elim!]: V ` n :=A e
√
c
′

inductive_cases cV_CreateE[elim!]: V ` create {t} · n (es)
√
c
′

inductive_cases cV_QCallE[elim!]: V ` e · n (es)
√
c
′

inductive_cases cV_IfE[elim!]: V ` if c then e1 else e2 end
√
c
′

inductive_cases cV_LoopE[elim!]: V ` until e loop b end
√
c
′

inductive_cases cV_TestE[elim!]: V ` attached t e as n
√
c
′

inductive_cases cV_ExceptionE[elim!]: V ` Exception
√
c
′

B.25 Validity of creation procedures 283

b.25.3 Access to current

A function that tells if an expression accesses a current object.

fun
C :: (′b, ′t) expression⇒ bool (has ′_current) and
Cs :: (′b, ′t) expression list⇒ bool (has ′_current)

where
C_Current: C Current←→ True |
C_Seq: C (e1;; e2)←→ C e1 ∨ C e2 |

C_AssignLocal: C (n :=L e)←→ C e |
C_AssignAttr: C (n :=A e)←→ C e |
C_Create: C (create {t} · n (es))←→ Cs es |
C_QCall: C (e · n (es))←→ C e ∨ Cs es |
C_If : C (if c then e1 else e2 end)←→ C c ∨ C e1 ∨ C e2|
C_Loop: C (until e loop b end)←→ C e ∨ C b|
C_Test: C (attached t e as n)←→ C e|
C_Other: C _←→ False |
C_ArgNil: Cs []←→ False |
C_ArgCons: Cs (e # es)←→ C e ∨ Cs es

b.25.4 Presence of qualified calls

A set of creation procedures referenced by a given expression.

fun
creation_set :: (′b, ′t) expression⇒ (cname × fname) set (S) and
creation_set_s :: (′b, ′t) expression list⇒ (cname × fname) set (Ss)

where
S_Seq: creation_set (e1;; e2) = creation_set e1 ∪ creation_set e2 |

S_AssignLocal: creation_set (n :=L e) = creation_set e |
S_AssignAttr: creation_set (n :=A e) = creation_set e |
S_Create: creation_set (create {c} · n (es)) = {(c, n)} ∪ creation_set_s es |
S_QCall: creation_set (e · n (es)) = creation_set e ∪ creation_set_s es |
S_If : creation_set (if c then e1 else e2 end) =
creation_set c ∪ creation_set e1 ∪ creation_set e2 |

S_Loop: creation_set (until e loop b end) = creation_set e ∪ creation_set b |

S_Test: creation_set (attached t e as n) = creation_set e |
S_Other: creation_set _ = {} |

S_Nil: creation_set_s [] = {} |

S_Cons: creation_set_s (e # es) = creation_set e ∪ creation_set_s es

A set of creation procedures reachable from a routine specified by class
and feature names.

fun

284 Th e o r i e s c o d e

creation_reachable1 :: (′t, ′b) expression_system⇒ cname × fname⇒
(cname × fname) set
where
creation_reachable1 S (c, f) = (case routine_body S c f of
None⇒ {} |

Some b⇒ creation_set b)

fun
creation_reachable ::
(′t, ′b) expression_system⇒ cname × fname⇒ (cname × fname) set

where
creation_reachable S (c, f) =
lfp (λ x. {(c, f)} ∪ x ∪ (

⋃
y ∈ x. creation_reachable1 S y))

A predicate that tells if a creation procedure is reachable from a given
routine.

inductive
creation_reachable_1 ′ ::
(′t, ′b) expression_system⇒ cname × fname⇒ cname × fname⇒ bool

for S :: (′t, ′b) expression_system
where
[[routine_body S c f = Some b; g ∈ creation_set b]] =⇒
creation_reachable_1 ′ S (c, f) g

lemma creation_reachable_def [iff]:
(c, f) ∈ creation_reachable1 S (c0, f0) =
creation_reachable_1 ′ S (c0, f0) (c, f)
by (cases routine_body S c0 f0) (simp_all add: creation_reachable_1 ′.simps)

fun
creation_reachable ′ ::
(′t, ′b) expression_system⇒ cname × fname⇒ cname × fname⇒ bool

where
creation_reachable ′ S (c, f) = (creation_reachable_1 ′ S)∗∗ (c, f)

Q tells if there are immediate qualified calls in an expression.

fun
Q :: (′b, ′t) expression⇒ bool and
Qs :: (′b, ′t) expression list⇒ bool

where
Q_Seq: Q (e1;; e2)←→ Q e1 ∨ Q e2 |

Q_AssignLocal: Q (n :=L e)←→ Q e |
Q_AssignAttribute: Q (n :=A e)←→ Q e |
Q_Create: Q (create {t} · n (es))←→ Qs es |
Q_QCall: Q (e · n (es))←→ True |

B.25 Validity of creation procedures 285

Q_If : Q (if c then e1 else e2 end)←→ Q c ∨ Q e1 ∨ Q e2 |

Q_Loop: Q (until e loop b end)←→ Q e ∨ Q b |

Q_Test: Q (attached t e as n)←→ Q e |
Q_Other: Q _←→ False |
Q_Nil: Qs []←→ False |
Q_Cons: Qs (e # es)←→ Q e ∨ Qs es

Are there qualified feature calls in a given routine?

primrec has_immediate_qualified_in_routine ::
(′t, ′b) expression_system⇒ cname × fname⇒ bool

where
has_immediate_qualified_in_routine S (c, f)←→ (case routine_body S c f of
None⇒ False | (Some b)⇒ Q b)

Are there qualified feature calls in any routine reachable from a given
creation procedure?

definition has_qualified ::

(′t, ′b) expression_system⇒ cname × fname⇒ bool
where
has_qualified S c←→
(∃ x ∈ creation_reachable S c. has_immediate_qualified_in_routine S x)

The following function tells if Current is not used when not all
attributes are set.

fun
V :: (′b, ′t) expression⇒ fname set⇒ bool (safe) and
Vs :: (′b, ′t) expression list⇒ fname set⇒ bool (safe)

where
V_Current: V Current V ←→ V = {} |

V_Seq: V (e1 ;; e2) V ←→ V e1 V ∧ V e2 (U e1 V) ∨ U (e1;;e2) V = {} |

V_AssignLocal: V (n :=L e) V ←→ V e V |

V_AssignAttribute: V (n :=A e) V ←→ V e V ∨ U (n :=A e) V = {} |

V_Create: V (create {t} · n (es)) V ←→ Vs es V |

V_QCall: V (e · n (es)) V ←→ Vs (e # es) V |

V_If : V (if c then e1 else e2 end) V ←→
(V c V ∧ V e1 (U c V) ∨ Us [c, e1] V = {}) ∧

(V c V ∧ V e2 (U c V) ∨ Us [c, e2] V = {}) |

V_Loop: V (until e loop b end) V ←→
(V e V ∧ V b (U e V)) ∨ Us [e, b] V = {} |

V_Test: V (attached t e as n) V ←→ V e V |

V_Other: V _ V ←→ True |
V_Nil: Vs [] V ←→ True |
V_Cons: Vs (e # es) V ←→ V e V ∧ Vs es (U e V) ∨ Us (e # es) V = {}

lemma empty_implies_safe:

286 Th e o r i e s c o d e

fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

shows
U e V = {} =⇒ V e V and
Us es V = {} =⇒ Vs es V

using unattached_non_empty by (induction rule: U_Us.induct) auto

lemma no_current_implies_safe:
fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

shows
¬ C e =⇒ V e V and
¬ Cs es =⇒ Vs es V

by (induction arbitrary: V and V rule: C_Cs.induct) simp_all

lemma cV_implies_safe:
fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

shows
V ` e

√
c
′=⇒ V e V and

V ` es [
√
c]
′=⇒ Vs es V

by (induction rule: cV_cVs.inducts) simp_all

lemma safe_mono ′:
fixes
e:: (′b, ′t) expression and es:: (′b, ′t) expression list

assumes
A 6 B

shows
V e B =⇒ V e A and Vs es B =⇒ Vs es A

using assms
apply (induction arbitrary: A and A rule: V_Vs.induct)
apply auto[1]
using unattached_mono ′(1)
apply (metis CreationValidity.V_Seq bot.extremum_uniqueI)
using CreationValidity.V_AssignLocal apply blast
apply (metis CreationValidity.V_AssignAttribute

bot.extremum_uniqueI unattached_mono ′(1))
using CreationValidity.V_Create apply blast
using CreationValidity.V_QCall apply blast
apply (smt CreationValidity.V_If bot.extremum_uniqueI

unattached_mono ′(1) unattached_mono ′(2))
apply (metis CreationValidity.V_Loop bot.extremum_uniqueI

unattached_mono ′(1) unattached_mono ′(2))
using CreationValidity.V_Test apply blast
apply simp

B.25 Validity of creation procedures 287

apply simp
apply simp
apply simp
apply simp
by (metis CreationValidity.V_Cons bot.extremum_uniqueI

unattached_mono ′(1) unattached_mono ′(2))

lemma safe_mono:
fixes
e:: (′b, ′t) expression and es:: (′b, ′t) expression list

shows
antimono (V e) and antimono (Vs es)

by (simp_all add: antimonoI safe_mono ′)

b.25.5 Validity rule: circular references

A predicate that tells if an expression is valid with respect to a set of
unattached attributes (advanced weaker version).

inductive
CV :: (′t, ′b) expression_system⇒ fname set⇒ (′b, ′t) expression⇒ bool
(_, _ ` _

√
c [60, 54, 60] 60) and

CVs ::
(′t, ′b) expression_system⇒ fname set⇒ (′b, ′t) expression list⇒ bool
(_, _ ` _ [

√
c] [60, 54, 60] 60)

for S
where
CV_Value: S, V ` Value v

√
c |

CV_Current: S, V ` Current
√
c |

CV_Local: S, V ` Local n
√
c |

CV_Attribute: ¬ n ∈ V =⇒ S, V ` Attribute n
√
c |

CV_Seq: [[S, V ` e1
√
c; S, U e1 V ` e2

√
c]] =⇒ S, V ` e1 ;; e2

√
c |

CV_AssignLocal: S, V ` e
√
c =⇒ S, V ` n :=L e

√
c |

CV_AssignAttribute: S, V ` e
√
c =⇒ S, V ` n :=A e

√
c |

CV_Create: [[S, V ` es [
√
c]; Vs es V ∨ ¬ has_qualified S (c, n)]] =⇒

S, V ` create {c} · n (es)
√
c |

CV_QCall: [[S, V ` e
√
c; S, U e V ` es [

√
c]; Vs (e # es) V]] =⇒

S, V ` e · n (es)
√
c |

CV_If : [[S, V ` c
√
c; S, U c V ` e1

√
c; S, U c V ` e2

√
c]] =⇒

S, V ` if c then e1 else e2 end
√
c |

CV_Loop: [[S, V ` e
√
c; S, U e V ` b

√
c]] =⇒ S, V ` until e loop b end

√
c |

CV_Test: S, V ` e
√
c =⇒ S, V ` attached t e as n

√
c |

CV_Exception: S, V ` Exception
√
c |

CV_Nil: S, V ` [] [
√
c] |

CV_Cons: [[S, V ` e
√
c; S, U e V ` es [

√
c]]] =⇒ S, V ` e # es [

√
c]

288 Th e o r i e s c o d e

declare CV_CVs.intros[intro!]

inductive_simps CVs_iffs [iff]:
S, V ` [] [

√
c]

S, V ` e # es [
√
c]

inductive_cases CV_ValueE[elim!]: S, V ` Value v
√
c

inductive_cases CV_CurrentE[elim!]: S, V ` Current
√
c

inductive_cases CV_LocalE[elim!]: S, V ` Local n
√
c

inductive_cases CV_AttributeE[elim!]: S, V ` Attribute n
√
c

inductive_cases CV_SeqE[elim!]: S, V ` e1 ;; e2
√
c

inductive_cases CV_AssignLocalE[elim!]: S, V ` n :=L e
√
c

inductive_cases CV_AssignAttributeE[elim!]: S, V ` n :=A e
√
c

inductive_cases CV_CreateE[elim!]: S, V ` create {t} · n (es)
√
c

inductive_cases CV_QCallE[elim!]: S, V ` e · n (es)
√
c

inductive_cases CV_IfE[elim!]: S, V ` if c then e1 else e2 end
√
c

inductive_cases CV_LoopE[elim!]: S, V ` until e loop b end
√
c

inductive_cases CV_TestE[elim!]: S, V ` attached t e as n
√
c

inductive_cases CV_ExceptionE[elim!]: S, V ` Exception
√
c

The stronger validity implies the weaker one.

lemma cV_implies_CV:

fixes
e :: (′b, ′t) expression and es :: (′b, ′t) expression list

shows
V ` e

√
c
′=⇒ S, V ` e

√
c and

V ` es [
√
c]
′=⇒ S, V ` es [

√
c]

by (induction e and es rule: cV_cVs.inducts)
(auto simp add: cV_implies_safe)

The initialization validity predicate is monotone.

lemma CV_mono:
assumes
A 6 B

shows
S, B ` e

√
c =⇒ S, A ` e

√
c and

S, B ` es [
√
c] =⇒ S, A ` es [

√
c]

using assms
proof (induction arbitrary: A and A rule: CV_CVs.inducts)
case CV_QCall
with unattached_mono ′(1) safe_mono ′(2) show ?case
using CV_CVs.CV_QCall by metis

next
case CV_Create
with safe_mono ′(2) show ?case using CV_CVs.CV_Create by blast

qed (fastforce simp add: unattached_mono ′)+

B.26 Formal generic conformance 289

end

B.26 Formal generic conformance

theory GenericConformance imports Main begin

datatype type =
Expanded |

AttachedReference |
DetachableReference

fun conforms :: type⇒ type⇒ bool (infixl 6 60) where
conforms Expanded _ = True
| conforms AttachedReference AttachedReference = True
| conforms AttachedReference DetachableReference = True
| conforms DetachableReference DetachableReference = True
| conforms _ _ = False

datatype mark =

EmptyMark |

Attached |

Detachable

fun unmark :: type⇒ mark⇒ type (′(_, _ ′) 70) where
unmark Expanded _ = Expanded
| unmark AttachedReference Detachable = DetachableReference
| unmark AttachedReference _ = AttachedReference
| unmark DetachableReference Attached = AttachedReference
| unmark DetachableReference _ = DetachableReference

fun is_attached where
is_attached DetachableReference = False
| is_attached _ = True

lemma (
∧

T. is_attached (unmark T m)) =⇒ m = Attached
by (metis is_attached.elims(2) mark.exhaust type.distinct(4)

type.distinct(5) unmark.simps(2) unmark.simps(6))

lemma generic_is_attached:
(∀ A. conforms A C −→ is_attached (unmark A m))←→
C = Expanded ∨

C = AttachedReference ∧ m 6= Detachable ∨
m = Attached

using conforms.simps

290 Th e o r i e s c o d e

apply (cases C)
apply (fastforce elim: conforms.elims)
apply (cases m)

apply (fastforce elim: conforms.elims)
apply (fastforce elim: conforms.elims)
apply fastforce
apply (cases m)

apply fastforce
apply (fastforce elim: conforms.elims)
by fastforce

no_notation less_eq ((_/ 6 _) [51, 51] 50)

lemma generic_is_attached_n:
Cs 6= [] =⇒
(∀ A. (∀ C. C ∈ set Cs −→ A 6 C) −→ is_attached (unmark A m))←→
(∃ C. C ∈ set Cs ∧ C = Expanded) ∨
(∃ C. C ∈ set Cs ∧ C = AttachedReference ∧ m 6= Detachable) ∨
m = Attached
apply (cases (∃ C. C ∈ set Cs ∧

(C = Expanded ∨

C = AttachedReference ∧ m 6= Detachable ∨
m = Attached)))

using generic_is_attached apply auto[1]
by (smt conforms.elims(3) is_attached.simps(1) last_in_set

type.distinct(5) unmark.elims unmark.simps(2))

fun self_initializing where
self_initializing AttachedReference = False
| self_initializing _ = True

lemma generic_self_initializing:
(∀ A. conforms A C −→ self_initializing (unmark A m))←→
m = Detachable ∨ C = Expanded
using conforms.simps by (cases C, fastforce elim: conforms.elims)
(cases m, fastforce+, (fastforce elim: conforms.elims))+

lemma generic_self_initializing_n:
Cs 6= [] =⇒ (∀ A. (∀ C. C ∈ set Cs −→ conforms A C) −→
self_initializing (unmark A m))←→
(∃ C. C ∈ set Cs ∧ C = Expanded) ∨ m = Detachable

apply (cases m = Detachable)
using generic_self_initializing last_in_set apply blast
by (smt conforms.elims(3) conforms.simps(5) conforms.simps(6)

self_initializing.elims(2) self_initializing.elims(3)
type.distinct(1) type.distinct(5) unmark.elims)

B.26 Formal generic conformance 291

fun generic_conforms :: mark⇒ mark⇒ bool (infixl 6G 40) where
generic_conforms _ Detachable = True
| generic_conforms Attached _ = True
| generic_conforms EmptyMark EmptyMark = True
| generic_conforms _ _ = False

lemma [[generic_conforms Sm Tm; is_attached (unmark T Tm)]] =⇒
is_attached (unmark T Sm)

by (cases T, auto, cases Tm, auto, cases Sm, auto, cases Sm, auto,
cases Tm, auto, cases Sm, auto)

lemma [[generic_conforms Sm Tm; ¬ self_initializing (unmark T Tm)]] =⇒
¬ self_initializing (unmark T Sm)

by (cases T, auto, cases Tm, auto, cases Sm, auto,
cases Sm, auto, cases Tm, auto, cases Sm, auto)

lemma generic_conforms_is_correct:
generic_conforms mS mT =⇒ conforms (unmark T mS) (unmark T mT)
by (cases T, simp, (cases mT , (cases mS, simp, simp, simp)+)+)

no_notation conforms (infixl 6 60)
notation less_eq ((_/ 6 _) [51, 51] 50)

lemma generic_conforms_is_maximal:
(
∧

T mT mS. [[
f mS mT ;
is_attached (unmark T mT);
¬ self_initializing (unmark T mT)
]] =⇒
is_attached (unmark T mS) ∧ ¬ self_initializing (unmark T mS)) =⇒
f mS mT 6 generic_conforms mS mT
by (metis generic_conforms.elims(3) is_attached.simps(1)

is_attached.simps(3) le_boolI unmark.simps(2) unmark.simps(3)
unmark.simps(5) unmark.simps(6) unmark.simps(7)
self_initializing.simps(1))

notation conforms (infixl 6 60)

end

I n d e x

abstract syntax, 65, 124

attachment mark, 47

attachment status, 47

anchored type, 47

default, 28, 47

expanded type, 47

formal generic type, 53

bottom of
attached reference

types, 48

detachable reference
types, 48

certified attachment pattern,
8, 145

CVE, 3

default formal generic
constraint, 51

equality forms, 124

guard
instruction, 43

translation, 66

keyword
attached, 47

detachable, 47

migration statistics
complete level, 79, 176,

177

levels, 38

library status, 172

summary, 41

transitional level, 40,
174, 175

monotonicity of
function safe, 88

loop function, 140

loop operator, 140

state, 161

transfer function, 68,
141

validity predicate, 94,
147

object initialization timeline,
65, 84

once function
in creation procedure,

96

operator
boolean, 149

unfolded form, 132

conditional, 149

logical, 149

semistrict, 128, 149

option
void_safety, 37

is_attached_by_default,
28

configuration file, 28

pattern
GUI widget

initialization, 72

293

294 I N D E X

mediator, 74

properly set variable, 50

proposal
immediately-initialized

type, 116

library voidness test,
126

no value check, 148

non-voidness test, 126

reattachment, 50

redeclaration
contravariant, 49

covariant, 48

scope, 124, 129
assertion, 129

control flow, 129

operator, 129

stable
attribute, 34

query, 36

test
non-voidness, 126

object, 127

voidness, 124

transfer function, 66, 134

type
attached, 47

detachable, 47

immediately-initialized,
116

self-initializing, 49, 50
formal generic, 54

unreachable attachment
state, 144

validity predicate for
creation procedure, 68,

91

validity rule
creation procedure

and once function, 96

memory usage, 77

strong version, 64

weak version, 84

object disposal, 102

void safety, 12

level, 37

B i b l i o g r a p h y

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1986. isbn: 0-201-
10088-6.

[2] Nada Amin and Tiark Rompf. “Type Soundness Proofs
with Definitional Interpreters.” In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Lan-
guages. POPL 2017. Paris, France: ACM, 2017, pp. 666–679.
isbn: 978-1-4503-4660-3. doi: 10.1145/3009837.3009866.

[3] Davide Ancona and Elena Zucca. “Corecursive Feather-
weight Java.” In: Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs. FTfJP ’12. Beijing, China:
ACM, 2012, pp. 3–10. isbn: 978-1-4503-1272-1. doi: 10 .

1145/2318202.2318205.

[4] Apple Inc. Programming with Objective-C. Sept. 17,
2014. url: https : / / developer . apple . com /

library / ios / documentation / Cocoa / Conceptual /

ProgrammingWithObjectiveC/ (visited on 2016-05-15).

[5] Karine Arnout and Bertran Meyer. “Finding Implicit Con-
tracts in .NET Components.” In: Formal Methods for Com-
ponents and Objects: First International Symposium, FMCO
2002, Leiden, The Netherlands, November 5–8, 2002, Revised
Lectures. Ed. by Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, pp. 285–318. isbn:
978-3-540-39656-7. doi: 10.1007/978-3-540-39656-7_12.

[6] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter
Müller, Wolfram Schulte, and Herman Venter. “Specifica-
tion and Verification: The Spec# Experience.” In: Commun.
ACM 54.6 (June 2011). Ed. by Moshe Y. Vardi, pp. 81–91.
issn: 0001-0782. doi: 10.1145/1953122.1953145.

295

https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/2318202.2318205
https://doi.org/10.1145/2318202.2318205
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/
https://doi.org/10.1007/978-3-540-39656-7_12
https://doi.org/10.1145/1953122.1953145

296 B i b l i o g r a p h y

[7] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and François Yergeau. Extensible Markup Language (XML)
1.0 (Fifth Edition). Fifth Edition of a Recommendation.
http://www.w3.org/TR/2008/REC-xml-20081126/. W3C,
Nov. 2008.

[8] Common Vulnerabilities and Exposures. 2017. url: http://
cve.mitre.org/ (visited on 2017-04-27).

[9] Common Weakness Enumeration. 2017. url: https : / / cwe .

mitre.org/ (visited on 2017-01-15).

[10] Computer emergency response teams. 2017. url: http://www.
cert.org/ (visited on 2017-01-15).

[11] Creating a new void-safe project. Community portal for Eif-
fel, 2016. url: https://www.eiffel.org/doc/eiffel/
Creating%20a%20new%20void-safe%20project (visited on
2016-12-30).

[12] Ecma International. ECMA-367: Eiffel analysis, design and
programming language. 2nd. (Alexander V. Kogtenkov is a
member of the committee.) Geneva, Switzerland: Ecma
International, June 2006. url: http : / / www . ecma -

international.org/publications/standards/Ecma-367.

htm.

[13] Ecma International. ECMA-262: ECMAScript Language Spec-
ification. 6.0. Geneva, Switzerland: Ecma International, June
2015.

[14] Eiffel compatibility options. Community portal for Eiffel, 2016.
url: https : / / www . eiffel . org / doc / eiffelstudio /

Eiffel%20compatibility%20options (visited on 2016-12-
30).

[15] Eiffel Software. EiffelStudio 16.05 Releases. July 2016. url:
https://dev.eiffel.com/EiffelStudio_16.05_Releases

(visited on 2016-09-15).

[16] Eiffel Software. EiffelStudio 16.11 Releases. Nov. 2016. url:
https://dev.eiffel.com/EiffelStudio_16.11_Releases

(visited on 2016-11-15).

http://cve.mitre.org/
http://cve.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
http://www.cert.org/
http://www.cert.org/
https://www.eiffel.org/doc/eiffel/Creating%20a%20new%20void-safe%20project
https://www.eiffel.org/doc/eiffel/Creating%20a%20new%20void-safe%20project
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
https://www.eiffel.org/doc/eiffelstudio/Eiffel%20compatibility%20options
https://www.eiffel.org/doc/eiffelstudio/Eiffel%20compatibility%20options
https://dev.eiffel.com/EiffelStudio_16.05_Releases
https://dev.eiffel.com/EiffelStudio_16.11_Releases

B i b l i o g r a p h y 297

[17] Manuel Fähndrich and K. Rustan M. Leino. “Declaring
and Checking Non-null Types in an Object-oriented Lan-
guage.” In: Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-oriented Programing, Systems, Languages,
and Applications. OOPSLA ’03. Anaheim, California, USA:
ACM, 2003, pp. 302–312. isbn: 1-58113-712-5. doi: 10.1145/
949305.949332.

[18] Manuel Fähndrich and Songtao Xia. “Establishing Object
Invariants with Delayed Types.” In: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems and Applications. OOPSLA ’07. Montreal,
Quebec, Canada: ACM, 2007, pp. 337–350. isbn: 978-1-
59593-786-5. doi: 10.1145/1297027.1297052.

[19] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. “Extended
Static Checking for Java.” In: Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and
Implementation. PLDI ’02. Berlin, Germany: ACM, 2002,
pp. 234–245. isbn: 1-58113-463-0. doi: 10 . 1145 / 512529 .

512558.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
oriented Software. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1995. isbn: 0-201-63361-2.

[21] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha,
and Alex Buckley. The Java Language Specification, Java SE
8 Edition. 1st. Addison-Wesley Professional, 2014. isbn:
9780133900699.

[22] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and
Alex Buckley. The Java Language Specification, Java SE 8 Edi-
tion. Maintenance Release. Oracle America, Inc. and/or its
affiliates., Mar. 2015.

[23] PHP Documentation Group. PHP Manual. Ed. by Peter
Cowburn. May 14, 2016. url: http://php.net/manual/
(visited on 2016-05-15).

[24] Tony Hoare. “Null references: The billion dollar mistake.”
In: Presentation at QCon London (2009).

https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/1297027.1297052
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
http://php.net/manual/

298 B i b l i o g r a p h y

[25] Projects – Isabelle Community wiki. Apr. 2016. url: https:
//isabelle.in.tum.de/community/Projects (visited on
2016-09-15).

[26] ISO. ISO/IEC 23270:2006(E): Information technology — Pro-
gramming languages — C#. 2nd. Geneva, Switzerland: Inter-
national Organization for Standardization, Sept. 1, 2006.

[27] ISO. ISO/IEC 25436:2006(E): Information technology — Eif-
fel: Analysis, Design and Programming Language. 1st. Interna-
tional standard ISO/IEC 25436. (Alexander V. Kogtenkov
is a member of the committee.) Geneva, Switzerland: ISO
(International Organization for Standardization) and IEC
(International Electrotechnical Commission), Dec. 1, 2006.

[28] ISO. ISO/IEC 30170:2012(E): Information technology — Pro-
gramming languages — Ruby. 1st. Geneva, Switzerland: In-
ternational Organization for Standardization, Apr. 15, 2012.

[29] ISO. ISO/IEC 14882:2014(E): Information technology — Pro-
gramming languages — C++. 4th. Geneva, Switzerland: Inter-
national Organization for Standardization, Dec. 15, 2014.

[30] JetBrains. Kotlin Language Documentation. Jan. 31, 2017. url:
https://kotlinlang.org/docs/kotlin-docs.pdf (visited
on 2017-01-31).

[31] JetBrains. Kotlin Language Specification. Jan. 31, 2017. url:
https://jetbrains.github.io/kotlin- spec/kotlin-

spec.pdf (visited on 2017-01-31).

[32] Gerwin Klein. “Verified Java Bytecode Verification.” PhD
thesis. Institut für Informatik, Technische Universität
München, 2003. url: http://www4.in.tum.de/~kleing/
diss/.

[33] Gerwin Klein and Tobias Nipkow. “A Machine-checked
Model for a Java-like Language, Virtual Machine, and
Compiler.” In: ACM Trans. Program. Lang. Syst. 28.4 (July
2006), pp. 619–695. issn: 0164-0925. doi: 10.1145/1146809.
1146811.

[34] Alexander Kogtenkov. Void-safety: tag info. Stackoverflow,
July 15, 2016. url: http://stackoverflow.com/tags/void-
safety/info (visited on 2016-12-30).

https://isabelle.in.tum.de/community/Projects
https://isabelle.in.tum.de/community/Projects
https://kotlinlang.org/docs/kotlin-docs.pdf
https://jetbrains.github.io/kotlin-spec/kotlin-spec.pdf
https://jetbrains.github.io/kotlin-spec/kotlin-spec.pdf
http://www4.in.tum.de/~kleing/diss/
http://www4.in.tum.de/~kleing/diss/
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/1146809.1146811
http://stackoverflow.com/tags/void-safety/info
http://stackoverflow.com/tags/void-safety/info

B i b l i o g r a p h y 299

[35] Alexander Kogtenkov, Bertrand Meyer, and Sergey Velder.
“Alias and Change Calculi, Applied to Frame Inference.”
In: CoRR abs/1307.3189 (2013). url: http://arxiv.org/
abs/1307.3189.

[36] Alexander Kogtenkov, Bertrand Meyer, and Sergey Velder.
“Alias calculus, change calculus and frame inference.” In:
Science of Computer Programming 97, Part 1 (2015). Special
Issue on New Ideas and Emerging Results in Understand-
ing Software, pp. 163–172. issn: 0167-6423. doi: 10.1016/j.
scico.2013.11.006.

[37] A.V. Kogtenkov. “Mechanically Proved Practical Local Null
Safety.” In: Proceedings of the Institute for System Program-
ming of the RAS 28.5 (Dec. 2016), pp. 27–54. issn: 2079-8156

(Print), 2220-6426 (Online). doi: 10.15514/ISPRAS- 2016-
28(5)-2.

[38] J.-L. Lassez, V.L. Nguyen, and E.A. Sonenberg. “Fixed point
theorems and semantics: a folk tale.” In: Information Pro-
cessing Letters 14.3 (1982), pp. 112–116. issn: 0020-0190. doi:
10.1016/0020-0190(82)90065-5.

[39] K. Rustan M. Leino. “Data Groups: Specifying the Modifi-
cation of Extended State.” In: Proceedings of the 13th ACM
SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications. OOPSLA ’98. Vancouver,
British Columbia, Canada: ACM, 1998, pp. 144–153. isbn:
1-58113-005-8. doi: 10.1145/286936.286953.

[40] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buck-
ley. The Java Virtual Machine Specification, Java SE 8 Edition.
Maintenance Release. Oracle America, Inc. and/or its affil-
iates., Feb. 2015. url: https://docs.oracle.com/javase/
specs/jvms/se8/jvms8.pdf (visited on 2016-12-28).

[41] Andreas Lochbihler. “A Machine-Checked, Type-Safe
Model of Java Concurrency : Language, Virtual Machine,
Memory Model, and Verified Compiler.” PhD thesis. Karl-
sruher Institut für Technologie, Fakultät für Informatik,
July 2012. doi: 10.5445/KSP/1000028867.

[42] Chris Male, David J. Pearce, Alex Potanin, and Constantine
Dymnikov. “Formalisation and implementation of an algo-
rithm for bytecode verification of @NonNull types.” In: Sci-

http://arxiv.org/abs/1307.3189
http://arxiv.org/abs/1307.3189
https://doi.org/10.1016/j.scico.2013.11.006
https://doi.org/10.1016/j.scico.2013.11.006
https://doi.org/10.15514/ISPRAS-2016-28(5)-2
https://doi.org/10.15514/ISPRAS-2016-28(5)-2
https://doi.org/10.1016/0020-0190(82)90065-5
https://doi.org/10.1145/286936.286953
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://doi.org/10.5445/KSP/1000028867

300 B i b l i o g r a p h y

ence of Computer Programming 76.7 (2011), pp. 587–608. issn:
0167-6423. doi: 10.1016/j.scico.2010.10.004.

[43] Amogh Margoor and Raghavan Komondoor. “Two tech-
niques to improve the precision of a demand-driven null-
dereference verification approach.” In: Science of Computer
Programming 98, Part 4 (2015), pp. 645–679. issn: 0167-6423.
doi: 10.1016/j.scico.2014.09.006.

[44] Mediator pattern. 2016. url: https://en.wikipedia.org/
wiki/Mediator_pattern (visited on 2016-12-23).

[45] Erik Meijer and Wolfram Schulte. “Unifying Tables, Objects
and Documents.” In: Proceedings of Declarative Programming
in the Context of OO Languages (DP-COOL 2003). Aug. 2003.
url: https : / / www . microsoft . com / en - us / research /

publication/unifying-tables-objects-and-documents/.

[46] Bertrand Meyer. Object-oriented software construction. 2nd ed.
Prentice Hall, 1997.

[47] Bertrand Meyer. “Attached Types and Their Application to
Three Open Problems of Object-Oriented Programming.”
In: ECOOP 2005 – Object-Oriented Programming: 19th Euro-
pean Conference, Glasgow, UK, July 25-29, 2005. Proceedings.
Ed. by Andrew P. Black. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 1–32. isbn: 978-3-540-31725-8. doi: 10.
1007/11531142_1.

[48] Bertrand Meyer. “The Dependent Delegate Dilemma.” In:
Engineering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute on Engineering Theo-
ries of Software Intensive Systems Marktoberdorf, Germany 3–
15 August 2004. Ed. by Manfred Broy, Johannes Grünbauer,
David Harel, and Tony Hoare. Dordrecht: Springer Nether-
lands, 2005, pp. 105–118. isbn: 978-1-4020-3532-6. doi: 10.
1007/1-4020-3532-2_4.

[49] Bertrand Meyer. Targeted expressions: safe object creation with
void safety. July 30, 2012. url: http://se.ethz.ch/~meyer/
publications/online/targeted.pdf (visited on 2017-05-
08).

[50] Bertrand Meyer, Alexander Kogtenkov, and Emmanuel
Stapf. “Void Safety: Putting an End To the Plague of Null
Dereferencing.” In: Dr.Dobbs Journal online (Sept. 1, 2009).

https://doi.org/10.1016/j.scico.2010.10.004
https://doi.org/10.1016/j.scico.2014.09.006
https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Mediator_pattern
https://www.microsoft.com/en-us/research/publication/unifying-tables-objects-and-documents/
https://www.microsoft.com/en-us/research/publication/unifying-tables-objects-and-documents/
https://doi.org/10.1007/11531142_1
https://doi.org/10.1007/11531142_1
https://doi.org/10.1007/1-4020-3532-2_4
https://doi.org/10.1007/1-4020-3532-2_4
http://se.ethz.ch/~meyer/publications/online/targeted.pdf
http://se.ethz.ch/~meyer/publications/online/targeted.pdf

B i b l i o g r a p h y 301

url: http://drdobbs.com/architecture- and- design/
219500827.

[51] Bertrand Meyer, Alexander Kogtenkov, and Emmanuel
Stapf. “Avoid a Void: The Eradication of Null Dereferenc-
ing.” In: Reflections on the Work of C.A.R. Hoare. Ed. by A.W.
Roscoe, Cliff B. Jones, and Kenneth R. Wood. History of
Computing. Springer London, 2010, pp. 189–211. isbn: 978-
1-84882-912-1. doi: 10.1007/978-1-84882-912-1_9.

[52] Benjamin Morandi, Mischael Schill, Sebastian Nanz, and
Bertrand Meyer. “Prototyping a Concurrency Model.” In:
Proceedings of the 2013 13th International Conference on Appli-
cation of Concurrency to System Design. ACSD ’13. Washing-
ton, DC, USA: IEEE Computer Society, 2013, pp. 170–179.
isbn: 978-0-7695-5035-0. doi: 10.1109/ACSD.2013.21.

[53] Robert Morgan. Building an Optimizing Compiler. Newton,
MA, USA: Digital Press, 1998. isbn: 1-55558-179-X.

[54] Steven S. Muchnick. Advanced Compiler Design and Imple-
mentation. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997. isbn: 1-55860-320-4.

[55] Flemming Nielson, Hanne R. Nielson, and Chris Hankin.
Principles of Program Analysis. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1999. isbn: 3540654100.

[56] Piotr Nienaltowski. “Practical framework for contract-
based concurrent object-oriented programming.” Diss., Eid-
genössische Technische Hochschule ETH Zürich, Nr. 17061.
PhD thesis. Swiss Federal Institute Of Technology Zürich,
2007. doi: 10.3929/ethz-a-005363875.

[57] David von Oheimb. “Analyzing Java in Isabelle/HOL: For-
malization, Type Safety and Hoare Logic.” http://ddvo.net/

diss/. PhD thesis. Technische Universität München, 2001.

[58] Open Web Application Security Project. 2017. url: https://
www.owasp.org/ (visited on 2017-01-15).

[59] Scott Owens, Magnus O. Myreen, Ramana Kumar, and
Yong Kiam Tan. “Functional Big-Step Semantics.” In: Pro-
gramming Languages and Systems: 25th European Symposium
on Programming, ESOP 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings.
Ed. by Peter Thiemann. Berlin, Heidelberg: Springer Berlin

http://drdobbs.com/architecture-and-design/219500827
http://drdobbs.com/architecture-and-design/219500827
https://doi.org/10.1007/978-1-84882-912-1_9
https://doi.org/10.1109/ACSD.2013.21
https://doi.org/10.3929/ethz-a-005363875
http://ddvo.net/diss/
http://ddvo.net/diss/
https://www.owasp.org/
https://www.owasp.org/

302 B i b l i o g r a p h y

Heidelberg, 2016, pp. 589–615. isbn: 978-3-662-49498-1. doi:
10.1007/978-3-662-49498-1_23.

[60] PHP Bug Tracking System. 2016. url: https://bugs.php.
net/ (visited on 2016-05-25).

[61] Xin Qi and Andrew C. Myers. Masked Types. Tech. rep.
Oct. 28, 2008. url: http://hdl.handle.net/1813/11563
(visited on 2016-12-25).

[62] Xin Qi and Andrew C. Myers. “Masked Types for Sound
Object Initialization.” In: Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’09. Savannah, GA, USA: ACM, 2009,
pp. 53–65. isbn: 978-1-60558-379-2. doi: 10.1145/1480881.
1480890.

[63] Guido van Rossum and the Python development team. The
Python Language Reference. Release 3.5.1. Python Software
Foundation, May 15, 2016. url: https : / / docs . python .

org/3/download.html (visited on 2016-05-15).

[64] Marco Servetto, Julian Mackay, Alex Potanin, and James
Noble. “The Billion-Dollar Fix.” In: ECOOP 2013 – Object-
Oriented Programming: 27th European Conference, Montpel-
lier, France, July 1-5, 2013. Proceedings. Ed. by Giuseppe
Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 205–229. isbn: 978-3-642-39038-8. doi: 10.1007/
978-3-642-39038-8_9.

[65] Jeremy Siek. Big-step, diverging or stuck? July 2012. url:
http://siek.blogspot.ch/2012/07/big-step-diverging-

or-stuck.html (visited on 2016-09-15).

[66] Jeremy Siek. Type Safety in Three Easy Lemmas. May 2013.
url: http://siek.blogspot.ch/2013/05/type-safety-in-
three-easy-lemmas.html (visited on 2016-09-15).

[67] Fausto Spoto. “Precise null-pointer analysis.” English. In:
Software & Systems Modeling 10.2 (2011), pp. 219–252. issn:
1619-1366. doi: 10.1007/s10270-009-0132-5.

[68] Raymie Stata. ESCJ 2: Improving the safety of Java. Dec. 2,
1995. url: http : / / kindsoftware . com / products /

opensource / ESCJava2 / ESCTools / docs / design - notes /

escj02.html (visited on 2017-04-27).

https://doi.org/10.1007/978-3-662-49498-1_23
https://bugs.php.net/
https://bugs.php.net/
http://hdl.handle.net/1813/11563
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/1480881.1480890
https://docs.python.org/3/download.html
https://docs.python.org/3/download.html
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
http://siek.blogspot.ch/2012/07/big-step-diverging-or-stuck.html
http://siek.blogspot.ch/2012/07/big-step-diverging-or-stuck.html
http://siek.blogspot.ch/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.ch/2013/05/type-safety-in-three-easy-lemmas.html
https://doi.org/10.1007/s10270-009-0132-5
http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj02.html
http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj02.html
http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj02.html

B i b l i o g r a p h y 303

[69] Alexander J. Summers and Peter Müller. Freedom before com-
mitment. simple flexible initialisation for non-full types. Tech.
rep. 716. Zurich, Switzerland: ETH Zurich, Department of
Computer Science, 2010. doi: 10.3929/ethz-a-006904372.

[70] Alexander J. Summers and Peter Müller. “Freedom Before
Commitment: A Lightweight Type System for Object Initial-
isation.” In: Proceedings of the 2011 ACM International Confer-
ence on Object Oriented Programming Systems Languages and
Applications. OOPSLA ’11. 548115. Portland, Oregon, USA:
ACM, 2011, pp. 1013–1032. isbn: 978-1-4503-0940-0. doi: 10.
1145/2048066.2048142.

[71] Alfred Tarski. “A lattice-theoretical fixpoint theorem and
its applications.” In: Pacific J. Math. 5.2 (1955), pp. 285–309.
url: http://projecteuclid.org/euclid.pjm/1103044538.

[72] The Checker Framework 2.1.10. Apr. 3, 2017. url: https://
checkerframework.org/ (visited on 2017-05-08).

[73] Void-safe changes to Eiffel libraries. Community portal for Eif-
fel. url: https://www.eiffel.org/doc/eiffel/Void-
safe%20changes%20to%20Eiffel%20libraries (visited on
2016-12-30).

[74] Makarius Wenzel. The Isabelle/Isar Reference Manual. Feb.
2016. url: http : / / isabelle . in . tum . de / dist /

Isabelle2016/doc/isar-ref.pdf (visited on 2016-09-20).

[75] Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang. “Ef-
fective Dynamic Detection of Alias Analysis Errors.” In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering. ESEC/FSE 2013. Saint Petersburg, Russia:
ACM, 2013, pp. 279–289. isbn: 978-1-4503-2237-9. doi: 10.
1145/2491411.2491439.

[76] Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay
Saraswat. “Object Initialization in X10.” In: ECOOP 2012 –
Object-Oriented Programming: 26th European Conference, Bei-
jing, China, June 11-16, 2012. Proceedings. Ed. by James No-
ble. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 207–231. isbn: 978-3-642-31057-7. doi: 10.1007/978-3-
642-31057-7_10.

https://doi.org/10.3929/ethz-a-006904372
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/2048066.2048142
http://projecteuclid.org/euclid.pjm/1103044538
https://checkerframework.org/
https://checkerframework.org/
https://www.eiffel.org/doc/eiffel/Void-safe%20changes%20to%20Eiffel%20libraries
https://www.eiffel.org/doc/eiffel/Void-safe%20changes%20to%20Eiffel%20libraries
http://isabelle.in.tum.de/dist/Isabelle2016/doc/isar-ref.pdf
http://isabelle.in.tum.de/dist/Isabelle2016/doc/isar-ref.pdf
https://doi.org/10.1145/2491411.2491439
https://doi.org/10.1145/2491411.2491439
https://doi.org/10.1007/978-3-642-31057-7_10
https://doi.org/10.1007/978-3-642-31057-7_10

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Motivation and goal
	1.2 Effect in industry
	1.3 The keys to void safety
	1.4 Challenges
	1.5 Role of Isabelle
	1.6 Terminology
	1.7 Contributions

	2 Overview
	2.1 Research area
	2.1.1 State of the art
	2.1.2 Goals
	2.1.3 Novelty

	2.2 Achievements
	2.2.1 Methodology
	2.2.2 Value of the work
	2.2.3 Proposed solutions
	2.2.4 Practical effect
	2.2.5 Relevant publications

	2.3 Outline
	2.4 Conclusion
	2.4.1 Main results
	2.4.2 Future work

	3 From Theory to Practice
	3.1 First steps
	3.2 Language conventions
	3.2.1 Default attachment status
	3.2.2 Array items
	3.2.3 Once functions
	3.2.4 Scopes for attributes

	3.3 Adapting legacy code
	3.3.1 Void safety levels
	3.3.2 Migration statistics

	3.4 Controversial issues
	3.4.1 Self-initializing attributes
	3.4.2 Assertion checks

	3.5 Related work

	4 A Type System for Void Safety
	4.1 Attachment status
	4.2 General validity rules
	4.3 Formal generics
	4.3.1 Attachment property
	4.3.2 Self-initialization status
	4.3.3 Conformance

	4.4 Related work
	4.5 Conclusion

	5 The Object Initialization Issue
	5.1 Attribute access safety
	5.1.1 Motivating example
	5.1.2 Solution
	5.1.3 Initialization order in presence of inheritance
	5.1.4 Modification of existing structures
	5.1.5 Implementation
	5.1.6 Practical experience
	5.1.7 Conclusion

	5.2 Circular references
	5.2.1 Motivating example
	5.2.2 Solution
	5.2.3 Implementation
	5.2.4 Empirical results

	5.3 Object disposal
	5.4 Related work
	5.5 Conclusion

	6 Certified Attachment Patterns
	6.1 Overview
	6.2 Attachment state
	6.2.1 Abstract syntax
	6.2.2 Scopes
	6.2.3 Transfer function
	6.2.4 Design mode

	6.3 Validity rules
	6.3.1 Expression validity
	6.3.2 Beyond void safety
	6.3.3 Implementation

	6.4 Practical experience
	6.5 Related work
	6.6 Conclusion

	7 Soundness: Mechanically-Checked Proofs
	7.1 Overview
	7.2 State validity
	7.3 The semantics
	7.4 Safety
	7.4.1 Preservation theorem
	7.4.2 Equivalence of safe and unsafe semantics

	7.5 Related work
	7.6 Conclusion

	A Code Migration
	A.1 General information
	A.2 Migration from void-unsafe to transitional level of void safety
	A.3 Migration from transitional to complete level of void safety

	B Theories code
	B.1 Common definitions
	B.2 Identifiers
	B.3 Types
	B.4 Type environment
	B.5 Values
	B.6 Expression
	B.6.1 Expressions
	B.6.2 Final computations
	B.6.3 Boolean expressions

	B.7 Object heap
	B.8 Memory state
	B.9 Void-safe Big-step semantics
	B.9.1 Big-step semantics rules
	B.9.2 Final state

	B.10 Void-unsafe Big-step semantics
	B.10.1 Big-step semantics rules

	B.11 Types with attachment status
	B.11.1 Type abstraction describing attachment status
	B.11.2 Attachment status of types

	B.12 Values with attachment status
	B.12.1 Attachment type of simple expressions

	B.13 Attachment properties of object heap
	B.14 Type environment with attachment marks
	B.15 Expression with attached types
	B.16 Set with absorbing top element
	B.17 Loop operator
	B.18 Transfer function
	B.18.1 Transfer function without scopes
	B.18.2 Transfer function with scopes

	B.19 Expression void safety
	B.19.1 Attachment validity rules and type checks
	B.19.2 Type checks properties

	B.20 Memory state validity
	B.20.1 Run-time attachment status
	B.20.2 Run-time state decomposition.
	B.20.3 Run-time state updates.

	B.21 Attachment correctness
	B.21.1 Preservation of valid run-time state
	B.21.2 Preservation of attachment property

	B.22 Conditional equivalence of void-safe and void-unsafe semantics
	B.23 Class declaration
	B.23.1 Declarations
	B.23.2 Routines

	B.24 System
	B.24.1 Class properties

	B.25 Validity of creation procedures
	B.25.1 Unattached attributes
	B.25.2 Validity rule: simple attribute access safety
	B.25.3 Access to current
	B.25.4 Presence of qualified calls
	B.25.5 Validity rule: circular references

	B.26 Formal generic conformance

	Index
	Bibliography

