
 1

Modeling Embedded Real-Time Applications with Objects and Events

Volkan Arslan1, Patrick Eugster2, Piotr Nienaltowski1
1Chair of Software Engineering, ETH Zurich, 8092 Zurich, Switzerland

2Dept. of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA
Volkan.Arslan@inf.ethz.ch, p@cs.purdue.edu, Piotr.Nienaltowski@inf.ethz.ch

Abstract

The ability to model periodic, sporadic and aperiodic
tasks in a way that ensures their timing constraints such
as worst-case execution time, deadline and periodicity is
a major concern in embedded real-time programming.
We propose the use of a concurrent event library to
achieve the predictability of embedded real-time pro-
grams while retaining the advantages of modular devel-
opment and reasoning of object-oriented languages and
the benefit of event-driven programming.

1. Introduction
According to [1], a real-time system is any system that

has to respond to externally generated input stimuli (in-
cluding the passage of time) within a finite and specified
time interval. This means that the correctness of a real-
time system depends not only on the logical result of the
computation, but also on the time at which the results are
produced. In particular, a correct but late response is as
bad as a wrong response. Hence predictability is a key
requirement for real-time applications.

This paper presents an object-oriented event library for
real-time programming, dubbed RTEL (real-time event
library). RTEL is built on top of an existing event li-
brary1 designed initially without real-time concerns in
mind, and combines the power of the object paradigm
(modular reasoning and development, fostering reusabil-
ity and extendibility) with the benefits of events (separa-
tion of concerns by distinguishing between application
layer (business logic) that provides operations to execute,
and the presentation layer (user interface) that triggers
the execution of these operations in response to human
users’ actions [2]).

To achieve predictability, RTEL is designed to support
periodic, sporadic, and aperiodic tasks and to ensure their
timing constraints such as worst-case execution time
(WCET), deadline, and periodicity.

The rest of this paper is organized as follows: Section
2 explains how to use RTEL by means of a detailed ex-

ample. Section 3 describes the architecture of RTEL and
discusses some modeling aspects. Section 4 draws con-
clusions and discusses possible extensions of our event-
driven approach to embedded real-time programming.

⎯⎯⎯⎯⎯⎯⎯⎯
1 Available for download at http://se.inf.ethz.ch/people/arslan/

2. Presentation by Example
Following [2] we use a small sample application to

show the basic capabilities of RTEL for embedded and
real-time programming. All code samples below use Eif-
fel notation [6].

In our application we want to observe the temperature,
humidity, and pressure of containers in a chemical plant.
The measurements are supposed to originate from exter-
nal physical sensors. Whenever the value(s) of one or
more measured physical attributes change(s), the con-
cerned parts of our system (e.g. an actuator or display
units) are notified, so that they can update the values and
take appropriate actions.

An event-based architecture offers several benefits for
such applications. First, the event-driven nature of the
problem is taken into account: input values are coming
from external sensors at unpredictable moments, and the
application is reacting to their change. Second, we are
able to preserve the independence between the applica-
tion layer (actuators) and the presentation layer (UI): if
the physical setup changes (e.g. sensors are replaced by
different ones, actuators are changed or extended, new
display units are introduced), the system can be easily
adapted without the need to rewrite the application.

Now assume that we would like to control a certain ac-
tuator, e.g. a valve that adjusts the heater according to
temperature changes. Since we are interested in checking
the temperature regularly, we model it using a periodic
task (i.e. a real-time task which is activated regularly at
fixed rates/periods [4]). In order to model a periodic task,
the timing constraints periodicity T, the deadline d and
the WCET wcet must be specified. The deadline d is the
point in time at which a real-time task must be completed.
The WCET is the maximum amount of time needed to
finish a task.

 2

We would like to check the temperature and adjust the
valves every 20 ms, and the total time needed for reading
the temperature and adjusting the valve is at most 15 ms.
Therefore, we take T = 20 ms and d = 15 ms.

Fig. 1. Class diagram of the sample application

Figure 1 shows the overall architecture of our sample

application using the BON notation [5]. Ellipses repre-
sent classes; arrows represent client-supplier relationship.

The application is divided into four clusters1: event,
model, controller, and view. The event cluster contains
class EVENT_TYPE that abstracts the general notion of
event type [2], and the class TIMED_ EVENT_TYPE. The
model cluster contains the application-specific classes
such as SENSOR. The view cluster regroups classes
which are related to the interaction with physical devices
such as actuators controlling valves of the heater. Finally,
class CONTROLLER connects classes from model and
view clusters following the standard model-view-
controller (MVC) design pattern.

In order to model a periodic task we declare an entity
periodical_event as

periodical_event: separate TIMED_EVENT_TYPE
 [TUPLE [ANY]]

Class TIMED_EVENT_TYPE is an extension of class
EVENT_TYPE [2]. It relies on the SCOOP concurrency
model [7]. Keyword separate reflects the concurrent
nature of periodical_event. The object represented by
periodical_event is handled by a different processor2 than
the object that declares periodical_event. As a conse-
quence, all feature calls on periodical_event will be exe-
cuted asynchronously. The generic parameter TUPLE

[ANY] represents the event data. The class in which the
declaration of periodical_event takes place is called the
publisher

⎯⎯⎯⎯⎯⎯⎯⎯
1 In Eiffel a cluster is a coherent group of classes. Clusters can be hierarchical;

here the root cluster is called root_cluster. With event being defined in that clus-
ter, its full name becomes root_cluster.event.

2 A processor is an abstract notion of an autonomous thread of control for the
sequential execution of instructions on one or more objects. It may be imple-
mented, e.g. as an OS process or a single thread. Current implementation of
SCOOP (available at http://se.inf.ethz.ch/download) maps processors to POSIX
or .NET threads.

[2].
An object of type TIMED_EVENT_TYPE can be cre-

ated and attached to periodical_event

create periodical_event

By calling the feature publish_periodically as in

periodical_event.publish_periodically (20)

the event periodical_event will be published every 20 ms.
The actual publication of the event will be taken care of
by the runtime system of RTEL.

It is necessary to subscribe a certain feature of a class
to the event periodical_event, so that whenever the event
is published (fired), the subscribed feature will be exe-
cuted. The object which is in charge of subscribing a fea-
ture is called the subscriber, and the object whose feature
is subscribed is called the subscribed object.

Consider the following feature from class PHYSICAL_
SENSOR:

class PHYSICAL_SENSOR
feature -- Basic operation
 read_and_set_temperature is

 -- Read temperature of container and
 -- set the temperature of sensor object.
do
 temperature := …
 sensor.set_temperature (temperature)
ensure
 wcet (5)
end

feature {NONE} -- Implementation
 temperature: INTEGER is
 sensor: separate SENSOR
end -- class PHYSICAL_SENSOR

Note the use of postcondition to specify the WCET. In
this particular case, we set it to 5 ms. Assume that we
want to subscribe this feature to periodical_event. This is
how the subscription can be performed (in class
CONTROLLER, which is the subscriber):

physical_sensor: PHYSICAL_SENSOR
…
if periodical_event.is_schedulable
 (agent physical_sensor.read_and_set_temperature, 15)
then periodical_event.subscribe
 (agent physical_sensor.read_and_set_temperature)
end

We use so-called agents [6] to wrap routine calls.
agent x.f (a) denotes an object representing the operation
x.f (a). We first check if agent physical_sensor.read_

 3

and_set_temperature is schedulable given the timing
constraints d = 15 and wcet = 5 (the latter is extracted
from the postcondition of read_and_set_temperature).
The subscription only takes place if the agent is schedul-
able.

Let us now consider the remaining functionality of our
application. We will focus on classes SENSOR and
ACTUATOR. Class SENSOR is an abstraction of a sensor
that measures among others the temperature:

class SENSOR
feature -- Access
 temperature: INTEGER
 set_temperature (t: INTEGER) is

 -- Set temperature to t.
require
 valid_temperature: t > -100 and t < 1000
do
 temperature := t
 temperature_event.publish ([temperature])
ensure
 temperature_set: temperature = t
end

feature -- Events
 temperature_event: separate EVENT_TYPE

 [TUPLE [INTEGER]]
end -- class SENSOR

The type of temperature_event is based on generic
class EVENT_TYPE. This class takes a generic parameter
EVENT_ DATA that represents a tuple of arbitrary types.
In the case of temperature_event, the value of this ge-
neric parameter is TUPLE [INTEGER] since the actual
event data (i.e., temperature value) is of type INTEGER.
See [2] for a more detailed discussion on EVENT_TYPE.

We introduce class ACTUATOR that provides feature
adjust_valve:

class ACTUATOR
feature -- Basic operations
 adjust_valve (t: INTEGER) is

 -- Adjust the heater accordingly.
do
 …
ensure
 wcet (5)
end

 …
end -- class ACTUATOR

CONTROLLER subscribes feature adjust_valve to the
corresponding event type temperature_event

actuator: ACTUATOR:
…
sensor.temperature_event.subscribe

 (agent actuator.adjust_valve (?))

As a result, feature adjust_valve of actuator will be
called each time temperature_event is published. The
actual argument of feature subscribe is an agent. The
question mark reflects an open argument that will be
filled with concrete event data (here, an INTEGER value)
when feature adjust_valve is actually executed [6].

Let us summarize: feature read_and_set_temperature
will be executed every 20 ms as a result of periodi-
cal_event; its execution will cause the publication of tem-
perature_event (as defined in class SENSOR). As a reac-
tion to that event, the subscribed feature actua-
tor.adjust_valve will be executed. As a result, every 20
ms the temperature will be read and the valves will be
adjusted accordingly, which is precisely the purpose of
our little application.

3. Design and Architecture of RTEL
In this section, we give an overview of RTEL. The

logical components of the event library such as event
type, event, publisher, subscriber, and subscribed object
are elaborated in detail in [2].

3.1 Space Decoupling

RTEL provides space decoupling [3]. This important
feature is neglected by many implementations of the
MVC design pattern in mainstream object-oriented lan-
guages. In our example, space decoupling manifests itself
in that that the publisher (instance of class SENSOR) and
the subscribed object (instance of class ACTUATOR) do
not know each other, i.e. there is neither a client-supplier
nor an inheritance relationship between them (in Figure
1). Hence, both classes can be extended independently.
For example, extending class SENSOR only impacts the
subscriber whose role consists in connecting the pub-
lisher and the subscribed object. As a consequence, only
class CONTROLLER needs to be extended if we use some
descendant classes of SENSOR and ACTUATOR. In the
basic MVC pattern, in contrast, the view directly invokes
methods from the model (see e.g. [8]).

3.2 Flow Decoupling

Similarly, RTEL provides flow decoupling [3] thanks
to the use of SCOOP – the publisher is not blocked while
publishing the event temperature_event because tempera-
ture_event is declared as separate and therefore the call
on temperature_event is asynchronous. Likewise, the
subscribed object (instance of ACTUATOR) is not active-
ly pulling for events. Thereby, all involved objects (in-
stances of SENSOR, ACTUATOR, CONTROLLER,

 4

EVENT_TYPE, and TIMED_EVENT_TYPE) are separate,
i.e. they are handled by different processors.

3.3 Ensuring Real-Time Predictability

The RTEL library we proposed relies conceptually on
a time-triggered scheduler (e.g. “earliest-deadline-first”-
scheduler such as implemented in the RTOS XO/2 [4]) to
ensure predictability, although other scheduling policies
such as Rate Monotonic could be used. Since timing con-
straints such as WCET, periodicity, and deadline are
specified, the time-triggered scheduler can decide if it can
fulfill the timing constraints of the real-time task (feature)
subscribed to a particular event type (such as peri-
odic_event in our example). If this is not the case, the
subscription of that particular task will be rejected. Simi-
larly, sporadic real-time tasks can be modeled by specify-
ing the minimum interarrival time instead of periodicity.
Specification of aperiodic real-time tasks is much more
challenging. One workaround widely applied in practice
consists in mapping aperiodic tasks to periodic tasks
through various techniques if predictability is an absolute
requirement.

3.4 Modeling Aspects

The major advantage of using an event-driven ap-
proach is the separation of concerns. Logically, features
read_and_set_temperature and adjust_valve are abso-
lutely independent from each other. Both operations are
part of different abstractions, and therefore they are mod-
eled in two different classes (PHYSICAL_SENSOR and
ACTUATOR, respectively). It is just in a particular con-
stellation that both operations are connected together (in
class CONTROLLER) via an event to achieve a higher
goal, but enriched with additional properties such as be-
ing periodic.
 Compared to traditional real-time modeling (including
more recent approaches, e.g., [9]), where both operations
read_and_set_temperature and adjust_valve would be
defined in the body of an infinite loop of a real-time
thread, the event-driven approach provides more flexibil-
ity. The gluing of both operations is done by the sub-
scriber whose role is precisely to connect two different
abstractions and to add further functionality. Also, timing
constraints are either part of class interfaces or they are
passed as feature arguments, which allows for a simple
redefinition and extension of the system. In traditional
approaches, on the other hand, timing constraints are
hardcoded, which makes any extension extremely diffi-
cult.

4. Conclusions and Ongoing Work
We presented a real-time event library (RTEL) com-

bining the benefits of object-oriented and event-driven
programming to facilitate the modeling of real-time ap-
plications. We used a sample application to demonstrate
the basic features of RTEL. RTEL fully adheres to the
principles of object-oriented programming and makes
extensive use of advanced mechanisms such as generic-
ity, agents, and SCOOP. A salient difference with respect
to mainstream real-time frameworks is that timing con-
straints are not scattered over distinct logical components.
At the same time our approach does not rely on specific
language constructs (cf. [10]). It should be noted that the
RTEL is conceptually platform independent. The only
requirement of the RTEL is that the underlying RTOS
provides a time-triggered scheduler.

We are currently in the process of integrating RTEL
with a suitable time-triggered scheduler. We are also in-
vestigating the feasibility of providing specific support
for aperiodic real-time tasks.

References
[1] S. Young, Real Time Languages: Design and Development, Ellis

Horwood Publishers, Chichester, 1982

[2] Volkan Arslan, Piotr Nienaltowski, Karine Arnout: Event Library:
an object-oriented library for event-driven design, In: Joint Modu-
lar Languages Conference (JMLC) 2003, Klagenfurt, Austria, Au-
gust 25-27, 2003

[3] P. Th. Eugster, P. Felber, R. Guerraoui, A.-M. Kermarrec: The
Many Faces of Publish/Subscribe, In: ACM Comput. Surv., 35
(12), pages 114 − 131, 2003.

[4] Roberto Brega: A Combination of System Software Techniques
Aimed at Raising the Run-Time Safety of Complex Mechatronic
Applications, PhD thesis, ETH Zurich, Switzerland, 2002

[5] Kim Walden, Jean-Marc Nerson: Seamless object-oriented soft-
ware architecture, Prentice Hall, 1995.

[6] Eiffel ECMA Standard - 367: Eiffel Analysis, Design and Pro-
gramming Language, available for download at http://www.ecma-
international.org/

[7] Piotr Nienaltowski, Volkan Arslan, Bertrand Meyer: Concurrent
object-oriented programming on .NET, In: IEE Proceedings Soft-
ware, Special Issue on ROTOR, October 2003.

[8] Model-View-Controller, In: Java BluePrints, available for
download at http://java.sun.com/blueprints/ patterns/MVC-
detailed.html

[9] Andy Wellings, Concurrent and Real-Time Programming in Java,
John Wiley & Sons England, 2004

[10] B. Nielsen, G. Agha: Towards Reusable Real-Time Objects. In:
Annals of Software Engineering: Special Volume on Real-Time
Software Engineering, vol. 7, pp 257-282, 1999.

	1. Introduction
	2. Presentation by Example
	3. Design and Architecture of RTEL
	3.1 Space Decoupling
	3.2 Flow Decoupling
	3.3 Ensuring Real-Time Predictability
	3.4 Modeling Aspects

	4. Conclusions and Ongoing Work

