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Abstract. Distributed software development raises new software engi-
neering challenges resulting from the difficulty of making several teams
cooperate across different countries, time zones and cultures. These ob-
stacles can lead to critical delays or even failures. One of the most effec-
tive techniques for overcoming them is to improve the quality of software
specifications. Our experience with a distributed software project in an
educational environment suggests that Design by Contract techniques
provide a promising solution.
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1 Specifications in Distributed Software Development

Whether outsourced [24] or not, todays software projects are ever more often
distributed : developed by two or more teams working in different locations. Dis-
tributed software development poses new software engineering challenges; pre-
vious work has, for example, analyzed how to adapt the old idea of ”code re-
views” to this new setup [25]. Here we consider another difficulty of distributed
software development: how to mitigate the risk of misunderstanding software
specifications.

The case of particular interest is the sharing of specifications between a
”client” team which needs a certain functionality and a ”supplier” team which
implements that functionality. We will present the use of Design by Contract
techniques [23, 27] to express the specifications in a precise yet understandable
way, acceptable to both client and supplier teams.

Section 2 describes the source of the experiments described here: distributed
software projects involving teams from different universities. Section 3 presents
some of the typical problems encountered in the absence of a systematic approach
to specification. Section 4 solves these problems using contracts. Section 5 de-
scribes how our approach has been applied to distributed projects. Finally, we
present the results, related work, and the lessons learnt during the project.



2 Context of this Study

While some of the authors have applied the techniques described here in com-
mercial distributed developments, the experience underlying this article is based
on an academic effort rather than an industrial project.

For several years the Chair of Software Engineering at ETH Zurich has taught
a course entitled ”Distributed and Outsourced Software Engineering” or DOSE 1,
which since 2007 has included a course project pursued in cooperation with
other universities, most recently Politecnico di Milano (Italy), Odessa National
Polytechnic (Ukraine), the State University of Nizhny Novgorod (Russia), and
University of Debrecen (Hungary). While each university retains its own course
and organization, the project is shared: each project group includes teams from
different universities. Specifically, each group in the current setup is made of three
teams, each including two students from a given university. (This terminology is
needed to understand the rest of the discussion: a group does the full project and
is made of teams, each doing a part of the project; a team is made of students
from one university, but a group involves teams from different universities.) All
software is developed in Eiffel using the EiffelStudio Integrated Development
Environment.

As a result of this project scheme, the students get to experience the chal-
lenges of true distributed development; they face the same difficulties as in a
distributed project in industry, compounded by the specific constraints of a uni-
versity environment. As an example of where an ”academic” setup can in fact
be tougher than an industrial one, the option of delaying the final delivery (an
event that, although undesirable, often happens in industry) is not available:
come rain or shine, the university administration requires instructors to give the
students a grade at the end of the semester, a milestone that cannot be moved.

The course allows students to experience first-hand the tasks and challenges
of modern software development, and learn critical skills; they consistently report
that it is a richly rewarding experience. It also provides us with an opportunity
to study issues of distributed development in a controlled environment.

One of these issues is the difficulty of communicating requirements. The diffi-
culty is well known to anyone who has practiced industrial software development;
it is also intuitively clear that project distribution increases it. Our experience
provides concrete evidence of this phenomenon, as will now be described.

3 Specification-related Errors in Distributed Development

An example from the 2007 session of the DOSE course [1] illustrates the speci-
fication risks of distributed development.

The project topic was the development of a system to analyze email postings
of computer science events, in mailing lists such as the ECOOP list and SE
1 Until 2006 the course was called ”Software Engineering for Outsourced and Offshore

Development”.



World, to feed the Computer Science Event List (CSEL) [8], a Web page of
Informatics Europe (http://events.informatics-europe.org). The automatic part
of the system must identify key elements of a conference announcement, such as
event name, event date and call for papers deadline, to prepare a CSEL entry.
Since the identification cannot be perfect, the system includes a human editing
step to correct any mistakes.

Figure 1 shows the Software Requirements Specification (SRS) as given to
the students.

The teaching team divided the system into three clusters (subsystems):

– A - ANALYZE: automatically extract the essential information.
– B - BEFIT: user interface for interactive correction.
– C - COMBINE: : integration of components A, B and the CSEL website.

Correspondingly, each project group was divided into three teams, each from
a given university, for example two teams performing task A and B in Zurich,
and a team C in Odessa.

While undoubtedly not perfect, the requirements document of Figure 1 was
written carefully and would appear to be clear enough. When given to teams
working in different locations, however, it led to misunderstandings that the
specification literature has analyzed [22]. In particular, the following problems
arose. (We use the phrase ”Team A” to mean ”The team in charge of implement-
ing cluster A in one of the groups,” and similarly for other clusters. Different
examples may involve different groups.)

Case 1. Team A implemented the abstract deadline using the date format
day.month.year where day, month, and year are integers. Team B used a different
format, with integers for the day and year but a string (such as ”January” or
”February”) for the month. This misunderstanding, affecting the type of an
attribute, caused a delay in the integration. It can be traced to a lack of precision
of the specification (the SRS).

Case 2. Team C realized that the abstract submission deadline must always
be earlier than the paper submission deadline. Thus, they checked this property
before submitting the conference information to CSEL. If this property did not
hold, an exception was triggered. Team B, in devising the user interface, did
not check for this property and accepted any combination of dates. As a result,
some combinations crashed the system. A similar problem happened to another
group with the starting and the ending conference dates. The problem here is the
specifications failure to state a requirement which appears necessary to someone
trying to understand the system semantics.

Case 3. Team A understood that the category of a conference is ”Confer-
ence” or ”Symposium” or ”Workshop” or ”Summer School”, where or is the
usual, non-exclusive boolean disjunction. Team B interpreted it as an exclusive
or. As a result, some test cases passed the checks performed in cluster A but not
those of B, again triggering run-time exceptions and failure. The problem here
is the lack of precision of natural language.

Case 4. The teams used a class called EVENT to model the notion of con-
ference, but had slightly different interpretations of the semantics of this class.



A. Scope
The system shall identify the elements of a call for paper posted in mailing lists, and
feed them to the CSEL system by sending e-mails in the special format.

B. Definitions, Acronyms and Abbreviations
CSEL: Computer Science Event, http://www.informatics-europe.org/cgi-
bin/informatics events.cgi
Conference Name: Name of the event.
Conference Dates: Starting and ending dates of the event.
Abstract Deadline: The date for the abstract submission.
Submission Deadline: The date for the paper submission.
Conference Category: Kind of the event (symposium, conference, workshop, etc).

C. Product functions
The system shall

C.1. Provide functionalities to extract the information of a conference from an e-mail
(a text e-mail, no html);

C.2. Report the extracted information in a graphical user interface (GUI);
C.3. Allow modifying this information;
C.4. Submit the information to the CSEL system by sending e-mails.

D. Specific requirements
D.1. The system shall be able to extract the elements of a call for paper from text

e-mails. The elements of a call for paper are the following: (1) Conference name, (2)
Conference dates, (3) Abstract deadline, (4) Submission deadline, (5) Place where the
conference takes place, (6) URL of the conference, (7) Conference sponsor, (8) Contact
information, (9) Keywords of the conference, and (10) Conference category.

D.2. The conference category is either ”Conference” or ”Symposium” or ”Workshop”
or ”Summer School”.

D.3. The system shall visualize conference information, and allow modifying it. The
system shall feed the approved information by sending e-mail to CSEL as a comma
separated list.

D.4. All the elements from D.1 must be in the e-mail. If any of this information could
not be extracted, the system shall add the keyword NONE in corresponding element.

D.5. The system can send the e-mail only if at least all key elements have been
extracted or introduced by the user. The key elements are: (1) conference name, (2)
conference dates, (3) abstract deadline, (4) submission deadline, (5) place where the
conference takes place, and (6) URL of the conference.

Fig. 1. Example Software Requirements Specification.

In the view of Team C, class EVENT only models conferences that satisfy basic
validity constraints, such as the Call for Papers deadline appearing before the
notification date. Teams A and B assumed that the class models any conference,
even one with invalid information; they checked the validity of the information
before submitting it to CSEL. These conflicting conventions were discovered late
in the project and delayed integration. The problem in this case is not in the



original requirements specification but in the lack of precision of module interface
specifications produced during the design phase.

In this 2007 session of the DOSE course, no project succeeded in producing a
system that could be actually deployed, although at least one came tantalizingly
close; it was probably a week or two away from success but, as noted, there is
no possibility of extension in a university course context. In our analysis the
main reason for this result is the accumulation of specification issues such as the
above, each small in itself but leading to mistakes and delays. That so many such
issues could arise in a small system with a fairly straightforward specification
gives an idea of the trouble insufficient specification techniques can cause in large
industrial software developments.

4 Using Contracts to avoid Specification Errors

Avoiding the kind of problems illustrated above involves technical and non-
technical measures. As an example of the latter, it is always desirable to check
the requirements for satisfaction of the properties listed in the IEEE Standard
on Requirements specification [15], such as absence of ambiguity. Such goals are,
however, quite general, and the standard does not specify how to achieve them
and assess the results.

Using a formal specification technique would remove ambiguity and help
achieve some of the other quality goals. A fully formal approach is, however,
beyond the reach of most teams.

Design by Contract techniques retain some of the benefits of formal methods
but are far easier to teach to developers who are competent software engineers
(or, in our case, software engineering or computer science students) but have not
necessarily received special formal methods training.

The basic idea of Design by Contract [23, 27] is to attach partial but rig-
orous specifications to software elements: preconditions and postconditions for
routines, and (in an object-oriented) invariants for classes. Design by Contract
has applications to software construction, documentation, testing (in particular
with the recent development of automatic testing tools such as AutoTest [26, 5]),
proper use of programming mechanisms such as inheritance and exception han-
dling, and management. The application of most interest here is to the specifi-
cation of module interfaces.

Specifications using Design by Contract use a subset of the programming
language (typically Eiffel, but others have been proposed, such as Spec# [3] and
JML [18, 19]); assertions (contract) elements are boolean expressions, with some
extensions such as the old notation in postconditions.

The class interface in Figure 2, expressed in Eiffel, describes the notion of
event as managed in our example system.



1 indexing
description : ”Technical events as managed in the CSEL.”

3
class

5 EVENT

7 feature −− Basic operations

9 submit to csel
−− Submit the conference information by sending an e mail.

11 require
valid conferences : starting date . earlier than (ending date)

13 valid deadlines : abstract deadline . earlier than (paper deadline)
do

15 end

17 feature −− Implementation

19 name: STRING
starting date , ending date: DATE

21 abstract deadline , paper deadline : DATE
place , url , sponsor, keywords: STRING

23 a category : CATEGORY

25 invariant
category status : a category . is conference xor

27 a category .is symposium xor
a category .is workshop xor

29 a category .is summer school

31 end

Fig. 2. Interface Specification of a Class EVENT.

Class EVENT relies on an auxiliary class CATEGORY (presented in Figure 3).



1 indexing
description : ”Conference categories.”

3
class

5 CATEGORY

7 feature −− Status report

9 is conference : BOOLEAN
−− Does this category represent conferences?

11 do
end

13
is symposium: BOOLEAN

15 −− Does this category represent symposiums?
do

17 end

19 is workshop: BOOLEAN
−− Does this category represent workshops?

21 do
end

23
is summer school: BOOLEAN

25 −− Does this category represent summer schools?
do

27 end

29 end

Fig. 3. Interface Specification of a Class CATEGORY.

The actual class texts will contain implementations of the features involved
(submit to csel etc.); the above are interface specifications, which can be writ-
ten first and then refined into the implementations, or extracted automatically
(by tools of the development environment) from these implementations if they
already exist.

Class EVENT as given serves as a precise specification of the notion of event,
avoiding the errors and ambiguities that occurred during the 2007 project devel-
opment cited above. Note in particular how the class invariant expresses, through
the use of the exclusive-or operator xor, that the different categories of event are
exclusive. The precondition (require clause) of procedure submit to csel states
validity requirements: the starting date must precede the ending date, and the
deadline for abstracts must precede the deadline for papers.



5 Improving the Project Setup

The preceding example suggests that a systematic use of contracts can provide
considerable help towards solving the specification and communication issues
that plague distributed projects. We used the 2008 session of the DOSE course
to assess this conjecture.

A number of characteristics changed between the 2007 and 2008 sessions.
DOSE 2007 [1] had, as noted, the CSEL system as the project theme. The
project, developed over 11 weeks out of the semesters 13, was divided into four
phases:

– Phase 1: Write specification of each cluster (4 weeks).
– Phase 2: Revise and consolidate the specification into one project document;

develop interface specification using contracts (3 weeks).
– Phase 3: Implement clusters (2 weeks).
– Phase 4: Test system (2 weeks).

As indicated for Phase 2, students were encouraged to use contracts, but
this was only a recommendation. Faced with the difficulties mentioned earlier,
students gradually realized the importance of precise specifications and started
applying contracts more systematically. In the end, however, the delay in apply-
ing these techniques made it impossible to integrate the results into a deployable
system.

DOSE 2008 [2] used a different project. We took advantage of the announce-
ment of a competition in conjunction with the 2009 International Conference on
Software Engineering (ICSE): the SCORE project competition [32]. Specifically,
we chose one of the topics offered in the SCORE competition: ”BTW” [28], a
system to provide advice to someone planning a trip to a city. As in 2007, we
divided the project into three clusters to be handled by different teams within
a group; the BTW cluster were:

– Cluster 1 - SYST: GUI and overall organization of the BTW system
– Cluster 2 - GEO: Interface with GIS information and Traffic
– Cluster 3 - PLAN: Route planning and advice

and typical group configurations were:

– (1) Zurich - (2) Nizhny Novgorod - (3) Milano
– (1) Debrecen - (2) Milano - (3) Zurich
– (1) Milano - (2) Zurich - (3) Odessa

The problem domain made it possible to take advantage of an existing system
for city modeling and route planning, the Traffic library [20], developed at ETH
for the purposes of our introductory programming course [16].

While the overall setup was similar to the 2007 session, we changed a number
of elements in light of the lessons learned. We started the project earlier, so that
it could use 13 weeks out of the semesters 14. Recognizing the importance and
difficulty of the specification phase, we extended it to 5 weeks and simplified the
process by bringing the number of phases to three:



– Phase 1: Write specification of each cluster (4 weeks).
– Phase 2: Revise and consolidate the specification into one project document;

develop interface specifications using contracts (5 weeks).
– Phase 3: Implement clusters (4 weeks).

We gave much more precise and prescriptive recommendations to students:

– They were told to get in touch with the other teams in the very first week; this
avoided communication issues and simplified the revision of the requirements
document.

– We introduced a code review to improve the interface specification.
– Students had to implement the projects in two cycles, which helped to find

integrations problems earlier.
– We strongly encouraged them to commit the code daily, and to define and

apply precise commit rules (such as permitting commit only if the code has
been compiled and tested).

Most importantly, we made the inclusion of contract interface specifications
mandatory in the specifications.

6 Results

The results of the 2008 projects confirmed the usefulness of the measures de-
scribed above. The final result of the implemented projects was good: the systems
were integrated and the three clusters worked in the same system. The speci-
fication of the interfaces was improved, and contracts helped to document and
understand the interfaces.

To obtain the students perspective we asked them to fill a feedback question-
naire, which most of them (95%) did.

Most of the students think that contracts helped to develop the project.
We wanted to know how much effort the contracts required. Table 1 shows the
hour/person per team expended in developing the requirements documents with
interface specification using contracts. In average, the development of contracts
took 22.2% of the time used in the requirement phase.

The results of the experience show that contracts were key to develop dis-
tributed projects. The use of contracts in SRS have been useful not only to
avoid misunderstandings but also to specify the interaction between subsystems.
Projects that defined good interfaces using contracts have been able to deploy,
and produce a final system. On the other side, projects that have not specified
the interfaces properly have failed to produce a final system.

To go beyond such assessments, we intend to perform a more objective mea-
surement of the specification effort as part of DOSE 2009.



T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Average

Person/hours
SRS (without
contracts)

35 64.6 116 108 39 82 27 34 19 89 28 22 55.3

Person/hours
writing
contracts

20 15 20 20 8 30 8 4 20 30 7 8 15.8

Percentage in
writing
contracts

36.3 18.8 14.7 15.6 17.0 26.7 22.8 10.5 51.2 25.2 20 26.6 22.2

Table 1. Effort expended developing requirements documents and interfaces with
contracts.

7 Related Work

Industry and academia have been interested in distributed development. Lessons
learnt on educational experiences have been reported [9, 7, 4]. Gotel et al. [9, 10]
describe the lessons learned from the development of a project across three glob-
ally distributed educational institutions. The institutions that participated in
that project were Pace University (US), University of Delhi (India), and Insti-
tute of Technology of Cambodia (Cambodia). They discuss the problems faced in
the projects such as communication (with a twelve hours time difference), project
planning, and cultural aspects. A similar experience is described by Damian et
al. [7]. They report on the teaching experience developing software requirements
specifications in geographically distributed software development with three uni-
versities (located in Canada, Australia, and Italy), focusing on the times zones
and the cultural differences. These works focus on how to teach a course in
distributed software development. However, they do not cover how to improve
software requirements specifications. A deeper description of existing works con-
cerning global development and educational experiences is beyond the scope of
this paper and can be found in [4, 12, 13, 29].

Corriveau [6] indentifies the key properties that a contract between the par-
ties involved in outsourcing must satisfy. These properties are expressed with a
model, and this model must be testable, executable, and abstract. This model is
used to test the quality of the developed project, but it does not help to under-
stand the system under development. Our approach is used to solve the problems
of potential misunderstandings in software requirements specifications, and to
improve them. The use of contracts brings the same properties: testable, exe-
cutable, and abstraction. Meyer et al. [21] have described our first experience in
distributed software development, DOSE 2007. They described the experiences
of software engineering projects in local and distributed developments. However,
the role of contracts in software requirements specification is not discussed.

Sutherland et al. [33] report the industrial experience of developing a dis-
tributed project with two companies: SirsiDynix (Utah, US) and StarSoft De-



velopment Laboratories (St. Petersburg, Russia). They analyze and recommend
best practices for globally distributed agile teams. They report that distributed
teams can be as productive as a small collocated team.

Concerning program specifications, many existing works address this issue
from different points of view and with different goals. The fact that natural
language specifications lead to unsatisfactory and ambiguous specifications is
well known and widely accepted. This issue becomes crucial in distributed or
global development settings. Nevertheless, specifications based on natural lan-
guage descriptions even if supported by diagrams (e.g., UML [34]) are still widely
adopted in industrial development. Consequently, several existing approaches
aim at supporting software development with specifications based on natural
language [14, 31], however, the most promising techniques rely on the adoption
of formalisms.

Languages such as Alloy [17] can be used to solve the problems of ambiguous
specifications. However, the specification is completely detached from the source
code of the program leading to a traceability gap among code and its specifica-
tion. Moreover, concerning UML, it is important to notice the difference among
writing contracts in Eiffel and writing constraints in the Object Constraint Lan-
guage (OCL) [34]. First of all, the former approach offers a precise and non
ambiguous semantics conversely to the UML object constraint language (sev-
eral approaches addressed this issue, e.g. [30]). Secondly, OCL suffers from a
traceability gap between the specifications and the implementation, while our
approach does not.

The Java Modeling Language (JML) [18, 19] is a behavioral interface spec-
ification language that can be used to specify the behavior of Java modules. It
combines the design by contract approach of Eiffel and the model-based spec-
ification approach of the Larch family of interface specification languages [11].
Although the approach is similar to Eiffel contracts, specifications in JML are
not part of the Java language. Furthermore, Spec# [3] extends C# with formal
specifications. In our approach, the specifications are not restricted to any pro-
gramming language, thus JML and Spec# can be used to specify the interfaces
of distributed projects.

8 Conclusions and DOSE 2009

We have presented an approach to improve software requirements specifications.
This approach integrates contracts to SRS. To measure the results of this ap-
proach, we have developed several distributed projects. Contracts have helped
to solve the problems of misunderstanding and under specification in SRS. The
use of contracts brings the advantages of automatic testing and better system
documentation. Although the experiments were performed in an academic en-
vironment, we believe that the results are also interesting to industrial software
developers.

Since the distributed projects in DOSE 2007 and DOSE 2008 have been an
interesting experience, we plan to continue this experiment in 2009. So far, we



have developed projects with two and three geographically different locations.
During DOSE 2009 we have observed that projects distributed in two locations
have less overhead in communication and development than projects developed
in three locations. However, we have not executed any empirical study that
shows what is the overhead. Next year, we plan to analyze this overhead in
communication and development when projects are distributed in two, three,
and four locations. If you are a member of an academic institution and would
like to be part of DOSE 2009, please contact us to discuss and organize your
participation.
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