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Abstract. We define a novel static analysis for Java bytecode, called definite ex-
pression aliasing. It infers, for each variable v at each program point p, a set of
expressions whose value at p is equal to the value of v at p, for every possible ex-
ecution of the program. Namely, it determines which expressions must be aliased
to local variables and stack elements of the Java Virtual Machine. This is a use-
ful piece of information for a static analyzer, such as Julia, since it can be used
to refine other analyses at conditional statements or assignments. We formalize
and implement a constraint-based analysis, defined and proved correct in the ab-
stract interpretation framework. Moreover, we show the benefits of our definite
expression aliasing analysis for nullness and termination analysis with Julia.

1 Introduction

Static analyses infer properties of computer programs and prove those programs secure
for some classes of bugs. Modern programming languages are, however, very com-
plex. Static analysis must cope with that complexity and remain precise enough to be
of practical interest. This is particularly true for low-level languages such as Java byte-
code [9], whose instructions operate on stack or local variables, which are typically
aliased to expressions. Consider, for instance, the method onOptionsItemSelected in
Fig. 1, taken from the Google’s HoneycombGallery Android application. The statement
if (mCamera!=null) at line 4 is compiled into the following bytecode instructions:

aload_0
getfield mCamera:Landroid/hardware/Camera;
ifnull [go to the else branch]
[then branch]

Bytecode ifnull checks whether the topmost variable of the stack, top, is null and
passes control to the opportune branch. A static analysis that infers non-null vari-
ables can, therefore, conclude that top is non-null at the [then branch]. But this
information is irrelevant: top gets consumed by the ifnull and disappears from the
stack. It is, instead, much more important to know that top was a definite alias of
the field mCamera of local 0, i.e., of this.mCamera, because of the previous two byte-
codes (local 0 stands for this). That observation is important at the subsequent call to
mCamera.stopPreview() at line 5, since it allows us to conclude that this.mCamera is
still non-null there: line 5 is part of the then branch starting at line 4 and we proved
that top (definitely aliased to this.mCamera) is non-null at that point.
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1 public boolean onOptionsItemSelected (MenuItem item ) {
2 switch ( item . getItemId ( ) ) {
3 case R. id . menu switch cam :
4 i f (mCamera != null ) {
5 mCamera . stopPreview ( ) ;
6 mPreview . setCamera ( null ) ;
7 mCamera . r e l e a s e ( ) ;
8 mCamera = null ;
9 }

10 mCurrentCamera = (mCameraCurrentlyLocked+1)%mNumberOfCameras ;
11 mCamera = Camera . open (mCurrentCamera ) ;
12 mCameraCurrentlyLocked = mCurrentCamera ;
13 mCamera . s ta r tPrev i ew ( ) ;
14 return true ;
15 case . . . .
16 . . . .
17 }

Fig. 1. A method of the CameraFragment class by Google

As another example of the importance of definite aliasing for static analysis, suppose
that we statically determined that the value returned by the method open and written in
this.mCamera at line 11 is non-null. The compilation of that assignment is:

aload_0
aload_0
getfield mCurrentCamera:I
invokestatic android/hardware/Camera.open:(I)Landroid/hardware/Camera;
putfield mCamera:Landroid/hardware/Camera;

and the putfield bytecode writes the top of the stack (open’s returned value) into the
field mCamera of the underlying stack element s . Hence s .mCamera becomes non-null,
but this information is irrelevant, since s disappears from the stack after the putfield
is executed. The actual useful piece of information at this point is that s was a definite
alias of expression this (local variable 0) at the putfield, which is guaranteed by
the first aload_0 bytecode. Hence, this.mCamera becomes non-null there, which is
much more interesting for the analysis of the subsequent statements.

The previous examples show the importance of definite expression aliasing analysis
for nullness analysis. However, the former is useful for other analyses as well. For
instance, consider the termination analysis of a loop whose upper bound is the return
value of a function call: for (i = 0; i < max(a, b); i++) {body}. In order to
prove its termination, a static analyzer needs to prove that the upper bound max(a, b)
remains constant during the loop. However, in Java bytecode, that upper bound is just a
stack element and the static analyzer must rather know that the latter is a definite alias
of the return value of the call max(a, b).

These examples show that it is important to know which expressions are definitely
aliased to stack and local variables of the Java Virtual Machine (JVM) at a given pro-
gram point. Moreover, when a bytecode instruction affects a variable, this modification
is propagated to all the expressions containing that variable. This way we can determine
different properties about the aliased expressions. In this article, we introduce a static
analysis called definite expression aliasing analysis, which provides, for each program



76 Ð. Nikolić and F. Spoto

point p and each variable v , a set of expressions E such that the values of E and v at
point p coincide, for every possible execution path. We call these expressions definite
expression aliasing information. In general, we want to deal with relatively complex
expressions (e.g., a field of a field of a variable, the return value of a method call, possi-
bly non-pure, and so on). We show, experimentally, that this analysis supports nullness
and termination analyses of our tool Julia, but this paper is only concerned with the ex-
pression aliasing analysis itself. Our analysis has been proven sound, but due to space
limitations, proofs can only be found in an extended version of this paper [10].

We opt for a semantical analysis rather than simple syntactical checks. For instance,
in Fig. 1, the result of the analysis must not change if we introduce a temporary variable
temp = this.mCamera and then check whether temp != null: it is still this.mCamera
that is compared to null there. Moreover, since we analyze Java bytecode, a semantical
approach is important in order to be independent from the specific compilation style of
high-level expressions and be able to analyze obfuscated code (for instance, malware)
or code not decompilable into Java (for instance, not organized into scopes).

Our definite expression aliasing analysis is constraint-based: a large constraint is
built from the program, whose solution is a sound approximation of the expressions
aliased to each variable at each program point. The correctness of our analysis is proved
in the abstract interpretation framework [5] and follows from a correct treatment of the
potential side-effects of statements.

Related Work. Alias analysis belongs to the large group of pointer analyses [7], and
its task is to determine whether a memory location can be accessed in more than one
way. There exist two types of alias analyses: possible (may) and definite (must). The
former detects those pairs of variables that might point to the same memory location.
There are very few tools performing this analysis on Java programs (e.g., WALA [2],
soot [1], JAAT [12]). On the other hand, definite alias analysis under-approximates the
actual aliasing information and, to the best of our knowledge, the analysis introduced
in this article is the first of this type dealing with Java bytecode programs and pro-
viding expressions aliased to variables. Similarly, the authors of [6] deal with definite
aliasing, but their must-aliasing information is used for other goals and they do not
deal with aliasing expressions. The idea of a constraint-based analysis is not new: we
have already used it to formalize possible analyses [14,11]. However, the construction
of the constraint and the definition of the propagation rules are different there. A static
analysis that over-approximates the set of fields that might be null at some point has
been introduced in [13]. More complex expressions than fields are not considered there,
though. Our analysis is also related to the well-known available expression analysis [3]
where, however, only variables of primitive type are considered, hence it is much eas-
ier to deal with side-effects. Fields can be sometimes transformed into local variables
before a static analysis is performed [4], but this requires a preliminary modification of
the code and we want to deal with more general expressions than just fields.

2 Operational Semantics

This section introduces a formal operational semantics of our target, Java bytecode-
like language, used also in [14,11] and inspired by the standard informal semantics [8].
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The target language contains the following instructions: const x , dup, load, store, inc,
ifeq, ifne, new, getfield, putfield, throw and call. They abstract whole classes of Java
bytecode instructions such as iconst_x, ldc, bipush, dup, iload, aload, istore, astore,
iinc, ifeq, ifne, if_null, if_nonnull, new, getfield, putfield, athrow, invokevirtual, and
invokespecial. In addition, we introduce an instruction op corresponding to the arith-
metic bytecode instructions such as iadd, isub, imul, idiv and irem, and an instruction
catch starting the exception handlers. An informal semantics of this language is pro-
vided at the end of this section. We analyze programs at bytecode level for several rea-
sons: there is a small number of bytecode instructions, compared to varieties of source
statements; bytecode lacks complexities such as inner classes; our implementation of
definite expression aliasing is at bytecode level as well, which brings formalism, imple-
mentation and correctness proofs closer.

For simplicity, we assume that the only primitive type is int and that reference types
are classes containing instance fields and instant methods only. Our implementation
handles all Java types and bytecodes, as well as classes with static fields and methods.

Definition 1 (Classes). We let K denote the set of classes and we define T = {int} ∪ K,
the set of all possible types. Every class κ ∈ K might have instance fields κ.f : t (field f
of type t ∈ T defined in class κ) and instance methods κ.m(�t): t (method m, defined in
class κ, with arguments of type�t taken from T, returning a value of type t ∈ T ∪ {void}),
where κ,�t, and t are often omitted. We let F(κ) denote the set of all fields contained in κ.

We analyze bytecode preprocessed into a control flow graph (CFG), i.e., a directed

graph of basic blocks, with no jumps inside them. ins
rest

→
→

b1
· · ·
bm

denotes a block of code

starting at instruction ins, possibly followed by a sequence of instructions rest and
linked to m subsequent blocks b1, . . . , bm .

Example 1. Consider the Java method delayMinBy and its corresponding graph of ba-
sic blocks of bytecode instructions given in Fig. 2. The latter contains a branch since the
getfield min might throw a NullPointerException which would be temporarily caught
and then re-thrown to the caller of the method. Otherwise, the execution continues with
a block that reads the other parameter (load 1), adds it to the value read from the field
min and returns the result. Every bytecode instruction except return and throw always
has one or more immediate successors. The latter are placed at the end of a method or
constructor and typically have no successors. �

Bytecode instructions operate on variables, which encompass both stack elements and
local variables. A standard algorithm [8] infers their static types.

Definition 2 (Type environment). Let V be the set of variables from L= {l0, . . . , li−1}
(i local variables) and S = {s0, . . . , sj−1} (j stack elements). A type environment is a
function τ : V→T, and its domain is written as dom(τ). The set of all type environments
is T . For simplicity, we write dom(τ) = {v0, . . . , vi+j−1}, where vr = lr if 0 ≤ r < i and
vr =sr−i if i ≤r < i + j . Moreover, we let |τ| denote |dom(τ)|= i + j .

Definition 3 (State). A value is an element of V = Z ∪ L ∪ {null}, where L is an
infinite set of memory locations. A state over a type environment τ is 〈ρ, μ〉, where
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public class Event {
public int hr , min ;
. . .
public int delayMinBy ( int o f f s e t )

{ return min + o f f s e t ; }
. . .

}

load 0 Event
getfield Event.min : int

load 1 int
add int
return int

catch
throw Throwable

Fig. 2. Our running example
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Fig. 3. A JVM state σ = 〈ρ, μ〉

ρ ∈ dom(τ) → V is called environment and assigns a value to each variable from
dom(τ), while μ ∈ M is called memory and binds locations to objects. Every object o
has class o.κ and an internal state o.φ mapping each field f of o into its value (o.φ)(f ).
The set of all states over τ is Ξτ. We assume that states are well-typed, i.e., variables
hold values consistent with their static types.

The JVM supports exceptions and we distinguish between normal and exceptional
states. These latter arise immediately after a bytecode throwing an exception and in that
case there is only one element on the stack: a location bound to the thrown exception.

Example 2. Let τ = [l1 	→ ListEvents;l2 	→ int;l3 	→ Event;l4 	→ ListEvents]∈T , where
class ListEvents defines two fields: head of type Event and tail of type ListEvents.
Fig. 3 shows a state σ = 〈ρ, μ〉 ∈ Στ. Environment ρ maps variables l1, l2, l3 and l4 to
values 
2, 2, 
3 and 
4, respectively. Memory μ maps locations 
2 and 
4 to objects o2

and o4 of class ListEvents, and 
3 to o3 of class Event. Objects are shown as boxes in
μ with a class tag and a local environment mapping fields to integers, locations or null.
For instance, fields head and tail of o4 contain locations 
3 and 
2, respectively. �

The semantics of an instruction ins of our target language is a partial map ins : Στ → Στ′
from initial to final states. Number of local variables and stack elements at its start, as
well as their static types, are specified by τ∈T . In the following we assume that dom(τ)
contains i local variables and j stack elements. Moreover, we suppose that the semantics
is undefined for input states of wrong sizes or types, as is required in [8]. The formal
semantics is given in [14] and we discuss it informally below.

Basic Instructions. constx pushes x ∈Z on top of the stack. Like any other instruction
except catch, it is defined only when the JVM is in a normal state. catch starts instead
the exceptional handlers from an exceptional state and is, therefore, undefined on a
normal state. dup t duplicates the top of the stack, of type t. load k t pushes on the stack
the value of local variable number k , lk , which must exist and have type t. Conversely,
store k t pops the top of the stack of type t and writes it in local variable lk ; it might
potentially enlarge the set of local variables. In our formalization, conditional bytecodes
are used in complementary pairs (such as ifne t and ifeq t), at a conditional branch. For
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instance, ifeq t checks whether the top of the stack, of type t, is 0 when t= int or null
when t ∈ K. Otherwise, its semantics is undefined. Bytecode inc k x increments the
integer held in local variable lk by a constant x . Bytecode op pops two integers from
the operand stack, performs a suitable binary algebraic operation on them, and pushes
the integer result back onto the stack. op may be add, sub, mul, div and rem, and the
corresponding algebraic operations are +, −, ×, ÷ and %.

Object-Manipulating Instructions. These create or access objects in memory. new κ
pushes on the stack a reference to a new object o of class κ, whose fields are initialized
to a default value: null for reference fields, and 0 for integer fields [8]. getfield f reads
field f of a receiver object r popped from the stack. putfield f writes the top of the stack
inside field f of the object pointed to by the underlying value r .

Exception-Handling Instructions. throw κ throws the top of the stack, whose type κ
is a subclass of Throwable. catch starts an exception handler: it takes an exceptional
state and transforms it into a normal state at the beginning of the handler. After catch,
an appropriate handler dependent on the run-time class of the exception is selected.

Method Call and Return. We use an activation stack of states. Methods can be re-
defined in object-oriented code, so a call instruction has the form call m1 . . .mk , enu-
merating an over-approximation of the set of its possible run-time targets. See [14] for
details.

3 Alias Expressions

In this section, we define our expressions of interest (Definition 4), their non-standard
evaluation (Definition 6), which might modify the content of some memory locations
and we introduce the notion of alias expression (Definition 7). Moreover, we specify
in which cases a bytecode instruction might affect the value of an expression (Defini-
tion 8), and when the evaluation of an expression might modify a field (Definition 9).

Definition 4 (Expressions). Given τ∈T , let Fτ andMτ respectively denote the sets of
the names of all possible fields and methods of all the objects available in Στ. We define
the set of expressions over dom(τ): Eτ � E ::= n | v | E ⊕ E | E.f | E.m(E, . . .), where
n ∈ Z, v ∈ dom(τ), ⊕ ∈ {+,−,×,÷,%}, f ∈ Fτ and m ∈ Mτ.

Definition 5. We define a map vars : Eτ → ℘(dom(τ)) yielding the variables occurring
in an expression and a map flds : Eτ → ℘(Fτ) yielding the fields that might be read
during the evaluation of an expression, for a given τ ∈ T as:

E vars(E) flds(E)
n ∈ Z ∅ ∅

v ∈ dom(τ) {v } ∅

E1 ⊕ E2 vars(E1) ∪ vars(E2) flds(E1) ∪ flds(E2)
E.f vars(E) flds(E) ∪ {f }

E0.m(E1, . . . ,Eπ)
π⋃

i=0
vars(Ei )

π⋃

i=0
flds(Ei ) ∪ {f | m might read f }
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Note that the definition of flds requires a preliminary computation of the fields possibly
read by a method m, which might just be a transitive closure of the field f for which a
getfield occurs in m or in at least one method invoked by m. For instance, if the static
type of the local variable l2 is Event, then expression E = l2.delayMinBy(15) satisfies
the following equalities: vars(E2)= {l2}, and flds(E2)= {min}. The latter follows from the
fact that delayMinBy contains only one getfield and no call instruction (Ex. 1). There
exist some more precise approximations of this useful piece of information, e.g., the
one determined by our Julia tool. Anyway, in the absence of this approximation, we can
always assume the least precise sound hypothesis: every method can read every field.

Some of the expressions defined above represent the result of a method invocation.
Their evaluation, in general, might modify the memory, so we must be aware of the
side-effects of the methods appearing in these expressions. We define the non-standard
evaluation of an expression e in a state 〈ρ, μ〉 as a pair 〈w , μ′〉, where w is the computed
value of e, while μ′ is the updated memory obtained from μ after the evaluation of e.

Definition 6 (Non-standard evaluation of expressions). A non-standard evaluation of
expressions in a state σ = 〈ρ, μ〉 ∈ Στ is a partial map �·�∗ : Eτ → V ×M defined as:

– for every n ∈ Z, �n�∗σ = 〈n , μ〉, while for every v ∈ dom(τ), �v�∗σ = 〈ρ(v ), μ〉;
– �E1 ⊕ E2�∗σ is defined only if �E1�∗σ = 〈w1, μ1〉, �E2�∗〈ρ, μ1〉 = 〈w2, μ2〉 and

w1,w2 ∈ Z. In that case �E1 ⊕ E2�∗σ = 〈w1 ⊕ w2, μ2〉, otherwise it is undefined;
– �E.f �∗σ is defined only if �E�∗σ = 〈
, μ1〉, 
 ∈ L and f ∈ F(μ1(
).κ). In that case
�E.f �∗σ = 〈(μ1(
).φ)(f ), μ1〉;

– in order to compute �E0.m(E1, . . . ,Eπ)�∗σ, we determine �E0�∗〈ρ, μ〉 = 〈w0, μ0〉,
and for each 1 ≤ i < π, we evaluate Ei+1 in the state 〈ρ, μi 〉: �Ei+1�∗〈ρ, μi 〉 =
〈wi+1, μi+1〉. If w0 ∈ L, we run m on the object μπ(w0) with parameters w1, . . . ,wπ
and if it terminates with no exception, the result of the evaluation is the pair of m’s
return value w and the memory μ′ obtained from μπ as a side-effect of m.

We write �E�σ for the value of E, without the updated memory.

Definition 7 (Alias Expression). We say that an expression E ∈ Eτ is an alias expres-
sion of a variable v ∈dom(τ) in a state σ= 〈ρ, μ〉∈Στ if and only if �E�σ=ρ(v ).

We specify when the value of an expression might be affected by an instruction’s exe-
cution. An information about the fields that might be modified during the execution of
the methods is required. Without that information, the analysis would be less precise.

Definition 8 (canBeAffected). Let τ and τ′ be the static type information at and imme-
diately after an instruction ins. We define a map canBeAffected(·, ins) : Eτ → {true, false}
which, for every expression E ∈ Eτ determines whether E might be affected by ins:

E canBeAffected(E, ins)
n ∈ V false

v ∈ dom(τ)
(v �dom(τ′)) ∨ (ins ∈{inc k x , store k t} ∧ v = lk )
∨(ins=getfield f ∧ v =sj−1) ∨ (ins=op ∧ v =sj−2)

E1 ⊕ E2 canBeAffected(E1, ins) ∨ canBeAffected(E2, ins)

E.g
canBeAffected(E, ins) ∨ (ins=putfield f ∧ f =g)
∨ (ins=call m ∧ execution of m might modify g)

E0.p(E1, . . . ,Eπ)
∨π

i=0 canBeAffected(Ei , ins) ∨ (ins=putfield f ∧ f ∈flds(E))
∨ (ins=call m ∧ the execution of m might modify a field in flds(E))
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That is, instructions that remove some variables from the stack (putfield, op, ifne, ifeq
and store) affect the evaluation of all the expressions in which these variables appear;
instructions that write into one particular variable (inc, store, getfield and op) might
affect the evaluation of the expressions containing that variable; putfield f might modify
the evaluation of all the expressions that might read f ; call m1 . . .mk might modify the
evaluation of all expressions that might read a field f possibly modified by an mi .

On the other hand, the evaluation of an expression in a state, might update the mem-
ory component of that state by modifying the value of some fields.

Definition 9 (mightMdf). Function mightMdf specifies whether a field belonging to a
set of fields F ⊆ Fτ might be modified during the evaluation of an expression E:

– mightMdf(n ,F ) = mightMdf(v ,F ) = false, for every n ∈Z and every v ∈dom(τ);
– mightMdf(E1 ⊕ E2,F ) = mightMdf(E1,F ) ∨mightMdf(E2,F );
– mightMdf(E.g ,F ) = mightMdf(E,F );
– mightMdf(E0.p(E1, . . . ,Eπ),F ) = true if there exists 0≤ i ≤π, s.t. mightMdf(Ei ,F ) =

true or if the execution of p might write a field from F .

4 Definite Expression Aliasing Analysis

The concrete semantics works over concrete states, that our abstract interpretation ab-
stracts into tuples of sets of expressions.

Definition 10 (Concrete and Abstract Domain). The concrete domain over τ ∈ T
is Cτ = 〈℘(Στ),⊆,∪,∩〉 and the abstract domain over τ is Aτ = 〈(℘(Eτ))|τ|,�,�,�〉,
where for every A1 = 〈A1

0, . . . ,A
1
|τ|−1〉 and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉, A1 � A2 if and only if

for each 0 ≤ i < |τ|, A1
i ⊇ A2

i . Moreover, the join operator � is defined as A1 � A2 =

〈A1
0 ∩ A2

0, . . . ,A
1
|τ|−1 ∩ A2

|τ|−1〉. The meet operator � is dually defined.

Concrete states σ corresponding to an abstract element 〈A0, . . . ,A|τ|−1〉 must satisfy the
aliasing information represented by the latter, i.e., for each 0≤ r < |τ|, the value of all
the expressions from Ar in σ must coincide with the value of vr in σ (definite aliasing).

Definition 11 (Concretization map). Let τ∈T and A= 〈A0, . . . ,A|τ|−1〉∈Aτ. We define
γτ : Aτ → Cτ as follows: γ(A)= {σ= 〈ρ, μ〉∈Στ | ∀0≤r < |τ|.∀E∈Ar .�E�σ=ρ(vr )}.

Both Cτ and Aτ are complete lattices. Moreover, we proved γτ co-additive, and there-
fore it is the concretization map of a Galois connection [5] and Aτ is actually an abstract
domain, in the sense of abstract interpretation.

4.1 The Abstract Constraint Graph

Our analysis is constraint-based: we construct an abstract constraint graph from the
program under analysis and then we solve these constraints. For each bytecode of the
program there is a node containing an approximation of the actual aliasing information
at that point. Arcs of the graph propagate these approximations, reflecting, in abstract
terms, the effects of the concrete semantics on the aliasing information. In other words,
an arc between the nodes corresponding to two bytecodes b1 and b2 propagates the
aliasing information at b1 into that at b2. The exact meaning of propagates depends
here on b1, since each bytecode has different effects on the abstract information.
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ins A′r

#1 dup t A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ar ∪ Ar [sj /sj−1] if r < |τ|−1
A|τ|−1 ∪ {sj } if r = |τ|−1
A|τ|−1 ∪ {sj−1} if r = |τ|

#2 new κ A′r =

⎧
⎪⎪⎨
⎪⎪⎩

Ar if r � |τ|
∅ if r = |τ|

#3 load k t A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ar ∪ Ar [sj /lk ] if r � {k , |τ|}
Ak ∪ {sj } if r = k

Ak ∪ {lk } if r = |τ|
#4 store k t A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E ∈ Ar | ¬canBeAffected(E, ins)} if r � k

{E ∈ A|τ|−1 | ¬canBeAffected(E, ins)} if r = k

#5 getfield f A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{E ∈ Ar | ¬canBeAffected(E, ins)} if r � |τ|−1
{E.f | E∈A|τ|−1 ∧ ¬canBeAffected(E, ins)

∧¬mightMdf(E, {f })} if r = |τ|−1
#6 putfield f

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}
#7 catch, ifne t, ifeq t

#8 const v A′r =

⎧
⎪⎪⎨
⎪⎪⎩

Ar if r � |τ|
{x } if r = |τ|

#9 inc k x A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E[lk − x/lk ] | E ∈ Ar } if r � k

∅ if r = k

#10 op A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{E ∈ Ar | ¬canBeAffected(E, ins)} if r � |τ|−2
{E1⊕E2 | E1 ∈A|τ|−2 ∧ E2 ∈A|τ|−1

∧¬canBeAffected(E1⊕E2, ins)} if r = |τ|−2

#11 return void A′r = {E ∈ Ar | noStackElements(E)}
#12 return t A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E ∈ Ar | noStackElements(E)} if r � i

{E ∈ A|τ|−1 | noStackElements(E)} if r = i

#13 throw κ

A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E ∈ Ar | noStackElements(E)} if r � i

∅ if r = i
#14 call m1 . . .mk

#15
new κ, throw κ

getfield f , putfield f

Fig. 4. Propagation rules of 1−1 arcs

Definition 12 (ACG). Let P be the program under analysis, already in the form of a
CFG of basic blocks for each method or constructor (Section 2). The abstract constraint
graph (ACG) for P is a directed graph 〈V ,E 〉 (nodes, arcs) where:

– V contains a node ins for each bytecode ins in P ;
– for each method or constructor m in P , V contains nodes exit@m and exception@m ,

representing the normal and the exceptional final states of m;
– each node contains an abstract element A ∈ A representing an approximation of

the actual aliasing information at that point;
– E contains directed arcs with one (1−1) or two (2−1) sources and always one

sink. Each arc has a propagation rule i.e., a function over A, from the aliasing
information at its source(s) to the aliasing information at its sink.

The arcs in E are built from P as follows. We assume for all 1−1 arcs that τ and τ′

are the static type information at and immediately after the execution of a bytecode
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A′r

#17 A′r =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ar if r � |τC |−π
{E=R[E0, . . . ,Eπ−1/l0, . . . , lπ−1] | R∈R|τE |−1 ∧ safeReturn(R,mw ) ∧ safeAlias(E, insC )}
∪ {E=E0.m(E1, . . . ,Eπ−1) | safeAlias(E, insC )} if r = |τC |−π

#18 A′r =

⎧
⎪⎪⎨
⎪⎪⎩

{E | safeExecution(E,Ar , insC )} if r � |τC |−π
EτN if r = |τC |−π

safeExecution(E,A, insC ) = E ∈ A ∧ noParameters(E) ∧ ¬canBeAffected(E, insC )
safeAlias(E, insC ) =

∧π−1
k=0 safeExecution(Ek ,A|τC |−π+k , insC ) ∧ ¬mightMdf(E, flds(E))

safeReturn(R,mw ) = ∀lk ∈vars(R)⊆{l0, . . . , lπ−1}.lk is not modified by mw

noParameters(E) = vars(E) ∩ {v|τC |−π, . . . , v|τC |−1} = ∅
Fig. 5. Propagation rules of 2−1 arcs

ins, respectively. Moreover, we assume that τ contains j stack elements and i local
variables and, for every expression E, we write noStackElements(E) to denote that no
stack element appears in E, i.e., vars(E) ∩ {s0, . . . , sj−1}=∅.

Sequential arcs. If ins is a bytecode in P , distinct from call, immediately followed by
a bytecode ins′, distinct from catch, then an 1−1 arc is built from ins to ins′ , with
a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A

′
|τ′|−1〉 where, for each 0 ≤ r < |τ′|, A′r is

defined by one of the rules #1 − #10 in Fig. 4.

Final arcs. For each return t and throw κ occurring in a method or constructor m of P ,
there are 1−1 arcs from return t to exit@m and from throw κ to exception@m , respectively,
with a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A

′
|τ′|−1〉 where, for each 0≤r < |τ′|, A′r

is defined by one of the rules #11 − #13 in Fig. 4.

Exceptional arcs. For each ins throwing an exception, immediately followed by a catch,
an arc is built from ins to catch , with a prop. rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A

′
|τ′|−1〉

where, for each 0≤r < |τ′|, A′r is defined by rules #14 or #15 in Fig. 4.

Parameter passing arcs. For each call m1 . . .mq occurring in P with π parameters
(including the implicit parameter this), for each 1 ≤ i ≤ q we build an 1−1 arc from
call m1 . . .mq to the node corresponding to the first bytecode of mi , with a propagation

rule #16: λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A
′
π−1〉 where, for each 0≤r <π, A′r =∅.

Return value arcs. For each insC = call m1 . . .mq to a method with π parameters
(including the implicit parameter this) returning a value of type t � void, and each
subsequent bytecode insN distinct from catch, we build, for each 1≤w ≤ q , a 2−1 arc
from insC and exit@mw (2 sources, in that order) to insN . Suppose that the static type
information at insC , exit@mw and insN are τC , τE and τN , respectively. We define
a propagation rule λ〈A0, . . . ,Ap , . . . ,A|τC |−1〉, 〈R0, . . . ,R|τE |−1〉.〈A′0, . . . ,A

′
|τC |−π〉, where

for each 0≤r ≤|τC |−π, A′r is defined by the rule #17 in Fig. 5.

Side-effects arcs. For each insC = call m1 . . .mq to a method with π parameters (in-
cluding the implicit parameter this), and each subsequent bytecode insN , we build,
for each 1 ≤ w ≤ q , a 2−1 arc from insC and exit@mw (2 sources, in that order) to
insN , if insN is not a catch and a 2−1 arc from insC and exception@mw (2 sources,

in that order) to catch . Suppose that the static type information at insC , exit@mw (or
exception@mw ) and insC are τC , τE and τN respectively. We define a propagation rule
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λ〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉, 〈R0, . . . ,R|τE |−1〉.〈A′0, . . . ,A
′
|τN |−1〉, where for each 0≤r <

|τN |, A′r is defined by the rule #18 in Fig. 5.

Example 3. In Fig. 6 we give the ACG of the method delayMinBy from Fig. 2. Nodes
a, b and c belong to the caller of this method and exemplify the arcs related to the call
and return bytecodes. Arcs are decorated with the number of their associated propaga-
tion rules. In the following examples, for each node x , we let Ax = 〈Ax

0 , . . . ,A
x
nx−1〉 be

the aliasing information at x , where nx is the number of variables at x and, for each r ,
we let Ax

r be an approximation of the definite aliasing expressions of variable vr . �

The sequential arcs link an instruction ins to its immediate successor ins′ propagat-
ing, for every variable v at ins′, all those expressions E aliased to v at ins that can-
not be affected by ins itself, i.e., such that ¬canBeAffected(E, ins) holds. However,
some new alias expressions might be added to the initial approximation as well. For
instance, in the case of ins=dup t (rule #1), the new added variable vn = sj is a
copy of vn−1 = sj−1, hence they are trivially aliased to each other, and all definite
alias expressions of vn−1 at ins become definite alias expressions of vn at ins′ (i.e.,
A′n−1=An−1 ∪ {sj }, A′n =An−1 ∪ {sj−1}). Approximations related to the rest of the vari-
ables are enriched with the same expressions where occurrences of sj−1 are replaced by
sj (A′r =Ar ∪ Ar [sj /sj−1]). Rule #5 is more interesting: ins=getfield f inserts an ex-
pression E.f among alias expressions of vn−1 at ins′ if E is aliased to vn−1 (holding the
receiver) at ins, it cannot be modified by ins (¬canBeAffected(E, ins)) and the evaluation
of E cannot modify the field f (¬mightMdf(E, {f })). For instance, suppose that in Ex. 3
we have n2=3 and A2

2= {v0}, i.e., v2, the top of the stack and the receiver of the getfield
at 2, is aliased to v0. There is an arc with rule #5 connecting nodes 2 and 3. According
to that rule, since the getfield cannot affect v0, but only v2, and since no evaluation of
v0 can modify any field (in particular min), we conclude that A3

2= {v0.min}, i.e., the new
top of the stack is aliased to the field min of the only alias of the old top of the stack.

The final arcs feed nodes exit@m and exception@m for each method m. They propa-
gate, for each local variable lk at ins′, all those expressions aliased to lk at ins where no
stack variable occurs. In the case of ins= return t, with t�void, the alias expressions of
vi =s0 at ins′ are alias expressions of vn−1=sj−1 at ins with no stack elements.

The exceptional arcs link every instruction that might throw an exception to the
catch at the beginning of their exception handler(s). They propagate alias expressions
of local variables analogously to the final arcs. For the only stack element (vi = s0),
holding the thrown exception, there is no alias expression (Ai =∅).

Let us explain the auxiliary functions introduced in Fig. 5. An execution of ins =
call m1 . . .mt is safe for an expression E ∈ A (safeExecution(E,A, ins) holds), if the
fields possibly read during the evaluation of E must not be modified by the invoked
method (¬canBeAffected(E, ins)) and if no actual parameter of that method appears in E
(noParameters(E)), since they disappear from the stack after the call. An alias expres-
sion E in which E0, . . . ,Eπ−1 appear is safe (safeAlias(E, ins) holds) if ins is safe for
each Er and if no field might be both read and modified during all possible evaluations
of E (¬mightMdf(E, flds(E))). An alias expression R of a return value at the exit from a
method mw is safe, i.e., safeReturn(R,mw ) holds, if only local variables corresponding
to the formal parameters of mw (l0, . . . , lπ−1) appear in R and none of them is modified
by mw (for every lk ∈vars(R), no store k t nor inc k x occurs in mw ).
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node anode c

catch

node 9
exception@delayMinBy

node b
store 3 int

node 6
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
return int

node 7
catch

node 8
throw java.lang.Throwable

�14

�16
�18 �18

�17

�3

�7 �3

�10

�5�15

�12

�13

Fig. 6. The ACG for the method delayMinBy in Fig. 2

There exists a return value 2−1 arc for each target mw of a call returning a value.
Rule #17 considers 〈A0, . . . ,A|τC |−1〉 and 〈R0, . . . ,R|τE |−1〉, approximations at insC and
exit@mw , and builds the alias expressions related to the returned value s|τC |−π at insN .

An alias expression R ∈ R|τE |−1 of the computed value s0 at exit@mw can be turned
into an alias expression of s|τC |−π at insN if (i) R is safe; (ii) every occurrence of
a formal parameter lk in R is replaced by an alias expression Ek ∈ A|τC |−π+k of the
corresponding actual parameter s|τC |−π+k at insC , which is safe w.r.t. insC . Moreover,
E = E0.mw (E1, . . . ,Eπ−1) can be an alias of s|τC |−π at insN if it is safe w.r.t. insC .
For instance, suppose that in Ex. 3 the actual parameters of the call at node a (which
become the local variables v0 and v1 inside delayMinBy) are aliased to v1 and 15, and
that at the exit node 6 the return value is aliased to v0.min + v1. Since this expression
is composed of local variables corresponding to the formal parameters of delayMinBy
and the latter does not modify any variable (it contains no store nor inc), we conclude
that v0.min + v1 is safe. v0 and v1 at 6 correspond to the actual parameters at a, thus the
aliases v1 and 15 of these latter can substitute these former obtaining the alias expression
E=v1.min + 15 at b. Indeed, no evaluation of E can modify any field (Definition 9), so
¬mightMdf(E, flds(E)) trivially holds. Moreover, v1 and 15 contain no actual parameter
at a, and no execution of the method can modify a local variable or a constant of the
caller, hence E is safe and can be an alias expression of the returned value at node b.

The side-effects 2−1 arcs consider the alias expressions E of the variables vr dif-
ferent from the actual parameters (s|τC |−π, . . . , s|τC |−1) of the method at insC and insert
them among the alias expressions of vr also at insN if they are safe w.r.t. insC .

Definition 13 (Alias Expression Analysis). A solution of an ACG is an assignment of
an abstract element An to each node n of the ACG such that the propagation rules of
the arcs are satisfied, i.e., for every arc from nodes n1 . . .nk to n with propagation rule
λA1, . . . , λAk .Π(A1, . . . ,Ak ), the condition An � Π(An1 , . . . ,Ank

) holds. The alias
expression analysis of the program is the minimal solution of its ACG w.r.t. �.

Definition 13 entails that if k arcs reach the same node n , bringing to it k approxima-
tions, i.e., k sets of alias expressions for each variable at n , then the approximation of
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Node n An
0 An

1 An
2 An

3 in jn
a ∅ {v0.getHead(), s0} {v0.getHead(), v1} {15} 2 2
1 ∅ ∅ − − 2 0
2 {s0} ∅ {v0} − 2 13 ∅ ∅ {v0.min} −
4 ∅ {s1} {v0.min} {v1} 2 2

5, 6 ∅ ∅ {v0.min + v1} −

2 1
7, 8, 9 ∅ ∅ ∅ −

b ∅ {v0.getHead()} {v1.delayMinBy(15), v0.getHead().min+15, −
v1.min+15, v0.getHead().delayMinBy(15)}

c ∅ {v1.getHead()} ∅ −

Fig. 7. The solution of the ACG from Fig. 6

the actual aliasing information for each variable v at n is the intersection of the k sets re-
lated to v . The minimal solution w.r.t. � corresponds to the greatest sets of expressions
for each variable (Definition 10). In order to guarantee its existence, we fix an upper
bounds on the height of the alias expressions (e.g., a maximal number of field accesses
and method invocations) which makes the abstract domain Aτ finite. The solution of the
constraint can, hence, be computed by starting with the bottom approximation for every
node: the set of all possible alias expressions; and then applying the propagation of the
arcs and computing the intersection at each node entry, until stabilization.

Example 4. Fig. 7 shows the solution of the ACG from Fig. 6. For each node n , the
values shown in columns in , jn and An

r are respectively the number of local variables,
stack elements and the final approximation of the aliasing information related to the
variable vr at that point. When the latter is −, it means that vr is not available there. It
is worth noting that the variable v0 at nodes a, b and c is of type ListEvents (Ex. 2)
and that getHead only returns the field head of that class. �

The following theorem states that our analysis is sound.

Theorem 1 (Soundness). Suppose that an execution of a program leads to a state σ∈
Στ. Let Ains ∈Aτ be the approximation of the definite expression aliasing information at
the node ins corresponding to ins, computed by our static analysis. Then, σ∈γτ(Ains).

5 Experiments

We have implemented our definite expression aliasing analysis inside the Julia analyzer
for Java bytecode (http://www.juliasoft.com) and we have analyzed some real-life
benchmark programs. We provide the names of these latter together with their identi-
fication numbers used in Fig. 8 and 9. The majority of our benchmarks are Android
applications: Mileage (15), OpenSudoku (19), Solitaire (26) and TiltMazes1 (29); Chime-
Timer (4), Dazzle (7), OnWatch (18) and Tricorder2 (31); TxWthr3 (32). There are also
some Java programs: JFlex (12) is a lexical analyzers generator4; Plume is a library by

1 http://f-droid.org/repository/browse/
2 http://moonblink.googlecode.com/svn/trunk/
3 http://typoweather.googlecode.com/svn/trunk/
4 http://jflex.de

https://vpn.univr.it/repository/browse/,DanaInfo=f-droid.org+
https://vpn.univr.it/svn/trunk/,DanaInfo=moonblink.googlecode.com+
https://vpn.univr.it/svn/trunk/,DanaInfo=typoweather.googlecode.com+
https://vpn.univr.it/,DanaInfo=jflex.de+
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Fig. 8. Comparison of the number of warnings (possible dereference of null, possibly passing
null to a library method) produced by the nullness tool of Julia (top) and of the run-times (in
seconds) of that tool (bottom) when our definite aliasing analysis is present and absent
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Fig. 9. Comparison between number of warnings (possible divergence of constructors or meth-
ods) produced by the termination tool of Julia (top) and between run-times (in seconds) of that
tool (bottom) when our definite aliasing analysis is present and absent

Michael D. Ernst5; Nti (17) is a non-termination analyzer by Étienne Payet6; Lisimplex
(13) is a numerical simplex implementation by Ricardo Gobbo7. The others are sample
programs from the Android 3.1 distribution by Google.

5 http://code.google.com/p/plume-lib
6 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
7 http://sourceforge.net/projects/lisimplex

https://vpn.univr.it/p/,DanaInfo=code.google.com+plume-lib
https://vpn.univr.it/epayet/Research/NTI/,DanaInfo=personnel.univ-reunion.fr+NTI.html
https://vpn.univr.it/projects/,DanaInfo=sourceforge.net+lisimplex
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Definite expression aliasing analysis is used to support Julia’s nullness and termina-
tion analyses. In particular, we use our analysis at the then branch of each comparisson
if (v!=null) to infer that the definite aliases of v are non-null there, and at each as-
signment w.f=exp to infer that expressions E.f are non-null when exp is non-null
and when E is a definite alias of w whose evaluation does not read nor write f. More-
over, we use it to infer symbolic upper or lower bounds of variables whenever we have
a comparison such as x< y: all definite alias expressions of y (resp. x) are upper (resp.
lower) bounds for x (resp. y). This is important for termination analysis.

Figures 8 and 9 report the precision and the run-time of our nullness and termina-
tion analyses on a Linux quad-core Intel Xeon machine running at 2.66GHz, with 8
gigabytes of RAM. We performed these analyses first without and then with the help of
our definite expression aliasing analysis. This way, we notice how the tools’ precision
changes. A clear difference between the two runs is that the run-time of the nullness and
termination analyses increased by 9.88% and 12.57% respectively, when the definite ex-
pression aliasing analysis is activated. On the other hand, the precision of both analyses
is improved in the presence of the definite expression aliasing analysis: 45.98% and
11.44% less warnings are produced by the nullness and termination analyses, respec-
tively. These improvements are well worth the extra time required for the analyses.

6 Conclusion

Our expression aliasing analysis is a constraint-based definite analysis for Java byte-
code. To the best of our knowledge, it is the first definite aliasing analysis dealing with
Java bytecode programs and with aliases to expressions. Our experimental evaluation
shows the benefits of our new analysis for the nullness and termination analyses of Julia.
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