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Abstract
Using GPUs as general-purpose processors has revolutionized par-
allel computing by offering, for a large and growing set of algo-
rithms, massive data-parallelization on desktop machines. An ob-
stacle to widespread adoption, however, is the difficulty of pro-
gramming them and the low-level control of the hardware required
to achieve good performance. This paper suggests a programming
library, SafeGPU, that aims at striking a balance between program-
mer productivity and performance, by making GPU data-parallel
operations accessible from within a classical object-oriented pro-
gramming language. The solution is integrated with the design-by-
contract approach, which increases confidence in functional pro-
gram correctness by embedding executable program specifications
into the program text. We show that our library leads to modular
and maintainable code that is accessible to GPGPU non-experts,
while providing performance that is comparable with hand-written
CUDA code. Furthermore, runtime contract checking turns out to
be feasible, as the contracts can be executed on the GPU.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages, Object-
oriented languages; D.3.4 [Processors]: Code generation, Com-
pilers

Keywords GPGPU, parallel computing, runtime code generation,
programming, object-orientation, design-by-contract, program cor-
rectness

1. Introduction
Graphics Processing Units (GPUs) are being increasingly lever-
aged as sources of inexpensive parallel-processing power, with ap-
plication areas as diverse as scientific data analysis, cryptography,
and evolutionary computing [22, 30]. Consisting of thousands of
processors, GPUs are throughput-oriented systems that are espe-
cially well-suited to realizing data-parallel algorithms—algorithms
performing the same tasks on multiple items of data—with poten-
tially significant performance gains to be achieved.

The CUDA [20] and OpenCL [11] languages support the pro-
gramming of GPUs for applications beyond graphics in an ap-
proach now known as General-Purpose Computing on GPUs
(GPGPU). They provide programmers with fine-grained con-
trol over hardware at the C++ level of abstraction. This control,

however, is a double-edged sword: while it facilitates advanced,
hardware-specific fine-tuning techniques, it does so at the cost of
working within very restrictive and low-level programming mod-
els. Recursion, for example, is among the standard programming
concepts prohibited. Furthermore, dynamic memory management
is completely absent, meaning that programmers themselves must
explicitly manage the allocation of memory and the movement of
data. Although acceptable for specialist programmers, these issues
pose a significant difficulty to others, and are an obstacle to more
widespread adoption.

Such challenges have not gone unnoticed: recent years have
seen a plethora of attempts to alleviate the burden on program-
mers. Several algorithmic skeleton frameworks for C++ have been
extended—or purpose built—to support the orchestration of GPU
computations, expressed in terms of programming patterns that
leave the parallelism implicit [6–8, 17, 25]. Higher-level languages
on the other hand have seen new libraries, extensions, and com-
pilers that allow for GPU programming at more comprehensible
levels of abstraction, with various degrees of automatic device and
memory management [5, 10, 16, 23, 24].

These advances have made strides in the right direction, but the
burden on the programmer can be lifted even further. Some ap-
proaches (e.g. [23]) still necessitate an understanding of relatively
low-level GPU concepts such as barrier-based synchronization be-
tween threads; a mechanism that can easily lead to perplexing con-
currency faults such as data races or barrier divergence. Such con-
cepts can stifle the productivity of programmers and remain an ob-
stacle to broadening the adoption of GPGPU. Other approaches
(e.g. [5]) successfully abstract away from them, but require pro-
grammers to migrate to dedicated languages. Furthermore, to our
knowledge, no existing approach has explored the possibility of in-
tegrating mechanisms or methodologies for specifying and moni-
toring the correctness of high-level GPU code, missing an opportu-
nity to support the development of reliable programs. Our work has
been motivated by the challenge of addressing these issues with-
out depriving programmers of the potential performance boosts for
data-parallel problems.

This paper proposes SafeGPU, a library for GPU programming
in the object-oriented language Eiffel, that aims to hit a sweet
spot between programmer productivity on the one hand (as seen
with high-level programming languages), and performance of data-
parallel programs on the other (as seen with CUDA and OpenCL).
First, the library binds Eiffel to the CUDA model, allowing al-
ready for GPU programs to be written, compiled, and executed
by developers. Second, and crucially, SafeGPU provides a high-
level API for orchestrating data-parallel programs on the GPU that
hides the low-level hardware and synchronization requirements of
CUDA. Our approach aims to allow programmers to focus entirely
on functionality, by offering them collections equipped with primi-
tive data-parallel operations (e.g. sum, max, min) that can be com-
bined to generate complex computations, without performance be-
coming incommensurate with that of manually coded CUDA solu-



tions. This is achieved by deferring the generation of CUDA kernels
such that the execution of pending operations can be optimized by
combining them.

Furthermore, to support the development of safe and function-
ally correct GPU code, we integrate the design-by-contract [18]
methodology that is native to Eiffel; that is to say, SafeGPU sup-
ports the annotation of high-level GPU programs with executable
preconditions, postconditions, and invariants, together specifying
the properties that should hold before and after the execution of
methods. In languages supporting design-by-contract, these anno-
tations can be checked dynamically at runtime, but the significant
overhead incurred means that they are often disabled outside of
debugging. With SafeGPU, contracts can be constructed from the
data-parallel primitives, allowing for them to be monitored at run-
time with little overhead by executing them on the GPU.

The contribution of this work is hence a library for GPU pro-
gramming that:

• embraces the object-oriented paradigm, shielding programmers
from the low-level requirements of the CUDA model without
depriving them of the performance benefits;

• is modular and efficient, supporting the generation of complex
computations through the composition of primitive operations
with a dedicated kernel optimization strategy;

• supports the writing of safe and functionally correct code via
contracts, monitored at runtime with little overhead.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of the library, its capabilities, and how it is im-
plemented. Section 3 explores the binding and library APIs in more
detail. Section 4 describes the design-by-contract integration. Sec-
tion 5 presents the kernel generation and optimization strategies.
Section 6 evaluates performance, code size, and contract checking
across a selection of benchmark programs. Section 7 describes and
contrasts some related work. In Section 8, we conclude.

2. The SafeGPU Library
In this section we provide an overview of the SafeGPU library.
We describe the style of programming it supports for constructing
GPU programs, provide a simple example, and explain how the
integration with CUDA is achieved.

2.1 Programming Style
CUDA kernels—the functions that run on the GPU—are executed
by an array of threads, with each thread executing the same code
on different data. Many computational tasks fit to this execution
model very naturally (e.g. matrix multiplication, vector addition).
Many tasks, however, do not, and can only be realized with non-
trivial reductions. This difficulty is compounded when one starts
to write complex, multistage algorithms: combining subtasks into
a larger kernel is a challenging task, and there is little support for
modularity.

In contrast, SafeGPU emphasizes the development of GPU pro-
grams in terms of simple, compositional “building blocks”. For a
selection of common data structures (including collections, vectors,
and matrices), the library provides sets of built-in primitive opera-
tions. While individually these operations are simple and intuitive
to grasp (e.g. sum, max, project), they can also be combined and
chained together to generate complex GPU computations, without
the developer ever needing to think about the manipulation of ker-
nels. The aim is to allow for developers to focus entirely on func-
tionality, with the library itself responsible for generating kernels
and applying optimizations (e.g. combining them). This focus on
functionality extends to correctness, with SafeGPU supporting the

annotation of programs with contracts that can be monitored effi-
ciently at runtime.

Before we expand on these different aspects of the library,
consider the simple example in Listing 1, which illustrates how a
SafeGPU program can be constructed in practice.

matrix_transpose_vector_mult ( matrix : G_MATRIX [ DOUBLE ] ;
vector : G_VECTOR [ DOUBLE ] ) : G_MATRIX [ DOUBLE ]

require
matrix . rows = vector . count

do
Result := matrix . transpose . right_multiply ( vector )

ensure
Result . rows = matrix . columns
Result . columns = 1

end

Listing 1: Transposed matrix-vector multiplication example

The method takes as input a matrix and a vector, then returns
the result of transposing the matrix and multiplying the vector.
The computation is expressed in one line through the chaining of
two compact, primitive operations from the API for matrices—
transpose and right_multiply—from which the CUDA code is au-
tomatically generated and optimized. Furthermore, because the lat-
ter of the operations is only defined for inputs of certain sizes
(N × M matrix; M dimension vector), the method is annotated
with a precondition in the require clause, expressing that the size
of the input vector should be equal to the number of rows in the
matrix (rows, not columns, since it will be transposed). Similarly,
the postcondition in the ensure clause expresses the expected di-
mensions of the resulting matrix. Both of these properties can be
monitored at runtime, with the precondition checked upon entering
the method, and the postcondition checked upon exiting.

2.2 CUDA Integration
SafeGPU provides two conceptual levels of integration with CUDA:
a binding and a library level. The binding level provides a min-
imalistic API to run raw CUDA code within an Eiffel program,
similar to bindings like PyCUDA [12] and JCUDA [29], and is
intended for experienced users who need more fine-grained control
over the GPU. The library level is built on top of the binding, and
provides the data structures, primitive operations, contracts, and
kernel-generation facilities that form the focus of this paper.

Eiffel program SafeGPU

Programmer’s view

Cuda program

CUDA C++

SafeGPU externals

C++

nvcc

CUDA .ptx

Figure 1: SafeGPU runtime

The runtime integration of CUDA is shown in Figure 1. The
library actively makes use of Eiffel’s built-in mechanisms for inter-
facing with C++, allowing it to call the CUDA-specific functions it
needs for initialization, data transfers, and device synchronization.
These steps are handled automatically by SafeGPU for both the
binding and library levels, minimizing the amount of boilerplate
code. Given a source kernel, whether handwritten at the binding
level or generated from the library one, the nvcc compiler generates
a .ptx file containing a CUDA module that the library can use to
launch the kernel.



3. Design of the API
In the following, we describe in more detail the two levels of
SafeGPU’s API. First, we consider the binding, which allows ex-
pert users to run CUDA code from within Eiffel. Then we turn to
the high-level library, and in particular, its three basic classes for
collections, vectors, and matrices.

3.1 CUDA Binding
The binding API provides handles to access the GPU and raw
memory. Programming with this API requires effort comparable
to plain CUDA solutions and is therefore not a user-level API; its
main purpose is to provide functionality for the library API built on
top of it.

Table 1 provides details about the API’s classes. The two main
classes are CUDA_KERNEL and CUDA_DATA_HANDLE. The former encap-
sulates a CUDA kernel; the latter represents a contiguous sequence
of uniform objects, e.g. a single-dimensional array.

Table 1: Overview of the binding API

class description
CUDA_DATA_HANDLE Represents a handle to a device memory lo-

cation. Supports scalar, vector, and multi-
dimensional data. Can be created from (and
converted to) standard ARRAYs.

CUDA_INTEROP Encapsulates low-level device operations,
such as initialization, memory allocation, and
data transfer.

CUDA_KERNEL Represents a CUDA kernel, ready for ex-
ecution. Can contain an arbitrary number
of CUDA_DATA_HANDLE kernel inputs, one of
which is used as output. Can be launched with
configurable shared memory.

LAUNCH_PARAMS Encapsulates the grid setup and shared mem-
ory size required to launch a CUDA_KERNEL.

KERNEL_LOADER Is responsible for loading CUDA kernels into
the calling process. If necessary, performs a
kernel compilation. Can load kernels from a
file or from a string.

3.2 Collections
Collections are the most abstract container type provided by
SafeGPU; the majority of bulk operations—operating on an entire
collection—are defined here. Collections are array-based, i.e. they
have bounded capacity and count, and their items can be accessed
by index. Collections do not automatically resize, but new ones
with different sizes can be created using the methods of the class.

The key methods of the collection API are given in Table 2
and described in the following (in Eiffel, like Current denotes the
type of the current object). A SafeGPU collection can be created
using the method from_array, which creates its content from that
of an Eiffel array: as an array’s content is contiguous, a single
call to CUDA’s analogue of memcpy suffices. Individual elements
of the collection can then be accessed through the method item,
and the total number of elements is returned by count. The method
concatenate is used to join the elements of two containers and the
method subset resizes a given collection to a subset.

The core part of the API design consists of methods for trans-
forming, filtering, and querying collections. All these methods
make use of Eiffel’s functional capabilities in the form of agents,
which represent operations (similar to delegates in C# or anony-
mous classes in Java) that are applied in different ways to all the
elements of a collection. Agents can be one of three types: proce-
dures, which express transformations to be applied to elements (but
do not return results); functions, which return results for elements

Table 2: Collection API

from_array (array: ARRAY[T])
Creates an instance of a collection, containing items from the standard
Eiffel array provided as input.

item (i: INT): T
Access to a single element.

count: INT
Queries the number of elements in the collection.

concatenate (other: like Current): like Current
Creates a new container consisting of the elements in the current object
followed by those in other.

subset(start, finish: INT): like Current
Creates a subset of the collection that shares the same memory as the
original.

for_each (action: PROCEDURE[T]): like Current
Applies the provided procedure to every element of the collection.

project (transform: FUNCTION[T, U]) : COLLECTION[U]
Performs a projection operation on the collection: each element is
transformed according to the specified function.

filter (condition: PREDICATE[T]): like Current
Creates a new collection containing only items for which the specified
predicate holds.

for_all (condition: PREDICATE[T]): BOOLEAN
Checks whether the specified predicate holds for all items in the collec-
tion.

exists (condition: PREDICATE[T]): BOOLEAN
Checks whether the specified predicate holds for at least one item in the
collection.

new_cursor: ITERATION_CURSOR [T]
Implementation of ITERABLE[T]; called upon an iteration over the col-
lection.

update
Forces execution of all pending operations associated with the current
collection. The execution is optimized whenever possible.

(but unlike procedures, are side-effect free); or predicates, which
are Boolean expressions.

To construct a new collection from an existing one, the API
provides the transformation methods for_each and project. The
former applies a procedure agent to each element of the collection,
whereas the latter applies a function agent. For example, the call

c .for_each(agent (a: INT) do a := a * 2 end)

represents an application of for_each to an integer collection c, cus-
tomized with a procedure that doubles every element. In contrast,
the call

c .project(agent (a: INT): DOUBLE do Result := sqrt(a) end)

creates from an integer collection c a collection of doubles, with
each element the square root of the corresponding one in c.

To filter or query a collection, the API provides the methods
filter, for_all, and exists, which evaluate predicate agents with
respect to every element. An example of filtering is

c .filter(agent (a: INT) do Result := a < 5 end)

which creates a new collection from an integer collection c, con-
taining only the elements that are less than five. The method for_all

on the other hand does not create a new collection, but rather checks
whether the predicate holds for every element or not; the call

c .for_all(agent (i: T) do Result := pred(i) end)

returns True, for example, if some (unspecified) predicate pred

holds for every element of the collection c (and False otherwise).



The method exists is similar, returning True if the predicate holds
for at least one element in the collection (and False otherwise).

The queries for_all and exists are particularly useful in con-
tracts, and can be parallelized effectively for execution on the GPU.
We discuss this further in Section 4.

Collections are embedded into Eiffel’s container hierarchy by
implementing the ITERABLE interface, which allows the enumera-
tion of their elements in foreach-style loops (across in Eiffel ter-
minology). Enumerating is efficient: upon a call to new_cursor, the
collection’s content is copied back to main memory in a single ac-
tion.

Finally, the special method update forces execution of any pend-
ing kernel operations (described further in Section 5).

3.3 Vectors
Vectors are a natural specialization of collections. Besides the capa-
bilities of collections, they provide a range of numerical operations.

The API for vectors allows for computing the average value avg

and sum of the elements of arbitrary vectors, as well as computing
the minimal min and maximal max elements. Furthermore, is_sorted
will check whether the elements are sorted. These functions are
all implemented by multiple reductions on the device side; the
computation is optimal in the sense that computation via reduction
does not do more work than its sequential counterpart.

All numerical operations such as plus and minus (alongside in-
place variants), as well as multiplied_by and divided_by (alongside
component-wise variants) are defined as vector operations on the
GPU, e.g. a call to plus performs vector addition in a single action
on the device side. Note that aliases can be used for value-returning
operations, e.g. v * n instead of v .multiplied_by(n).

An important requirement in using and composing vector op-
erations is keeping the dimensions of the data synchronized. Fur-
thermore, certain arithmetic operations are undefined on certain el-
ements; divided_by, for example, requires that elements are non-
zero. Such issues are managed through contracts built-in to the API
that can be monitored at runtime, shielding developers from incon-
sistencies. We discuss this further in Section 4.

3.4 Matrices
The matrix API is strongly tied to the vector API: the class uses
vectors to represent rows and columns. On the device side, a matrix
is stored as a single-dimensional array with row-wise alignment.
Thus, a vector handle for a row can be created by adjusting the
corresponding indices. The column access pattern is more compli-
cated, and is implemented by performing a copy of corresponding
elements into new storage.

In the API, the queries rows and columns return the dimensions
of the matrix, whereas item, row, and column return the parts of
the matrix specified. Single-column or single-row matrices can
be converted to vectors by making appropriate calls to the row or
column methods.

Similar to vectors, the API provides both conventional and in-
place methods for addition and subtraction. Beyond these primitive
arithmetic operations, the API provides built-in support for matrix-
matrix multiplication (method multiply) since it is a frequently oc-
curring operation in GPGPU. The implementation optimizes per-
formance through use of the shared device memory.

The API also supports scalar multiplication (multiplied_by),
left and right matrix-vector multiplication (left_multiply and
right_multiply), component-wise matrix multiplication and divi-
sion (compwise_multiply and compwise_divide), matrix transposition
(transpose), and submatrix creation.

Similar to the other API classes, matrix methods are equipped
with contracts in order to shield the programmer from common
errors, e.g. mismatching dimensions in matrix multiplication.

4. Design-by-Contract Integration
To support the development of safe and functionally correct code,
SafeGPU integrates the design-by-contract [18] methodology na-
tive to the Eiffel language, i.e. the annotation of methods with ex-
ecutable pre- and postconditions, expressing precisely the proper-
ties that should hold upon entry and exit. These can be monitored
at runtime to help ensure the correctness of programs. In the con-
text of GPU programs, in which very large amounts of data might
be processed, “classical” (i.e. sequential) contracts take so long to
evaluate that they need to be disabled outside of debugging. With
SafeGPU, however, contracts can be expressed using the primitive
operations of the library itself, and thus can be executed on the
GPU—where the data is sitting—without diminishing the perfor-
mance of the program (see our benchmarks in Section 6.3).

Contracts are utilized by SafeGPU programs in two ways. First,
they are built-in to the library API; several of its methods are
equipped with pre- and postconditions, providing correctness prop-
erties that can be monitored at runtime “for free” (i.e. without re-
quiring additional user annotations). Second, when composing the
methods of the API to generate more complex, compound com-
putations, users can define and thus monitor their own contracts
expressing the intended effects of the overall computation.

The API’s built-in contracts are easily motivated by vector and
matrix mathematics, for which several operations are undefined
on input with inconsistent dimensions or input containing zeroes.
Consider for example Listing 2, which contains the signature and
contracts of the library method for component-wise vector division.
Calling v1.compwise_divide(v2) on vectors v1 and v2 of equal size
results in a new vector, constructed from v1 by dividing its elements
by the corresponding elements in v2. The preconditions in the
require clause assert that the vectors are of equal size (via count,
from the collection API) and that all elements of the second vector
are non-zero (via for_all, customized with a predicate agent). The
postcondition in the ensure clause characterizes the effect of the
method by asserting the expected relationship between the resulting
vector and the input (retrieved using the old keyword).

compwise_divide ( other : VECTOR [ T ] ) : VECTOR [ T ]
require

other . count = count
other . for_all (

agent ( el : T ) do Result := el /= {T } . zero end )
ensure

Current = old Current
Result * other = Current

end

Listing 2: Contracts for component-wise vector division

SafeGPU provides a straightforward way to monitor user-
defined contracts on the GPU: simply express them in the require

and ensure clauses of methods, using the primitive operations of the
library (this is analogous to classical design-by-contract, in which
methods are used in both specifications and implementations). Con-
sider for example the implementation and contracts of quicksort in
Listing 3. The implementation utilizes two methods provided by
the collection API: concatenate, to efficiently concatenate two vec-
tors; and filter, to find items less than, greater than, or equal to
the pivot. The three calls to filter are customized with predicate
agents expressing these relations. Since inline agents cannot ac-
cess local variables in Eiffel, the pivot is passed as an argument.
This is denoted by (?, pivot) at the end of each agent expression;
here, the ? corresponds to item, and expresses that it should be
instantiated with successive elements of the collection; pivot cor-
responds to a_pivot, and expresses that the latter should always
take the value of the former. At runtime, the built-in contracts of



quicksort ( a : G_VECTOR [ REAL_32 ] ) : G_VECTOR [ REAL_32 ]
require

a . count > 0
local

pivot : DOUBLE
left , mid , right : G_VECTOR [ REAL_32 ]

do
if ( a . count = 1) then

Result := a
else

pivot := a [ a . count / / 2 ]

left := a . filter ( agent ( item : REAL_32 ; a_pivot : REAL_32 ) : BOOLEAN do Result := item < a_pivot end ( ? , pivot ) )
right := a . filter ( agent ( item : REAL_32 ; a_pivot : REAL_32 ) : BOOLEAN do Result := item > a_pivot end ( ? , pivot ) )
mid := a . filter ( agent ( item : REAL_32 ; a_pivot : REAL_32 ) : BOOLEAN do Result := item = a_pivot end ( ? , pivot ) )

Result := quicksort ( left ) . concatenate ( mid ) . concatenate ( quicksort ( right ) )
end

ensure
Result . is_sorted
Result . count = a . count

end

Listing 3: SafeGPU implementation of quicksort

these two library methods can be monitored, but they only express
correctness conditions localized to their use, and nothing about
their compound effects. The overall postcondition of the computa-
tion can be expressed as a user-defined postcondition of quicksort,
here asserting—using the is_sorted and count methods of the vec-
tor API—that the resulting vector is sorted and of the same size.
This can be monitored at runtime to increase confidence that the
user-defined computation is correct.

Built-in and user-defined contracts for GPU collections are typi-
cally classified as one of two types. Scalar contracts are those using
methods with evaluation times independent of the collection size. A
common example is count, which records the number of elements
a collection contains. Range contracts are those using methods that
operate on the elements of a collection with evaluation times that
grow with the collection size. These include library methods such
as sum, min, max, and is_sorted; the CUDA programs generated for
such operations usually perform multiple reductions on the GPU.
Other common range contracts are those built from for_all and
exists, equipped with predicate agents, expressing properties that
should hold for every (resp. at least one) element of a collection.
These are easily parallelized for execution on the GPU, and unlike
their sequential counterparts, can be monitored at runtime for very
large volumes of data without diminishing the overall performance
of the program (see Section 6.3).

5. Kernel Generation and Optimization
In this section we describe how SafeGPU translates individual
methods of the API to CUDA kernels, how data is managed, and
how the library optimizes kernels for compound computations.

Generating CUDA kernels for calls of individual library meth-
ods is straightforward. Each method is associated with a kernel
template, which the library instantiates with respect to the partic-
ular collection and parameters of the method call. The SafeGPU
runtime (as described in Section 2.2) then handles its execution on
the GPU via Eiffel’s mechanisms for interfacing with C++.

Transferring data to and from the GPU is expensive, so the li-
brary attempts to minimize the number of occurrences. The only
time that data is transferred to the GPU is upon calling the method
from_array, which creates a GPU collection from a standard Eiffel
array. Once the data is on the GPU, it remains there for arbitrar-
ily many kernels to manipulate and query (including those corre-
sponding to contracts). Operations that create new collections from

existing ones (e.g. filter, project) do so without transferring data
away from the GPU; this occurs only for methods that specifically
query them.

While the primitive operations alone already support many use-
ful computations (e.g. matrix multiplication, vector addition), the
heart of SafeGPU is in its support for combining and chaining such
operations to implement multistage algorithms on the GPU. The
main challenge for a library aiming to provide this support is to
do so without performance becoming incommensurate with that of
manually written CUDA kernels. A naive solution, for example,
might have been to generate one kernel per method call and launch
them one after the other. With SafeGPU however, we adopt a de-
ferred execution model, analyze pending kernels, and attempt to
generate more efficient CUDA code by combining them.

By default, a method call is not executed, but rather added to
a list of pending actions for the corresponding collection. There
are three ways to trigger its execution: (1) perform a function call
that returns a scalar value, e.g. sum; (2) perform a call to to_array

which creates a standard Eiffel array from the GPU collection; or
(3) perform a call of the special method update, which forces the
execution of any pending kernels.

Consider for example the problem of computing the dot prod-
uct (or inner product) of two vectors, which can be solved by com-
bining vector multiplication and vector summation as in Listing 4.
Here, the result is obtained by chaining the a .compwise_multiply (b)
method—which produces an anonymous intermediate result—with
vector.sum. In this example, the computation is deferred until the
call of sum, which returns the sum of the elements in the vector.

dot_product ( a , b : G_VECTOR [ DOUBLE ] ) : DOUBLE
require

a . count = b . count
do

Result := a . compwise_multiply ( b ) . sum
-- component - wise vector multiplication , followed by

sum of its elements
end

Listing 4: Combining primitives to compute the dot product

The benefit of deferring execution until necessary is that the
kernel code can be optimized. Instead of generating kernels for
every method call, SafeGPU uses some simple strategies to merge
deferred calls and thus handle the combined computation in fewer



kernels. Before generating kernels, the optimizer constructs an
execution plan from the pending operations. The plan takes the
form of a DAG, representing data and kernels as two different types
of nodes, and representing dependencies as edges between them.
The optimizer then traverses the DAG, merging kernel vertices
and collapsing intermediate dependencies where possible. Upon
termination, the kernel generation takes place on the basis of the
optimized DAG. We illustrate a typical optimization in Figure 2,
which shows the execution plans for the dot product method of
Listing 4.

cmult

X

Y

XY sum X ·Y

(a) Before optimization
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sum

X

Y

X ·Y

(b) After optimization

Figure 2: Execution plans for the dot product method

The plan in Figure 2a is the original one extracted from the
pending operations; this would generate two separate kernels for
multiplication and summation (cmult and sum) and launch them
sequentially. The plan in Figure 2b, however, is the result of an
optimization; here, the deferred cmult kernel is combined with
sum. The combined kernel generated by this optimized execution
plan would perform component-wise vector multiplication first,
followed by summation, with the two stages separated using bar-
rier synchronization. This simple optimization pattern extends to
several other similar cases in SafeGPU.

The optimizer is particularly well-tuned for computations in-
volving vector mathematics. In some cases, barriers are not needed
at all; the optimizer simply modifies the main expression in the
kernel body, leading to more efficient code. For example, to com-
pute aX + Y where a is a scalar value and X , Y are vectors, the
optimizer just slightly adjusts the vector addition kernel, replacing
X[i] + Y[i] with a*X[i] + Y[i]. Such optimizations also change the
number of kernel arguments, as shown in Figure 3.
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Figure 3: Execution plans for vector mathematics

Listing 5 shows the usefulness of the optimizer as part of an
extended example (Gaussian elimination to find the determinant of
a matrix). Here, in the inner loop of the Gaussian elimination, the
operations

matrix.row(i) .divided_by (pivot)
matrix.row(i) .in_place_minus(matrix.row (step))

are combined by the optimizer to generate (A[i] / pivot) − A[step]
in the kernel.

gauss_determinant ( matrix : G_MATRIX [ DOUBLE ] ) : DOUBLE
require

matrix . rows = matrix . columns
local

step , i : INTEGER
pivot : DOUBLE

do
Result := 1
from

step := 0
until

step = matrix . rows
loop

pivot := matrix ( step , step )
Result := Result * pivot

if not double_approx_equals ( pivot , 0 . 0 ) then
matrix . row ( step ) . divided_by ( pivot )

else
step := matrix . rows

end
from

i := step + 1
until

i = matrix . rows
loop

pivot := matrix ( i , step )
if not double_approx_equals ( pivot , 0 . 0 ) then

matrix . row ( i ) . divided_by ( pivot )
matrix . row ( i ) . in_place_minus ( matrix . row ( step ) )

end
i := i + 1

end

step := step + 1
end

end

Listing 5: SafeGPU implementation of Gaussian elimination

6. Evaluation
To evaluate SafeGPU, we designed a set of benchmark GPU pro-
grams encompassing problems that fit naturally to the execution
model (e.g. vector addition, matrix multiplication), as well as more
general-purpose ones constructed by chaining the primitive opera-
tions of the library (e.g. Gaussian elimination, quicksort). Across
these benchmarks we made three different comparisons:

1. the performance of the high-level API against corresponding
CUDA and Eiffel implementations;

2. the conciseness of functionally equivalent programs in SafeGPU
and sequential Eiffel;

3. the performance overhead of runtime contract checking, com-
pared with checking traditional sequential contracts.

The six benchmark programs we considered were vector ad-
dition, dot product, matrix multiplication, Gaussian elimination,
quicksort, and matrix transposition. Each benchmark was imple-
mented using SafeGPU (with contracts for the GPU, wherever pos-
sible) and traditional Eiffel (with sequential contracts, wherever
possible). We did not implement but rather relied on a selection
of sources for the plain CUDA implementations: vector addition
and matrix multiplication were taken from the NVIDIA SDK, with
dot product and quicksort adapted from code in the same source;
Gaussian elimination came from a parallel computing research
project [15]; and finally, matrix transposition came from a post [9]
on NVIDIA’s Parallel Forall blog.

All experiments were performed on the following hardware:
Intel Core i7 8 cores, 2.7 GHz; NVIDIA QUADRO K2000M (2
GB memory, compute capability 3.0). In our measurements we are



reporting wall time. Furthermore, we measure only the relevant part
of the computation, omitting the time it takes to generate the input.

The SafeGPU implementations of quicksort and Gaussian elim-
ination are provided in this paper (Listings 3 and 5 respectively).
Our source code and the other benchmarks are available online1.

6.1 Performance
The main goal of our first experiment was to compare the perfor-
mance of SafeGPU programs against plain CUDA implementations
with the same functionality, in order to assess what the higher level
of abstraction translates to in terms of performance overhead. We
also recorded the performance of functionally equivalent programs
in sequential Eiffel, to determine the sizes of inputs for which the
GPU approaches start to outperform it. We remark that for this ex-
periment, contract checking was completely disabled.

The results of our comparison are shown in Figure 4. The
problem size (x-axis) is defined for both vectors and matrices as
the total number of elements they contain (our benchmarks use only
square matrices, hence the number of rows or columns is always the
square root). The times (y-axis) are shown in seconds, and are the
medians of ten runs.

While sequential Eiffel is faster than SafeGPU and plain CUDA
on relatively small inputs (as expected, because of the overhead
from launching the GPU), it is outperformed by both when the size
of the data becomes large. This happens particularly quickly for the
non-linear algorithm (e) in comparison to the others.

The results provide support for our argument that using our
library does not lead to performance incommensurate with that
of handwritten CUDA code: its performance is very close to that
of plain CUDA across most of the benchmarks. The Gaussian
elimination benchmark (d) is an exception for larger inputs. This
is due to the need for the SafeGPU implementation to use loops,
which have the effect of additional kernel launches in comparison
to the handwritten CUDA code. In other benchmarks, SafeGPU
sometimes slightly outperforms plain CUDA, which could be due
to differences between the memory managers of Eiffel and C++.

6.2 Code Size
The second part of our evaluation considers code size, and in
particular, lines of code (LOC). We only compare the SafeGPU
and sequential Eiffel programs in this part, and not the plain CUDA
code. This is because it is not a particularly interesting comparison
to make: it is known that higher-level languages are usually more
compact than those at the C/C++ level of abstraction [19], and
CUDA programs in particular are dominated by explicit memory
management that is not visible in SafeGPU or Eiffel.

Our results are presented in Table 3. The programs written using
our library are quite concise (as expected for a high-level API), but
more surprisingly, are more compact than the traditional sequential
Eiffel programs. This is explained by the usage of looping con-
structs. In sequential Eiffel, loops are frequently used to implement
the benchmarks. With SafeGPU however, loops are often avoided
due to the presence of bulk operations in the API, i.e. operations
that apply agents to all the data present in a collection. We should
note that this is not always the case, as loops were required to im-
plement the library version of the Gaussian elimination benchmark.

6.3 Contract Overhead
The goal of our final experiment was to measure the cost of check-
ing SafeGPU contracts on the GPU against the cost of checking tra-
ditional sequential Eiffel ones. To allow a more fine-grained com-
parison, we measured the contract checking overhead in three dif-

1 See: https://bitbucket.org/alexey_se/eiffel2cuda

Table 3: LOC comparison

problem Eiffel SafeGPU ratio
Vector Addition 15 6 2.5
Dot Product 17 7 2.4
Matrix-Matrix Multiplication 31 9 3.4
Gaussian Elimination 97 34 2.9
Quicksort 110 64 1.7
Matrix Transpose 26 8 3.3

ferent modes: (1) preconditions only; (2) pre- and postconditions
only; and finally, (3) full contract checking, i.e. additionally check-
ing class invariants at method entry and exit points. Our bench-
marks were annotated only with pre- and postconditions; invariants,
however, are present in the core Eiffel libraries that were required
to implement the sequential programs (these libraries also include
some additional pre- and postconditions, making a full like-for-like
comparison with SafeGPU challenging). Across the benchmarks
and for increasingly large sizes of input, we computed ratios ex-
pressing the performance overhead resulting from enabling each of
these three modes against no contract checking at all. The ratios are
based on medians of ten runs (an effect of this is that some ratios
can be less than 1).

Our data is presented in Table 4, where a ratio X can be inter-
preted as meaning that the program was X times slower with the
given contract checking mode enabled. The comparison was not
made for some benchmarks with the largest inputs (indicated by
dashes), as it took far too long for the sequential Eiffel programs to
terminate. We remark that vector addition, dot product, and matrix-
matrix multiplication have only scalar contracts; Gaussian elimi-
nation, quicksort, and matrix transposition have a combination of
both scalar and range contracts (see Section 4).

There is an encouraging difference in contract-checking over-
head between sequential Eiffel and SafeGPU: while the former
cannot maintain reasonable contract performance on larger inputs
(the average slowdown for “full” across benchmarks with input size
106, for example, is 7.19), SafeGPU has for the most part little-to-
no overhead. Disabling invariant-checking leads to improvements
for sequential Eiffel (which, unlike SafeGPU, relies on invariant-
equipped library classes), but the average slowdown is still signifi-
cant (now 4.03, for input size 106). Across these benchmarks, post-
condition checking adds little overhead to sequential Eiffel above
checking preconditions only (which has an average slowdown of
3.98 for input size 106). SafeGPU performs consistently in all
modes of the experiment, with slowdown close to 1 across the first
three benchmarks. The other three benchmarks perform similarly
for precondition checking, but as they include more elaborate post-
conditions (e.g. “the vector is sorted”), checking both pre- and post-
conditions can lead to a small slowdown on large data (1.14 in the
worst case for this experiment). Overall, the results lend support
to our claim that SafeGPU contracts can be monitored at runtime
without diminishing the performance of the program, even with
very large amounts of data. Unlike sequential Eiffel programs, con-
tract checking need not be limited to periods of debugging.

7. Related Work
There is a vast and varied literature on general-purpose comput-
ing with GPUs. We review a selection of it, focusing on work that
particularly relates to the overarching themes of SafeGPU: the gen-
eration of low-level GPU kernels from higher-level programming
abstractions, and the correctness of the kernels to be executed.
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Figure 4: SafeGPU performance evaluation

Table 4: Contract checking overhead comparison

problem 103 104 105 106 107 108

Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU

Vector Addition
pre 1.00 0.92 1.42 0.96 3.50 0.96 3.92 0.95 3.98 1.02 4.12 1.06
pre & post 1.00 0.92 1.42 0.96 3.66 0.96 3.93 0.95 3.98 1.02 4.29 1.06
full 1.00 0.92 2.86 0.96 7.00 0.96 7.81 0.95 7.82 1.02 7.97 1.06

Dot Product
pre 1.00 1.02 1.25 0.99 4.00 0.97 3.95 1.01 4.00 1.10 4.01 0.95
pre & post 1.00 1.02 1.25 0.99 4.00 0.97 3.95 1.01 4.15 1.10 4.10 0.98
full 1.00 1.02 1.88 0.99 7.25 0.97 7.33 1.01 7.46 1.10 7.48 0.98

Matrix-Matrix Multiplication
pre 4.00 1.05 4.47 1.01 4.55 0.99 4.54 0.99 - -
pre & post 4.00 1.05 4.47 1.01 4.59 0.99 4.57 0.99 - -
full 5.00 1.05 6.73 1.01 6.79 1.01 6.76 0.99 - -

Gaussian Elimination
pre 2.22 0.99 4.50 0.97 4.70 1.01 4.71 1.01 - -
pre & post 2.77 0.99 4.50 0.97 4.70 1.04 4.73 1.09 - -
full 4.44 0.99 6.67 0.97 6.96 1.04 6.96 1.09 - -

Quicksort
pre 2.14 1.02 2.26 1.05 2.64 1.00 3.03 1.01 3.03 1.02 -
pre & post 2.28 1.02 2.27 1.05 2.70 1.02 3.02 1.07 3.04 1.08 -
full 3.64 1.02 4.14 1.05 5.07 1.02 6.38 1.07 6.49 1.09 -

Matrix Transposition
pre 2.00 1.05 2.06 1.01 2.40 1.02 3.71 1.01 3.86 1.02 4.02 1.01
pre & post 2.00 1.05 2.06 1.01 2.40 1.03 3.96 1.11 4.05 1.12 4.27 1.14
full 4.15 1.03 5.60 1.01 6.10 1.03 7.88 1.10 8.12 1.12 10.44 1.13

7.1 GPU Programming and Code Generation
At the C++ level of abstraction, there are a number of algorithmic
skeleton and template frameworks that attempt to hide the orches-
tration and synchronization of parallel computation. Rather than
code it directly, programmers express the computation in terms
of some well-known patterns (e.g. map, scan, reduce) that cap-
ture the parallel activities implicitly. SkePU [6], Muesli [7], and
SkelCL [25] were the first algorithmic skeleton frameworks to tar-
get the deployment of fine-grained data-parallel skeletons to GPUs.
While they do not support skeleton nesting for GPUs, they do
provide the programmer with parallel container types (e.g. vec-
tors, matrices) that simplify memory management by handling
data transfers automatically. Arbitrary skeleton nesting is pro-
vided in FastFlow [8] (resp. Marrow [17]) for pipeline and farm

(resp. pipeline, stream, loop), but concurrency and synchronization
issues are exposed to the programmer. NVIDIA’s C++ template li-
brary Thrust [21], in contrast, provides a collection of data-parallel
primitives (e.g. scan, sort, reduce) that can be composed to imple-
ment complex algorithms on the GPU. While similar in spirit to
SafeGPU, Thrust lacks a number of its abstractions and container
types; data can only be modeled by vectors, for example.

Higher-level programming languages benefit from a number of
CUDA and OpenCL bindings (e.g. Java [29], Python [12]), making
it possible for their runtimes to interact. These bindings typically
stay as close to the original models as possible. While this allows
for the full flexibility and control of CUDA and OpenCL to be in-
tegrated, several of the existing challenges are also inherited, along
with the addition of some new ones; Java programmers, for exam-



ple, must manually translate complex object graphs into primitive
arrays for use in kernels. Rootbeer [24], implemented on top of
CUDA, attempts to alleviate such difficulties by automatically se-
rializing objects and generating kernels from Java code. Program-
mers, however, must still essentially work in terms of threads—
expressed as special kernel classes—and are responsible for instan-
tiating and passing them on to the Rootbeer system for execution
on the GPU.

There are several dedicated languages and compilers for GPU
programming. Lime [5] is a Java-compatible language equipped
with high-level programming constructs for task, data, and pipeline
parallelism. The language allows programmers to code in a style
that separates computation and communication, and does not force
them to explicitly partition the parts of the program for the CPU
and the parts for the GPU. CLOP [16] is an embedding of OpenCL
in the D language, which uses the standard facilities of D to gen-
erate kernels at compile-time. Programmers can use D variables
directly in embedded code, and special constructs for specifying
global synchronization patterns. The CLOP compiler then gener-
ates the appropriate boilerplate code for handling data transfers,
and uses the patterns to produce efficient kernels for parallel com-
putations. Other languages are more domain-specific than Lime and
CLOP. StreamIt [27], for example, provides high-level abstractions
for stream processing, and can be compiled to CUDA code via
streaming-specific optimizations [10]. A more recent example is
VOBLA [1], a domain-specific language (DSL) for programming
linear algebra libraries, restricting what the programmer can write,
but generating highly optimized OpenCL code for the domain it
supports. Finally, Delite [26] is a compiler framework for develop-
ing embedded DSLs themselves, providing common components
(e.g. parallel patterns, optimizations, code generators) that can be
re-used across DSL implementations, and support for compiling
these DSLs to both CUDA and OpenCL.

A key distinction of SafeGPU is the fact that GPGPU is offered
to the programmer without forcing them to switch to a dedicated
language in the first place: both the high-level API and the CUDA
binding are made available through a library, and without need for a
special-purpose compiler. Firepile [23] is a related library-oriented
approach for Scala, in which OpenCL kernels are generated using
code trees constructed from function values at runtime. Firepile
supports objects, higher-order functions, and virtual methods in
kernel functions, but does not support programming at the same
level of abstraction as SafeGPU: barriers and the GPU grid, for
example, are exposed to developers.

7.2 Correctness of GPU Kernels
To our knowledge, SafeGPU is the first GPU programming ap-
proach to integrate the specification and runtime monitoring of
functional properties directly at the level of an API. Other work ad-
dressing the correctness of GPU programs has tended to focus on
analyzing and verifying kernels themselves, usually with respect to
concurrency faults (e.g. data races, barrier divergence).

PUG [13] and GPUVerify [2] are examples of static analysis
tools for GPU kernels. The former logically encodes program exe-
cutions and uses an SMT solver to verify the absence of faults such
as data races, incorrectly synchronized barriers, and assertion vio-
lations. The latter tool verifies race- and divergence-freedom using
a technique, encoded in Boogie, based on tracking reads and writes
in shadow memory.

Blom et al. [3] present a logic for verifying both data race free-
dom and functional correctness of GPU kernels in OpenCL. The
logic is inspired by permission-based separation logic: kernel code
is annotated with assertions expressing both their intended func-
tionality, as well as the resources they require (e.g. write permis-
sions for particular locations).

Other tools seek to show the presence of data races, rather
than verify their absence. GKLEE [14] and KLEE-CL [4] are two
examples, based on dynamic symbolic execution.

8. Conclusion
We presented SafeGPU: a contract-based, modular, and efficient
library for GPGPU, accessible for non-experts in GPU program-
ming. The techniques of deferred execution and execution plan op-
timization helped to keep the library performance on par with raw
CUDA solutions. Unlike CUDA programs, SafeGPU programs are
concise and equipped with contracts, thereby contributing to pro-
gram safety. We also found that GPU-based contracts can largely
avoid the overhead of assertion checking. In contrast to classical,
sequential contracts, it is feasible to monitor them outside of peri-
ods of debugging: data size is not an issue anymore.

This work can be extended in a variety of directions. First,
in the current implementation, the optimizer is tailored to linear
algebra and reduction/scan problems. Global optimizations could
be introduced, such as changing the order of operations. Second,
as shown in Section 6, GPU computing is not yet fast enough on
“small” data sets. This could be resolved by introducing a hybrid
computing model, in which copies of data are maintained on both
the CPU and GPU. This could allow for switching between CPU
and GPU executions depending on the runtime context. Finally,
to provide better support for task parallelism, SafeGPU could be
integrated with Eiffel’s concurrency model [28].
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