
Reachability Analysis of Program Variables

Ðurica Nikolić1,2 and Fausto Spoto1

1 Dipartimento di Informatica, University of Verona
2 Microsoft Research - University of Trento Centre for Computational and Systems Biology

{durica.nikolic,fausto.spoto}@univr.it

Abstract. A variable v reaches a variable w if there is a path from the memory
location bound to v to the one bound to w . This information is important for
improving the precision of other static analyses, such as side-effects, field initial-
ization, cyclicity and path-length, as well as of more complex analyses built upon
them, such as nullness and termination. We present a provably correct constraint-
based reachability analysis for Java bytecode. Our constraint is a graph whose
nodes are program points and whose arcs propagate reachability information ac-
cording to the semantics of bytecodes. The analysis has been implemented in the
Julia static analyzer. Experiments that we performed on non-trivial Java and An-
droid programs show a gain in precision due to a reachability information, whose
presence also reduces the cost of nullness and termination analyses.

1 Introduction

Static analysis of computer programs allows us to statically gather information about
their run-time behavior, making it possible to prove that these programs do not perform
illegal operations (such as division by zero or dereference of null), do not give rise
to erroneous executions (such as infinite loops) or do not divulge information (such as
security authorizations or GPS position) in an incorrect way.

Dynamic allocation of objects is heavily used in real life programs. These objects
are instantiated on demand, their number is not statically known and they can reference
other objects (through fields). Such references can be updated at run-time. In this paper
we present, formalize and implement a provably correct abstraction of the run-time, dy-
namically allocated memory, that we call reachability. We say that a variable v reaches
a variable w if w holds an object reachable from v , by following (different objects’)
fields from the object held in the location bound to v . For instance, after an assignment
v.next.next = w, we can state that v reaches w . Reachability is distinct from shar-
ing i.e., being able to reach a shared object. For instance, after the statement v.next
= w.next, we can state that v and w share. If v reaches w then v and w share, but
the converse might not hold. Hence reachability is more precise, i.e., it induces a finer,
more concrete abstraction of the computational states than sharing analysis. Our anal-
ysis is constraint-based: constraints are built from the syntax of the program and their
solution is a correct approximation of reachability. A companion paper [14] includes
full definitions and proofs.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 423–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

424 Ð. Nikolić and F. Spoto

Reachability has been applied to several static analyses:

Side-Effects Analysis: Side-effects analysis tracks (among other things) which param-
eters p of a method might be affected by its execution in the sense that the method
might update a field of an object reachable from p. Namely, if the method performs
an assignment a.f=b, this affects p only if p reaches a. If we used sharing rather than
reachability information, that would lead to a loss of precision, since it might be the
case that p and a share but the assignment modifies an object unreachable from p.

Field Initialization Analysis: It is often the case that a field is initialized by all of the
constructors of its defining class before being read by these constructors. Spotting this
frequent situation is important for many analyses, including nullness [15,22]. Hence,
we want to know whether a field read operation a=expression.f inside a constructor
can actually read field f of the this object, being initialized by the constructor. This
happens only if this reaches expression. Again, sharing would be less precise here.

Cyclicity Analysis: An assignment a.f=bmight make a cyclical (i.e., point to a cycli-
cal data structure), but only if b reaches a. Originally, this analysis was built upon
sharing information [16], but analysis of reachable variables helps here.

Path-Length Analysis: Path-length is a data structure measure used in termination
analysis [23]. It is the maximum number of pointer dereferences that can be followed
from a program variable. An assignment a.f=b can only modify the path-length of
the program variables that share with a, according to the original definition of path-
length [23]. Reachability analysis improves this approximation, since the path-length
of a program variable v is actually modified only if v reaches a.

These analyses, among others, are implemented in our Julia tool
(http://www.juliasoft.com). They are building blocks of larger tools, such
as a nullness and a termination checker. The former spots where a program might
throw a null-pointer exception at run-time; the latter if method calls might diverge. A
tool performs its supporting analyses (the building blocks) in distinct threads, parallel
on multi-core hardware.

Our experiments show that reachability improves side-effects, field initialization and
nullness analysis of non-trivial Java and Android programs. However there is no im-
provement for cyclicity, path-length and termination analysis of the same programs, but
only of sample programs from the international termination competition. That is be-
cause termination often depends on loops over integer counters rather than on recursion
over data structures, as is the case in those samples (probably unusual and artificial).
An unexpected effect of reachability is, however, an increase in the speed of both tools.

Reachability analysis belongs to the group of pointer analyses, that support other
static analyses. Plenty of papers consider them: [9] surveys more than 75 papers. Dif-
ferent properties of pointers give rise to different kinds of pointer analyses: alias, shar-
ing, points-to and shape analyses. Possible (definitive) alias analysis discovers the pairs
of variables that might (must) point to the same memory location. If two variables are
alias, they are also reachable from each other, but the opposite might not hold. Shar-
ing analysis [21] determines whether two variables might ever reach the same object
at run-time. Reachability entails sharing, but the opposite, in general, does not hold.
Points-to analysis [20,10,11,17,8] computes the objects that a pointer variable might

http://www.juliasoft.com

Reachability Analysis 425

refer to at run-time. Usually, points-to analysis performs a conservative approximation
of the heap, which is then used to compute points-to information for the whole program.
In [20], points-to graphs are precise approximations of the run-time heap memory and
can be used to over-approximate the reachability information. Points-to information is
much more concrete than our reachability information. Shape analysis determines heap
shape invariants [18,19,3,7]. These analyses are quite concrete and capture aliasing
and points-to information, as well as other properties such as cyclicity or acyclicity.
These are often encoded as first-order logic formulae and theorem provers are used to
determine their validity. Reachability can, of course, be abstracted from these very pre-
cise approximations of the memory, but we wanted here an analysis that uses the most
abstract (i.e., the simplest) domain able to express reachability between variables.

There is also another notion of reachability [13], slightly different from ours. The
reachability predicate determines whether a memory location reaches another one, usu-
ally along one particular field of one particular data structure, while our definition of
reachable locations deals with arbitrary fields of arbitrary data structures. That pred-
icate is used in [6,1,4] for abstraction of programs, as one particular case of predicate
abstraction [2].

2 Operational Semantics

We present here a formal operational semantics of Java bytecode, inspired by the stan-
dard informal semantics [12]. The same semantics is used in [22], while [23] uses its
denotational form. Java bytecode is the form of instructions executed by the Java Vir-
tual Machine (JVM). Our formalization is at bytecode level for several reasons: there
is a small number of bytecode instructions, compared to varieties of source statements;
bytecode lacks complexities such as inner classes; our implementation of reachability
analysis is at bytecode level, bringing formalism, implementation and proofs closer.

For simplicity, we assume that the only primitive type is int and that reference types
are classes containing instance fields and instant methods only. Our implementation
handles all Java types and bytecodes, as well as classes with static fields and methods.
We analyze bytecode preprocessed into a control flow graph, i.e., a directed graph of

basic blocks, with no jumps inside the blocks. ins
rest

→
→

b1
· · ·
bm

denotes a block of code starting

at instruction ins, possibly followed by more bytecodes rest and linked to m subsequent
blocks b1, . . . , bm . Exception handlers start with a catch. A conditional, virtual method
call, or selection of an exception handler becomes a block with many subsequent blocks,
starting with a filtering bytecode such as exception_is K for exception handlers.

Example 1. Fig. 2 shows the basic blocks of the constructor in Fig. 1. There is a branch
at the call to the constructor of java.lang.Object, that might throw an exception (like
every call). If this happens, the exception is first caught and then re-thrown to the caller
of the constructor. Otherwise, the execution continues with 2 blocks storing the formal
parameters (locals 1 and 2) into the fields of this (local 0) and then returns. ��

Bytecodes operate on variables, which encompass both stack elements and local vari-
ables. A standard algorithm [12] infers their static types.

426 Ð. Nikolić and F. Spoto

public class Lis tStudent {
public Student head ;
public Lis tStudent t a i l ;

public Lis tStudent (Student head ,
L i s tStudent t a i l) {

this . head = head ;
this . t a i l = t a i l ;

}
}

Fig. 1. Our running example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

Fig. 2. Representation of the constructor from Fig. 1

Definition 1 (Classes). The set of classes K of a program is partially ordered w.r.t. the
subclass relation ≤: t≤ t′ if t (respectively t′) is a subclass (respectively superclass) of t′

(respectively t). Every class has at most one direct superclass and an arbitrary number
of direct subclasses. A type is an element of T= {int} ∪ K, ordered by the extension of
≤ with int ≤ int. A class κ ∈K has fields κ.f : t (field f of type t∈T defined in κ), where
κ and t are often omitted. We let F(κ) = {κ′.f : t′ | κ ≤ κ′} be the fields defined in κ or in
any of its superclasses. A class κ has methods κ.m(�t): t (method m, defined in κ, with
arguments of type�t, returning a value of type t ∈ T ∪ {void}), where κ,�t, and t are often
omitted. Constructors are methods named init that return void.

Definition 2 (Type environment). Let V be the set of variables from L = {l0, . . . , lm }
(local variables) and S = {s0, . . . , sn } (stack variables). A type environment is a function
τ : V→T. Its domain is written as dom(τ). The set of all type environments is T .

Definition 3 (State). A value is an element of Z ∪ L ∪ {null}, where L is an infinite
set of memory locations. A state over τ ∈T is a pair 〈〈l ‖ s〉, μ〉 where l is an array of
values for the local variables in dom(τ), s is a stack of values for the stack variables
in dom(τ), which grows leftwards, and μ is a memory, or heap, that binds locations
to objects. The empty stack is denoted by ε. We often use another representation for a
state: 〈ρ, μ〉, where an environment ρ maps each lk ∈L to its value l [k] and each sk ∈S
to its value s[k]. An object o has class o.κ (is an instance of o.κ) and has an internal
environment o.φ that maps every field κ′.f : t′ ∈ F(o.κ) into its value (o.φ)(κ′.f : t′). A
value v has type t in 〈ρ, μ〉 if: v ∈Z and t= int, or v =null and t ∈K, or v ∈L, t ∈K and
μ(v).κ≤ t. In a state 〈ρ, μ〉 over τ, we require that ρ(v) has type τ(v) for any v ∈dom(τ)
and (o.φ)(κ′.f : t′) has type t′ for every o ∈ rng(μ) (range μ) and every κ′.f : t′ ∈F(o.κ).
The set of states is Ξ. We write Ξτ when we want to fix the type environment τ.

Example 2. Let τ = [l1
→ ListStudent; l2
→ int; l3
→ Student; l4
→ ListStudent] ∈ T and
consider the state σ= 〈ρ, μ〉 ∈ Στ shown in Fig. 3. The environment ρ maps variables l1,
l2, l3 and l4 to values �2, 2, �3 and �4, respectively; the memory μ maps locations �2 and
�4 to objects o2 and o4 of class ListStudent and location �3 to object o3 of class Student.
Objects are shown as boxes with a class tag and an internal environment mapping fields
to values. For instance, fields head and tail of o4 contain �3 and �2, respectively. ��

Reachability Analysis 427

l1μ ρ
l2 l3 l4

�1 2 �3 �4

ListStudent

o4
�4

head tail
Student

o3
�3

age
18

ListStudent

o2
�2

head tail
null

Student
age
18

o1
�1

Fig. 3. A JVM state σ = 〈ρ, μ〉

We assume that states are well-typed, i.e.,
variables hold values consistent with their
static types. Since the JVM supports excep-
tions, we distinguish between normal states
Ξ and exceptional states Ξ, which arise im-
mediately after bytecode instructions throw-
ing an exception and have a stack of height
1 containing a location bound to the thrown
exception. When we denote a state by σ, we
do not specify if it is normal or exceptional.

If we want to stress that, we write 〈〈l ‖ s〉, μ〉 or 〈〈l ‖ s〉, μ〉.
The semantics of an instruction ins is a partial map ins : Στ → Στ′ from initial to

final states. The number and type of local variables and stack elements at its start are
specified by τ. The formal semantics is given in [14]. We discuss it informally below.

Basic Instructions. const v pushes v ∈ Z on the top of the stack. Like any other
bytecode except catch, it is defined only when the JVM is in a normal state. The latter
starts the exceptional handlers from an exceptional state and is, therefore, undefined on
a normal state. dupt duplicates the top of the stack, of type t. loadk t pushes on the stack
the value of local variable number k , lk , which must exist and have type t. Conversely,
store k t pops the top of the stack of type t and writes it in local variable lk ; it might
potentially enlarge the set of local variables. In our formalization, conditional bytecodes
are used in complementary pairs (such as ifne t and ifeq t), at a conditional branch. For
instance, ifeq t checks whether the top of the stack, of type t, is 0 when t= int or null
when t∈K. Otherwise, its semantics is undefined.

Object-Manipulating Instructions. These bytecode instructions create or access ob-
jects in memory. new κ pushes on the stack a reference to a new object o of class κ,
whose fields are initialized to a default value: null for reference fields, and 0 for inte-
ger fields [12]. getfield κ.f : t reads the field κ.f : t of a receiver object r popped from the
stack, of type κ. putfield κ.f : t writes the top of the stack, of type t, inside field κ.f : t of
the object pointed to by the underlying value r , of type κ.

Exception-Handling Instructions. throw κ throws the top of the stack, of type κ ≤
Throwable. catch starts an exception handler: it takes an exceptional state and transforms
it into a normal state at the beginning of the handler. After catch, exception_isK selects
an appropriate handler depending on the run-time class of the exception.

Method Call and Return. We use an activation stack of states. Methods can be rede-
fined in object-oriented code, so a call instruction has the form call m1 . . .mk , enumer-
ating an over-approximation of the set of possible run-time targets [14].

3 Reachability

In this section we formalize our notion of reachability between two program variables.

Definition 4 (Locations reachable from a variable). Let τ ∈ T . The set of locations
reachable from a variable a ∈ dom(τ) in a state σ = 〈ρ, μ〉 ∈ Στ is Lσ(a) =

⋃
i≥0 Li

σ(a),

428 Ð. Nikolić and F. Spoto

L0
σ(l1) = {�2}

L1
σ(l1) = Lσ(l1) = {�1, �2}

L0
σ(l2) = Lσ(l2) = ∅

L0
σ(l3) = Lσ(l3) = {�3}

L0
σ(l4) = {�4}

L1
σ(l4) = {�2, �3, �4}

L2
σ(l4) = Lσ(l4) = {�1, �2, �3, �4}

T0(Object) = T(Object)
= {Object, Student, ListStudent}

T0(Student) = {Object, Student}
T1(Student) = T(Student)

= {int,Object, Student}
T0(ListStudent) = {ListStudent,Object}
T1(ListStudent) = {ListStudent,Object, Student}
T2(ListStudent) = T(ListStudent)

= {int, ListStudent,Object, Student}

Fig. 4. Example of computation of reachable locations and types

where Li
σ(a) are the locations reachable from a in at most i steps: Li

σ(a) = {ρ(a)} ∩ L
if i = 0, and Li

σ(a) = Li−1
σ (a) ∪

⋃
�∈Li−1

σ (a)(rng(μ(�).φ) ∩ L) if i > 0.

Definition 5 (Reachability between variables). Let τ ∈ T , σ = 〈ρ, μ〉 ∈ Στ and vari-
ables a, b ∈ dom(τ). We say that b is reachable from a in σ or, equivalently, that a
reaches b in σ, denoted as a�σb, iff ρ(b) ∈ Lσ(a).

We also introduce a notion of static reachability between types.

Definition 6 (Reachability between types). Let t ∈ T. The set of types compatible
with t is compatible(t) = {t′ | t ≤ t′ or t′ ≤ t}. The set of types reachable from t
is T(t) =

⋃
i≥0 Ti (t), where Ti (t) are the types reachable from t in at most i steps:

Ti (t) = compatible(t) if i = 0, and Ti (t) = Ti−1(t)∪
⋃
κ∈Ti−1(t)∩K, κ′ .f :t′∈F(κ) compatible(t′)

if i > 0. We say that t′ ∈ T is reachable from t if t′ ∈ T(t), and we denote it as t�t′.

Example 3. Consider σ ∈ Στ from Ex. 2. On the left of Fig. 4 we give, for each li ∈
dom(τ) and j ≥0, the set of reachable locations from li in σ in at most j steps until the
fixpoint is reached. Hence, l1�σl1, l1�σl2, l3�σl3, l4�σl1, l4�σl2, l4�σl3, l4�σl4.
Assume that class Student contains only one field, of type int. ListStudent and Student
are subclasses of Object. Fig. 4 reports on the right the types reachable from these three
classes: ListStudent�Student, Object�Student, Student�Object, Object�Student, etc.

��

Reachability between types can be used to conservatively approximate possible pairs of
variables that might reach each other.

Lemma 1. Let τ∈T , σ∈Στ and a, b ∈dom(τ). If a�σb, then τ(a)�τ(b).

Example 4. Since l4�σl3 (Ex. 3), by Lemma 1, also τ(l4)�τ(l3) holds. In fact, Ex. 3
shows that τ(l4)=ListStudent�Student=τ(l3). ��

4 Reachability Analysis

We define here an abstract interpretation of the concrete semantics of Section 2 w.r.t.
the property of reachability between variables (Definition 5). This will be an actual
algorithm for interprocedural, whole-program reachability analysis. We follow here the
abstract interpretation approach [5], that allows us to define a static analysis from the
formal specifications of the property of interest and the semantics of the language.

Reachability Analysis 429

The concrete semantics works over concrete states (Definition 3), that our abstract
interpretation abstracts into ordered pairs of variables.

Definition 7 (Concrete and Abstract Domain). Given a type environment τ ∈ T , we
define the concrete domain over τ as Cτ= 〈℘(Στ),⊆〉 and the abstract domain over τ as
the powerset of the set of ordered pairs of variables Aτ= 〈℘(dom(τ) × dom(τ)),⊆〉. For
every v ,w ∈dom(τ), we write v�w to denote the ordered pair 〈v ,w〉.

An abstract element R ∈ Aτ represents those concrete states whose reachability in-
formation is over-approximated by the pairs of variables in R (possible reachability).

Definition 8 (Concretization map). For every τ∈T , we define the concretization map
γτ : Aτ → Cτ as γτ=λR.{σ ∈ Στ | ∀a, b ∈ dom(τ).a�σb ⇒ a�b ∈ R}.

Both Cτ and Aτ are complete lattices. Moreover, we proved γτ co-additive, and therefore
it is the concretization map of a Galois connection [5] and Aτ is actually an abstract
domain, in the sense of abstract interpretation.

Our analysis is constraint-based: we build an abstract constraint graph from the
source code of a Java bytecode program. There is a node for each bytecode b in the
program, containing an element of Aτ, where τ is the static type information at the be-
ginning of b. An arc linking the nodes corresponding to two bytecodes b1 and b2 propa-
gates the reachability information from b1 to b2. Here, the exact meaning of propagates
depends on b1, since each bytecode has different effects on reachability.

Definition 9 (ACG). Let P be the program under analysis (i.e., a control flow graph of
basic blocks for each method or constructor). The abstract constraint graph (ACG) of
P is a directed graph 〈V ,E 〉 (nodes, arcs) where:

– V contains a node ins , for every bytecode instruction ins of P ;
– V contains nodes exit@m and exception@m for each method or constructor m in

P , and these nodes correspond to the normal and exceptional end of m;
– E contains directed (multi-)arcs with one or two sources and always one sink;
– for every arc in E , there is a propagation rule, i.e., a function over A, from the

reachability information at its source(s) to the reachability information at its sink.

The arcs in E are built from P as follows. We assume that τ and τ′ are the static
type information at and immediately after the execution of a bytecode ins, respectively.
Moreover, we assume that τ contains j stack elements and i local variables. In the
following we discuss different types of arcs.

Sequential Arcs. If ins is a bytecode in P , distinct from call, immediately followed by a
bytecode ins′, distinct from catch, then a simple arc is built from ins to ins′ , with one
of the propagation rules #1-#7 in Fig. 5.

Final Arcs. For each return t and throw κ occurring in a method or in a constructor
m of P , there are simple arcs from return t to exit@m and from throw κ to exception@m

respectively, with one of the propagation rules #8-#10 in Fig. 5.

430 Ð. Nikolić and F. Spoto

#1 dup t λR.R ∪R[sj−1 �→ sj] ∪ {sj−1�sj , sj�sj−1 | sj−1�sj−1 ∈R}
#2 new κ λR.R ∪ {sj�sj }
#3 load k t λR.R ∪R[lk �→ sj] ∪ {lk�sj , sj�lk | lk�lk ∈R}
#4 store k t λR.{(a�b)[sj−1 �→ lk] | a�b ∈R ∧ a , b � lk }
#5 getfield f : t

λR.{a�b ∈R | a , b � sj−1} ∪ {sj−1�b ∈R | t�τ(b)} ∪
{a�sj−1 | a ∈dom(τ) ∧ τ(a)�t ∧ [a and sj−1 might share at getfield f : t]}

#6 putfield f : t
λR.{a�b ∈R | a , b � {sj−1, sj−2}} ∪

{a�b | a , b � {sj−1, sj−2} ∧ a�sj−2 ∈R ∧ sj−1�b ∈R}
#7 const v , catch, ifne t, ifeq t λR.{a�b ∈R | a , b ∈ dom(τ′)}
#8 return void λR.{a�b ∈R | a , b � {s0, . . . , sj−1}}
#9 return t λR.{(a�b)[sj−1 �→ s0] | a�b ∈R ∧ a , b � {s0, . . . , sj−2}}

#10 throw κ λR.{(a�b)[sj−1 �→ s0] | a�b ∈R ∧ a , b � {s0, . . . , sj−2}} ∪ {s0�s0}
#11 throw κ λR.{(a�b)[sj−1 �→ s0] | a�b ∈R ∧ a , b � {s0, . . . , sj−2}} ∪ {s0�s0}

#12 call m1 . . .mk

λR.{a�b ∈R | a , b � {s0, . . . , sj−1}} ∪ {s0�s0}
∪{a�s0 | a ∈ {l0, . . . , li−1} ∧ τ(a)�Throwable}
∪{s0�a | a ∈ {l0, . . . , li−1} ∧ Throwable�τ(a)}

#13 new κ, getfield f : t, putfield f : t λR.{a�b | a�b ∈R ∧ a , b � {s0, . . . , sj−1}} ∪ {s0�s0}
#14 call m1 . . .mk λR.

{
(a�b)

[
sj−π �→l0
...

sj−1 �→lπ−1

]∣∣∣∣∣ a�b ∈R ∧ a , b ∈ {sj−π, . . . , sj−1}
}

Fig. 5. Propagation rules of simple arcs

Exceptional Arcs. For each ins throwing an exception, immediately followed by a
catch, a arc is built from ins to catch , with one of the propagation rules #11 − #13
in Fig. 5.

Parameter Passing Arcs. For each insc =call m1 . . .mk to a method with π parameters
(including this), we build a simple arc from insc to the node corresponding to the first
bytecode of mw with the propagation rule #14 in Fig. 5, for each 1≤w ≤k .

Return Value Arcs. For each insc = call m1 . . .mk to a method with π parameters
(including this) returning a value of type t ∈ K and each subsequent bytecode ins′

distinct from catch, we build a multi-arc from insc and exit@mw (2 sources, in that
order) to ins′ with the propagation rule #15 defined in Fig. 6, for each 1≤w ≤k .

Side-Effects Arcs. For each insc = call m1 . . .mk to a method with π parameters (in-
cluding this) and each subsequent bytecode ins′ , we build a multi-arc from insc and
exit@mw (2 sources, in that order) to ins′ , where ins′ is not a catch, or from insc and
exception@mw (2 sources, in that order) to catch , for each 1 ≤w ≤ k . The propagation

rule #16 is given in Fig. 6, where max= j −π if ins′ is not a catch and max=0 otherwise.

The sequential arcs link an instruction to its immediate successors. For instance, the
arc #1, starting from a node corresponding to a dup t, states that the reachability ap-
proximation at that node can be found at its successor’s node as well (λR.R). On the
other hand, since sj , the new topmost stack element (new top), is an alias of sj−1, the
former topmost stack element (old top), it is clear that every variable reaching sj−1 (or,
respectively, that is reachable from sj−1) also reaches sj (respectively, is reachable from
sj): λR.R ∪R[sj−1
→ sj]. For the same reason, we must assume that, if sj−1 reaches
itself (i.e., if the old top was not null) then, immediately after the dup t, sj might reach

Reachability Analysis 431

λR1.λR2.{sj−π�sj−π | s0�s0 ∈R2}

#15
∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a�sj−π

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. a ∈ dom(τ′) \ {sj−π} ∧
2. τ′(a)�t ∧
3. ∃j − π ≤ p < j s.t. a might share with sp at call m1 . . .mk ∧
4. if a is definitely alias of sp at call m1 . . .mk and no store lp−j+π

occurs in mw , then lp−j+π�s0 ∈R2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
sj−π�b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. b ∈ dom(τ′) \ {sj−π} ∧
2. t�τ′(b) ∧
3. ∃j − π ≤ p < j s.t. sp�b ∈R1 ∧
4. if b is definitely alias of sp at call m1 . . .mk and no store lp−j+π

occurs in mw , then s0�lp−j+π ∈R2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
λR1.λR2.

#16

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[a�b ∈R1 ∧ a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1}] ∨⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1. a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1} ∧
2. τ′(a)�τ′(b) ∧
3. ∃j − π ≤ pa < j s.t. a might share with spa at call m1 . . .mk ∧
4. ∃j − π ≤ pb < j s.t. pb�b ∈R1 ∧
5. if ∃j − π ≤ qa < j s.t. a is definitely alias of sqa at call m1 . . .mk and
5. if ∃j − π ≤ qb < j s.t. b is definitely alias of sqb at call m1 . . .mk and

no store lqa−j+π nor store lqb−j+π occurs in mi , then lqa−j+π�lqb−j+π ∈R2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 6. Propagation rules of mulit-arcs

sj−1 and vice versa, which leads to rule #1. Rule #5 is more interesting: getfield f : t
replaces the old top of the stack, sj−1, with the value of its field f . Hence all reachabil-
ity pairs that do not consider sj−1 are still valid after the execution of the getfield f : t:
λR.{a�b ∈ R | a , b � sj−1}. But we have to consider which variable b might be reached
from the field (sj−1�b) and which variable a might reach the field (a�sj−1). For b,
we observe that if the field reaches b, then also its containing object (i.e., the old top of
the stack) had to reach b before the getfield f : t (i.e., sj−1�b ∈ R); for better precision
we consider only those pairs of variables that satisfy type reachability requirement, i.e.,
t�τ(b). For a, we rely on a pessimistic (but conservative) assumption: every variable a
might reach the field after the getfieldf : t, as long as the field has a reference type such
that τ(a)�t and as long as a shares with the top of the stack before the instruction.
Rule #6 states that a reachability pair at a putfield f : t instruction remains valid just after
that instruction, provided that it did not deal with the topmost two values of the stack
sj−1 and sj−2, that disappear. Moreover, since this instruction writes sj−1 in a field of
sj−2, it might introduce reachability from a to b, when a reaches the receiver sj−2 and
the value sj−1 reaches b before the putfield f : t.

The final arcs feed nodes exit@m and exception@m for each method or constructor
m. The former contains all states at the end of a normal execution of m; the latter
contains those at the end of an exceptional execution of m. Hence exit@m is the sink
of an arc from every return t in m. The propagation rule states that the stack is emptied
at the end of execution of m (#8) or only one element survives, the return value (#9).
Similarly, exception@m is the sink node of every throwκ instruction that has no exception
handler in m (i.e., it has no successors in m). Rule #10 states that all stack elements,
but the topmost one sj−1, disappear. The latter is renamed into the exception object s0,
and is always non-null (thus, s0�s0). We observe that only a throw κ is allowed to
throw an exception to the caller since, in our representation of the code as basic blocks,

432 Ð. Nikolić and F. Spoto

all other instructions that might throw an exception are always linked to an exception
handler, possibly minimal (as the two putfield in Fig. 2).

The exceptional arcs link every instruction that might throw an exception to the
catch at the beginning of their exception handler(s). Rules #10 and #11 are identical,
but the latter is applied when throw κ has a successor. Rule #12 states a pessimistic
assumption about the exceptional states after a method call: the reachability pairs before
the call can survive as long as they do not deal with stack elements. The thrown object
s0 is non-null (thus, s0�s0) and conservatively assumed to reach and be reached from
every local variable a, as long as the static types allow it.

The parameter passing arcs connect each method call to the beginning of a method
mw that it might call. Rule #14 renames the actual parameters of mw , i.e., sj−π, . . . , sj−1,
into its formal parameters, i.e., l0, . . . , lπ−1.

There exists a return value multi-arc for each target mw of a call. Rule #15 con-
siders R1 and R2, approximations at the node corresponding to the call and at node
exit@mw . It builds the reachability pairs related to the returned value sj−π, in the caller.

Namely, sj−π reaches itself if the return value in the callee (held in the only stack ele-
ment s0 at its end) reaches itself. Moreover, a variable a of the caller might reach that
returned value (a�sj−1) if it exists after the call and it is not sj−π itself (condition 1); if
the static types allow it (condition 2); if a shares with at least one actual parameter sp
(condition 3); moreover, if a is a definite alias of the actual parameter sp whose corre-
sponding formal parameter lp−j+π is never re-assigned inside the callee mw , then it must
also be the case that lp−j+π reaches the returned value s0 (condition 4). Variables b that
might be reachable from the returned value sj−π are determined in a symmetrical way.
It is worth noting that the result of the call can reach a variable b only if b is reachable
from at least one actual parameter sp of the call at call-time (sp�b ∈ R1).

The side-effects multi-arcs enrich the reachability information already known at
call-time with some additional pairs of variables whose presence is due to the side-
effects of the call. Rule #16 adds a new pair a�b if it satisfies the following conditions:
a and b must exist after the call and must not be the returned value nor the exception
thrown by mw (condition 1); the static types of a and b must allow their reachability
(condition 2); moreover, a must share with at least one actual parameter of the call and
b must be reachable from at least one actual parameter of the call (conditions 3 and 4,
respectively); finally, if a and b are definite aliases of two actual parameters qa and qb of
the call whose corresponding formal parameters lqa−j+π and lqb−j+π are not re-assigned
inside mw , then lqa−j+π must reach lqb−j+π at the end of mw (condition 5).

Propagation rules #15 and #16 use possible sharing and definite aliasing between
program variables. If these data are missing, one can always assume the worst, least
precise hypothesis. In our experiments (Section 5) reachability analysis is performed
inside the nullness and termination tools of Julia, that already perform definite aliasing
and possible sharing analyses, so they have no additional cost. The precision of the
analysis would benefit from a possible inlining of frequently used methods, so that their
calling contexts are not merged into one. However, this is not implemented in Julia.

Reachability Analysis 433

ex
ce
pt
io
n

exit

node Anode C
catch

node 13
exception@〈init〉

node B
store 4 Student

node 10
exit@〈init〉

call ListStudent.〈init〉(Student, ListStudent) : void

node 1
load 0 ListStudent

node 2
call java.lang.Object.〈init〉() : void

node 3
load 0 ListStudent

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

node 7
load 2 ListStudent

node 8
putfield ListStudent.tail : ListStudent

node 9
return void

node 11
catch

node 12
throw java.lang.Throwable

�14

�16 �16

�3

�16
�12

�12

�16

�7

�3

�3

�6

�3

�3

�6

�8

�10

�13

�13

Fig. 7. The ACG for the constructor in Fig. 2

An ACG is solved by finding a reachability approximation at each node, consistent
with the propagation rules of the arcs. Since these propagation rules are monotonic,
a minimal solution exists and can be computed through a fixpoint calculation. This
solution is the reachability analysis of the program, and has been proven sound [14].

Theorem 1 (Soundness). Let ins and σ ∈ Στ be a bytecode instruction and a state
reached by an execution of the main method of a program, and let Rins ∈ Aτ be the
reachability approximation computed by our analysis at ins . Then, σ ∈ γτ(Rins).

Example 5. Fig. 7 shows the ACG built for the constructor in Fig. 2. It also shows, in
grey, three nodes of a caller of this constructor (nodes A, B and C) and two nodes of
the callee of call java.lang.Object.〈init〉() : void, to exemplify the arcs related to
method call and return. Arcs are decorated with the number of their associated propa-
gation rule. Note that the graph for the whole program includes other nodes and arcs.
Suppose that at node A, which invokes the constructor, there are four stack elements
and four local variables and that we know, from previous static analyses, that a correct
possible sharing information is shareA = {〈s0, s1〉, 〈l3, s2〉, 〈l1, s3〉} (only these pairs
of variables might share), while a correct definite aliasing information is aliasA =

{〈s0, s1〉, 〈l3, s2〉} (those pairs of variables must be alias, but there might be others).
Moreover, suppose that this call occurs in a context with reachability information SA =

{l1�l1, l3�l3, l1�s3, l3�s2, s2�l3, s0�s0, s0�s1, s1�s0, s1�s1, s2�s2, s3�s3}.
The constructor stores the locations held in its parameters s2 and s3 into the fields head
and tail of the newly created object, whose location is, in turn, held in s0 and s1.
Moreover, s2 and l3 are definite aliases at node A, hence we expect that, after any non-
exceptional execution of the call (node B), l3 is reachable from s0. Node A is linked

434 Ð. Nikolić and F. Spoto

to node 1 through an arc with propagation rule #14, whose application on SA gives an
approximation of the reachability information at node 1, S1 = {l0�l0, l1�l1, l2�l2}.
Similarly, we determine the approximations of the reachability information of the other
nodes. For instance, S2 = {l0�l0, l1�l1, l2�l2, l0�s0, s0�l0, s0�s0}, S3 =S1, etc. In
particular, S10= {l0�l0, l0�l1, l0�l2, l1�l1, l2�l2} and there is a side-effect arc from
nodes A and 10 to node B , whose propagation rule #16 applied to SA and S10 gives
SB = {l1�l1, l1�s0, l1�l3, l3�l3, s0�l3, s0�s0}. As expected, s0�l3∈SB . ��

5 Experiments

We have implemented our reachability analysis inside the Julia analyzer for Java and
Android (http://www.juliasoft.com). Our first aim was to evaluate the cost of the
reachability analysis itself and verify whether it actually improves the precision of side-
effects, field initialization and cyclicity, as hinted in Section 1. The second aim was
to verify if the extra reachability information improves the precision of the nullness
and termination checking tools available in Julia, that use side-effects, field initializa-
tion, cyclicity and path-length as (some of their) supporting analyses. We do not have
any measure of precision for path-length analysis, so we do not evaluate its improve-
ments directly but only as a component of the termination checking tool. To reach these
goals, we have analyzed some Java and Android programs, with reachability analy-
sis turned off and then on. Most of these samples are Android applications: Mileage,
OpenSudoku, Solitaire and TiltMazes1; ChimeTimer, Dazzle, OnWatch and Tricorder2;
TxWthr3. There are also some Java programs: JFlex is a lexical analyzers generator4;
Plume is a library by Michael D. Ernst5; Nti is a non-termination analyzer by Étienne
Payet6; Lisimplex is a numerical simplex implementation by Ricardo Gobbo7. The oth-
ers are sample programs taken from the Android 3.1 distribution by Google.

Fig. 8 reports time and precision of reachability analysis on a Linux quad-core Intel
Xeon machine running at 2.66GHz, with 8 gigabytes of RAM. Times are always below
41 seconds. Average precision is 45.07% which means that, given two variables v and
w of reference type at a given program point, in more than half of the cases the analysis
proves that v does not reach w . A smaller percentage, here, means better precision.
Fig. 8 shows that reachability analysis improves the precision of the side-effects analysis
and has positive effects on field initialization as well. Instead, cyclicity analysis seems
unaffected. Sharing analysis is always used in these experiments, both when we use
reachability information and when we do not compute it. Thus, this figure shows the
importance of having also reachability information instead of just sharing information.

Fig. 9 presents our experiments with the nullness and termination tools of Julia
and reports their runtime, including reachability analysis. In 8 cases over 24, the ex-
tra reachability information improves the precision of the nullness checking tool. But

1 http://f-droid.org/repository/browse/
2 http://moonblink.googlecode.com/svn/trunk/
3 http://typoweather.googlecode.com/svn/trunk/
4 http://jflex.de
5 http://code.google.com/p/plume-lib
6 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
7 http://sourceforge.net/projects/lisimplex

http://www.juliasoft.com
http://f-droid.org/repository/browse/
http://moonblink.googlecode.com/svn/trunk/
http://typoweather.googlecode.com/svn/trunk/
http://jflex.de
http://code.google.com/p/plume-lib
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://sourceforge.net/projects/lisimplex

Reachability Analysis 435
so

ur
ce

an
al

yz
ed

re
ac

h.
an

al
ys

is
pr

ec
.o

f
si

de
-e
ff

ec
ts

an
al

ys
is

pr
ec

.o
f

fi
el

d
in

it
ia

l.
an

al
ys

is
pr

ec
.o

f
cy

cl
ic

it
y

an
al

ys
is

pr
og

ra
m

la
ng

ua
ge

li
ne

s
li

ne
s

ti
m

e
pr

ec
w

it
ho

ut
re

ac
h.

w
it

h
re

ac
h.

w
it

ho
ut

re
ac

h.
w

it
h

re
ac

h.
w

it
ho

ut
re

ac
h.

w
it

h
re

ac
h.

B
lu

et
oo

th
C

ha
t

A
nd

ro
id

61
6

84
41

5
21

.2
6

56
.0

1%
64

5.
99

54
0.

23
21

85
23

25
12

.8
5%

12
.8

5%
C

hi
m

eT
im

er
A

nd
ro

id
10

90
89

56
5

23
.3

9
47

.0
4%

73
0.

68
61

8.
08

23
48

24
86

13
.5

4%
13

.5
4%

D
az

zl
e

A
nd

ro
id

17
91

77
82

8
24

.2
3

46
.9

9%
30

9.
89

22
5.

96
24

17
24

47
22

.1
9%

22
.1

9%
G

es
tu

re
B

ui
ld

er
A

nd
ro

id
50

2
84

34
6

23
.9

0
64

.1
1%

66
7.

70
55

7.
52

21
62

22
82

16
.5

7%
16

.5
7%

H
om

e
A

nd
ro

id
87

0
87

41
3

18
.5

4
55

.7
8%

69
3.

80
58

4.
01

22
74

24
15

10
.8

9%
10

.8
9%

H
on

ey
co

m
bG

al
le

ry
A

nd
ro

id
94

8
71

55
8

16
.7

1
23

.8
4%

33
3.

25
24

2.
32

21
31

21
75

33
.3

3%
33

.3
3%

JF
le

x
Ja

va
76

81
40

77
9

7.
19

39
.5

9%
35

7.
59

24
3.

89
10

92
11

46
33

.6
7%

33
.6

7%
Je

tB
oy

A
nd

ro
id

83
9

65
17

4
16

.3
7

64
.5

4%
28

1.
48

19
8.

71
21

73
22

02
11

.7
9%

11
.7

9%
L

is
im

pl
ex

Ja
va

76
8

49
30

3
16

.2
6

47
.9

8%
63

7.
69

34
7.

96
13

56
14

33
14

.1
3%

14
.1

3%
L

un
ar

L
an

de
r

A
nd

ro
id

53
8

57
67

5
14

.9
2

66
.4

0%
27

0.
87

19
1.

07
18

80
19

11
18

.1
1%

18
.1

1%
M

il
ea

ge
A

nd
ro

id
58

77
10

40
09

32
.1

2
43

.7
3%

95
9.

30
80

4.
98

26
36

27
94

25
.4

5%
25

.4
5%

N
ot

eP
ad

A
nd

ro
id

70
5

73
74

2
17

.9
6

36
.5

9%
29

3.
57

21
8.

17
21

08
21

39
37

.5
0%

37
.5

0%
N

ti
Ja

va
23

72
13

48
6

2.
44

47
.9

0%
24

.1
1

13
.5

1
46

5
46

7
32

.5
9%

32
.5

9%
O

nW
at

ch
A

nd
ro

id
62

95
11

24
23

29
.5

9
41

.0
0%

12
99

.5
1

79
6.

89
32

32
33

99
32

.5
9%

32
.5

9%
O

pe
nS

ud
ok

u
A

nd
ro

id
58

77
90

81
0

40
.6

8
44

.8
1%

44
0.

36
34

4.
92

26
22

26
60

22
.5

7%
22

.5
7%

P
lu

m
e

Ja
va

85
86

43
63

7
17

.7
5

24
.1

7%
18

6.
31

12
6.

71
13

16
13

35
57

.1
1%

57
.1

1%
R

ea
l3

D
A

nd
ro

id
12

28
74

35
0

17
.8

1
43

.5
5%

49
7.

94
40

0.
73

20
93

21
89

36
.4

3%
36

.4
3%

S
am

pl
eS

yn
cA

da
pt

er
A

nd
ro

id
97

8
65

97
1

18
.4

8
34

.5
9%

32
8.

80
23

5.
68

21
11

21
42

42
.7

7%
42

.7
7%

S
of

tK
ey

bo
ar

d
A

nd
ro

id
70

3
58

08
8

10
.9

6
51

.9
0%

17
4.

01
11

6.
96

21
12

21
31

11
.2

1%
11

.2
1%

S
ol

it
ai

re
A

nd
ro

id
39

05
62

06
5

18
.6

7
32

.2
3%

24
3.

19
16

6.
57

19
57

19
82

50
.0

6%
50

.0
6%

T
ic

Ta
cT

oe
A

nd
ro

id
60

7
59

16
0

13
.4

0
58

.5
6%

22
8.

27
15

4.
35

19
19

19
43

20
.7

3%
20

.7
3%

T
ilt

M
az

es
A

nd
ro

id
18

53
89

65
3

21
.1

4
15

.6
6%

65
0.

45
56

2.
57

23
13

24
54

71
.5

7%
71

.5
7%

T
ri

co
rd

er
A

nd
ro

id
53

17
98

38
9

26
.6

9
46

.3
9%

78
3.

59
66

3.
23

28
06

29
42

33
.9

1%
33

.9
1%

T
xW

th
r

A
nd

ro
id

20
24

74
53

7
16

.9
7

48
.3

3%
30

9.
24

22
9.

79
22

20
22

58
15

.3
9%

15
.3

9%
av

er
ag

e
pr

ec
is

io
n

45
.0

7%
47

2.
81

36
1.

86
(-

23
.4

7%
)

20
80

.3
3

21
52

.3
7

(+
3.

46
%

)
26

.8
4%

26
.8

4%
(+

0.
00

%
)

F
ig

.8
.C

os
t

an
d

pr
ec

is
io

n
of

re
ac

ha
bi

lit
y

an
al

ys
is

,a
nd

its
eff

ec
ts

on
th

e
pr

ec
is

io
n

of
si

de
-e
ff

ec
ts

,fi
el

d
in

it
ia

li
za

ti
on

an
d

cy
cl

ic
it

y
an

al
ys

es
.

So
ur

ce
li

ne
s

co
un

ts
no

n-
co

m
m

en
t

no
n-

bl
an

k
li

ne
s

of
co

de
s.

A
na

ly
ze

d
li

ne
s

in
cl

ud
es

th
e

po
rt

io
n

of
j
a
v
a
.
*

,
j
a
v
a
x
.
*

an
d
a
n
d
r
o
i
d
.
*

li
br

ar
ie

s
an

al
yz

ed
w

it
h

ea
ch

pr
og

ra
m

an
d

is
a

m
or

e
fa

ith
fu

lm
ea

su
re

of
th

e
an

al
yz

ed
co

de
ba

se
.T

im
es

ar
e

in
se

co
nd

s.
Fo

rr
ea

ch
ab

ili
ty

an
al

ys
is

,p
re

ci
si

on
is

th
e

ra
tio

of
pa

ir
s

of
va

ri
ab

le
s

〈v
,w
〉s

.t.
th

e
an

al
ys

is
co

nc
lu

de
s

th
at

v
m

ig
ht

re
ac

h
w

,o
ve

r
th

e
to

ta
l

nu
m

be
r

of
pa

ir
s

of
va

ri
ab

le
s

of
re

fe
re

nc
e

ty
pe

:
th

e
lo

w
er

th
e

ra
ti

o,
th

e
hi

gh
er

th
e

pr
ec

is
io

n
(t

he
re

at
io

ne
ve

r
re

ac
he

s
0%

in
pr

ac
tic

e,
si

nc
e

re
al

-l
if

e
pr

og
ra

m
s

co
nt

ai
n

re
ac

ha
bi

lit
y)

.F
or

si
de

-e
ff

ec
ts

an
al

ys
is

,p
re

ci
si

on
is

th
e

av
er

ag
e

nu
m

be
r

of
fi

el
ds

m
od

ifi
ed

or
re

ad
by

a
m

et
ho

d
or

co
ns

tr
uc

to
r:

th
e

lo
w

er
th

e
nu

m
be

rs
,

th
e

be
tt

er
th

e
pr

ec
is

io
n.

Fo
r

fi
el

d
in

it
ia

li
za

ti
on

an
al

ys
is

,
pr

ec
is

io
n

is
th

e
nu

m
be

r
of

fi
el

ds
of

re
fe

re
nc

e
ty

pe
pr

ov
en

to
be

al
w

ay
s

in
it

ia
li

ze
d

be
fo

re
be

in
g

re
ad

,i
n

al
lc

on
st

ru
ct

or
s

of
th

ei
r

de
fi

ni
ng

cl
as

s:
th

e
hi

gh
er

th
e

nu
m

be
rs

,t
he

be
tt

er
th

e
pr

ec
is

io
n.

Fo
r

cy
cl

ic
it

y
an

al
ys

is
,p

re
ci

si
on

is
th

e
av

er
ag

e
nu

m
be

r
of

va
ri

ab
le

s
of

re
fe

re
nc

e
ty

pe
pr

ov
en

to
ho

ld
a

no
n-

cy
cl

ic
al

da
ta

st
ru

ct
ur

e;
th

e
hi

gh
er

th
e

nu
m

be
rs

,t
he

be
tt

er
th

e
pr

ec
is

io
n

436 Ð. Nikolić and F. Spoto
nu

ll
.w

it
ho

ut
re

ac
h.

nu
ll

.w
it

h
re

ac
h.

te
rm

.w
it

ho
ut

re
ac

h.
te

rm
.w

it
h

re
ac

h.
pr

og
ra

m
tim

e
w

s
pr

ec
ti

m
e

w
s

pr
ec

ti
m

e
w

s
pr

ec
tim

e
w

s
pr

ec
B

lu
et

oo
th

C
ha

t
36

8.
43

22
∗∗
∗

93
.6

5%
30

1.
31

19
∗∗
∗

94
.2

3%
15

8.
96

2
33

.3
3%

14
1.

78
2

33
.3

3%
C

hi
m

eT
im

er
34

3.
01

4
98

.3
6%

36
0.

28
4

98
.3

6%
17

8.
87

1
83

.3
3%

18
3.

81
1

83
.3

3%
D

az
zl

e
22

3.
16

26
97

.9
9%

22
0.

78
26

97
.9

9%
12

0.
34

0
10

0.
00

%
12

6.
07

0
10

0.
00

%
G

es
tu

re
B

ui
ld

er
26

1.
25

16
92

.3
7%

28
8.

51
16

92
.3

7%
15

3.
33

0
10

0.
00

%
15

1.
83

0
10

0.
00

%
H

om
e

31
4.

66
27

94
.2

7%
31

2.
55

27
94

.2
7%

16
6.

98
8

38
.4

6%
16

3.
39

8
38

.4
6%

H
on

ey
co

m
bG

al
le

ry
17

7.
32

12
97

.7
9%

17
9.

90
12

97
.7

9%
10

5.
96

0
10

0.
00

%
10

1.
47

0
10

0.
00

%
JF

le
x

87
.0

6
71

97
.0

3%
86

.1
0

71
97

.0
3%

30
0.

84
66

53
.5

2%
32

1.
03

66
53

.5
2%

Je
tB

oy
13

8.
99

20
∗∗

97
.4

2%
14

0.
64

20
∗∗

97
.4

2%
85

.9
1

3
57

.1
4%

85
.3

8
3

57
.1

4%
L

is
im

pl
ex

25
1.

09
20
∗∗

96
.9

4%
20

2.
76

20
∗∗

96
.9

4%
16

0.
07

9
70

.9
7%

15
3.

36
9

70
.9

7%
L

un
ar

L
an

de
r

11
8.

75
4

99
.3

0%
12

1.
25

4
99

.3
0%

72
.4

9
3∗

0.
00

%
68

.4
1

3∗
0.

00
%

M
il

ea
ge

50
3.

90
10

2
97

.4
0%

50
1.

02
95

97
.6

7%
38

7.
68

12
69

.2
3%

38
1.

99
12

69
.2

3%
N

ot
eP

ad
19

4.
52

18
96

.5
0%

19
9.

19
17

96
.5

0%
10

3.
64

0
10

0.
00

%
10

1.
49

0
10

0.
00

%
N

ti
14

.0
6

12
98

.9
3%

16
.1

5
12

98
.9

3%
43

.7
0

70
36

.9
4%

43
.5

3
70

36
.9

4%
O

nW
at

ch
89

8.
36

74
97

.9
1%

51
8.

55
65

98
.1

8%
38

5.
00

6
86

.9
6%

37
1.

32
6

86
.9

6%
O

pe
nS

ud
ok

u
28

4.
30

12
4∗

95
.9

3%
28

6.
72

12
4∗

95
.9

3%
45

8.
01

6
90

.3
2%

46
7.

34
6

90
.3

2%
P

lu
m

e
10

6.
67

59
98

.8
2%

11
6.

75
58

98
.8

3%
20

8.
81

86
60

.0
0%

18
7.

92
86

60
.0

0%
R

ea
l3

D
20

3.
62

19
∗

98
.1

4%
19

5.
76

19
∗

98
.1

4%
11

6.
42

2
60

.0
0%

11
2.

22
2

60
.0

0%
S

am
pl

eS
yn

cA
da

pt
er

15
6.

31
3

99
.5

1%
15

2.
45

3
99

.5
1%

91
.9

0
2

60
.0

0%
89

.6
1

2
60

.0
0%

S
of

tK
ey

bo
ar

d
10

4.
21

14
95

.7
8%

10
3.

83
13

95
.9

4%
70

.4
5

0
10

0.
00

%
67

.9
6

0
10

0.
00

%
S

ol
it

ai
re

15
3.

51
63

92
.5

9%
14

7.
54

63
92

.5
9%

20
7.

09
11

86
.0

8%
20

3.
92

11
86

.0
8%

T
ic

Ta
cT

oe
11

5.
38

0
10

0.
00

%
11

8.
27

0
10

0.
00

%
79

.6
9

1
85

.7
1%

78
.0

2
1

85
.7

1%
T

ilt
M

az
es

28
1.

43
18

98
.2

0%
27

6.
54

14
98

.8
3%

18
8.

56
1

88
.8

9%
17

4.
63

1
88

.8
9%

T
ri

co
rd

er
41

5.
17

54
98

.2
9%

40
7.

51
52

98
.4

1%
25

2.
25

12
80

.3
3%

25
7.

36
12

80
.3

3%
T

xW
th

r
20

0.
16

48
97

.8
5%

19
1.

88
48

97
.8

5%
10

9.
76

6
70

.0
0%

10
5.

08
6

70
.0

0%
su

m
of

th
e

ti
m

es
59

15
.3

2
54

56
.2

4
(-

7.
77

%
)

42
06

.7
1

41
38

.9
2

(-
1.

62
%

)
su

m
of

th
e

w
ar

ni
ng

s
83

0
80

2
(-

3.
38

%
)

30
7

30
7

(+
0.

00
%

)

F
ig

.9
.

O
ur

ex
pe

ri
m

en
ts

w
it

h
th

e
nu

ll
ne

ss
an

d
te

rm
in

at
io

n
to

ol
s

of
Ju

li
a.

T
im

es
ar

e
in

se
co

nd
s.

Fo
r

nu
ll

ne
ss

an
al

ys
is

,
w

s
co

un
ts

th
e

w
ar

ni
ng

s
is

su
ed

by
Ju

li
a

(p
os

si
bl

e
de

re
fe

re
nc

e
of

nu
ll

,
po

ss
ib

ly
pa

ss
in

g
nu

ll
to

a
li

br
ar

y
m

et
ho

d)
an

d
pr

ec
re

po
rt

s
it

s
pr

ec
is

io
n,

as
th

e
ra

ti
o

of
th

e
de

re
fe

re
nc

es
pr

ov
ed

sa
fe

ov
er

th
ei

r
to

ta
ln

um
be

r
(1

00
%

is
th

e
m

ax
im

al
pr

ec
is

io
n)

.F
or

te
rm

in
at

io
n

an
al

ys
is

,w
s

co
un

ts
th

e
w

ar
ni

ng
s

is
su

ed
by

Ju
li

a
(c

on
st

ru
ct

or
s

or
m

et
ho

ds
po

ss
ib

ly
di

ve
rg

in
g)

an
d

pr
ec

re
po

rt
s

it
s

pr
ec

is
io

n,
as

th
e

ra
ti

o
of

th
e

co
ns

tr
uc

to
rs

or
m

et
ho

ds
pr

ov
ed

to
te

rm
in

at
e

ov
er

th
e

to
ta

ln
um

be
r

of
co

ns
tr

uc
to

rs
or

m
et

ho
ds

co
nt

ai
ni

ng
lo

op
s

or
re

cu
rs

iv
e

(1
00

%
is

th
e

m
ax

im
al

pr
ec

is
io

n)
.

A
st

er
is

ks
st

an
d

fo
r

ac
tu

al
bu

gs
in

th
e

pr
og

ra
m

s.
B

ol
df

ac
e

hi
gh

li
gh

ts
th

e
ca

se
s

w
he

re
re

ac
ha

bi
lit

y
im

pr
ov

es
th

e
pr

ec
is

io
n

of
th

e
to

ol
s

Reachability Analysis 437

this never happens for termination, consistently with the fact that cyclicity is not im-
proved (Fig. 8). This is because the methods of the programs that we have analyzed
terminate since they perform loops over numerical counters or iterators. There is no
complex case of recursion over data structures dynamically allocated in memory (lists
or trees) where cyclicity would help. To investigate further the case of termination anal-
ysis, we have applied Julia to the set of (very tiny) programs used in the international
termination competition that is performed every year. Those programs, although small
and often unrealistic, are nevertheless interesting since the proof of their termination
often requires non-trivial arguments, also related to objects dynamically allocated in
memory. Over a total of 164 test programs, the reachability information allows Julia to
prove the termination of six more tests: LinkedList, List, ListDuplicate, PartitionList,
Test5 and Test6, by supporting a more precise cyclicity and path-length analysis.

For both nullness and termination checking, the presence of reachability analysis
actually reduces the total runtime of the tools. This is because reachability helps sub-
sequent analyses, in particular side-effects analysis, and prevents them from generat-
ing too much spurious information. For instance, side-effects analysis computes much
smaller sets of affected fields per method (Fig. 8, compare the 7th and the 8th columns).

6 Conclusion

We have introduced, formalized and implemented a provably sound (see [14] for proofs)
constraint-based reachability analysis for Java bytecode. Its implementation inside the
Julia static analyzer is able to scale to programs containing 100k lines of code. Our
experiments show that the reachability analysis improves the precision and efficiency
of the side-effects, field initialization and nullness analyses, already performed by Julia.

Our constraint-based approach has been used to develop aliasing and sharing anal-
yses of our tool (never published and with completely different propagation rules). We
plan to use it in the future to formalize and prove correct other static analyses as well.

References

1. Balaban, I., Pnueli, A., Zuck, L.D.: Shape Analysis by Predicate Abstraction. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 164–180. Springer, Heidelberg (2005)

2. Ball, T., Millstein, T., Rajamani, S.K.: Polymorphic Predicate Abstraction. ACM Trans. on
Programming Languages and Systems 27, 314–343 (2005)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional Shape Analysis by Means
of Bi-Abduction. In: Proc. of the 36th POPL, pp. 289–300. ACM, New York (2009)

4. Chatterjee, S., Lahiri, S., Qadeer, S., Rakamaric, Z.: A Low-Level Memory Model and an
Accompanying Reachability Predicate. STTT 11(2), 105–116 (2009)

5. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In: Proceedings of the 4th POPL,
pp. 238–252. ACM (1977)

6. Dams, D.R., Namjoshi, K.S.: Shape Analysis through Predicate Abstraction and Model
Checking. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 310–323. Springer, Heidelberg (2002)

438 Ð. Nikolić and F. Spoto

7. Distefano, D., O’Hearn, P.W., Yang, H.: A Local Shape Analysis Based on Separation Logic.
In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer, Heidelberg
(2006)

8. Hardekopf, B.C.: Pointer Analysis: Building a Foundation for Effective Program Analysis.
Ph.D. thesis, University of Texas at Austin, Austin, TX, USA (2009)

9. Hind, M.: Pointer Analysis: Haven’t We Solved This Problem Yet? In: Proceedings of PASTE
2001, pp. 54–61. ACM, New York (2001)

10. Lhoták, O.: Program Analysis Using Binary Decision Diagrams. Ph.D. thesis, McGill Uni-
versity (2006)

11. Lhoták, O., Chung, K.C.A.: Points-to Analysis with Efficient Strong Updates. In: Proceed-
ings of the 38th POPL, pp. 3–16. ACM (2011)

12. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn. Addison-
Wesley (1999)

13. Nelson, G.: Verifying Reachability Invariants of Linked Structures. In: Proc. of the 10th
POPL, pp. 38–47 (1983)

14. Nikolić, D., Spoto, F.: Reachability Analysis of Program Variables,
http://profs.sci.univr.it/~nikolic/download/IJCAR2012/IJCAR2012Ext.pdf

15. Papi, M.M., Ali, M., Correa, T.L., Perkins, J.H., Ernst, M.D.: Practical Pluggable Types for
Java. In: Proceedings of the ISSTA 2008, pp. 201–212. ACM, Seattle (2008)

16. Rossignoli, S., Spoto, F.: Detecting Non-cyclicity by Abstract Compilation into Boolean
Functions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
95–110. Springer, Heidelberg (2005)

17. Rountev, A., Milanova, A., Ryder, B.G.: Points-to Analysis for Java Using Annotated Con-
straints. In: Proceedings of the 16th OOPSLA, pp. 43–55. ACM (2001)

18. Sagiv, M., Reps, T., Wilhelm, R.: Solving Shape-Analysis Problems in Languages with De-
structive Updating. ACM Trans. on Programming Languages and Systems 20, 1–50 (1998)

19. Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic. ACM
Trans. Program. Lang. Syst. 24, 217–298 (2002)

20. Salcianu, A.D.: Pointer Analysis for Java Programs: Novel Techniques and Applications.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2006)

21. Secci, S., Spoto, F.: Pair-Sharing Analysis of Object-Oriented Programs. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320–335. Springer, Heidelberg (2005)

22. Spoto, F., Ernst, M.D.: Inference of Field Initialization. In: Proceedings of the 33rd ICSE,
pp. 231–240. ACM, Waikiki (2011)

23. Spoto, F., Mesnard, F., Payet, E.: A Termination Analyzer for Java Bytecode Based on Path-
Length. ACM Trans. on Programming Languages and Systems 32(3), 1–70 (2010)

http://profs.sci.univr.it/~nikolic/download/IJCAR2012/IJCAR2012Ext.pdf

	Reachability Analysis of Program Variables
	Introduction
	Operational Semantics
	Reachability
	Reachability Analysis
	Experiments
	Conclusion

