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Abstract 

The ability to model periodic, sporadic and aperiodic 
tasks in a way that ensures their timing constraints such 
as worst-case execution time, deadline and periodicity is 
a major concern in embedded real-time programming. 
We propose the use of a concurrent event library to 
achieve the predictability of embedded real-time pro-
grams while retaining the advantages of modular devel-
opment and reasoning of object-oriented languages and 
the benefit of event-driven programming. 

1. Introduction 
According to [1], a real-time system is any system that 

has to respond to externally generated input stimuli (in-
cluding the passage of time) within a finite and specified 
time interval. This means that the correctness of a real-
time system depends not only on the logical result of the 
computation, but also on the time at which the results are 
produced. In particular, a correct but late response is as 
bad as a wrong response. Hence predictability is a key 
requirement for real-time applications.  

This paper presents an object-oriented event library for 
real-time programming, dubbed RTEL (real-time event 
library). RTEL is built on top of an existing event li-
brary1 designed initially without real-time concerns in 
mind, and combines the power of the object paradigm 
(modular reasoning and development,  fostering reusabil-
ity and extendibility) with the benefits of events (separa-
tion of concerns by distinguishing between application 
layer (business logic) that provides operations to execute, 
and the presentation layer (user interface) that triggers 
the execution of these operations in response to human 
users’ actions [2]).  

To achieve predictability, RTEL is designed to support 
periodic, sporadic, and aperiodic tasks and to ensure their 
timing constraints such as worst-case execution time 
(WCET), deadline, and periodicity. 

The rest of this paper is organized as follows: Section 
2 explains how to use RTEL by means of a detailed ex-

ample. Section 3 describes the architecture of RTEL and 
discusses some modeling aspects. Section 4 draws con-
clusions and discusses possible extensions of our event-
driven approach to embedded real-time programming. 

⎯⎯⎯⎯⎯⎯⎯⎯ 
1 Available for download at http://se.inf.ethz.ch/people/arslan/  

2. Presentation by Example 
Following [2] we use a small sample application to 

show the basic capabilities of RTEL for embedded and 
real-time programming. All code samples below use Eif-
fel notation [6].  

In our application we want to observe the temperature, 
humidity, and pressure of containers in a chemical plant. 
The measurements are supposed to originate from exter-
nal physical sensors. Whenever the value(s) of one or 
more measured physical attributes change(s), the con-
cerned parts of our system (e.g. an actuator or display 
units) are notified, so that they can update the values and 
take appropriate actions. 

An event-based architecture offers several benefits for 
such applications. First, the event-driven nature of the 
problem is taken into account: input values are coming 
from external sensors at unpredictable moments, and the 
application is reacting to their change. Second, we are 
able to preserve the independence between the applica-
tion layer (actuators) and the presentation layer (UI): if 
the physical setup changes (e.g. sensors are replaced by 
different ones, actuators are changed or extended, new 
display units are introduced), the system can be easily 
adapted without the need to rewrite the application. 

Now assume that we would like to control a certain ac-
tuator, e.g. a valve that adjusts the heater according to 
temperature changes. Since we are interested in checking 
the temperature regularly, we model it using a periodic 
task (i.e. a real-time task which is activated regularly at 
fixed rates/periods [4]). In order to model a periodic task, 
the timing constraints periodicity T, the deadline d and 
the WCET wcet must be specified. The deadline d is the 
point in time at which a real-time task must be completed. 
The WCET is the maximum amount of time needed to 
finish a task. 
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We would like to check the temperature and adjust the 
valves every 20 ms, and the total time needed for reading 
the temperature and adjusting the valve is at most 15 ms. 
Therefore, we take T = 20 ms and d = 15 ms. 

 

 
Fig. 1. Class diagram of the sample application 

 
Figure 1 shows the overall architecture of our sample 

application using the BON notation [5]. Ellipses repre-
sent classes; arrows represent client-supplier relationship. 

The application is divided into four clusters1: event, 
model, controller, and view. The event cluster contains  
class EVENT_TYPE that abstracts the general notion of 
event type [2], and the class TIMED_ EVENT_TYPE. The 
model cluster contains the application-specific classes 
such as SENSOR. The view cluster regroups classes 
which are related to the interaction with physical devices 
such as actuators controlling valves of the heater. Finally, 
class CONTROLLER connects classes from model and 
view clusters following the standard model-view-
controller (MVC) design pattern. 

In order to model a periodic task we declare an entity 
periodical_event as  

periodical_event: separate TIMED_EVENT_TYPE  
       [TUPLE [ANY]] 

Class TIMED_EVENT_TYPE is an extension of class 
EVENT_TYPE  [2]. It relies on the SCOOP concurrency 
model [7]. Keyword separate reflects the concurrent 
nature of periodical_event. The object represented by 
periodical_event is handled by a different processor2 than 
the object that declares periodical_event. As a conse-
quence, all feature calls on periodical_event will be exe-
cuted asynchronously. The generic parameter TUPLE 

[ANY] represents the event data. The class in which the 
declaration of periodical_event takes place is called the 
publisher 

⎯⎯⎯⎯⎯⎯⎯⎯ 
1 In Eiffel a cluster is a coherent group of classes. Clusters can be hierarchical; 

here the root cluster is called root_cluster. With event being defined in that clus-
ter, its full name becomes root_cluster.event. 

2 A processor is an abstract notion of an autonomous thread of control for the 
sequential execution of instructions on one or more objects. It may be imple-
mented, e.g. as an OS process or a single thread. Current implementation of 
SCOOP (available at http://se.inf.ethz.ch/download) maps processors to POSIX  
or .NET threads. 

[2]. 
An object of type TIMED_EVENT_TYPE can be cre-

ated and attached to periodical_event 

create periodical_event 

By calling the feature publish_periodically as in 

periodical_event.publish_periodically (20) 

the event periodical_event will be published every 20 ms. 
The actual publication of the event will be taken care of 
by the runtime system of RTEL. 

It is necessary to subscribe a certain feature of a class 
to the event periodical_event, so that whenever the event 
is published (fired), the subscribed feature will be exe-
cuted. The object which is in charge of subscribing a fea-
ture is called the subscriber, and the object whose feature 
is subscribed is called the subscribed object. 

Consider the following feature from class PHYSICAL_ 
SENSOR:   

class PHYSICAL_SENSOR 
feature -- Basic operation 
 read_and_set_temperature is 

    -- Read temperature of container and  
    -- set the temperature of sensor object. 
do 
    temperature := … 
 sensor.set_temperature (temperature) 
ensure 
 wcet (5) 
end  

feature {NONE} -- Implementation 
   temperature: INTEGER is 
   sensor: separate SENSOR 
end -- class PHYSICAL_SENSOR 

Note the use of postcondition to specify the WCET. In 
this particular case, we set it to 5 ms. Assume that we 
want to subscribe this feature to periodical_event. This is 
how the subscription can be performed (in class 
CONTROLLER, which is the subscriber): 

physical_sensor: PHYSICAL_SENSOR 
… 
if periodical_event.is_schedulable  
   (agent physical_sensor.read_and_set_temperature, 15) 
then periodical_event.subscribe  
        (agent  physical_sensor.read_and_set_temperature) 
end 

We use so-called agents [6] to wrap routine calls. 
agent x.f (a) denotes an object representing the operation 
x.f (a). We first check if agent physical_sensor.read_ 
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and_set_temperature is schedulable given the timing 
constraints d = 15 and wcet = 5 (the latter is extracted 
from the postcondition of read_and_set_temperature). 
The subscription only takes place if the agent is schedul-
able. 

Let us now consider the remaining functionality of our 
application. We will focus on classes SENSOR and 
ACTUATOR. Class SENSOR is an abstraction of a sensor 
that measures among others the temperature: 

class SENSOR 
feature -- Access 
 temperature: INTEGER  
 set_temperature (t: INTEGER) is 

  -- Set temperature to t. 
require 
   valid_temperature: t > -100 and t < 1000 
do 
   temperature := t 
   temperature_event.publish ([temperature]) 
ensure 
   temperature_set: temperature = t 
end  

feature -- Events 
 temperature_event: separate EVENT_TYPE  

             [TUPLE [INTEGER]] 
end -- class SENSOR  

The type of temperature_event is based on generic 
class EVENT_TYPE. This class takes a generic parameter 
EVENT_ DATA that represents a tuple of arbitrary types. 
In the case of temperature_event, the value of this ge-
neric parameter is TUPLE [INTEGER] since the actual 
event data (i.e., temperature value) is of type INTEGER. 
See [2] for a more detailed discussion on EVENT_TYPE.  

We introduce class ACTUATOR that provides feature 
adjust_valve:  

class ACTUATOR 
feature -- Basic operations 
 adjust_valve (t: INTEGER) is 

  -- Adjust the heater accordingly. 
do 
   … 
ensure 
  wcet (5)  
end  

  … 
end -- class ACTUATOR 

CONTROLLER subscribes feature adjust_valve to the 
corresponding event type temperature_event 

actuator: ACTUATOR: 
… 
sensor.temperature_event.subscribe 

 (agent actuator.adjust_valve (?))  

As a result, feature adjust_valve of actuator will be 
called each time temperature_event is published. The 
actual argument of feature subscribe is an agent. The 
question mark reflects an open argument that will be 
filled with concrete event data (here, an INTEGER value) 
when feature adjust_valve is actually executed [6]. 

Let us summarize: feature read_and_set_temperature 
will be executed every 20 ms as a result of periodi-
cal_event; its execution will cause the publication of tem-
perature_event (as defined in class SENSOR). As a reac-
tion to that event, the subscribed feature actua-
tor.adjust_valve will be executed. As a result, every 20 
ms the temperature will be read and the valves will be 
adjusted accordingly, which is precisely the purpose of 
our little application. 

3. Design and Architecture of RTEL 
In this section, we give an overview of RTEL. The 

logical components of the event library such as event 
type, event, publisher, subscriber, and subscribed object 
are elaborated in detail in [2]. 

3.1 Space Decoupling 

RTEL provides space decoupling [3]. This important 
feature is neglected by many implementations of the 
MVC design pattern in mainstream object-oriented lan-
guages. In our example, space decoupling manifests itself 
in that that the publisher (instance of class SENSOR) and 
the subscribed object (instance of class ACTUATOR) do 
not know each other, i.e. there is neither a client-supplier 
nor an inheritance relationship between them (in Figure 
1). Hence, both classes can be extended independently. 
For example, extending class SENSOR only impacts the 
subscriber whose role consists in connecting the pub-
lisher and the subscribed object. As a consequence, only 
class CONTROLLER needs to be extended if we use some 
descendant classes of SENSOR and ACTUATOR. In the 
basic MVC pattern, in contrast, the view directly invokes 
methods from the model (see e.g. [8]). 

3.2 Flow Decoupling 

Similarly, RTEL provides flow decoupling [3] thanks 
to the use of SCOOP – the publisher is not blocked while 
publishing the event temperature_event because tempera-
ture_event is declared as separate and therefore the call 
on temperature_event is asynchronous. Likewise, the 
subscribed object (instance of ACTUATOR) is not active-
ly pulling for events. Thereby, all involved objects (in-
stances of SENSOR, ACTUATOR, CONTROLLER, 
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EVENT_TYPE, and TIMED_EVENT_TYPE) are separate, 
i.e. they are handled by different processors. 

3.3 Ensuring Real-Time Predictability 

The RTEL library we proposed relies conceptually on 
a time-triggered scheduler (e.g. “earliest-deadline-first”-
scheduler such as implemented in the RTOS XO/2 [4]) to 
ensure predictability, although other scheduling policies 
such as Rate Monotonic could be used. Since timing con-
straints such as WCET, periodicity, and deadline are 
specified, the time-triggered scheduler can decide if it can 
fulfill the timing constraints of the real-time task (feature) 
subscribed to a particular event type (such as peri-
odic_event in our example). If this is not the case, the 
subscription of that particular task will be rejected. Simi-
larly, sporadic real-time tasks can be modeled by specify-
ing the minimum interarrival time instead of periodicity. 
Specification of aperiodic real-time tasks is much more 
challenging. One workaround widely applied in practice 
consists in mapping aperiodic tasks to periodic tasks 
through various techniques if predictability is an absolute 
requirement.  

3.4 Modeling Aspects 

The major advantage of using an event-driven ap-
proach is the separation of concerns. Logically, features 
read_and_set_temperature and adjust_valve are abso-
lutely independent from each other. Both operations are 
part of different abstractions, and therefore they are mod-
eled in two different classes (PHYSICAL_SENSOR and 
ACTUATOR, respectively). It is just in a particular con-
stellation that both operations are connected together (in 
class CONTROLLER) via an event to achieve a higher 
goal, but enriched with additional properties such as be-
ing periodic.  
 Compared to traditional real-time modeling (including 
more recent approaches, e.g., [9]), where both operations 
read_and_set_temperature and adjust_valve would be 
defined in the body of an infinite loop of a real-time 
thread, the event-driven approach provides more flexibil-
ity. The gluing of both operations is done by the sub-
scriber whose role is precisely to connect two different 
abstractions and to add further functionality. Also, timing 
constraints are either part of class interfaces or they are 
passed as feature arguments, which allows for a simple 
redefinition and extension of the system. In traditional 
approaches, on the other hand, timing constraints are 
hardcoded, which makes any extension extremely diffi-
cult. 

4. Conclusions and Ongoing Work 
We presented a real-time event library (RTEL) com-

bining the benefits of object-oriented and event-driven 
programming to facilitate the modeling of real-time ap-
plications. We used a sample application to demonstrate 
the basic features of RTEL. RTEL fully adheres to the 
principles of object-oriented programming and makes 
extensive use of advanced mechanisms such as generic-
ity, agents, and SCOOP. A salient difference with respect 
to mainstream real-time frameworks is that timing con-
straints are not scattered over distinct logical components. 
At the same time our approach does not rely on specific 
language constructs (cf. [10]). It should be noted that the 
RTEL is conceptually platform independent. The only 
requirement of the RTEL is that the underlying RTOS 
provides a time-triggered scheduler. 

We are currently in the process of integrating RTEL 
with a suitable time-triggered scheduler. We are also in-
vestigating the feasibility of providing specific support 
for aperiodic real-time tasks.  
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