
14

Reachability Analysis of Program Variables

-DURICA NIKOLIĆ, University of Verona and Microsoft Research - University of Trento Centre for
Computational and Systems Biology
FAUSTO SPOTO, University of Verona

Reachability from a program variable v to a program variable w states that from v , it is possible to follow
a path of memory locations that leads to the object bound to w . We present a new abstract domain for the
static analysis of possible reachability between program variables or, equivalently, definite unreachability
between them. This information is important for improving the precision of other static analyses, such as
side-effects, field initialization, cyclicity and path-length analysis, as well as more complex analyses built
upon them, such as nullness and termination analysis. We define and prove correct our reachability analysis
for Java bytecode, defined as a constraint-based analysis, where the constraint is a graph whose nodes
are the program points and whose arcs propagate reachability information in accordance to the abstract
semantics of each bytecode instruction. For each program point p, our reachability analysis produces an
overapproximation of the ordered pairs of variables 〈v ,w〉 such that v might reach w at p. Seen the other
way around, if a pair 〈v ,w〉 is not present in the overapproximation at p, then v definitely does not reach
w at p. We have implemented the analysis inside the Julia static analyzer. Our experiments of analysis of
nontrivial Java and Android programs show the improvement of precision due to the presence of reachability
information. Moreover, reachability analysis actually reduces the overall cost of nullness and termination
analysis.

Categories and Subject Descriptors: D.24 [Software Engineering]: Software/Program Verification—Cor-
rectness proofs, Formal methods; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis, Algebraic approach to sementics

General Terms: Theory, Verification, Languages

Additional Key Words and Phrases: Static analysis, constraint-based analysis, abstract interpretation, reach-
ability analysis, pointer analysis, Java bytecode

ACM Reference Format:
Nikolić, -D. and Spoto, F. 2013. Reachability analysis of program variables. ACM Trans. Program. Lang. Syst.
35, 4, Article 14 (December 2013), 68 pages.
DOI: http://dx.doi.org/10.1145/2529990

1. INTRODUCTION

Static analysis of computer programs lets one gather information about their runtime
behavior before even running them. Hence, it becomes possible to prove that they will
not perform any illegal operation, such as a division by zero or a dereference of null,
will not lead to erroneous executions, such as infinite loops, will not divulge information
in incorrect ways (such as security authorizations or GPS position of mobile devices).
Static analysis has a long story now and can be formalized in many ways. In particular,
here we follow the abstract interpretation approach [Cousot and Cousot 1977], which

This work is an extended version of Nikolić and Spoto [2012c].
Corresponding author’s email: nikolic.durica@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0164-0925/2013/12-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2529990

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:2 -D. Nikolić and F. Spoto

allows one to define a static analysis from the formal specification of the property of
interest and of the semantics of the programming language.

Dynamic allocation of objects is heavily used in (complex and large) real-life pro-
grams. When such objects are instantiated on demand, their number might be stat-
ically unknown. Moreover, objects in general contain references to other objects i.e.,
(fields in object-oriented parlance), and those references are typically modified at run-
time. The most interesting properties of current software are related to the objects that
they dynamically allocate in memory rather than to primitive values, such as integers.
Hence, it is not a surprise that a huge amount of literature tackles the analysis of
memory-related properties. There are very general techniques, such as shape analysis
[Sagiv et al. 1998, 2002], that build, statically, a conservative description of the possi-
ble shapes that data structures might take at runtime. There are also more abstract
analyses, typically less precise but more efficient. For instance, aliasing analysis exists
in uncountable variations and expresses the fact that two variables might (or must
always) point to the same location (i.e., they are possibly or definitely aliased to each
other). There is also sharing analysis [Secci and Spoto 2005], whose goal is to determine
if two variables might ever be bound to overlapping data structures. In other terms,
two variables share if they might reach the same location at runtime.

In this article, we present, formalize, prove correct, and implement a new abstraction
of the runtime, dynamically allocated memory of computer software. This abstraction
is called reachability. We say that a variable v reaches a variable w if w is bound to an
object reachable from v , by following the fields of the object bound to v , recursively. This
notion is distinct from sharing: if v reaches w , then v and w share, but the converse
is, in general, false. In this sense, reachability is more precise, that is, it induces a
finer, more concrete abstraction of the computational states than sharing analysis.
Reachability can of course be abstracted from another abstraction of the memory,
such as the result of a sharing or shape analysis. However, we want an analysis that
uses the most abstract domain for reachability analysis here, that coincides with the
reachability property itself. In other words, since the property of reachability is a way
of specifying the ordered pairs of variables such that the first reaches the second, the
simplest abstraction for reachability is exactly that: a set of ordered pairs of variables
such that the first reaches the second. Nothing else is added or missing from the
abstract domain. In this article, those pairs are propagated along all possible execution
paths by using a constraint-based technique, proved correct by abstract interpretation.
The implementation has been performed inside the Julia analyzer1, which allows us to
discuss the actual benefits of our reachability analysis.

We observe that ours is a possible reachability analysis in the sense that it provides,
for each program point p, an over-approximation of the actual reachability information
holding at p. This over-approximation contains the full actual reachability information
at p, but it might contain some spurious pairs of variables as well (i.e., false positives),
since reachability is an undecidable property. If we look at this overapproximation the
other way around, we can assert, definitely, that pairs of variables not in the overap-
proximation do not reach each other at that program point. Actually, it is simpler to
think in terms of propagation of a possible overapproximation and our formalization is,
consequently, in terms of possible reachability. However, it is the complementary defi-
nite unreachability that is later used for program analysis. Namely, by just considering
our work related to the Julia static analyzer, we highlight the following uses.

—For Side-Effects Analysis. Side-effects analysis tracks (among other things) which
parameters p of a method might be affected by its execution in the sense that the

1http://www.juliasoft.com.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:3

method might update a field of an object reachable from p. Namely, if the method
performs an assignment a.f=b, this affects p only if p reaches a. Therefore, if we
know that p definitely does not reach a right before the assignment is performed, the
latter does not affect p. Since we compute an overapproximation of the reachability
pairs, those pairs that do not belong to the overapproximation definitely do not reach
each other. If we used nonsharing rather than nonreachability information, that
would lead to a loss of precision, since it might be the case that p and a share but the
assignment modifies an object unreachable from p.

—For Field Initialization Analysis. It is often the case that a field is initialized by all
constructors of its defining class before that field is read, ever, in the program. Spot-
ting this frequent situation is important for many analyses, including nullness [Papi
et al. 2008; Spoto and Ernst 2011]. Hence, we want to know if a field read operation
a=expression.f inside a constructor can actually read field f of this, the object being
initialized by the constructor. This might happen only if this is an alias of expression
that we can conservatively approximate by checking if this reaches expression. In
particular, if we know that this definitely does not reach expression right before
the assignment is executed, then this cannot be an alias of expression, and that
assigment will not read the field f of this. Here, we are using possible reachability
as an approximation of possible aliasing. As before, an overapproximation of the
reachability pairs means that the other pairs do not reach each other. Again, sharing
would be less precise here. We observe that expression is, in Java bytecode, held in
a stack variable, hence we are testing reachability between variables here.

—For Cyclicity Analysis. If we know that b holds an acyclical data structure, then the
assignment a.f=b might make a cyclical (i.e., hold a cyclical data structure), only if
b reaches a. Originally, this analysis was built upon sharing information [Rossignoli
and Spoto 2006], but analysis of reachable variables gives better precision, as already
observed in Genaim and Zanardini [2012].

—For Path-Length Analysis. Path length is a measure of data structures used in termi-
nation analysis [Spoto et al. 2010]. It is the maximum number of pointer dereferences
that can be followed from a program variable. An assignment a.f=b can only modify
the path length of the program variables that share with a, according to the original
definition of path length [Spoto et al. 2010]. Reachability analysis improves this ap-
proximation, since the path length of a program variable v is actually modified only
if v reaches a.

Julia already includes the four static analyses just mentioned. They are used as
building blocks of larger tools, such as a nullness checker and a termination checker
tool. The former spots the points where a program might throw a null-pointer exception
at runtime, while the latter spots which method calls might diverge at runtime. A tool
performs its supporting static analyses (building blocks) in distinct threads and hence
runs in parallel on multicore hardware. When a supporting static analysis needs the
results of another analysis, it suspends itself until those results become available. The
analyzer does not deadlock, since a partial ordering is imposed on the analyses: if an
analysis x needs the results of an analysis y , then y never asks for the results of x , not
even indirectly.

At the end of this article, we provide an experimental evaluation of our reachability
analysis. Namely, we show that reachability analysis is more precise than a sharing
analysis, when the property of interest is reachability. We also report the effects of
the reachability analysis on the precision of side-effects, field initialization, and cyclic-
ity analyses. The effects on path-length analysis can only be measured indirectly by
checking if the termination analysis, built over the path-length analysis, increases its
precision. We show that reachability increases the overall precision of the nullness

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:4 -D. Nikolić and F. Spoto

tool of Julia for the analysis of nontrivial Java and Android programs. On the other
hand, the performance of the termination tool is not improved for the programs priv-
iosly mentioned. Instead, it is well improved for the analysis of a set of programs from
the international termination competition2, where six more examples are shown to
terminate thanks to the addition of reachability analysis. We explain this with the
observation that in most real cases, such as the large programs that we have analyzed,
termination is related to loops over integer counters rather than to recursion over re-
cursive data structures. The samples from the termination competition are small (a few
hundred lines of source code at most), which means that the shape of the memory can
be more easily inferred; they ban complications, such as calls to the Java library; they
are often devised with the goal of showing specific features of the competing analyzers
and are consequently often unrealistic. An unexpected and surprising effect of reach-
ability is, however, an increase in speed for both tools: adding an extra static analysis
(reachability) reduces the total runtime of the tools (reachability runtime included).
This can be actually explained: reachability increases the precision of other analyses
(side-effects, field initialization, cyclicity, etc.) and hence helps their convergence and
makes them use smaller abstractions (i.e., they track less-spurious information). More-
over, reachability is run in parallel to other analyses so that it does not actually add to
the total cost of the tools (as long as enough processing cores are available).

The rest of the article is organized as follows. Section 2 introduces the state of the
art and relates our work to the existing approaches, showing similarities and differ-
ences. Section 3 introduces syntax and operational semantics of the Java bytecode-like
language that we consider in this article. Section 4 formally defines different notions
of reachability. Section 5 presents our abstract interpretation-based static analysis,
together with formal proofs of correctness. Section 6 shows the application of our anal-
ysis to many real-life examples, its precision, and the way it affects other analyses
performed by our static analyzer Julia. Section 7 concludes. Most proofs are kept in the
Appendix.

2. RELATED WORK

Reachability analysis belongs to the well-known group of pointer analyses that improve
the overall precision of other static analyses of programs. Plenty of works consider
pointer analyses: in Hind [2001], more than 75 papers are surveyed. Different proper-
ties of pointers can be considered, which gives rise to distinct pointer analyses: alias,
sharing, points-to, escape, and shape analyses.

Possible (definitive) alias analysis discovers the pairs of variables that might (must)
point to the same memory location. If two variables are aliased, they are also reachable
from each other, but the opposite is in general false. Sharing analysis [Secci and Spoto
2005] determines if two variables might ever be bound to overlapping data structures,
that is, two variables share if they might reach the same location at runtime. If a
variable is reachable from another one, they must also share, but the opposite is in
general false.

Points-to analysis computes the objects that a pointer variable might refer to at
runtime. Usually, points-to analysis performs a conservative approximation of the heap,
which is then used to compute points-to information for the whole program. Many works
deal with this analysis, either by providing a formal framework or by introducing an
efficient tool [Salcianu 2006; Lhoták and Hendren 2003; Lhoták 2006; Lhoták and
Chung 2011; Smaragdakis et al. 2011; Rountev et al. 2001; Hardekopf 2009]. The
jpaul tool3 of Salcianu [2006] implements a pointer analysis that constructs, at each

2http://termination-portal.org/wiki/Termination_Competition.
3http://jpaul.sourceforge.net.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:5

program point, a points-to graph describing how local variables and object fields point
to objects. The authors explain how to use its results to perform program optimization
(stack-allocation of local objects) and identify pure methods (i.e., without side-effects).
The points-to graphs are precise approximations of the runtime heap memory, and some
of their formulations can be used to overapproximate reachability information. They
are often much more concrete than reachability itself, which is our abstract domain.

The goal of shape analysis is to determine the shape invariants describing the pro-
gram’s data structures [Sagiv et al. 1998, 2002; Calcagno et al. 2009; Berdine et al. 2007;
Distefano et al. 2006]. Shape analyses are quite concrete and hence capture aliasing
and points-to information, as well as some more accurate properties of data structures,
such as cyclicity or acyclicity. These properties are often encoded as first-order formulas,
and theorem proving is used to determine their validity. Shape analyses also contain
a very precise approximation of the runtime heap memory from which reachability
can be extracted. For example, we can enrich the list of instrumentation predicates
introduced in Sagiv et al. [2002] with

ϕrx
(v)=∃s1, . . . , sk ∈Sel .∃v1, . . . , vk ∈Var .x (v1) ∧

k−1∧
i=1

si (vi , vi+1) ∧ vk = v ,

whose meaning is that a pointer variable x reaches a location bound to v along some
arbitrary fields. In order to verify if a pointer variable x reaches a pointer variable
y , we should check the satisfiability of the formula: ∃v ∈ V .y(v) ∧ ϕrx

(v). The main
difference between these papers is the way they represent abstract states (shape-
graphs, logical structures, explicit reachability predicates). Although these analyses
are precise, they are consequently often expensive and sometimes limited to some
particular data structure, such as linked lists. Some papers consider only a fragment
of a real programming language or are defined for a toy language without method calls
or their techniques do not scale to large, real-life applications.

There already exists a notion of reachability in literature [Nelson 1983], slightly
different from ours. The meaning of the reachability predicate there is to determine if a
memory location reaches another one, usually along a particular field of the structure of
interest. Our definition of reachable locations deals with arbitrary objects and examines
all fields of these objects. Shape analysis has been also studied from the point of
view of predicate abstraction [Ball et al. 2001, 2005]. For instance, some works [Dams
and Namjoshi 2003; Balaban et al. 2005; Chatterjee et al. 2009] use the reachability
predicate during the abstraction of the program.

The approach closest to ours is in Genaim and Zanardini [2010, 2012]. The authors
consider a simple Java-like language and define a notion of reachability that coincides
with ours: the definition of the analysis and the propagation rules are, however, com-
pletely different from ours. This definition of reachability is actually inspired by the
representation of the memory introduced in Secci and Spoto [2005]. The static analysis
proposed in Genaim and Zanardini [2010, 2012] is based on abstract interpretation
and uses the same abstract domain that we propose in this article, Although our target
language is different (we consider almost the full Java bytecode with exceptions), we
can still compare the static analyses introduced in these two papers, and we highlight
some advantages of our analysis.

—We explicitly handle the side-effects of the methods.
—We provide a more detailed explanation of the propagation rules and formally prove

them correct.
—We deal with exceptions.
—The implementation of our analysis fully corresponds to its formalization.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:6 -D. Nikolić and F. Spoto

—We provide an experimental evaluation of our analysis on real-life Java and Android
applications and hence show its usefulness.

The first point is rather complex. In general, a callee method might introduce reachabil-
ity among its formal parameters, which is reflected in the introduction of reachability
between the actual parameters passed by the caller. One needs to know the reachabil-
ity between the formal parameters at the end of the callee to reconstruct the effects
on the actual parameters of the caller. However, the formal parameters might be reas-
signed inside the callee, which complicates the task, since their reachability does not
represent anymore that of the formal parameters. A solution is to introduce read-only
copies of the formal parameters (shallow variables), but this increases the number of
local variables in a method and consequently the cost of the analysis. We have instead
used a technique that avoids the introduction of copies.

3. OPERATIONAL SEMANTICS

This section presents a formal operational semantics for Java bytecode, inspired by its
standard informal semantics in Lindholm and Yellin [1999]. This is the same semantics
used in Spoto and Ernst [2011]. A similar formalization, but in denotational form, has
also been used [Payet and Spoto 2007; Spoto 2008; Spoto et al. 2010]. Another approach
using a similar representation of bytecode in an operational setting is that of Albert
et al. [2007], although, there, Prolog clauses encode the graph, while we work directly
on it.

There exist some other formal semantics for Java bytecode. Our choice has been
dictated by the desire of a semantics suitable for abstract interpretation: we want a
single concrete domain to abstract (the domain of states), and we want the bytecode
instructions to be state tranformers, always, also in the case of the conditional bytecode
instructions and of those dealing with dynamic dispatch and exception handling. This
is exactly the purpose of the semantics in Spoto and Ernst [2011], whose form highly
simplifies the definition of abstract interpretations and their proof of soundness.

Java bytecode is the form of instructions executed by the Java Virtual Machine
(JVM). Although it is a low-level language, it does support high-level concepts, such
as objects, dynamic dispatching, and garbage collection. Our formalization is also at
the Java bytecode level for several reasons. First, it is much simpler than Java: there
is a relatively small number of bytecode instructions, compared to varieties of source
statements, and bytecode instructions lack complexities like inner classes. Second, our
implementation of reachability analysis is at the bytecode level, bringing formalism,
implementation, and proofs closer. We require a formalization, since one of our goals is
to prove the analysis sound.

3.1. Types

For simplicity, we assume that the only primitive type is int; that reference types are
classes containing instance fields and instance methods and arrays. Our implementa-
tion handles all Java primitive and reference types as well as the rest of the bytecode
instructions and the static fields and methods that, for simplicity, we do not consider
in the present article. In particular, note that primitive types are not heap allocated in
Java bytecode, so they are irrelevant with respect to reachability. Hence, it is enough
to consider just one primitive type, since the others behave equivalently for what we
are concerned with in this article. Interfaces are also missing from our formalization.
We observe, however, that interfaces are relevant in Java at compilation time, while
they have little to do with a dynamic semantics, which is what we are going to abstract.
In particular, interfaces do not provide method implementations in Java bytecode, and
hence the method lookup rule only considers the superclass chain in that language.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:7

The fact that we do not consider static fields is a consequence of the formal complexity
that they would introduce, since static fields are always in scope, at every program
point. Static method calls would also complicate the semantics by duplicating the rules
for method call: one for instance methods and one for static methods; and they would
complicate the way the callee is found by dynamic lookup (from the dynamic type of an
object, in the first case; from a fixed starting class, in the second case). Our concrete
and abstract semantics would become too complex if static fields and methods were
presented in formal terms in this article.

Definition 3.1 (Types). Let K be the set of classes of a program. Every class has at
most one direct superclass and an arbitrary number of direct subclasses. Let A be the
set of array types of the program. A type is an element of T = {int} ∪ K ∪ A. A class
κ ∈ K has instance fields κ.f : t (a field f of type t ∈ T defined in κ), where κ and t are
often omitted. We let F(κ) = {κ ′.f : t′ | κ ≤ κ ′} denote the fields defined in κ or in any of
its superclasses. A class κ ∈ K has instance methods κ.m(
t): t (a method m, defined in κ,
with parameters of type
t, returning a value of type t ∈ T ∪ {void}), where κ,
t, and t are
often omitted. Constructors are methods with the special name init that return void. An
array type has the form t[], where t is the type of its elements.

The set of types are ordered by a partial order ≤ that we define next.

Definition 3.2 (Partial Ordering). Given two types t, t′ ∈ T, we say that t is a subtype
of t′, or equivalently that t′ is a supertype of t, and we denote it by t ≤ t′, if one of the
following conditions is satisfied:

—t = t′, or
—t, t′ ∈ K and t is a subclass of t′, or
—t ∈ A and t′ = Object, or
—t = t1[], t′ = t′1[] ∈ A, and t1 ≤ t′1.

In the following, we show some interesting properties of the subtype relation ≤. First
of all, we show that two supertypes of the same type must be related through ≤.

LEMMA 3.3. Consider a type t ∈ T and let t′ and t′′ be two supertypes of t, that is, t ≤ t′
and t ≤ t′′. Then t′ ≤ t′′ or t′′ ≤ t′.

PROOF. We proceed by induction on the maximal number of array dimensions allowed
for t′ and t′′. For the base case, t′ and t′′ are not arrays. In this case, if t′ = t′′, the thesis
follows trivially. Assume hence that t′ �= t′′. We distinguish the following cases.

—If t = int, then it must be t′ = t′′ = int, which is impossible.
—If t′ = Object, then t �= int, and hence t′′ is a reference type; then t′′ ≤ t′.
—If t′′ = Object, then t �= int, and hence t′ is a reference type; then t′ ≤ t′′.
—If t′ and t′′ are classes distinct from Object, then t also must be a class, and since

every class has at most one direct superclass (Definition 3.1), by starting at t and
going up through the superclass chain, one must find t′ and then t′′ or t′′ and then t′.
In the latter case, we have t′ ≤ t′′; in the former case t′′ ≤ t′.

For the inductive case, we also have to consider the following cases.

—If t′ is an array and t′′ is not Object, then by Definition 3.2, t = t1[], t′ = t′1[], and
t′′ = t′′1[] for some types t1, t′1, t′′1 and t′1 �= t′′1, since otherwise t′ = t′′. Since t ≤ t′ and
t ≤ t′′ we have, by Definition 3.2, that t1 ≤ t′1 and t1 ≤ t′′1. By inductive hypothesis, we
have t′1 ≤ t′′1 or t′′1 ≤ t′1. Again by Definition 3.2, we obtain that t′ ≤ t′′ or t′′ ≤ t′ holds.

—If t′′ is an array and t′ is not Object, the thesis follows symmetrically to the preceding
case.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:8 -D. Nikolić and F. Spoto

Definition 3.4 (Compatible Types). We define a function compatible : T → ℘(T) map-
ping every type t ∈ T to the set of its compatible types:

compatible(t) = {t′ | t ≤ t′ or t′ ≤ t}.
The following lemma shows that if a type is compatible with another, then every

supertype of the former is compatible with the latter as well.

LEMMA 3.5. Let t, t′, t′′ ∈ T with t′ ≤ t′′. If t′ ∈ compatible(t), then t′′ ∈ compatible(t).

PROOF. Since t′ ∈ compatible(t) we have two cases.

—t ≤ t′. Hence t ≤ t′′ and t′′ ∈ compatible(t).
—t′ ≤ t. Since t′ ≤ t′′, by Lemma 3.3 we have t ≤ t′′ or t′′ ≤ t, that is, t′′ ∈ compatible(t).

We show that the function compatible is monotonic.

LEMMA 3.6. Let t′, t′′ ∈ T with t′ ≤ t′′. Then compatible(t′) ⊆ compatible(t′′).

PROOF. Let t ∈ compatible(t′). We have two cases.

—t ≤ t′. Hence t ≤ t′′ and t ∈ compatible(t′′).
—t′ ≤ t. Since t′ ≤ t′′, by Lemma 3.3 we have t ≤ t′′ or t′′ ≤ t, that is, t ∈ compatible(t′′).

We analyze bytecode instructions preprocessed into a control-flow graph (CFG), that
is, a directed graph of basic blocks, with no jumps inside the blocks. We graphically
write

ins@p
rest

→
→

b1· · ·
bm

to denote a block of code starting with a bytecode instruction ins at a program point p,
possibly followed by more bytecode instructions rest and linked to m subsequent blocks
b1, . . . , bm . The program point p is often irrelevant, so we just write ins instead of ins@p.

Example 3.7. Figure 2 shows the basic blocks of the second constructor in
Figure 1 (Lines 9–12). There is a branch at the implicit call to the constructor of
java.lang.Object (automatically added by the compiler) that might throw an excep-
tion (as every call). If this happens, the exception is first caught and then re-thrown to
the caller of the constructor. Otherwise, the execution continues with two blocks storing
the formal parameters (locals 1 and 2) into the fields of this (held in local variable 0)
and then returns. Each bytecode instruction except return and throw has always one or
more immediate successors, while return and throw are placed at the end of a method
or constructor and have no successor, unless when throw raises an exception that is
caught inside the same method.

An exception handler starts with a catch bytecode. A virtual method call (i.e., the
typical object-oriented method call, where the method signature is identified at compile
time but its implementation is only resolved dynamically at runtime) or a selection of
an exception handler is translated into a block linked to many subsequent blocks. Each
of these subsequent blocks starts with a filtering bytecode, such as exception is K for
exceptional handlers.

Bytecode instructions operate on variables, which encompass both stack elements
allocated in the operand stack (S = {s0, . . .}) and local variables allocated in the ar-
ray of local variables (L = {l0, . . .}). At any point of execution, we know the exact
length of both the array of local variables and the operand stack. Moreover, a standard
algorithm [Lindholm and Yellin 1999] infers their static types. These static types are
returned by the type environment map.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:9

Fig. 1. Our running example.

Fig. 2. Our representation of the code of the second constructor from Figure 1.

Definition 3.8 (Type Environment). Each program point is enriched with a type
environment τ , that is, a map from all the variables available at that point (dom(τ))
to their static types. We distinguish between local variables L = {l0, . . .} and stack
elements S = {s0, . . .}, that is, dom(τ) = L ∪ S .

Type environments specify the variables in scope at a given program point. Hence,
they do not provide static type information for the fields of the objects in memory. This
is because variables change number and type from a program point to another, while
the fields of the objects have fixed, static types specified by the definition of the class
where they are declared, as we will formalize in Definition 3.10.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:10 -D. Nikolić and F. Spoto

3.2. States

Our semantics keeps a state that maps program variables to values. An activation stack
of states models the method call mechanism, exactly as in the actual implementation
of the JVM [Lindholm and Yellin 1999].

Definition 3.9 (Values). The set of all possible values that our formalization sup-
ports is Z∪L∪{null}, where for simplicity, we use Z instead of 32-bit two’s-complement
integers, as in the actual Java virtual machine (this choice is irrelevant in this article)
and where L is an infinite set of memory locations.

Objects are particular instances of classes. The way we represent them in this article
is explained by the following definition.

Definition 3.10 (Object Representation). Given an object o, its type is maintained
inside o in a special field o.type, and we say that o is an instance of o.type. Each object
o contains its internal environment o.φ that maps every field κ ′.f : t′ ∈F(o.type) into its
value as provided in the object, denoted by (o.φ)(κ ′.f : t′). Hence, the domain of o.φ is
dom(o.φ) = F(o.type), and its range rng(o.φ) is the set of the values of the fields of o.

Arrays are instances of array types. The way we represent them in this article is
explained by the following definition.

Definition 3.11 (Array Representation). Given an array a, its type is maintained
inside a in a special field a.type, and we say that a is an instance of a.type. The
length of a is kept inside a special field a.length. Each array a contains an internal
environment a.φ that maps each index 0 ≤ i < a.length into the value (a.φ)(i) of the
element at that index. Hence, the domain of a.φ is dom(a.φ) = {0, . . . , a.length − 1},
and its range rng(a.φ) is the set of the elements of a.

We want to analyze the possible states of the JVM at each point of the program under
analysis.

Definition 3.12 (State). A state σ over a type environment τ ∈ T is a pair 〈〈l ‖ s〉, μ〉,
where l is an array of values, one for each local variable of dom(τ), s is a stack of values,
one for each stack element in dom(τ), which grows leftwards, and μ is a memory that
binds locations to objects and arrays. The empty stack is denoted by ε. We often use
another representation of states: 〈ρ,μ〉, where an environment ρ maps each lk ∈ L to
its value l[k] and each sk ∈ S to its value s[k]. The set of states is
. We write
τ when
we want to fix the type environment τ .

We assume that variables hold values consistent with their static types, that is, that
states are well-typed.

Definition 3.13 (Consistent State). We say that a value v is consistent with a type t
in 〈ρ,μ〉, and we denote it by v �〈ρ,μ〉 t if one of the following conditions holds.

—v ∈ Z and t = int, or
—v = null and t ∈ K ∪ A, or
—v ∈ L, t ∈ K ∪ A and μ(v).type ≤ t.

We write v ��〈ρ,μ〉 t to denote that v is not consistent with t in 〈ρ,μ〉. In a state 〈ρ,μ〉
over τ , we require that ρ(v) is consistent with the type τ (v) for any variable v ∈ dom(τ)
available at that point; that for every object o ∈ rng(μ) available in the memory and
every field κ ′.f : t′ ∈ F(o.type) available in that object, the value held in that field,
(o.φ)(κ ′.f : t′) is consistent with its static type t′; and that for every array a ∈ rng(μ)
available in the memory, such as a.type = t′[], the values in rng(a.φ) are consistent
with t′.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:11

Fig. 3. A JVM state σ = 〈ρ,μ〉.

The Java Virtual Machine (JVM), as well as our formalization, supports exceptions.
Therefore, we distinguish normal states
 arising during the normal execution of a
piece of code, from exceptional states
 arising just after a bytecode that throws an
exception. The operand stack of the states in
 always has exactly one variable holding
a location bound to the thrown exception object. When we denote a state by σ , we do not
specify if it is normal or exceptional. If we want to stress that fact, we write 〈〈l ‖ s〉, μ〉
for a normal state and 〈〈l ‖ s〉, μ〉 for an exceptional state.

Definition 3.14 (Java Virtual Machine State). The set of Java virtual machine
states (from now on just states) in a type environment τ ∈ T is �τ =
τ ∪
τ ′ , where
τ ′ is τ with the operand stack containing only one variable (s0) whose static type is a
subclass of Throwable, that is, τ ′(s0) ≤ Throwable.

Example 3.15. Let Student be a class containing one instance field age of type int.
Consider the following type environment.

τ = [l1 �→ List; l2 �→ int; l3 �→ Student; l4 �→ List],

where List is the class defined in Figure 1. In Figure 3, we show a state σ = 〈ρ,μ〉 ∈ �τ .
The environment ρ maps local variables l1, l2, l3, and l4 to values �2 ∈ L, 2 ∈ Z, �3 ∈ L,
and �4 ∈ L, respectively. The memory μ maps locations �2 and �4 to objects o2 and o4
of class List, and locations �1 and �3 to the objects o1 and o3 of class Student. Objects
are represented as boxes with a class tag and an internal environment mapping fields
to values. For instance, fields head and tail of object o4 contain locations �3 and �2,
respectively.

3.3. Semantics of Bytecode Instructions

The semantics of a bytecode instruction ins is a partial map ins : �τ → �τ ′ from initial
to final states. The number and type of the local variables and of the variables on the
operand stack at each program point are statically known and specified by τ [Lindholm
and Yellin 1999]. We assume that we are analyzing a type-checked program, so that,
for instance, field and method resolution always succeeds. In the following, we silently
assume that bytecode instructions are run in a program point with type environment
τ ∈ T such that dom(τ) = L ∪ S , where L and S are local variables and stack elements,
and let i and j be the cardinalities of these sets. Moreover, we suppose that the seman-
tics is undefined for input states of wrong sizes or types, as is required in Lindholm
and Yellin [1999]. Figure 4 defines the semantics of bytecode instructions. We discuss
it next.

Load and Store Instructions. The load and store instructions transfer values between
the local variables and the operand stack of a state: load k t loads the local variable lk
whose static type is t onto the operand stack; store k t stores the topmost value of the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:12 -D. Nikolić and F. Spoto

Fig. 4. The semantics of the bytecode instructions maps states to states. � ∈ L is a fresh loca-
tion, o, and a are, respectively, a new object of class κ and a new array of type α. Exceptions ae,
oome, npe, nase, obe and ase are, respectively, new instances of the following: ArithmeticException,
OutOfMemoryError, NullPointerException, NegativeArraySizeException, ArrayIndexOutOfBoundsExcep-
tion, and ArrayStoreException.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:13

operand stack, whose static type is t , into the local variable lk ; const v loads an integer
constant or null onto the operand stack.

Arithmetic Instructions. The arithmetic bytecode instructions pop the topmost two
integer values from the operand stack, apply the corresponding arithmetic operation
on them, and push back the result on the operand stack. They are add (addition), sub
(subtraction), mul (multiplication), div (division), rem (remainder). There is also inc k x ,
that increments the value of lk by x .

Object Creation and Manipulation Instructions. These bytecode instructions create
or access objects in memory: new κ creates a new instance of class κ; getfield κ.f : t reads
a value from the field f belonging to the class κ and whose static type is t; putfield κ.f : t
writes a value into the field f belonging to the class κ and whose static type is t.

Array Creation and Manipulation Instructions. These bytecode instructions create
or access arrays: arraynew α creates a new array of type α whose length is the value
popped from the operand stack and puts a reference to this new array onto the top of
the operand stack arraylength α pops the topmost value from the operand stack, that
must have a type compatible with α, and pushes back onto the operand stack the length
of the corresponding array; arrayload α pops from the operand stack an integer value
k and a reference to an array of type α and puts back onto the operand stack its kth
element; arraystore α pops from the operand stack a value of type t, an integer k , and a
reference to an array of type α = t[] and writes the value into the kth element of the
array.

Operand Stack Management Instructions. The only operand stack management in-
struction supported by our formalization is dup t, that duplicates the topmost value of
the operand stack.

Control Transfer Instructions. In our formalization, conditional bytecodes are used
in complementary pairs (such as ifne t and ifeq t) at the beginning of the two conditional
branches. The semantics of a conditional bytecode is undefined when its condition is
false. For instance, ifeq t checks whether the top of the stack, of type t, is 0 when t = int,
or is null otherwise; the undefined case means that the JVM does not continue the
execution of that branch of code if the condition is false.

Exception Handling Instructions. An exception is thrown programmatically by us-
ing the throw κ bytecode instruction. Exceptions can also be thrown by various other
bytecode instructions if they detect an abnormal condition. catch starts an exception
handler; it takes an exceptional state and transforms it into a normal one, subsequently
used by the handler. After catch, bytecode exception is K can be used to select an ap-
propriate handler depending on the runtime class of the top of the stack: it filters those
states whose top of the stack is an instance of a class in K ⊆ K.

Method Calls and Return. When a caller transfers control to a callee κ.m(
t) : t,
the JVM runs an operation makescope κ.m(
t): t that copies the topmost stack elements,
holding the actual arguments of the call, to local variables that correspond to the formal
parameters of the callee, and clears the stack. We only consider instance methods,
where this is a special argument held in local variable l0 of the callee. More precisely,
the ith local variable of the callee is a copy of the (π −1)−ith topmost element of the
operand stack of the caller.

Definition 3.16 (Makescope). Let κ.m(
t): t be a method and π the number of stack
elements holding its actual parameters, including the implicit parameter this. We

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:14 -D. Nikolić and F. Spoto

Fig. 5. The transition rules of our semantics.

define a function (makescope κ.m(
t): t) : � → � as

λ〈〈l ‖ vπ−1 :: · · · :: v1 :: rec :: s〉, μ〉.〈〈[rec, v1, . . . , vπ−1] ‖ ε〉, μ〉,

provided rec �= null and the lookup of m(
t): t from μ(rec).type leads to κ.m(
t): t. We let it
be undefined otherwise.

Bytecode call κ1.m . . . κn .m calls, nondeterministically, one of the callees in the enu-
meration. These are possible targets of a virtual call, since a method call in Java
bytecode, which is an object-oriented language, can in general lead to many method
implementations. The overapproximation of the possible targets is not explicit in actual
Java bytecode, but we assume that it is provided in our simplified bytecode. In par-
ticular, that overapproximation can be computed by any class analysis [Palsberg and
Schwartzbach 1991]. The exact implementation of the method is later selected through
a makescope instruction, as we will show with Figure 5. Bytecode return t terminates a
method and clears its operand stack, leaving only the returned value when t �= void.
This is later moved on top of the stack of the caller of the callee, as Figure 5 shows.

3.4. The Transition Rules

We now define the operational semantics of our language. It uses a stack of activation
records to model method and constructor calls.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:15

Definition 3.17 (Configuration). A configuration is a pair 〈b ‖ σ of a block b and a
state σ representing the fact that the JVM is about to execute b in state σ . An activation
stack is a stack c1 :: c2 :: · · · :: cn of configurations, where c1 is the active configuration.

The operational semantics of a Java bytecode program is a relation between activation
stacks. It models the transformation of the activation stack induced by the execution
of each single bytecode.

Definition 3.18 (Operational Semantics). The (small step) operational semantics of
a Java bytecode program P is a relation a ′ ⇒P a ′′ (P is usually omitted) providing the
immediate successor activation stack a ′′ of an activation stack a ′. It is defined by the
rules in Figure 5.

Rule (1) runs the first instruction ins of a block, different from call, by using its se-
mantics ins given in Figure 4. Then it moves forward to run the remaining instructions.

Rules (2) and (3) are for method calls. If a call occurs on a null receiver, no actual call
happens, and Rule (3) creates a new state whose operand stack contains only a reference
to a NullPointerException. Instead, Rule (2) calls a method on a non-null receiver: the
call instructions are decorated with an over-approximation of the set of their possible
runtime target methods. The dynamic semantics of call implements the virtual method
resolution of object-oriented languages by looking for the implementation κi .m(
t) : t of
the callee, that is, executed through the dynamic lookup rules of the language, codified
inside the makescope function. The latter is only defined when that implementation is
selected at runtime; in that case, makescope yields the initial state σ ′ that the semantics
uses to create a new current configuration containing the first block of the selected
implementation and σ ′. It pops the actual arguments from the previous configuration
and the call from the instructions to be executed at return time. Although this rule
seems nondeterministic, only one thread of execution continues, since we assume that
the lookup rules are deterministic, as in Java bytecode.

Control returns to the caller by Rules (4) and (5). If the callee ends in a normal state,
Rule (4) rehabilitates the caller configuration but keeps the memory at the end of the
execution of the callee, and if s �= ε, it also pushes the return value on the operand
stack of the caller. If the callee ends in an exceptional state, Rule (5) propagates the
exception back to the caller.

Rule (6) applies when all instructions inside a block have been executed; it runs one of
its immediate successors, if any. In our formalization, this rule is always deterministic:
if a block has two or more immediate successors, then they start with mutually exclusive
conditional instructions and only one thread of control is actually followed.

In the notation ⇒, we often specify the rule in Figure 5 used; for instance, we write
(1)⇒ for a derivation step through Rule (1).

4. REACHABILITY

In this section, we formalize the notion of reachability between two program variables.
In order to do that, we first determine the locations reachable from an arbitrary location
�. Intuitively, we collect all locations held in the fields of the object bound to �, or in
the elements of the array bound to �. We then consider the contents of the fields of the
objects or elements of the arrays held at these locations and so on until a fixpoint is
reached. Let us formalize this intuition.

Definition 4.1 (Locations Reachable from a Location). Given τ ∈ T , we define the
set of locations reachable from a location �∈ L in a memory μ as Lμ(�)= ⋃

i≥0
Li

μ(�), where

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:16 -D. Nikolić and F. Spoto

Fig. 6. Example of computation of reachable locations and types.

Li
μ(�) are the locations reachable from � in at most i steps, defined as

Li
μ(�) =

⎧⎨
⎩

�, if i = 0,

Li−1
μ (�) ∪ ⋃

�1∈Li−1
μ (�)

(rng(μ(�1).φ) ∩ L), if i > 0

Hence, if an object (an array) μ(�1) is bound to a location reachable from �, then also
rng(μ(�1).φ) ∩ L, that is, the locations held in μ(�1)’s fields or elements, are reachable
from �. We say that a variable a reaches a location � if a holds a location that reaches �.

Definition 4.2 (Locations Reachable from a Variable). Given τ ∈ T , we define the
set of locations reachable from a variable a ∈ dom(τ) in a state σ = 〈ρ,μ〉 ∈ �τ as
Lσ (a)=Lμ(ρ(a)) if ρ(a) ∈ L and Lσ (a)=∅ otherwise.

We say that a variable is reachable from another if the former is bound to a location
reachable from the latter.

Definition 4.3 (Reachability between Variables). Let τ ∈T , σ =〈ρ,μ〉∈�τ and vari-
ables a, b ∈dom(τ). We say that b is reachable from a in σ or, equivalently, that a reaches
b in σ , denoted as a�σ b, if and only if ρ(b) ∈ Lσ (a).

Remark 4.4. It is worth noting that two variables a and b share in a state σ if and
only if Lσ (a) ∩ Lσ (b) �= ∅. As a consequence, if a reaches b or b reaches a, then a and
b share. However, it is possible that a and b share and yet neither a reaches b nor b
reaches a. For that, it is enough that a and b are bound to overlapping data structures
such that none of them is included in the other. It follows that we cannot reconstruct a
sound nontrivial sharing analysis from the results of a reachability analysis.

Example 4.5. Consider the state σ ∈ �τ from Example 3.15. On the left-hand side
of Figure 6 we give, for each variable li ∈ dom(τ) and for every j ≥ 0, the set of
reachable locations from li in σ in at most j steps until the fixpoint is reached. Therefore,
we conclude that l1�σ l1, l1�σ l2, l3�σ l3, l4�σ l1, l4�σ l2, l4�σ l3, l4�σ l4.

Let us show a very important and useful result: if two states provide the same value
for variables a and a ′ and for variables b and b ′, and if the two memories provide the
same values for the locations reachable from a in the first state, then reachability from
a to b coincides with reachability from a ′ to b ′.

LEMMA 4.6. Let τ, τ ′ ∈ T , σ = 〈ρ,μ〉 ∈ �τ , and σ ′ = 〈ρ ′, μ′〉 ∈ �τ ′ . Let a, b ∈ dom(τ)
and a ′, b ′ ∈ dom(τ ′) be such that the following hold.

(1) ρ(a) = ρ ′(a ′).
(2) ρ(b) = ρ ′(b ′).
(3) dom(μ) ⊆ dom(μ′).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:17

(4) for all � ∈ Lσ (ρ(a)), we have μ(�) = μ′(�).

Then a�σ b if and only if a ′�σ ′
b ′.

PROOF. Since ρ(b) = ρ ′(b ′), it is enough to prove that Lσ (a) = Lσ ′(a ′). In fact, if
Lσ (a) = Lσ ′(a ′), then ρ(b) ∈ Lσ (a) if and only if ρ ′(b ′) ∈ Lσ ′ (a ′), that is, a�σ b if and only
if a ′�σ ′

b ′. If ρ(a) = ρ ′(a ′) �∈ L, then Lσ (a) = Lσ ′(a ′) = ∅ (Definition 4.2), and the thesis
trivially holds. Assume that ρ(a) = ρ ′(a ′) ∈ L. We prove that Li

μ(ρ(a)) = Li
μ′(ρ ′(a ′)) for

every i ≥ 0, by induction on i .

Base Case. i = 0. We have L0
μ(ρ(a)) = {ρ(a)} = {ρ ′(a ′)} = L0

μ′(ρ ′(a ′)).
Induction Step. assume that i > 0 and Li−1

μ (ρ(a)) = Li−1
μ′ (ρ ′(a ′)). We have

Li
μ(ρ(a)) = Li−1

μ (ρ(a)) ∪ ⋃
�∈Li−1

μ (ρ(a))
(rng(μ(�).φ) ∩ L) [By Definition 4.1]

= Li−1
μ′ (ρ ′(a ′)) ∪ ⋃

�∈Li−1
μ′ (ρ ′(a ′))

(rng(μ(�).φ) ∩ L) [By hypothesis]

= Li−1
μ′ (ρ ′(a)) ∪ ⋃

�∈Li−1
μ (ρ ′(a))

(rng(μ′(�).φ) ∩ L) [By points (3) and (4)]

= Li
μ′ (ρ ′(a ′)). [By Definition 4.1]

Note that Points (3) and (4) of Lemma 4.6 hold, in particular when μ = μ′, but the more
general form of the lemma is more useful.

We observe that in a programming language such as Java bytecode, an activation of
a method can only access locations reachable from its actual parameters or allocated
during its execution.4 Hence we can safely state that the activation does not read
nor write into the locations L already allocated at the time of call, but not reachable
from the actual parameters of the method. Those locations keep their value unchanged
during the execution of the activation of the method. For the same reason, no location
in L is reachable from the return value of the activation of the method, if any. Moreover,
the locations in L are not written inside the fields (respectively, array elements) of the
objects (respectively, arrays) reachable by the activation of the method. The following
proposition formalizes these intuitions. Although technical, it is important since it
bounds the side-effects of a method to the locations not in L. As a consequence, we
can be sure that the execution of a method will never affect the locations reachable
from variables that do not share with the actual parameters of the call. We will later
exploit this observation for the definition of the abstract semantics to provide a sound
approximation of the side-effects of the execution of a method and of the reachability
for its return value.

PROPOSITION 4.7. Let σ = 〈〈l ‖ s〉, μ〉 = 〈ρ,μ〉 and σ ′ = 〈〈l′ ‖ s′〉, μ′〉 = 〈ρ ′, μ′〉 be the
states right before two adjacent bytecode instructions ins = call m1 . . .mn and ins′ �=catch
are executed. Namely, σ ′ is a nonexceptional state obtained at the end of execution of
a callee mw in σ , for a w ∈ [1..n], the topmost π stack elements of σ (values s[|s| −
1], . . . , s[|s| − π]), and the topmost operand stack element of σ ′ (value s′[|s′| − 1]) are
the parameters of the callee and its return value, respectively. We define Lσ , the set of
locations not reachable from the actual parameters of the callee in σ .

Lσ = dom(μ) �

⋃
|s|−π≤i≤|s|−1

Lσ (s[i]).

4If we considered full Java bytecode, we would also include the locations reachable from the static fields.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:18 -D. Nikolić and F. Spoto

Then, the following conditions hold:

(1) ∀� ∈ Lσ .μ(�) = μ′(�),
(2) s′[|s′| − 1] /∈ Lσ , and
(3) ∀� ∈ dom(μ′) � Lσ .rng(μ′(�).φ) ∩ Lσ = ∅.

Let us explain these three points in more detail.

(1) For each location �, not reachable from the actual arguments of the method at ins
(i.e., � ∈ Lσ), the object or array bound to � at ins (μ(�)) is the same bound to � at
ins′ (μ′(�)), that is, the execution of the method does not modify the values bound to
the locations in Lσ .

(2) The method’s return value s′[|s′|−1] at ins′ is not a location in Lσ . That value might
actually be a location � that did not exist at call time (i.e., at ins), when � /∈ dom(μ).
In this case, the location � might have been allocated during the execution of the
activation of the method and would consequently be bound to a new object or array.

(3) Every location � available at ins′ (i.e., at the end of the execution of the activation
of the method), that moreover does not belong to Lσ (i.e., � is not reachable from
the actual arguments of the method at ins), is such that its content (an object or
array) is not modified during the execution of the activation of the method, that is,
its fields (if μ(�) is an object) or elements (if μ(�) is an array) are left unchanged by
that execution.

We also introduce a static notion of reachability between types. The intuition is that
a type t reaches a type t′ whenever a variable of static (declared) type t might reach,
in some state, another variable of static type t′. In this sense, as we will prove later
(Lemma 4.10) that this is a weaker, conservative approximation of the dynamic notion
of reachability of Definition 4.3: if there exists a state σ where variable a reaches
variable b, then the static type of a must reach the static type of b, but the converse
does not hold in general.

Definition 4.8 (Reachability between Types). Let t ∈ T. The set of types reachable
from t is T(t) = ⋃

i≥0
Ti (t), where Ti (t) are the types reachable from t in at most i steps.

Ti (t) =

⎧⎪⎨
⎪⎩

compatible(t), if i = 0,
Ti−1(t) ∪ ⋃

κ∈Ti−1(t)∩K

κ ′.f :t′∈F(κ)

compatible(t′) ∪ ⋃
t′[]∈Ti−1(t)∩A

compatible(t′), if i > 0.

We say that t′ ∈ T is reachable from t if and only if t′ ∈ T(t) and we write this as t�t′.

Example 4.9. Consider class List from Figure 1 and suppose that class Student
contains only one field, of type int, as stated in Example 3.15. Both List and, Student
are subclasses of Object. On the right of Figure 6, we report the types reachable
from these classes. For instance, List�Student, Object�Student, Student�Object,
Object�Student, etc.

The following lemma shows a very important result. Namely, it illustrates the re-
lationship between variable and type reachability: if one variable is reachable from
another, then the static type of the former is reachable from the static type of the
latter.

LEMMA 4.10. Let τ ∈ T , σ ∈ �τ and a, b ∈ dom(τ). If a�σ b, then τ (a)�τ (b).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:19

PROOF. By letting σ = 〈ρ,μ〉, from a�σ b and Definition 4.3, we have ρ(a), ρ(b) ∈ L.
We prove that for every i ≥ 0, the following property P (i) holds: for every � ∈ Li

μ(ρ(a)),
there exists 0 ≤ j ≤ i such that μ(�).type ∈ Tj (τ (a)). This entails our thesis. Namely,
since a�σ b, there exists i ≥ 0 such that ρ(b) ∈ Li

μ(ρ(a)) ⊆ Lσ (a), and P (i) ensures
that there also exists 0 ≤ j ≤ i such that μ(ρ(b)).type ∈ Tj (τ (a)) ⊆ T(τ (a)), that
is, τ (a)�μ(ρ(b)).type. Since (Definition 3.12) μ(ρ(b)).type ≤ τ (b), by Lemma A.6 in
Appendix A, we conclude that τ (a)�τ (b).

Let us now prove that, for every i ≥ 0, P (i) holds.

Base Case. i = 0. Since a�σ b, we have ρ(a) ∈ L, and therefore L0
σ (a) = {ρ(a)}. By

Definition 3.12, μ(ρ(a)).type ≤ τ (a), that is, μ(ρ(a)).type ∈ compatible(τ (a)) = T0(τ (a)).
Since j = 0 ≤ 0 = i , P (0) holds.

Inductive Step. Suppose that for every k < i , P (k) holds and consider a location
� ∈ Li

μ(ρ(a)). By Definition 4.2 we have two cases.

—If � ∈ Li−1
μ (ρ(a)), then by the inductive hypothesis P (i − 1), we know that there exists

0 ≤ j ≤ i − 1 < i such that μ(�).type ∈ Tj (τ (a)). Hence P (i) holds.
—If � /∈ Li−1

μ (ρ(a)), then � ∈ rng(μ(�′).φ) ∩ L for some �′ ∈ Li−1
μ (ρ(a)). We distinguish the

following cases.
—If μ(�′).type ∈ K, then there exists κ ′.f : t′ ∈ F(μ(�′).type) such that � = (μ(�′).φ)(κ ′.f :

t′) and μ(�).type ≤ t′. Hence, μ(�).type ∈ compatible(t′) ⊆ Tj+1(τ (a)).
—If μ(�′).type ∈ A, then there exists κ ′.f : t′ ∈ F(μ(�′).type) such that � = (μ(�′).φ)(κ ′.f :

t′) and μ(�).type ≤ t′. Hence, μ(�).type ∈ compatible(t′) ⊆ Tj+1(τ (a)).
Since 0 ≤ j + 1 ≤ i , in both cases, P (i) holds as well.

Example 4.11. Since l4�σ l3 (Example 4.5), by Lemma 4.10, we conclude that
τ (l4)�τ (l3). In fact, Example 4.9 shows that τ (l4) = List�Student = τ (l3).

5. REACHABILITY ANALYSIS

In this section, we define an abstract interpretation Cousot and Cousot [1977, 1979]
of our concrete semantics of Section 3 with respect to the property of reachability
between variables (Definition 4.3). This will be an actual static analysis algorithm for
interprocedural, whole-program reachability analysis.

Our choice has been to start from the simplest possible domain for reachability
that coincides with the property of reachability between pairs of variables itself, and
build a framework where this property is propagated between program points until
stabilization. Propagation at a program point depends on the bytecode that occurs
there. In most cases, the propagation rules are straightforward, for instance, for those
bytecodes that only move values between stack elements or from stack elements to local
variables and vice versa. The complex scenarios are those related to field and array
accesses (reading or writing) and method calls. Field accesses perform an interaction
between the stack variables and the heap memory, which requires the reconstruction
of the reachability information after the operation by taking into account properties
of the heap memory, such as aliasing, sharing, or reachability itself. Method calls may
modify the variables of the caller by side-effect, and the exact sound reconstruction
of those side-effects requires, again, information on aliasing and sharing, as well as
the exploitation of the reachability information at the end of the callee, wherever it
does not reassign its formal arguments. For these reasons, those operations are the
actual kernel of our abstract interpretation. Their definition is consequently relatively

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:20 -D. Nikolić and F. Spoto

complex. We provide six examples in this section that show how their propagation rules
work on a concrete example of analysis where a field is modified and a method is called.

5.1. Concrete and Abstract Domains

The concrete semantics works over concrete states (Definition 3.14) that our abstract
interpretation abstracts into sets of ordered pairs of variables.

Definition 5.1 (Concrete and Abstract Domain). Given a type environment τ ∈ T ,
we define the concrete domain over τ as Cτ = 〈℘(�τ),⊆ and the abstract domain over
τ as the powerset of the set of ordered pairs of variables Aτ = 〈℘(dom(τ) × dom(τ)),⊆.
For every v ,w ∈ dom(τ), we write v�w for 〈v ,w〉.

An abstract domain element R ∈ Aτ represents those concrete states in �τ whose
reachability information is conservatively overapproximated by the pairs of variables
in R. By requiring an overapproximation, we induce a possible reachability analysis.

Definition 5.2 (Concretization Map). For every type environment τ ∈ T , we define
the concretization map γτ : Aτ → Cτ as.

γτ = λR.{σ ∈ �τ | ∀a, b ∈ dom(τ).a�σ b ⇒ a�b ∈ R}.
Both Cτ and Aτ are complete lattices. Moreover, the following lemma states that γτ

is co-additive, and therefore it is the concretization map of a Galois connection [Cousot
and Cousot 1977]. Its proof can be found in the Appendix. Thus, Aτ is actually an
abstract domain in the sense of abstract interpretation.

LEMMA 5.3. Let τ ∈ T . The function γτ is co-additive.

Lemma 4.10 allows us to refine the abstract domain by only considering pairs of
variables whose static types allow their reachability. A similar idea is used in Genaim
and Zanardini [2010], where, however, type reachability is used in the same definition
of the abstract domain but no formal proof of a relationship between variable and type
reachability is provided. We prefer to use this relationship in the abstract semantics
that we define in the next section in order to avoid the introduction of spurious pairs
of unreachable variables.

5.2. The Abstract Constraint Graph

Our analysis is constraint based in the sense that it builds an abstract constraint graph
from the program under analysis by creating a node of the graph for each bytecode
instruction b of the program. This node will be later decorated with an element of
Aτ , where τ is the static type information at the beginning of b. Arcs of this graph
propagate abstract domain elements, reflecting, in abstract terms, the effects of the
concrete semantics (Section 3) over the reachability information. In other words, an
arc from the node for the bytecode instruction b1 to that for the bytecode instruction
b2 propagates the reachability information at b1 into that at b2. The exact meaning of
propagates depends here on b1, since each bytecode instruction has different effects on
reachability.

In the following, we assume the presence of possible sharing and definite aliasing
approximations. Namely, we suppose that, at every program point, there exists a set
of (non-ordered) pairs of variables representing an overapproximation of the actual
sharing information at that program point, and a set of (non-ordered) pairs of variables
representing an underapproximation of the actual aliasing information at that point.
Pairs of variables that do not belong to the former set definitely do not share at that
point. Dually, pairs of variables that belong to the latter set are definitely aliased at
that point, but other variables might be aliased as well. These pieces of information

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:21

can be computed statically, before our reachability analysis is performed, and our tool
Julia is able to provide them [Secci and Spoto 2005; Nikolić and Spoto 2012b]. Our
analysis works correctly also when such information is not available: we can always
assume that at every program point, every variable might share with another, and no
variable is definitely aliased to another. This would induce a less precise, yet still sound
reachability analysis.

Definition 5.4 (ACG). Let P be the program under analysis (i.e., a control-flow
graph of basic blocks for each method or constructor). The abstract constraint graph
(ACG) of P is a directed graph 〈V ,E (nodes, arcs) where the following hold.

—V contains a node ins for every bytecode instruction ins of P .
—V contains nodes exit@m and exception@m for each method or constructor m in P that

represent the normal and exceptional ends of m.
—E contains directed (multi-)arcs with one or two sources and always one sink.
—For every arc in E , there is a propagation rule that is, a function over A, from the

reachability information at its source(s) to the reachability information at its sink.

The arcs in E are built from P as follows. We assume that τ and τ ′ are the static
type information at and immediately after the execution of a bytecode instruction ins,
respectively. Moreover, we assume that τ contains j stack elements and i local variables.
In the following, we discuss different types of arcs.

Sequential Arcs. If ins is a bytecode instruction in P distinct from call, immediately
followed by a bytecode instruction ins′ distinct from catch, then an arc is built from ins

to ins′ , with one of the propagation rules #1–#11 in Figure 7, based on the bytecode
instruction ins itself.

Final Arcs. For each return t and throw κ occurring in a method or in a constructor m
of P , there are arcs from return t to exit@m and from throw κ to exception@m , respectively,
with one of the propagation rules #12–#14 in Figure 7.

Exceptional Arcs. For each ins throwing an exception immediately followed by a
catch, an arc is built from ins to catch , with one of the propagation rules #15–#17 in
Figure 7.

Parameter Passing Arcs. For each insc = call m1 . . .mk to a method with π param-
eters (including the implicit parameter this), we build an arc from insc to the node
corresponding to the first bytecode instruction of mw , with the propagation rule #18 in
Figure 7, for each 1 ≤ w ≤ k .

Return Value Arcs. For each insc = call m1 . . .mk to a method with π parameters
(including the implicit parameter this) returning a value of type t ∈ K and each
subsequent bytecode instruction ins′ distinct from catch, we build a multi-arc from insc

and exit@mw (two sources, in that order) to ins′ , with the propagation rule #19 defined
in Figure 8, for each 1 ≤ w ≤ k .

Side-Effects Arcs. For each insc = call m1 . . .mk to a method with π parameters
(including the implicit parameter this) and each subsequent bytecode instruction ins′,
we build a multi-arc from insc and exit@mw (two sources, in that order) to ins′ , where
ins′ is not a catch, or from insc and exception@mw (two sources, in that order) to catch , for
each 1 ≤ w ≤ k . Its propagation rule #20 is given in Figure 8, where max = j − π if ins′
is not a catch and max = 0 otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:22 -D. Nikolić and F. Spoto

Fig. 7. Propagation rules of simple arcs.

Definition 5.4 deserves some explanation. It specifies how the ACG is built from the
program under analysis. For each bytecode instruction ins, there is a node ins in the
graph that will be later decorated by an element of our abstract domain (Definition 5.1),
representing an overapproximation of the actual reachability information at that point.
The rules introduced in Definition 5.4 explain how this approximation is propagated
along the arcs of the ACG. In the following, we show an example illustrating the
construction of an ACG (Example 5.5), and then we explain in more detail the preceding
propagation rules defined.

Example 5.5. Figure 9 shows the ACG built for the constructor in Figure 2. It also
shows, in grey, three nodes of a caller of this constructor (nodes A, B and C correspond-
ing to line 21 in Figure 1) and two nodes of the callee of call java.lang.Object.〈init〉():
void, to exemplify the arcs related to method call and return. Arcs are decorated with
the number of their associated propagation rule. Note that the graph for the whole
program includes other nodes and arcs. Figure 9 only shows those relevant for our
example.

In the following examples, we let in and jn be the number of local and operand stack
variables at n, respectively, and τn be the static type information available at n, for
each node n. We suppose that iA = 5 and jA = 4. Namely, there are five local variables

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:23

Fig. 8. Propagation rules of multi-arcs.

in scope at line 21 (args is unused and for simplicity we do not consider that variable)
and four stack elements.

this l0 new List s0
n l1 copy of new List s1

list l2 copy of o s2
i l3 list.tail s3
o l4

We assume that previous static analyses provided a correct possible sharing informa-
tion at node A: shareA ={〈s0, s1〉, 〈l4, s2〉, 〈l2, s3〉} (only these non-ordered pairs of distinct
variables might possibly share) and a correct definite aliasing information at node A:
aliasA ={〈s0, s1〉, 〈l4, s2〉} (these non-ordered pairs of distinct variables must be aliased,
but also other pairs of variables might be aliased). Moreover, we suppose that our
reachability analysis performed until node A provided the following approximation of
the actual reachability information at that point:

RA =
{

l0�l0, l2�l2, l4�l4, l2�s3, l4�s2, s2�l4,
s0�s0, s0�s1, s1�s0, s1�s1, s2�s2, s3�s3

}
. (1)

At the program point corresponding to node A, constructor con = List.〈init〉
(Object, List):void is invoked. The receiver of con, s1, is definitely aliased to s0, while its
first actual argument s2 is definitely aliased to l4 (since 〈s0, s1, 〈l4, s2 ∈ aliasA). Since con
creates a new object of class List and instantiates its fields head and tail to the values
held in con’s actual arguments s2 and s3, it is clear that, at the end of the constructor,
s0 (aliased to the newly created object) reaches l4 (aliased to the variable whose value
is written inside the field head of the newly created object), and we expect our reacha-
bility analysis to include the pair s0�l4 in the approximation at node B . This will be
confirmed in the following examples.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:24 -D. Nikolić and F. Spoto

Fig. 9. The ACG for the method 〈init〉 in Figure 2.

Let us now explain, in more detail, the propagation rules given in Definition 5.4. They
simulate the behavior of the concrete semantics of the bytecode instructions given in
Figure 4.

The sequential arcs link an instruction to its immediate successors. We suppose that
the approximation available before a bytecode instruction is executed is R, and we
discuss how it is propagated by the propagation rules of the sequential arcs.

—load k t. A new variable (sj) is pushed onto the operand stack, and its value is equal
to that of lk . Therefore, we propagate R by keeping all the reachability pairs already
present in R and by using the fact that everything that might reach (or might be
reachable from) lk in R, might also reach (or might be reachable from) sj in the final
approximation (hence R[lk/sj]). Moreover, lk and sj contain the same value, and if lk
might reach itself in R (by Definition 4.3 this can only happen if τ (lk) �= int), then
also sj might reach itself in R’s propagation.

—store k t. The topmost variable is popped from the operand stack (sj−1), and its value
is assigned to lk . Therefore, all the reachability pairs involving lk in the initial ap-
proximation R should be removed from the final one. Moreover, everything except lk
that might reach (or might be reachable from) sj−1 in R, might also reach (or might
be reachable from) lk in the final approximation (i.e., (a�b)[sj−1/lk], where a�b ∈ R
and a, b �= lk).

—new κ. A new object is created, bound to a location that is pushed onto the operand
stack, as sj . Therefore, the initial approximation R is kept, and since objects are not
of primitive type, that is, since τ (sj) �= int, we should also add the pair sj�sj , since
the newly created object reaches itself. But it does not reach and is not reachable
from anything else, since its fields are initialized to default values that are never
locations and since it is held in a fresh location.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:25

—getfield κ.f : t. The location on top of the operand stack, sj−1, is replaced by the value
of its field f . Hence any reachability pair in the initial approximation R that does
not involve sj−1 should be present in the final approximation as well. Additionally,
we consider all those variables b that might be reachable from field f (i.e., such that
sj−1�b) and all those variables a that might reach field f (i.e., such that a�sj−1) in
the final approximation. In the former case, we observe that if the field reaches b,
then also its containing object (i.e., the old top of the operand stack) reaches b in the
initial approximation: sj−1�b ∈ R. In order to improve the precision, we consider
only those pairs of variables that satisfy the type reachability requirement: t�τ (b).
In the latter case, we rely on a pessimistic (but conservative) assumption: every
variable a might reach the field in the final approximation, as long as the static type
of a reaches the type of the field that must be a reference type: τ (a)�t �= int. We
improve this rule by restricting the preceding condition to only those variables a that
might also share with the receiver sj−1: if a and the receiver sj−1 do not share, then
a does not reach any field of sj−1. We observe that we do need sharing here and we
cannot use the available reachability in R instead: if a does not reach the receiver
sj−1, it is well possible that a might reach one of its fields.

—putfield κ.f : t. The value on top of the operand stack, sj−1, is stored in the field f
of the object bound to the location below the top, sj−2, and both sj−1 and sj−2 are
popped from the operand stack. Hence, the corresponding propagation rule keeps a
reachability pair available in R if it does not involve sj−1 nor sj−2. Some additional
pairs are added to the final approximation though: a variable a might reach, there,
a variable b if a reaches the receiver sj−2 (a�sj−2) in R, and the value sj−1 reaches b
(sj−1�b) in R.

—arraynew α. The topmost operand stack element contains an integer length, replaced
by a fresh location bound to the newly created array. The propagation is similar to
that for new κ.

—arraylength α. The topmost operand stack element contains a reference to an array,
replaced by its integer length, that is hence not reachable from anything and cannot
reach anything.

—arrayload α. The kth element of the array, where k is on top of the operand stack
and the array is at the location in the second topmost operand stack element sj−2, is
written on top of the stack, and both sj−1 and sj−2 are popped away. The propagation
rule is similar to that for getfield κ.f : t and uses sharing analysis for the same reason.
As for getfield κ.f : t, we cannot replace sharing information with the reachability
information available at the beginning of the bytecode.

—arraystore α. The value held on top of the stack at sj−1 is stored in the kth element of
the array, where k is an integer held at sj−2, and the array is bound to the location at
sj−3. These three elements are popped away. The propagation rule is similar to that
for putfield κ.f : t.

—dup t. A copy of sj−1 is pushed as sj . Hence sj and sj−1 become aliases, and every
variable that might reach (or might be reachable from) sj−1 in R, might also reach (or
might be reachable from) sj in the final approximation (hence R[sj−1/sj]). Moreover,
if sj−1 reaches itself in R then, in the final approximation, it should also reach sj ,
and vice versa.

—otherwise. Bytecode instructions constv , add, sub, mul, div, rem, inck x deal with val-
ues of primitive type (or with null) and therefore do not introduce nor remove reach-
ability, as it follows from Definition 4.3. On the other hand, catch and exception is K
do not modify the initial state, and therefore do not change the reachability infor-
mation; ifne t and ifeq t just pop the topmost operand stack element, and therefore do

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:26 -D. Nikolić and F. Spoto

Fig. 10. Construction of �(R5).

not modify the reachability information with respect to other variables. In all these
cases, we keep the reachability pairs available in R if they only refer to variables
that survive to the execution of the instruction.

Example 5.6. Consider nodes 4, 5, and 6 in Figure 9 and suppose that the reacha-
bility approximation at node 4 is

R4 = {l0�l0, l1�l1, l2�l2, l0�s0, s0�l0, s0�s0}.
We have three local variables at those program points, one stack element at node 4,
and two at node 5.

this l0 copy of this s0
head l1 copy of head s1
tail l2

That is, i4 = i5 =3, j4 =1, and j5 =2. Nodes 4 and 5 are linked through a sequential arc
with propagation rule #1, while nodes 5 and 6 are linked through a sequential arc with
propagation rule #5. By Definition 5.4,

�(R4) = R4 ∪ R4[l1/s1] ∪ {l1�s1, s1�l1}
= {l0�l0, l1�l1, l2�l2, l0�s0, s0�l0, s0�s0, l1�s1, s1�l1, s1�s1︸ ︷︷ ︸

added pairs

}.

Let now R5 = �(R4). According to Definition 5.4 (rule #5), we have

�(R5) = {a�b ∈ R5 | a, b /∈ {s0, s1}} ∪ {a�b | a, b /∈ {s0, s1} ∧ a�s0 ∈ R5 ∧ s1�b ∈ R5}
= {l0�l0, l1�l1, l2�l2, l0�l1}.

We illustrate the application of rule #5 on the set R5 in Figure 10. Namely, the fact that
l0�s0 and s1�l1 are in R5 means that l0 might reach s0 (the receiver of the putfield) and
that s1 (the value written in a field of s0) might reach l1. Hence �(R5) contains l0�l1.
Moreover, we remove from R5 all pairs containing s0 and s1, since putfield pops these
variables from the operand stack.

The final arcs feed nodes exit@m and exception@m for each method or constructor m.
The former (respectively latter) contains the reachability information present in a state
at a nonexceptional (respectively exceptional) end of m. Hence, exit@m is the sink of the
arcs starting from the bytecode instructions return t in m. The propagation rules state
that the operand stack is emptied at the end of execution of a void method m (rule #12)
or only one element survives, the returned value (rule #13). Similarly, exception@m is

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:27

the sink of the bytecode instructions throw κ with no exception handler in m (i.e., not
followed by a catch inside m). Rule #14 states that all elements of the operand stack,
except the topmost one, sj−1, disappear. The latter is renamed into the exception object
s0 and is always non-null (thus s0�s0). We observe that only instructions throw κ are
allowed to throw an exception to the caller since, in our representation of the code as
basic blocks, all other instructions that might throw an exception are always linked to
an exception handler, possibly minimal (as the two putfield’s in Figure 2).

Example 5.7. Consider nodes 9 and 10 in Figure 9. The local variables in scope
there are the same as in Example 5.6, and there is no stack element there. Suppose
that the reachability approximation at node 9 is R9 = {l0�l0, l0�l1, l0�l2, l1�l1, l2�l2}.
Nodes 9 and 10 are linked through a final arc with propagation rule #12. By
Definition 5.4, �(R9) contains all pairs in R9 that do not refer to an operand stack
variable. Since, as we said, j9 = 0, we conclude that �(R9) = {a�b ∈ R9 | a, b /∈ ∅} =
{l0�l0, l0�l1, l0�l2, l1�l1, l2�l2}.

The exceptional arcs link every instruction that might throw an exception to the
catch at the beginning of its exception handler(s). Rules #14 and #15 are identical,
but the latter is applied for a throw κ with a successor: the beginning of an exception
handler inside its same method. Rule #16 states a pessimistic assumption about the
exceptional states after a method call: the reachability pairs before the call can survive
as long as they do not deal with the operand stack elements. The thrown object s0 is
non-null (thus, s0�s0) and conservatively assumed to reach and be reached from every
local variable a, as long as the static types allow it. We recall that in Java, Throwable
is the superclass of all exceptions. Rule #17 deals with all other bytecode instructions
that might throw an exception (div, rem, new, getfield, putfield, arraynew, arraylength,
arrayload, arraystore): it states that in that case, the operand stack is cleared but the
reachability among local variables remains unaffected.

Example 5.8. Consider nodes 5 and 11 in Figure 9. In Example 5.6, we concluded
that R5 = {l0�l0, l1�l1, l2�l2, l0�s0, l1�s1, s0�l0, s1�l1, s0�s0, s1�s1}. Nodes 5 and
11 are linked through an exceptional arc with propagation rule #17. By Definition 5.4,
�(R5) contains the pairs from R5 that do not refer to an operand stack element, and the
pair s0�s0, where s0 holds the thrown exception and is the only operand stack variable
available at node 11. Namely, �(R5) = {l0�l0, l1�l1, l2�l2, s0�s0}, that is, we removed
all pairs that contain an operand stack element different from s0, since these elements
are not available anymore.

We come now to the arcs that deal with method call and return. The parameter
passing arcs link every node corresponding to a method call to that corresponding to the
first bytecode instruction of the method(s) mw that might be called there. Propagation
rule #18 simply states that the actual parameters of mw , held in the operand stack
variables sj−π , . . . , sj−1, are renamed into its formal parameters, that is, into the local
variables l0, . . . , lπ−1. No other variables exist at the beginning of mw .

Example 5.9. Consider nodes A and 1 in Figure 9. In Example 5.5, we assumed that

RA =
{

l0�l0, l1�l1, l3�l3, l1�s3, l3�s2, s2�l3,
s0�s0, s0�s1, s1�s0, s1�s1, s2�s2, s3�s3

}
.

Nodes A and 1 are linked through a parameter passing arc with propagation rule #18.
We have jA =4 and π =3 (stack elements s1, s2, and s3 hold the actual parameters of a

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:28 -D. Nikolić and F. Spoto

call to this constructor). By Definition 5.4,

�(RA) =
{

(a�b)
[

s1/l0
s2/l1
s3/l2

]∣∣∣∣ a�b ∈ RA and a, b ∈ {s1, s2, s3}
}

= {l0�l0, l1�l1, l2�l2}.

There is a return value multi-arc for each target mw of a call. Rule #19 uses R1
and R2, approximations at the node corresponding to the call and at node exit@mw ,
respectively. It creates the reachability pairs related to the returned value that, after
the call, becomes the topmost operand stack element sj−π . Namely, sj−π reaches itself
after the call if s0, its corresponding variable at the end of the callee mw , reaches itself.
But the complex part of this rule deals with the other variables of the caller, since
it must be determined whether they reach the return value or can be reached from
it. Here, we exploited the observation that a variable of the caller might reach or be
reached from the return value only if it shares with an actual parameter of the call. We
do need sharing here, since it is well possible that this variable does not reach and is
not reachable from any of the actual parameters of the call but yet shares with one of
them and is consequently made to reach (or be reachable from) the return value of the
call. Moreover, in the frequent case when it is actually aliased to an actual parameter
of the call, we exploited the possibility of checking the reachability of the corresponding
formal parameter of the callee (to and from the returned value), provided that it is not
reassigned inside the callee. Namely, an arbitrary variable a available after the call
and different from sj−π (a ∈ dom(τ ′) � {sj−π }) might reach sj−π at that point (a�sj−1) if
the following conditions hold.

(1) The static types allow it (τ ′(a)�t).
(2) a might share with at least one actual parameter sp of the call at call time.
(3) Moreover, if a is definitely aliased to an actual parameter sp whose corresponding

formal parameter lp−j+π is never reassigned inside the callee mw (i.e., there is no
store lp−j+π in mw), then it must also be the case that lp−j+π reaches s0 (holding the
returned value) at the end of mw (lp−j+π�s0 ∈ R2).

Similarly, an arbitrary variable b available after the call and different from the returned
value sj−π (b ∈ dom(τ ′) � {sj−π }) might be reachable from sj−π at that point (sj−1�b) if
the following conditions hold.

(1) The static types allow it (t�τ ′(b)).
(2) b might be reachable from at least one actual parameter sp at call time (sp�b ∈ R1).
(3) Moreover, if b is definitely aliased to an actual parameter sp whose corresponding

formal parameter lp−j+π is never reassigned inside the callee mw (i.e., there is no
store lp−j+π in mw), then it must also be the case that s0 (holding the returned value)
reaches lp−j+π at the end of mw (s0�lp−j+π ∈ R2).

The side-effects multi-arcs enlarge the reachability information at call time with
additional pairs of variables whose reachability is introduced by the callee because of
side-effects. These arcs do not consider the returned value of the method. We suppose
that the topmost relevant operand stack element is smax. The complexity of these rules
follows from the fact that we wanted a relatively precise, yet sound, approximation
and, for that reason, we exploited the property that only variables that share with an
actual parameter might be affected by the callee. Again, we do need sharing here, since
it is well possible that those variables do not reach and are not reachable from any of
the actual parameters of the call but yet share with one of them and are consequently
affected by side-effects during the execution of the call. Moreover, we exploited the
fact that the variables of the caller are often aliased to some actual parameter, in

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:29

which case we can exploit the reachability information for the corresponding formal
parameter inside the callee, for better precision. However, we must be sure that that
formal parameter is not reassigned inside the callee. Namely, rule #20 adds a new pair
a�b of arbitrary variables if the following conditions hold.

(1) If a and b exist after the call (a, b ∈ {l0, . . . , li−1, s0, . . . , smax−1}).
(2) The static types allow it (τ ′(a)�τ ′(b)).
(3) a might share with at least one actual parameter spa

at call time.
(4) b might be reachable from at least one actual parameter spb

of at call time
(spb

�b ∈R1).
(5) If a and b are definitely aliased to two actual parameters sqa

and sqb
, whose corre-

sponding formal parameters lqa−j+π and lqb−j+π are not reassigned inside mw (i.e.,
there is no store lqa−j+π and no store lqb−j+π in mw), then lqa−j+π might reach lqb−j+π

at the end of mw (lqa−j+π�lqb−j+π ∈ R2).

Example 5.10. Consider nodes A and 10 in Figure 9. In Example 5.5, we assumed
that a reachability approximation at node A is known (Eq. (1)). Let R10 = �(R9), where
�(R9) = {l0�l0, l0�l1, l0�l2, l1�l1, l2�l2}, as computed in Example 5.7. Consider the
side-effect arc linking nodes A and 10 to node B . Let us illustrate the application of
the propagation rule #20 on RA and R10 in the presence of the sharing and aliasing
approximations shareA and aliasA from Example 5.5. First of all, we note that con has
π = 3 actual parameters: the implicit parameter this and two parameters of type
Object and List, respectively. Since con has no return value, by Definition 3.18, we
obtain iB =5 and jB =1, and for each variable v ∈ dom(τB) = {l0, l1, l2, l3, l4, s0}, we have
τB (v) = τA(v). By Definition 5.4, RA and R10 are propagated by rule #20 as follows.

{a�b ∈RA | a, b ∈dom(τB)}∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a�b

∣∣∣∣∣∣∣∣∣∣∣∣∣

1. a, b ∈ dom(τB) ∧
2. τB (a)�τB (b) ∧
3. ∃1 ≤ pa ≤ 3.〈a, spa

〉 ∈ shareA ∧
4. ∃1 ≤ pb ≤ 3.spb

�b ∈ RA ∧
5. if ∃1 ≤ qa , qb ≤ 3.〈a, sqa

〉, 〈b, sqb
〉 ∈ aliasA

and no store lqa−1 nor store lqb−1 occurs in con,
then lqa−1�lqb−1 ∈ R10

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

The left-hand side set {a�b ∈RA | a, b ∈dom(τB)} extracts from RA the pairs composed
of only the variables available in dom(τB). Hence, the following pairs are added to
RB : l0�l0, l2�l2, l4�l4, and s0�s0. The right-hand side set enlarges RB by adding new
reachability pairs, as specified by the five conditions of rule #20. Conditions 1 and 2 add
all possible ordered pairs of variables available in dom(τB) such that the static type of
the first variable reaches the static type of the second one and gives rise to the following
pairs: {l0, l2, s0}× {l0, l2, l4, s0}∪ {l4�l4}. Conditions 3 and 4 improve the precision of this
approximation. Namely, condition 3 allows as first element of a pair only those variables
that might share with an actual parameter of con at A, and only l2, l4, and s0 satisfy this
condition according to shareA. On the other hand, condition 4 allows as second element
of a pair only those variables that might be reachable from an actual parameter of con
at A, and only l4, and s0 satisfy this requirement (s2�l4, s1�s0 ∈ RA). Therefore, these
two conditions restrict the former approximation to {l2, s0}× {l4, s0}∪ {l4�l4}. Condition
5 adds no further improvement. Therefore, rule #20 adds to RB , the overapproximation
of the actual reachability information at node B , the following pairs of variables.

RB = {l0�l0, l2�l2, l4�l4, s0�s0, l2�l4, l2�s0, s0�l4︸ ︷︷ ︸
added pairs

}. (2)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:30 -D. Nikolić and F. Spoto

We note that, as we hinted at the end of Example 5.5, our reachability analysis actually
provides the pair s0�l4 in the approximation at node B .

Example 5.11. Propagation rules #4, #19, and #20 use possible sharing and defi-
nite aliasing information between program variables. As we mentioned previously, if
these approximations are missing, one can always soundly assume that every pair of
variables might share (share′

A = {〈a, b〉 | a, b ∈ dom(τB)}) and that we do not know if
they are definitely aliased (alias′

A = ∅), although this reduces the precision of the prop-
agation. In fact, if we apply rule #20 in a context with share′

A and alias′
A (i.e., without

possible sharing and definite aliasing approximations), conditions 1–4 give rise to the
following pairs: {l0, l2, s0}× {l4, s0} ∪ {l4�l4}, and condition 5 would not remove any pair.
In this case, the propagated reachability information becomes

{l0�l0, l2�l2, l4�l4, s0�s0, l0�l4, l2�l4, l2�s0, s0�l4}︸ ︷︷ ︸
added pairs

,

which is less precise than Eq. (2).

In our experiments (Section 6), the reachability analysis is performed inside the
nullness and termination tools of Julia that already perform definite aliasing [Nikolić
and Spoto 2012b] and possible sharing [Secci and Spoto 2005] analyses.

Once an ACG is built from the program, we can consider its solution.

Definition 5.12 (Reachability Analysis). A solution of an ACG is an assignment of
an element Sn ∈ Aτ to each node n of the ACG, where τ is the type environment
associated to n such that the approximation for the initial node first(main) of the main
method is Sfirst(main) = {l0�l0, l1�l1} and such that the propagation rules of the arcs
are satisfied, that is, for every arc from nodes n1 . . .nk

5 to n ′ with propagation rule
λR1, . . . , λRk .�(R1, . . . ,Rk), the condition �(Sn1 , . . . ,Snk

) ⊆ Sn ′ holds. The reachability
analysis of the program is the least solution of its ACG with respect to set inclusion.
The result of our reachability analysis at a bytecode instruction of the program ins is
S ins .

The condition on the initial node of main states that at the beginning of main, variable
this, held in local variable 0, might reach itself and variable args, held in local variable
1, might reach itself.6 We observe that a minimal solution exists, since all propagation
rules are monotonic with respect to set-inclusion (Definition 5.4). It can hence be com-
puted by starting from the empty approximation for every node and then propagating
this approximation along the arcs, until stabilization.

Example 5.13. In Figure 11, we give the minimal solution of the abstract constraint
graph from Example 5.5, in the hypotheses of that example. Consider, for example,
node 11. By Definition 5.12 it should satisfy the following constraints.

S11 ⊇ �#20(S2,Sexception)
S11 ⊇ �#16(S2)
S11 ⊇ �#17(S5)
S11 ⊇ �#17(S8),

5According to Definition 5.4, either k = 1 or k = 2.
6In Java, main is static and has consequently no this variable. In that case, the initial reachability would
only state that the args parameter might reach itself.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:31

Fig. 11. The solution of our abstract constraint graph.

where �#16, �#17, and �#20 are instances of the propagation rules #16, #17, and #20 of
Definition 5.4. Since there is no other arc entering node 11, we conclude that a least
solution must be such that S11 = �#20(S2,Sexception) ∪ �#16(S2) ∪ �#17(S5) ∪ �#17(S8).

5.3. Soundness

In this section, we show the soundness of our analysis. We first enunciate several
lemmas stating that the propagation rules corresponding to each type of arcs of our
ACG are sound (Lemmas 5.14– 5.20). These lemmas are proven in Appendix B. Then,
the main soundness result is shown in Theorem 5.21.

Lemma 5.14 states that the sequential arcs propagate only the nonexceptional con-
crete states in the concretization of a correct approximation of the property of interest
before a bytecode instruction is executed. This holds because sequential arcs link a byte-
code with its normally subsequently executed bytecode, when no exception is thrown,
and their semantics must hence be consistent with that situation.

LEMMA 5.14. The propagation rules for the sequential arcs of Definition 5.4 are
sound. That is, consider a sequential arc from a bytecode ins and its propagation rule
�. Assume that ins has static type information τ at its beginning and τ ′ immediately
after its nonexceptional execution. Then, for every R ∈ Aτ , we have

ins(γτ (R)) ∩
τ ′ ⊆ γτ ′(�(R)).

(We recall that ins is the semantics of ins, see Figure 4.)

The propagation rules of the final arcs soundly approximate the concrete behavior of
a final bytecode instruction (return t, return void, throw κ) of a method or a constructor.
We can similarly prove soundness for the propagation rules of the exceptional arcs that
simulate the exceptional executions of the bytecode instructions that might throw an
exception. Lemmas 5.15 and 5.16 formalize these facts.

LEMMA 5.15. The propagation rules for the final arcs of Definition 5.4 are sound.
That is, consider a final arc from ins and its propagation rule �. Assume that ins has
static type information τ at its beginning and τ ′ immediately after its execution (its

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:32 -D. Nikolić and F. Spoto

Fig. 12. Arcs going into the node corresponding to insq .

nonexceptional execution if ins is a return, its exceptional execution if ins is a throw κ).
Then, for every R ∈ Aτ , we have

ins(γτ (R)) ⊆ γτ ′(�(R)).

(We recall that ins is the semantics of ins, see Figure 4.)

LEMMA 5.16. The propagation rules for the exceptional arcs of Definition 5.4 not
leaving a call are sound. That is, consider an exceptional arc from a bytecode ins distinct
from call and its propagation rule �. Assume that ins has static type information τ at
its beginning and τ ′ after its exceptional execution. Then, for every R ∈ Aτ , we have

ins(γτ (R)) ∩
τ ′ ⊆ γτ ′(�(R)).

(We recall that ins is the semantics of ins, see Figure 4.)

Similarly, Lemma 5.17 shows that the propagation rules of the parameter passing
arcs are sound. Namely, they soundly approximate the behavior of the makescope
function.

LEMMA 5.17. The propagation rules for the parameter passing arcs of Definition 5.4
are sound. That is, consider a parameter passing arc from a call m1 . . .mn to the first
bytecode of mw , for some w ∈ [1..k], and its propagation rule �. Assume that call m1 . . .mn

has static type information τ at its beginning and that τ ′ is the static type information
at the beginning of mw . Then, for every R ∈ Aτ , we have

(makescope mw)(γτ (R)) ⊆ γτ ′(�(R)).

The following lemmas deal with the return from a method call. Namely, in the case of
a non-void method, the propagation rule of the return value arc expands the reachability
approximation immediately after a call to that method with those reachability pairs
related to the returned value. A method execution might also have side-effects on
the memory, and this is captured by the propagation rule of the side-effects arcs.
The reachability approximation after the call to the method is, therefore, determined
as the union of the propagations of a return value arc (for non-void methods) and a
side-effects arc (Figure 12), which is proved sound (Lemmas 5.18 and 5.19).

LEMMA 5.18. The propagation rules for the return value arcs and side-effect arcs are
sound at a non-void method return. Namely, let w ∈ [1..n] and consider a return value
and a side-effect arc from nodes C = call m1 . . .mn and E = exit@mw to a node Q = insq

and their propagation rules �#19, and �#20, respectively. We depict this situation in
Figure 12. Let τc , τq and τe be the static type information at C, Q and E, respectively,
and let d be the denotation of mw , that is, a partial function from a state at its beginning
to the corresponding state at its end. Then, for every Rc ∈ Aτc and Re ∈ Aτe , we have

d ((makescope mw)(γτc (Rc)) ∩
τq ⊆ γτq (�#19(Rc,Re) ∪ �#20(Rc,Re)).

LEMMA 5.19. The propagation rule for the side-effects arcs is sound for void methods.
Namely, let w ∈ [1..n] and consider a side-effect arc from nodes C = call m1 . . .mn and
E = exit@mw to a node Q = insq and its propagation rule �#20. Let τc , τq , and τe be the
static type information at C, Q, and E, respectively, and let d be the denotation of mw ,

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:33

Fig. 13. Arcs going into the node corresponding to catch.

that is, a partial function from a state at its beginning to the corresponding state at its
end. Then, for every Rc ∈ Aτc and Re ∈ Aτe , we have

d ((makescope mw)(γτc (Rc)) ∩
τq ⊆ γτq (�#20(Rc,Re)).

The following lemma deals with the the executions of a method that end up in an
exception being thrown. Namely, the approximation of the reachability information at
the catch that runs from the exceptional states must consider the possible side-effects
on the initial memory due to the execution of the method. This is the task of the
propagation rules of the side-effects arcs. On the other hand, that approximation must
also consider the case when the method is invoked on null. As in the previous case,
the approximated reachability information must hence be consistent with both these
situations and Lemma 5.20 shows it correct.

LEMMA 5.20. The propagation rules for the exceptional arcs of the call and side-effects
arcs are sound when a method call throws an exception. Namely, given nodes Q = catch ,
C = call m1 . . .mn , and E = exception@mw , for a suitable w ∈ [1..n], consider an exceptional
arc from C to Q and a side-effect arc from C and E to Q, with their propagation rules
�#16 and �#20, respectively. We depict this situation in Figure 13. Let τc , τq , and τe be
the static type information at C, Q, and E, respectively, and let d be the denotation of
mw , that is, a partial function from a state at its beginning to the corresponding state at
its end. Then, for every Rc ∈ Aτc and Re ∈ Aτe , we have

d ((makescope mw)(γτc (Rc)) ∩
τq
⊆ γτq (�#16(Rc) ∪ �#20(Rc,Re)).

Finally, Theorem 5.21 shows that our reachability analysis is sound, that is, at each
program point, the set of reachability pairs computed by our analysis overapproximates
the actual reachability information at that point. We give only a sketch of the proof.
More details are in Appendix B.

THEOREM 5.21 (SOUNDNESS). Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest

→
→

b1· · ·
bm

‖ σ 〉 :: a be the exe-

cution of our operational semantics, from the block bfirst(main) starting with the first
bytecode instruction of method main, ins0, and an initial state ξ ∈ �τ0 (containing no
reachability except this that reaches itself and the args parameter that reaches itself),
to a bytecode instruction ins and assume that this execution leads to a state σ ∈ �τ ,
where τ0 and τ are the static type information at ins0 and ins, respectively. Moreover,
let A ∈ Aτ be the reachability approximation at ins, as computed by our reachability
analysis. Then, σ ∈ γτ (A) holds.

PROOF. The blocks in the configurations of an activation stack, except the topmost,
cannot be empty and without successor. This is because the configurations are only
stacked by rule (2) of Figure 5, and, if rest is empty there, then m ≥ 1, otherwise the
code ends with a call bytecode with no return, which is illegal in Java bytecode [Lindholm
and Yellin 1999].
We proceed by induction on the length n of the execution 〈bfirst(main) ‖ ξ〉 ⇒∗

〈 ins
rest

→
→

b1· · ·
bm

‖ σ 〉 :: a.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:34 -D. Nikolić and F. Spoto

Base Case. If n = 0, the execution is just 〈bfirst(main) ‖ ξ 〉. In this case, τ0 = τ and
A0 = A = Sfirst(main). Since ξ contains no reachability except for this and args held
in l0 and l1 that reach themselves, that is, l0�ξ l0, l1�ξ l1, and since our reachability
analysis is a solution where Sfirst(main) = {l0�l0, l1�l1} (Definition 5.12), we have σ =
ξ ∈ γτ0 ({l0�l0, l1�l1}) ⊆ γτ (Sfirst(main)) = γτ (A0) = γτ (A).

Inductive Step. Assume now that the thesis holds for any such execution of length

k ≤ n. Consider an execution 〈bfirst(main) ‖ ξ〉 ⇒n+1 〈 insq

restq︸ ︷︷ ︸
bq

→
→

b1· · ·
bm

‖ σq 〉 :: aq , with insq (σq)
defined. This execution must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈

bp︷ ︸︸ ︷
insp

restp

→
→

b ′
1· · ·

b ′
m ′

‖ σp〉 :: ap ⇒n+1−np 〈bq ‖ σq〉 :: aq , (3)

with 0 ≤ np ≤ n, that is, it must have a strict prefix of length np whose final acti-
vation stack has the topmost configuration with a nonempty block bp . Let such np be
maximal. Given a bytecode insa , let τa and Ra be the static type information and the
approximation of the reachability information at the ACG node insa , respectively. By
inductive hypothesis, we know that σp ∈ γτp (Rp). We show that σq ∈ γτq (Rq) as well.
We distinguish on the basis of the rule of the operational semantics (Figure 5) that is
applied at the beginning of the derivation ⇒n+1−np in (3).

Rule (1). If this rule is applied, then insp(σp) is defined, and insp is not a call. We
distinguish the following cases.

—insp is not a return nor a throw. In this case, the ACG contains a sequential arc
connecting the ACG nodes corresponding to insp and insq and by Lemma 5.14, σq ∈
γτq (Rq).

—insp is a return. in this case, the operational semantics introduced in Figure 5 imposes
that after nc <np transitions, there is a method invocation insc = call m1 . . .mn , and
that insp is placed at the end of a callee mw for a 0 ≤ w ≤ n. We suppose that
mw is a non-void method; the other case can be dealt with in a similar way. By
Definition 5.4, the ACG contains nodes insc , insp , exit@mw : t , and insq . Let σc be the
state the method is invoked from and let σe = insp(σp). There is a final arc connecting
insp and exit@mw : t , and by the hypothesis σp ∈ γτp (Rp) and by Lemma 5.15, we have

σe ∈ γτe (Re), where Re = �(Rp). There are also two arcs (a return value and a side-
effect arc) going from insc and exit@mw : t into insq . Then, by the hypothesis σc ∈ γτc (Rc)
and by Lemma 5.18, we have σq ∈ γτq (Rq), where Rq = �#19(Rc,Re) ∪ �#20(Rc,Re).

—insp is a throw. Then, if insq = catch, insp and insq are connected by an exceptional
arc, and by hypothesis σp ∈γτp (Rp) and by Lemma 5.16, we have σq ∈ γτq (Rq), where
Rq = �#15(Rp). Otherwise, that is, when insq �= catch, insp must occur at the end
of a method, and similarly to the previous case (but using Lemma 5.20 instead of
Lemma 5.18), we conclude that σq ∈γτq (Rq).

Rule (2). In this case, the ACG contains nodes insp and insq connected through a
parameter passing arc. Hence, by hypothesis σp ∈γτp (Rp) and by Lemma 5.17, we have
σq ∈γτq (Rq), where Rq =�#18(Rp).

Rule (3). The result follows from the soundness of propagation rule #16.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:35

6. EXPERIMENTS

We have implemented our reachability analysis inside the Julia analyzer for Java and
Android.7 It is a commercial tool developed by Julia Srl, a spin-off company of the
University of Verona. In this section, we describe the tool and the experiments that we
have performed in order to evaluate our reachability analysis.

6.1. The Julia Analyzer

Julia is a static analyzer for bytecode, completely written in Java, that includes classes
for the definition of denotational (bottom-up) analyses, constraint-based analyses, and
automaton-based analyses.

Denotational analyses define a functional abstract behavior (denotation) for each
single bytecode instruction and compose such behaviors in a bottom-up way, computing
fixpoints to analyze loops and recursion. An example is the nullness analysis in Spoto
[2008]. Their strength is that these analyses are fully context-sensitive, since the
denotation of a method is a function from its context at call time to its context at
return time; however, it is difficult to provide context-sensitive approximations for the
fields of the objects, since the analyses become computationally too expensive. Binary
decision diagrams [Bryant 1986] are typically used to implement denotations, and Julia
provides support for this choice.

Constraint-based analyses follow the approach used, for instance, in this article. A
constraint is built from the program under analysis (and the libraries that it uses).
Nodes might stand for program points, as in this article, when the abstract interpre-
tation abstracts states (see in our case Definition 5.2). They might also stand for local
variables, stack elements, fields or return values, when the abstract interpretation
abstracts values rather than states (e.g., [Spoto and Ernst 2011; Nikolić and Spoto
2012b]). Or they might stand for whole methods and constructors, as in the case of
side-effect analysis. Moreover, the approximation at a node can be the union of the
approximations of the incoming arcs (as in this article, see Definition 5.12) or their
intersection. In the first case, we get a possible analysis (an overapproximation of the
property under analysis); in the second case, we get a definite analysis (an underap-
proximation of the property under analysis) [Nikolić 2013]. In all cases, Julia provides
standard implementations of the construction of the constraint that can be personal-
ized by subclassing, if needed. The elements of the abstract domain (in our case, sets
of ordered pairs of variables) are represented through bitsets of singletons in order
to make set operations very fast (they become bitwise operations over arrays of Java
64 bits longs) and keep the memory footprint small (singletons are created once; bit-
sets are very compact). The fixpoint algorithm that finds a solution (Definition 5.12)
in two versions for possible and definite analysis is implemented in Julia through a
working-set, demand-driven approach: the arcs of the constraint are put in a stack
and processed one at a time; when the approximation of a node changes, all its out-
going arcs are added again to the stack until stabilization. This means, in particular,
that the programmer of a static analysis does not need to care about the fixpoint al-
gorithm or the bitset implementation, since the infrastructure is available, debugged,
and optimized once and for all inside Julia. Its code is shared by all constraint-based
analyses.

Automaton-based static analyses abstract execution traces into states of a finite-state
automaton. The automaton is executed from the initial bytecode of the program; each
bytecode instruction induces a state transition in the automaton. The possible states
of the automaton at a program point are an abstraction of all the execution paths that

7http://www.juliasoft.com.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:36 -D. Nikolić and F. Spoto

might lead to that point. The advantage of this approach is that one can easily abstract
traces rather than states, and the analysis has a very efficient and relatively simple
implementation. An example is the determination of program points where a given
array has been fully initialized [Nikolić and Spoto 2012a, 2013].

The reachability analysis of this article uses preliminary supporting analyses,
namely, definite aliasing and possible sharing analysis. They are both implemented
as constraint-based analyses themselves and computed before our reachability analy-
sis starts. That is, we do not use a reduced product of more analyses but implement a
sequence of analyses. The result of reachability is then used by client analyses, namely,
side-effects, field initialization, cyclicity, and path-length analysis. The propagation of
sharing information is described in Secci and Spoto [2005].

Side-effects analysis collects the fields that might be read or modified by a method or
constructor and that were already allocated before the call to that method or construc-
tor. It is a constraint-based analysis where the node for each method or constructor
collects the fields explicitly read or modified. Arcs propagate these sets from callees to
callers. Reachability improves the precision of the side-effects analysis (Section 1). Field
initialization determines the fields f that are always initialized by all constructors of
their defining class, before being read. Hence, the fact that null is the default value for
reference fields becomes irrelevant for f , since that value is never read. The rationale
here is that, for those fields, the fact that they hold null before their first assignment
is irrelevant to determine if they can hold null or not when they are accessed. Only
explicit assignments are relevant. This consideration is important, for instance, for a
subsequent nullness analysis that is only left to prove that the values explicitly written
into f are non-null without bothering about the default value. This field initialization
analysis is implemented through a dataflow algorithm in Julia that collects the fields
of this definitely written at each program point of the constructors and the fields of
this possibly read at the same program points. This algorithm is described in Spoto
[2008, 2011] and Nikolić and Spoto [2013]. It exploits the available reachability infor-
mation (Section 1). Cyclicity analysis is a denotational analysis, where each variable
is approximated through a Boolean variable stating if it might be cyclical or not and
exploits reachability at field updates (Section 1). Path-length analysis is denotational,
again, and uses polyhedra or simpler domains to represent the size of the numerical
values bound to variables of primitive type or the maximal height of the data structures
bound to variables of reference type. Reachability helps here by restricting the set of
variables whose path-length might be affected by a field update (Section 1). More detail
in Spoto et al. [2010].

The nullness analyzer of Julia is a sequential composition of many analyses, through
an oracle-based semantics for the nullness of the fields. Its detailed description can
be found in Spoto [2011]. It uses a denotational nullness analysis for local and stack
variables [Spoto 2008] combined with an array initialization analysis that guarantees
that the default value (null) for the elements of some arrays of reference type is
never read [Nikolić and Spoto 2012a, 2013]; it is also combined with constraint-based
analyses for tracking arrays, collections or iterators whose elements have only been
assigned to non-null values, and for tracking the expressions that definitely evaluate to
non-null values (for instance, expressions explicitly compared against null or already
dereferenced in a previous statement, identified through the constraint-based analysis
in [Nikolić and Spoto 2012b]). All these analyses exploit reachability, sharing, and side-
effects to restrict the effects of a field update on variables distinct from its receiver,
or of a method call on the variables of the caller. For instance, a method call might
invalidate, by side-effects, the fact that the evaluation of an expression is a non-null
value.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:37

The termination analyzer of Julia is based on path length used to determine if loops
or recursion happen on integers or data structures of strictly decreasing (yet positive)
size. Here, again, we use preliminary reachability and sharing information in order to
restrict the effects of field updates and method calls to the path length of the variables.
The detailed definitions are in Spoto et al. [2010]. Moreover, termination analysis often
uses expressions as symbolic constants (for instance, expressions used as upper bounds
of loops), and side-effect analysis provides the information needed to be sure that such
expressions keep their value unchanged across iterations and can hence be used as
actual, constant upper bounds to loops.

6.2. Sample Programs

We have analyzed a set of sample programs. Most of them are Android applications:
Mileage, OpenSudoku, Solitaire, and TiltMazes8; ChimeTimer, Dazzle, OnWatch, and
Tricorder9; TxWthr.10 Others are Java programs: JFlex is a lexical analyzers genera-
tor11; Plume is a library by Michael D. Ernst12; NTI is a nontermination analyzer by
Étienne Payet13; Lisimplex is a numerical simplex implementation by Ricardo Gobbo.14

The remaining are sample Android programs taken from the Android 3.1 distribution
by Google and are bundled with the Android SDK Tool r12.15

Experiments have been performed on a Linux quad-core Intel Xeon machine running
at 2.66GHz, with 8 gigabytes of RAM.

6.3. Sharing vs. Reachability Analysis

Figure 14 shows that reachability analysis is in general more expensive than sharing
analysis, also because its times include those of the preliminary, supporting sharing
analysis. The extra cost of reachability analysis is compensated by its increased preci-
sion when it comes to compute reachability information itself. To prove this claim, in
Figure 15, we have built reachability analysis from sharing analysis by assuming that
a variable v might reach a distinct variable w whenever v and w might possibly share,
according to the results of sharing analysis. We have compared this reachability infor-
mation with that gathered through the reachability analysis computed, as described
in this article. The latter yields around 20% fewer reachability pairs than reachability
analysis built from sharing. Fewer pairs, here, mean better precision.

Although reachability analysis is more expensive than sharing analysis, we are going
to show that it actually reduces the cost in time of larger static analyses, where it is
used as a supporting analysis (Section 6.5). This is because its extra precision simplifies
the subsequent analyses. Moreover, in the overall economy of a parallel static analyzer,
such as Julia, the few extra seconds required by reachability analysis are a small
fraction of the time required by nullness or termination analyses that use reachability
as a supporting analysis and are greatly benefited by any increase in precision of the
latter.

8http://f-droid.org/repository/browse.
9http://moonblink.googlecode.com/svn/trunk.
10http://typoweather.googlecode.com/svn/trunk.
11http://jflex.de.
12http://code.google.com/p/plume-lib.
13http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html.
14http://sourceforge.net/projects/lisimplex.
15http://developer.android.com/tools/revisions/platforms.html.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:38 -D. Nikolić and F. Spoto

Fig. 14. Comparison between the runtimes of sharing analysis with the runtimes of sharing and reachability
analyses together.

6.4. Reachability vs. Shape Analysis

Reachability might be abstracted from a more concrete analysis, such as some flavor
of shape analysis. The Julia analyzer does not include any shape analysis, and there is
no plan in that direction. In particular, we are not aware of any static shape analysis
for Java bytecode that deals with exceptional paths. There are dynamic shape analyses
for Java, (e.g., [Pheng and Verbrugge 2005; Jump and McKinley 2009]), but dynamic
analyses are only sound with respect to the execution traces that are generated at
runtime and analyzed. As a consequence, they cannot be taken as basis for a sound
static reachability analysis. We are aware of two static shape analyses for Java. The
first [Corbett 2000] is intraprocedural only; experiments do not report its cost in time.
The second [Marron et al. 2008] is able to analyze interprocedural Java programs;

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:39

Fig. 15. Improvement of precision (in percentage) of Julia when the reachability property is computed by our
reachability analysis with respect to the previous approach where this property was computed by sharing
analysis. Here, precision is the ratio of ordered pairs of distinct variables 〈v ,w〉 such that the analysis
concludes that v might reach w , over the total number of ordered pairs of variables of reference type: the
lower the ratio, the higher the precision (this ratio never reaches 0% in practice, since real-life programs
contain reachability). For sharing, we assume that v might reach w if v might share with w . Both for sharing
and reachability analysis, if the static type of v does not reach the static type of w (Definition 4.8), the
ordered pair (v ,w) is not counted in this figure, since in that case, it is statically known that the value held
in v will never be able to reach the value held in w (Lemma 4.10).

exceptional paths are not mentioned. Experiments reported in that article show that
the analysis of a program of 3,705 statements requires 35.11 seconds; libraries have
not been included in the analysis. For comparison, our reachability analysis analyzes
OnWatch in 32 seconds, although it is made up of 112,423 statements (Figure 16) and
although we analyze the libraries along with the application. If one considers that

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:40 -D. Nikolić and F. Spoto

sharing is needed before reachability, the total time of our analysis amounts in this case
to 47 seconds, but the analyzed code base of 112,423 statements is 30 times larger than
their 3,705 statements. There is no report on the precision of the analysis in Marron
et al. [2008] with respect to reachability information, but the major difference in the
computational cost of the two analyses is apparent. It is true that our hardware is
multicore and so potentially faster than that used in Marron et al. [2008], but sharing
and reachability analyses are each performed sequentially in Julia, so that only one
core is used for each of them.

6.5. Effects of Reachability Analysis on Other Analyses

We verify here whether reachability analysis actually improves the precision of side-
effects, field initialization, and cyclicity, as hinted in Section 1. We also verify if the
extra reachability information improves the precision of the nullness and termination
checking tools available in Julia that use side-effects, field initialization, cyclicity, and
path length as (some of their) supporting analyses. We do not have any measure of
precision for path-length analysis, so we do not evaluate its improvements directly but
only as a component of the termination checking tool. To reach these goals, we have
analyzed our sample programs with reachability analysis turned off (hence relying on
sharing analysis as an approximation of reachability analysis) and then on.

Figure 16 shows that reachability analysis improves the precision of the side-effects
analysis and has positive effects on field initialization as well. Instead, cyclicity analysis
seems unaffected. Sharing analysis is always used in these experiments, both when
we use reachability information and when we do not compute it. Thus, this figure
shows the importance of having also reachability information instead of just sharing
information.

Figure 17 presents our experiments with the nullness and termination tools of Julia
and reports their runtime, including reachability analysis. In eight cases over 24, the
extra reachability information improves the precision of the nullness checking tool,
but this never happens for termination, consistent with the fact that cyclicity is not
improved (Figure 16). This is because the methods of the programs that we have
analyzed terminate since they perform loops over numerical counters or iterators.
There is no complex case of recursion over data structures dynamically allocated in
memory (lists or trees) where cyclicity would help. To investigate further the case of
termination analysis, we have applied Julia to the set of (very tiny) programs used
for the international termination competition16 that is performed every year. Those
programs, although small and often unrealistic, are nevertheless interesting, since
the proof of their termination often requires nontrivial arguments, also related to
objects dynamically allocated in memory. We have performed their termination analysis
with reachability analysis and then again without reachability analysis (but always
with sharing analysis turned on). Over a total of 436 test programs, Julia without
reachability proves that 276 of them terminate or can definitely diverge. If reachability
is used to strengthen the analysis, this figure grows to 282: the reachability information
allows Julia to prove the termination of six more tests: LinkedList, List, ListDuplicate,
PartitionList, Test5, and Test6, by supporting a more precise cyclicity and path-length
analysis. Note that even when reachability is not applied, sharing is in place and can
support the missing reachability. Those six examples are consequently those where
reachability is needed and sharing is not enough. We observe that among the remaining
154 tests, there are some that are known to diverge and a few for which no proof of
termination or divergence exists, not even by hand.

16http://termination-portal.org/wiki/Termination_Competition.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:41

F
ig

.
16

.
T

h
e

ef
fe

ct
s

of
re

ac
h

ab
il

it
y

an
al

ys
is

on
th

e
pr

ec
is

io
n

of
si

de
-e

ff
ec

ts
,

fi
el

d
in

it
ia

li
za

ti
on

,
an

d
cy

cl
ic

it
y

an
al

ys
es

.
S

ou
rc

e
li

n
es

co
u

n
ts

n
on

co
m

m
en

t
n

on
bl

an
k

li
n

es
of

co
de

s.
A

n
al

yz
ed

li
n

es
in

cl
u

de
s

th
e

po
rt

io
n

of
j
a
v
a
.

∗ ,
j
a
v
a
x
.

∗ ,
an

d
a
n
d
r
o
i
d
.

∗
li

br
ar

ie
s

an
al

yz
ed

w
it

h
ea

ch
pr

og
ra

m
an

d
is

a
m

or
e

fa
it

h
fu

l
m

ea
su

re
of

th
e

an
al

yz
ed

co
de

ba
se

.T
im

es
ar

e
in

se
co

n
ds

.F
or

si
de

-e
ff

ec
ts

an
al

ys
is

,p
re

ci
si

on
is

th
e

av
er

ag
e

n
u

m
be

r
of

fi
el

ds
m

od
ifi

ed
or

re
ad

by
a

m
et

h
od

or
co

n
st

ru
ct

or
:t

h
e

lo
w

er
th

e
n

u
m

be
rs

,t
h

e
be

tt
er

th
e

pr
ec

is
io

n
.F

or
fi

el
d

in
it

ia
li

za
ti

on
an

al
ys

is
,p

re
ci

si
on

is
th

e
n

u
m

be
r

of
fi

el
ds

of
re

fe
re

n
ce

ty
pe

pr
ov

en
to

be
al

w
ay

s
in

it
ia

li
ze

d
be

fo
re

be
in

g
re

ad
,i

n
al

l
co

n
st

ru
ct

or
s

of
th

ei
r

de
fi

n
in

g
cl

as
s:

th
e

h
ig

h
er

th
e

n
u

m
be

rs
,t

h
e

be
tt

er
th

e
pr

ec
is

io
n

.F
or

cy
cl

ic
it

y
an

al
ys

is
,

pr
ec

is
io

n
is

th
e

av
er

ag
e

n
u

m
be

r
of

va
ri

ab
le

s
of

re
fe

re
n

ce
ty

pe
pr

ov
en

to
h

ol
d

a
n

on
cy

cl
ic

al
da

ta
st

ru
ct

u
re

;t
h

e
h

ig
h

er
th

e
n

u
m

be
rs

,t
h

e
be

tt
er

th
e

pr
ec

is
io

n
.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:42 -D. Nikolić and F. Spoto

F
ig

.
17

.
O

u
r

ex
pe

ri
m

en
ts

w
it

h
th

e
n

u
ll

n
es

s
an

d
te

rm
in

at
io

n
to

ol
s

of
Ju

li
a.

T
im

es
ar

e
in

se
co

n
ds

.
F

or
n

u
ll

n
es

s
an

al
ys

is
,

w
s

co
u

n
ts

th
e

w
ar

n
in

gs
is

su
ed

by
Ju

li
a

(p
os

si
bl

e
de

re
fe

re
n

ce
of

n
u
l
l
,

po
ss

ib
ly

pa
ss

in
g
n
u
l
l

to
a

li
br

ar
y

m
et

h
od

)
an

d
pr

ec
re

po
rt

s
it

s
pr

ec
is

io
n

,
as

th
e

ra
ti

o
of

th
e

de
re

fe
re

n
ce

s
pr

ov
ed

sa
fe

ov
er

th
ei

r
to

ta
l

n
u

m
be

r
(1

00
%

is
th

e
m

ax
im

al
pr

ec
is

io
n

).
F

or
te

rm
in

at
io

n
an

al
ys

is
,w

s
co

u
n

ts
th

e
w

ar
n

in
gs

is
su

ed
by

Ju
li

a
(c

on
st

ru
ct

or
s

or
m

et
h

od
s

po
ss

ib
ly

di
ve

rg
in

g)
an

d
pr

ec
re

po
rt

s
it

s
pr

ec
is

io
n

,
as

th
e

ra
ti

o
of

th
e

co
n

st
ru

ct
or

s
or

m
et

h
od

s
pr

ov
ed

to
te

rm
in

at
e

ov
er

th
e

to
ta

l
n

u
m

be
r

of
co

n
st

ru
ct

or
s

or
m

et
h

od
s

co
n

ta
in

in
g

lo
op

s
or

re
cu

rs
io

n
(1

00
%

is
th

e
m

ax
im

al
pr

ec
is

io
n

).
A

st
er

is
ks

st
an

d
fo

r
ac

tu
al

bu
gs

in
th

e
pr

og
ra

m
s.

B
ol

df
ac

e
h

ig
h

li
gh

ts
th

e
ca

se
s

w
h

er
e

re
ac

h
ab

il
it

y
im

pr
ov

es
th

e
pr

ec
is

io
n

of
th

e
to

ol
s.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:43

For both nullness and termination checking, the presence of reachability analysis
actually reduces the total runtime of the tools. This is because reachability helps subse-
quent analyses, in particular side-effects analysis, and prevents them from generating
spurious information. For instance, side-effects analysis computes much smaller sets
of affected fields per method (Figure 16, compare the 5th and the 6th columns).

7. CONCLUSION

Our reachability analysis is an instantiation of the general parameterized framework
for constraint-based static analyses of Java bytecode [Nikolić 2013]. Another analysis
that can be instantiated in that framework is, for example, field initialization anal-
ysis [Spoto and Ernst 2011]. The difference between the latter and our reachability
analysis is that in the present article. the constraint nodes stand for program points
rather than for single variables, as is the case in Spoto and Ernst [2011]. As a conse-
quence, the abstract domain as well as the propagation rules are completely different
in the two instances. A sound reachability analysis, in particular, requires a precise
approximation of the side-effects of method calls.

Our constraint-based approach is now being applied to develop other analyses, such
as definite aliasing of variables to expressions [Nikolić and Spoto 2012b]. In general,
one obtains a new constraint-based static analysis of Java bytecode by specifying an
opportune abstract domain and the propagation rules representing an abstract se-
mantics of the bytecode instructions. It is worth noting that the construction of the
abstract constraint graph is always performed along a fixed, given pattern. Our Julia
analyzer includes a library for defining constraint-based analyses and for computing
their solution, highly optimized with respect to space and time.

APPENDIXES

A. REACHABILITY

In this appendix, we show some technical lemmas related to Section 4. They are used
in Appendix B, where Lemmas 5.14–5.20 are proved.

Lemma A.1 is a technical result stating that if we write a location �′′ into a field
(element) of an object (array), then the set of locations reachable from a given location
� might be enlarged with at most the locations reachable from �′′.

LEMMA A.1. Let μ be a memory, �′, �′′ ∈ dom(μ) and d ∈ dom(μ(�′).φ) (d is a field of
μ(�′).φ if μ(�).type ∈ K or an index of μ(�).type ∈ A). Let μ′ = μ[(μ(�′).φ)(d) �→ �′′], then
Lμ′ (�) ⊆ Lμ(�) ∪ Lμ(�′′) for all � ∈ dom(μ).

PROOF. Let � ∈ dom(μ). We prove by induction on i that Li
μ′(�) ⊆ Li

μ(�) ∪ Li
μ(�′′), which

entails the thesis. If i = 0, we have L0
μ′(�) = {�} ⊆ {�} ∪ L0

μ(�′′) = L0
μ(�) ∪ L0

μ(�′′). Assume
now that Li−1

μ′ (�) ⊆ Li−1
μ (�) ∪ Li−1

μ (�′′). We have

Li
μ′(�) = Li−1

μ′ (�) ∪ ⋃
�1∈Li−1

μ′ (�)

(rng(μ′(�1).φ) ∩ L)

⊆ Li−1
μ (�) ∪ Li−1

μ (�′′) ∪ ⋃
�1∈Li−1

μ (�)∪Li−1
μ (�′′)

(rng(μ′(�1).φ) ∩ L)

= Li−1
μ (�) ∪ Li−1

μ (�′′) ∪ ⋃
�1∈Li−1

μ (�)
(rng(μ′(�1).φ) ∩ L) ∪ ⋃

�1∈Li−1
μ (�′′)

(rng(μ′(�1).φ) ∩ L)

= Li−1
μ (�) ∪ Li−1

μ (�′′) ∪ ⋃
�1∈Li−1

μ (�)�{�′}
(rng(μ′(�1).φ) ∩ L) ∪ (rng(μ′(�′).φ) ∩ L)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:44 -D. Nikolić and F. Spoto

∪ ⋃
�1∈Li−1

μ (�′′)�{�′}
(rng(μ′(�1).φ) ∩ L) ∪ (rng(μ′(�′).φ) ∩ L)

⊆ Li−1
μ (�) ∪ Li−1

μ (�′′) ∪ ⋃
�1∈Li−1

μ (�)�{�′}
(rng(μ(�1).φ) ∩ L) ∪ (rng(μ(�′).φ) ∩ L) ∪ {�′′}

∪ ⋃
�1∈Li−1

μ (�′′)�{�′}
(rng(μ(�1).φ) ∩ L) ∪ (rng(μ(�′).φ) ∩ L) ∪ {�′′}

= Li−1
μ (�) ∪ Li−1

μ (�′′) ∪ ⋃
�1∈Li−1

μ (�)
(rng(μ(�1).φ) ∩ L) ∪ ⋃

�1∈Li−1
μ (�′′)

(rng(μ(�1).φ) ∩ L) ∪ {�′′}

= Li
μ(�) ∪ Li

μ(�′′) ∪ {�′′}
= Li

μ(�) ∪ Li
μ(�′′) ,

since �′′ ∈ Li
μ(�′′).

PROPOSITION A.2 (PROPOSITION 4.7). Let σ = 〈〈l ‖ s〉, μ〉 = 〈ρ,μ〉 and σ ′ = 〈〈l′ ‖ s′〉, μ′〉 =
〈ρ ′, μ′〉 be the states right before two adjacent bytecode instructions ins = call m1 . . .mn

and ins′ �=catch are executed. Namely, σ ′ is a nonexceptional state obtained at the end of
execution of a callee m(
t): t in σ , for a w ∈ [1..n], the topmost π stack elements of σ (values
s[|s| − 1], . . . , s[|s| − π]) and the topmost operand stack element of σ ′ (value s′[|s′| − 1])
contain the parameters of the callee and its return value, respectively. We define Lσ , the
set of locations not reachable from the actual parameters of the callee in σ .

Lσ = dom(μ) �

⋃
|s|−π≤i≤|s|−1

Lσ (s[i]).

Then, the following conditions hold:

(1) ∀� ∈ Lσ .μ(�) = μ′(�),
(2) s′[|s′| − 1] /∈ Lσ and
(3) ∀� ∈ dom(μ′) � Lσ .rng(μ′(�).φ) ∩ Lσ = ∅.

PROOF. It is enough to prove that during the execution of the callee(s) m1, . . . ,mn and
of the methods that they might call, the locations held in the stack elements or local
variables are not in Lσ and do not reach any location in Lσ . This entails the following
thesis.

(1) Only putfield κ.f : t and arraystore α modify objects or arrays in memory. They do it
inside an object or array pointed by a location �′ on the stack. Since, by hypothesis,
�′ �∈ Lσ , we have μ(�) = μ′(�) for all � ∈ Lσ .

(2) The returned value is left on top of the stack of the callee(s). By hypothesis, it does
not belong to Lσ .

(3) At the beginning of the execution of the callee(s), this condition holds, since � would
be a location reachable from the parameters of the call. Hence μ′(�).φ can only
contain then locations not in Lσ , since those in Lσ are, by definition, unreachable
from the parameters. Later, during the execution of the callee(s), only putfield κ.f : t
and arraystore α modify objects or arrays in memory. They do it by writing, inside a
field or an array, a value held on the stack. By hypothesis, that value is not in Lσ .
Hence, also this condition holds.

It remains to prove, then, the invariant that during the execution of the callee(s) and
of the methods that they might call, the locations held in the stack elements or local
variables are not in Lσ and do not reach any location in Lσ . This holds at the beginning
of the execution of the callee(s), since, at the beginning of the execution of a method
or constructor, the stack is empty, and the local variables hold the actual parameters
of the call that, by definition of Lσ , are not in Lσ and do not reach any location in Lσ .
During the subsequent execution of the callee(s) and of the methods or constructors

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:45

that it might call, most bytecode instructions simply move or duplicate values on the
stack or to and from the stack and the local variables, hence keeping the invariant
true. Only putfield κ.f : t and arraystore α modify objects or arrays in memory. They do
it by writing, inside a field or an array, a value held on the stack. By hypothesis, that
value is not in Lσ and does not reach any location in Lσ . Also in this case, the invariant
is hence maintained. Finally, instructions getfield κ.f : t and arrayload α push on the
stack a value v reachable from a location � on the operand stack. The invariant entails
that � is not in Lσ and does not reach any location in Lσ . Hence v , which is reachable
from �, is not in Lσ and cannot reach any location in Lσ , or otherwise � would reach
the same location, which is impossible. Also in this last case, the invariant is hence
maintained.

Lemmas A.3, A.4, and A.5 highlight some important properties of the set of locations
that are not reachable from the actual arguments passed to a method at call time (Lσ).
This set has been introduced in Proposition 4.7. The following lemmas show why that
proposition is important: it allows us to restrict the effects of a method call on the state
of the caller and allows us to restrict the possible reachability of the return value of the
method to and from the variables of the caller. Consequently, we will use these results
in the proofs of soundness for the propagation rules in Lemmas 5.18–5.20.

Suppose that after a method is executed, there exists a variable bound to a loca-
tion that was reachable from an actual parameter of the method before its execution
(state σ). Lemma A.3 shows that this variable does not share with any location belong-
ing to Lσ .

LEMMA A.3. Under the hypotheses of Proposition 4.7, consider a variable x such that
ρ ′(x) ∈ L � Lσ . Then, Lσ ′(x) ∩ Lσ =∅.

PROOF. We prove that ∀i ∈ N.Li
σ ′ (x) ∩ Lσ = ∅, and we do it by induction on i .

Base Case. Since L0
σ ′(x) = ρ ′(x) /∈ Lσ , we have L0

σ ′(x) ∩ Lσ = ∅.

Inductive Step. Suppose that Ln
σ ′(x) ∩ Lσ = ∅, let us prove that Ln+1

σ ′ (x) ∩ Lσ = ∅.
It is worth noting that Ln

σ ′(x) ⊆ dom(μ′). By the third condition of Proposition 4.7, we
have ∀� ∈ dom(μ′) � Lσ .rng(μ′(�).φ) ∩ Lσ = ∅. Therefore, Ln

σ ′(x) ⊆ dom(μ′) � Lσ , since
Ln

σ ′ (x) ∩Lσ = ∅ and Ln
σ ′(x) ⊆ dom(μ′). This entails that ∀� ∈ Ln

σ ′(x).rng(μ′(�).φ) ∩Lσ = ∅,
which implies ⋃

�∈Ln
σ ′ (x)

(rng(μ′(�).φ) ∩ L) ∩ Lσ = ∅. (4)

We have

Ln+1
σ ′ (x) ∩ Lσ =

⎛
⎝Ln

σ ′ (x) ∪
⋃

�∈Ln
σ ′ (x)

(rng(μ′(�).φ) ∩ L)

⎞
⎠ ∩ Lσ [By Definition 4.2]

= (
Ln

σ ′(x) ∩ Lσ

) ∪
⎛
⎝ ⋃

�∈Ln
σ ′ (x)

(rng(μ′(�).φ) ∩ L) ∩ Lσ

⎞
⎠ [By distributivity]

= ∅ ∪ ∅ = ∅. [By hypothesis and Eq. (4)]

The following lemma states that the set of locations, only reachable from variables
that do not share with any actual parameter at call time, cannot be affected by the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:46 -D. Nikolić and F. Spoto

execution of a method. This will be important in the proof of soundness of the propaga-
tion rule for method call, since those variables cannot be made to reach or be reachable
from other variables, during that call, as a side-effect.

LEMMA A.4. Under the hypotheses of Proposition 4.7, let x ∈ dom(τ) ∩ dom(τ ′) be a
variable such that ρ(x) = ρ ′(x) ∈ Lσ and Lσ (x) ⊆ Lσ . Then Lσ (x) = Lσ ′(x).

PROOF. We prove that, ∀i ∈ N.Li
σ (x) = Li

σ ′(x), and we do it by induction on i .

Base Case. L0
σ (x) = ρ(x) = ρ ′(x) = L0

σ ′(x).

Inductive Step: Suppose that Ln
σ (x) = Ln

σ ′(x), let us prove that Ln+1
σ (x) = Ln+1

σ ′ (x). By
the first condition of Proposition 4.7, we have that ∀� ∈ Lσ .μ(�) = μ′(�), and therefore
∀� ∈ Ln

σ ′(x) = Ln
σ (x) ⊆ Lσ (x) ⊆ Lσ .μ(�) = μ′(�), which entails⋃

�∈Ln
σ (x)

(rng(μ(�).φ) ∩ L) =
⋃

�∈Ln
σ ′ (x)

(rng(μ′(�).φ) ∩ L). (5)

We have

Ln+1
σ ′ (x) = Ln

σ ′(x) ∪ ⋃
�∈Ln

σ ′ (x)(rng(μ′(�).φ) ∩ L) (by Definition 4.2)
= Ln

σ (x) ∪ ⋃
�∈Ln

σ (x)(rng(μ(�).φ) ∩ L) (by hypothesis, Eq. (5) and Proposition 4.7 (1)),
= Ln+1

σ (x). (by Definition 4.2).

The following lemma shows that if a variable x is bound to the same location before
and after a method is executed, then x reaches a location in Lσ before the method is
executed if and only if it reaches the same location after the mehod is executed. This
will be important for the proof of soundness of the propagation rules for method call,
since it entails that no object and no array reachable from x is modified during the
execution of the method, by making x reach a location, not reachable from the actual
parameters, that was not already reachable from x before the call. Hence, the set of
locations reachable from x can be modified, but only by adding locations the are not in
Lσ . That is, x might well become reachable or reach other variables, as a consequence
of the execution of the method, as a side-effect, but only if such variables share with
the actual parameters of the call.

LEMMA A.5. Under the hypotheses of Proposition 4.7, for any variable x ∈ dom(τ) ∩
dom(τ ′) such that ρ(x) = ρ ′(x), it holds that Lσ (x) ∩ Lσ = Lσ ′(x) ∩ Lσ .

PROOF. We prove that for any i ∈ N, Li
σ (x)∩Lσ = Li

σ ′(x)∩Lσ , and we do it by induction
on i .

Base Case. L0
σ (x) ∩ Lσ = {ρ(x)} ∩ Lσ = {ρ ′(x)} ∩ Lσ = L0

σ ′ (x) ∩ Lσ .

Inductive Step. Suppose that Ln
σ (x)∩Lσ = Ln

σ ′ (x)∩Lσ , let us prove that Ln+1
σ (x)∩Lσ =

Ln+1
σ ′ (x) ∩ Lσ . Consider a location � ∈ Ln

σ1
(x), where σ1 ∈ {σ, σ ′}. If � /∈ Lσ , then there

exists an actual parameter p of method m (Proposition 4.7) such that � is reachable
from p in σ1. In that case, all the locations reachable from � are reachable from p in σ1,
as well, that is,

∀� ∈ Ln
σ1

(x) � Lσ .rng(μ1(�).φ) ∩ Lσ = ∅. (6)

Consider now a location � ∈ Ln
σ (x) ∩ Lσ = Ln

σ ′(x) ∩ Lσ . In this case, since � ∈ Lσ , by the
first condition of Proposition 4.7, μ(�) = μ′(�), which entails⋃

�∈Ln
σ (x)∩Lσ

((rng(μ(�)) ∩ L) ∩ Lσ) =
⋃

�∈Ln
σ ′ (x)∩Lσ

((rng(μ′(�)) ∩ L) ∩ Lσ). (7)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:47

We have

Ln+1
σ ′ (x) ∩ Lσ = (

Ln
σ ′(x) ∪ ⋃

�∈Ln
σ ′ (x)(rng(μ′(�).φ) ∩ L)

) ∩ Lσ [By Definition 4.2]

= (
Ln

σ ′(x) ∩ Lσ

) ∪ ⋃
�∈Ln

σ ′ (x)((rng(μ′(�).φ) ∩ L) ∩ Lσ) [By distributivity]

= (
Ln

σ ′(x) ∩ Lσ

) ∪ ⋃
�∈Ln

σ ′ (x)∩Lσ
((rng(μ′(�).φ) ∩ L) ∩ Lσ) [By Eq. (6)]

= (
Ln

σ (x) ∩ Lσ

) ∪ ⋃
�∈Ln

σ (x)∩Lσ
((rng(μ′(�).φ) ∩ L) ∩ Lσ) [By hyp., Eq. (7),

Prop. 4.7 (1)]
= (

Ln
σ (x) ∩ Lσ

) ∪ ⋃
�∈Ln

σ (x)((rng(μ′(�).φ) ∩ L) ∩ Lσ) [By Eq. (6)]
= (

Ln
σ (x) ∪ ⋃

�∈Ln
σ (x)(rng(μ′(�).φ) ∩ L)

) ∩ Lσ [By distributivity]
= Ln+1

σ (x) ∩ Lσ . [By Definition 4.2]

Let us now show some important results regarding type reachability. Namely, we
show that if a type reaches another type, then the former also reaches all possible
supertypes of the latter (Lemma A.6) and that the set of reachable types of a type t is
included in the set of reachable types of all t’s supertypes (Lemmas A.7 and A.8). These
lemmas are used for the proofs of Lemmas 5.14 and 5.18.

LEMMA A.6. If t�t′, then for every t′′ such that t′ ≤ t′′ (i.e.for every supertype of t′),
t�t′′ holds as well.

PROOF. We prove that, for every i ≥ 0, if t′ ∈ Ti (t), then t′′ ∈ Ti (t) for every t′′ such that
t′ ≤ t′′. This entails the result for T(t) and hence the thesis. Assume hence i = 0. By
Definition 4.8, we have t′ ∈ compatible(t), and by Lemma 3.5, we have t′′ ∈ compatible(t),
that is, t′′ ∈ T0(t). Let now i > 0 and assume, by inductive hypothesis, that t′′ ∈ Ti−1(t).
Since t′ ∈ Ti (t), by Definition 4.8, we have two cases.

—If t′ ∈ Ti−1(t) then, by inductive hypothesis, also t′′ ∈ Ti−1(t), which entails t′′ ∈ Ti (t).
—If t′ /∈ Ti−1(t) then, by Definition 4.8, t′ ∈ compatible(t1), where there exists κ ∈

Ti−1(t) ∩ K and κ ′.f : t1 ∈ F(κ), or there exists t1[] ∈ Ti−1(t) ∩ A.
Both cases, by Definition 4.8, are compatible(t1) ⊆ Ti (t). Since t′ ≤ t′′, by Lemma 3.5,
we have t′′ ∈ compatible(t1), and hence t′′ ∈ Ti (t).

LEMMA A.7. Let t∈T and i ≥ 0. The set Ti (t) is closed with respect to ≤.

PROOF. The set compatible(t′) is closed with respect to ≤ for every t′ ∈ T. The thesis
follows by induction on i and Definition 4.8.

LEMMA A.8. Let t, t′ ∈T be such that t ≤ t′. Then, T(t)⊆T(t′).

PROOF. We prove that, for every i ≥ 0, Ti (t) ⊆ Ti (t′), by induction over i . If i = 0, the
thesis follows by Lemma 3.6. Assume hence that Ti−1(t) ⊆ Ti−1(t′), for i > 0. Then,

Ti (t) = Ti−1(t) ∪ ⋃
κ∈Ti−1(t)∩K

κ ′.f :t′′∈F(κ)

compatible(t′′) ∪ ⋃
t′′[]∈Ti−1(t)∩A

compatible(t′′) (by Definition 4.8),

⊆ Ti−1(t′) ∪ ⋃
κ∈Ti−1(t′)∩K

κ ′.f :t′′∈F(κ)

compatible(t′′) ∪ ⋃
t′′[]∈Ti−1(t′)∩A

compatible(t′′) (by hypothesis),

= Ti (t′). (By Definition 4.8)

B. REACHABILITY ANALYSIS

In this section, we show the soundness of our analysis. We first show that the con-
cretization map introduced in Definition 5.2 is co-additive (Lemma B.1) and then

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:48 -D. Nikolić and F. Spoto

that the propagation rules corresponding to each type of arcs of our ACG are sound
(Lemmas 5.14–5.20). These results are then used by Theorem 5.21, which shows the
soundness of whole static analysis.

LEMMA B.1 (LEMMA 5.3). Let τ ∈ T . The function γτ is co-additive.

PROOF. Let Ri ∈ Aτ for i ≥ 0. We have

γτ (∩i≥0Ri)
Def. 5.2= {σ ∈ �τ | ∀a, b ∈ dom(τ).a�σ b ⇒ a�b ∈ ∩i≥0Ri }

x ∈ ∩iXi ⇔ ∧ix ∈ Xi= {σ ∈ �τ | ∀a, b ∈ dom(τ).a�σ b ⇒ ∧
i≥0 a�b ∈ Ri }

y ⇒ ∧ixi ⇔ ∧iy ⇒ xi= {σ ∈ �τ | ∀a, b ∈ dom(τ).
∧

i≥0(a�σ b ⇒ a�b ∈ Ri)}
∀x ∈ X . ∧i f (x , yi)

⇔ ∧i∀x ∈ X .f (x , yi)= {σ ∈ �τ | ∧i≥0(∀a, b ∈ dom(τ).(a�σ b ⇒ a�b ∈ Ri))}
= ⋂

i≥0{σ ∈ �τ | ∀a, b ∈ dom(τ).a�σ b ⇒ a�b ∈ Ri }
= ⋂

i≥0 γτ (Ri).

Lemma 5.14 states that in the case of the propagation rules of the sequential arcs,
only nonexceptional concrete states belonging to the concretization of a correct approxi-
mation of the property of interest before a bytecode instruction is executed are correctly
propagated by the corresponding rule. That is because the sequential arcs simulate only
those bytecode instructions which are defined on nonexceptional concrete states, and
undefined on the exceptional ones.

LEMMA B.2 (LEMMA 5.14). The propagation rules for the sequential arcs of
Definition 5.4 are sound. That is, consider a sequential arc from a bytecode ins and
its propagation rule �; assume that ins has static type information τ at its beginning
and τ ′ immediately after its nonexceptional execution, then, for every R ∈ Aτ , we have

ins(γτ (R)) ∩
τ ′ ⊆ γτ ′(�(R)).

(We recall that ins is the semantics of ins, see Figure 4).

PROOF. Let dom(τ) = L ∪ S contain i local variables L = {l0, . . . , li−1} and j operand
stack elements S = {s0, . . . , sj−1}. Let dom(τ ′) = L′ ∪S ′, where L′ and S ′ are the local and
operand stack variables of dom(τ ′). Consider an arbitrary abstract element R ∈ Aτ and a
state ω′ = 〈ρ ′, μ′〉 ∈ ins(γτ (R))∩
τ ′ . We prove that ω′ ∈ γτ ′(�(R)), that is, (Definition 5.2)

for every x , y ∈ dom(τ ′), x�ω′
y entails x�y ∈ �(R).

The latter can be proved by showing that either x ��ω′
y or x�y ∈ �(R). Note that by the

choice of ω′, there exists ω = 〈ρ,μ〉 ∈ γτ (R) such that ω′ = ins(ω). Moreover, ω ∈ γτ (R)
implies that for every x , y ∈ dom(τ), x�ωy entails x�y ∈ R. We analyze different
propagation rules corresponding to different types of sequential arcs.

—If ins = load k t. We have L′ = L, S ′ = S ∪ {sj }, μ′ = μ, and for every a ∈ dom(τ ′) � {sj },
ρ ′(a) = ρ(a), while ρ ′(sj) = ρ ′(lk). By Definition 5.4, �(R) = R ∪ R[lk/sj] ∪ R1, where
R1 = {lk�sj , sj�lk | lk�lk ∈ R}. We distinguish the following cases.

(i) If x , y �= sj , then, ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y). Hence, by Lemma 4.6,
x�ω′

y ⇔ x�ωy ⇒ x�y ∈ R ⊆ �(R).

(ii) If x = sj and y �= sj , then ρ ′(x) = ρ ′(sj) = ρ(lk) and ρ ′(y) = ρ(y). Hence, by
Lemma 4.6,

sj�ω′
y ⇔ lk�ωy ⇒ lk�y ∈ R.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:49

If y = lk , then lk�lk ∈ R, hence x�y = sj�lk ∈∈ R1 ⊆ �(R). If y �= lk , then
lk�y ∈ R implies that x�y = sj�y ∈ R[lk/sj] ⊆ �(R).

(iii) If x �= sj and y = sj , then ρ ′(x) = ρ(x) and ρ ′(y) = ρ ′(sj) = ρ(lk). Hence, by
Lemma 4.6,

x�ω′
sj ⇔ x�ωlk ⇒ x�lk ∈ R.

If x = lk , then lk�lk ∈ R, hence x�y = lk�sj ∈ R1 ⊆ �(R). If x �= lk , then
x�lk ∈ R implies that x�y = x�sj ∈ R[lk/sj] ⊆ �(R).

(iv) If x = y = sj , then ρ ′(x) = ρ(lk) and ρ ′(y) = ρ(lk). Hence, by Lemma 4.6,
sj�ω′

sj ⇔ lk�ωlk ⇒ lk�lk ∈ R,

and therefore x�y = sj�sj ∈ R[lk/sj] ⊆ �(R).
—If ins = storek t. We have L′ = L, S ′ = S�{sj−1}, μ′ = μ, and for every a ∈ dom(τ ′)�{lk },

ρ ′(a) = ρ(a), while ρ ′(lk) = ρ(sj−1). By Definition 5.4, �(R) = {(a�b)[sj−1/lk] | a�b ∈
R ∧ a, b �= lk }. We distinguish the following cases.
(i) If x , y �= lk , then, ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y). Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R,

and therefore x�y ∈ �(R).
(ii) If x = lk and y �= lk , then ρ ′(x) = ρ ′(lk) = ρ(sj−1) and ρ ′(y) = ρ(y). Hence, by

Lemma 4.6,
lk�ω′

y ⇒ sj−1�ωy ⇒ sj−1�y ∈ R,

and therefore x�y = lk�y = (sj−1�y)[sj−1/lk] ∈ �(R).
(iii) If x �= lk and y = lk , then ρ ′(x) = ρ(x) and ρ ′(y) = ρ ′(lk) = ρ(sj−1). Hence, by

Lemma 4.6,
x�ω′

lk ⇔ x�ωsj−1 ⇒ x�sj−1 ∈ R,

and therefore x�y = x�lk = (x�sj−1)[sj−1/lk] ∈ �(R).
(iv) If x = y = lk , then ρ ′(x) = ρ ′(y) = ρ ′(lk) = ρ(sj−1). Hence, by Lemma 4.6,

lk�ω′
lk ⇔ sj−1�ωsj−1 ⇒ sj−1�sj−1 ∈ R,

and therefore x�y = lk�lk = (sj−1�sj−1)[sj−1/lk] ∈ �(R).
—ins = constv . We have L′ = L, S ′ = S∪{sj }, ρ ′(sj) = v ∈ Z∪{null}, μ′ = μ, and for every

a ∈ dom(τ ′) � {sj }, ρ ′(a) = ρ(a). By Definition 5.4, �(R) = {a�b ∈ R | a, b ∈ dom(τ ′)}.
We distinguish the following cases.
(i) If x = sj or y = sj , since ρ ′(sj) ∈ Z ∪ {null}, no variable reaches x nor y nor can

be reached from them; hence x ��ω′
y .

(ii) If x , y �= sj , then ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y). Hence, by Lemma 4.6, x�ω′
y

if and only if x�ωy , which entails x�y ∈ R, and since x , y ∈ dom(τ ′), we have
x�y ∈ �(R).

—If ins = new κ. We have L′ =L, and S ′ =S ∪ {sj }. Moreover, for every a ∈dom(τ ′) � {sj },
ρ ′(a) = ρ(a), while ρ ′(sj) = � ∈ L, where � is a fresh location, hence only reachable
from itself, and μ′ = μ[� �→ o], where o is a new object of class κ. Since � is a fresh
location, we have Lμ′(�) = {�}, and for every �′ ∈ dom(μ′), � /∈ Lμ′(�′). By Definition 5.4,
�(R) = R ∪ {sj�sj }. We distinguish the following cases.

(i) If x , y �= sj , then, ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y), and for every � ∈ dom(μ),
μ′(�) = μ(�). Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R ⊆ �(R).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:50 -D. Nikolić and F. Spoto

(ii) If x = y = sj , then x�y = sj�sj ∈ �(R).
(iii) If x = sj and y �= sj , then since � is fresh, ρ ′(y) /∈ {�} = Lω′ (x), hence x ��ω′

y .
(iv) If x �= sj and y = sj , then since � is fresh, ρ ′(y) = � /∈ Lω′ (x), hence x ��ω′

y .
—If ins = getfieldκ.f : t. We have L′ = L, S ′ = S , μ′ = μ, and for every a ∈ dom(τ ′)�{sj−1},

ρ ′(a) = ρ(a), while ρ ′(sj−1) = (μ(ρ(sj−1)).φ)(f). Moreover, for every a ∈ dom(τ ′)�{sj−1},
τ ′(a) = τ (a), while τ ′(sj−1) ≤ t and τ (sj−1)�τ ′(sj−1). By Definition 5.4,

�(R) =
R1︷ ︸︸ ︷

{a�b ∈ R | a, b �= sj−1} ∪
R2︷ ︸︸ ︷

{sj−1�b ∈ R | t�τ (b)}
{a�sj−1 | τ (a)�t �= int ∧ [a and sj−1 might share at ins]}.︸ ︷︷ ︸

R3

We distinguish the following cases.

(i) If x , y �= sj−1, then, ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y). Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R,

and therefore x�y ∈ R1 ⊆ �(R).
(ii) If x = sj−1 and y �= sj−1, if sj−1�ω′

y then, by Lemma 4.10 and Definition 4.8, we
have τ ′(sj−1)�τ ′(y) = τ (y) ⇒ τ (y) ∈ T(τ ′(sj−1)). On the other hand, τ ′(sj−1) ≤ t
and, by Lemma A.8, T(τ ′(sj−1)) ⊆ T(t), hence τ (y) ∈ T(τ ′(sj−1)) ∈ T(t), that is,

t�τ (y). (8)

The locations reachable from a field of an object are included in those reachable
from the object itself. More precisely, since ρ ′(sj−1) = (μ(ρ(sj−1)).φ)(f) and μ′ = μ,
we have Lω′ (sj−1) ⊆ Lω(sj−1), and therefore sj−1�ω′

y entails

ρ(y) = ρ ′(y) ∈ Lω′(sj−1) ⊆ Lω(sj−1).

Therefore, sj−1�ωy and

sj−1�y ∈ R. (9)

From Eqs. (8) and (9), we conclude that x�y = sj−1�y ∈ R2 ⊆ �(R).
(iii) If y = sj−1, then if x�ω′

sj−1, by Definition 4.3 we have ρ ′(sj−1) = (μ(ρ(sj−1)).φ)(f) ∈
L, which entails τ ′(sj−1) �= int. By type correctness, τ ′(sj−1) ≤ t and hence t �= int.
By Lemma 4.10, x�ω′

sj−1 implies that τ ′(x)�τ ′(sj−1), and since τ ′(sj−1) ≤ t,
Lemma A.6 entails τ ′(x)�t. If x = sj−1, then by Definition 4.8, τ (sj−1)�τ ′(sj−1)�t,
hence τ (sj−1) �= int, and it is obvious that sj−1 shares with itself at getfield.
Otherwise, if x �= sj−1, then τ (x) = τ ′(x)�t. In this case, x�ω′

sj−1, and Lemma 4.6
entail:

ρ ′(sj−1) ∈ Lω′ (x) = Lω(x). (10)

Moreover, Definition 4.1 and the fact that ρ ′(sj−1) ∈ L ensure that

ρ ′(sj−1) = (μ(ρ(sj−1)).φ)(f) ∈ rng(μ(ρ(sj−1)).φ) ∩ L ⊆ Lω(sj−1). (11)

Thus, Eqs. (10) and (11) entail that Lω(x) ∩ Lω(sj−1) �= ∅, that is, x and sj−1 share
at ins. Therefore, τ (x)�t �= int and x and sj−1 share at ins, which entails that
x�y = x�sj−1 ∈ R3 ⊆ �(R).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:51

—If ins = putfield κ.f : t. We have L′ = L, S ′ = S � {sj−2, sj−1}, ρ ′ = ρ, and μ′ =
μ[(μ(ρ(sj−2)).φ)(κ.f : t) �→ ρ(sj−1)]. By Definition 5.4,

�(R) =
R1︷ ︸︸ ︷

{a�b ∈ R | a, b /∈ {sj−1, sj−2}} ∪
{a�b | a, b /∈ {sj−1, sj−2} ∧ a�sj−2 ∈ R ∧ sj−1�b ∈ R}︸ ︷︷ ︸

R2

.

Assume that x�ω′
y . We distinguish two cases.

(i) If x�ωy , then x�y ∈ R, and since x , y /∈ {sj−2, sj−1}, we have x�y ∈ R1 ⊆ �(R).
(ii) if x ��ωy , then (since x�ω′

y), we show that the following relations hold: x�ωsj−2

and sj−1�ωy . Suppose that x ��ωsj−2, then by Definition 4.3, ρ(sj−2) /∈ Lω(x).
Recall that μ and μ′ differ on location ρ(sj−2) only, and since ρ(sj−2) /∈ Lω(x), we
have that for every � ∈ Lω(x).μ′(�) = μ(�). Moreover, ρ ′(x) = ρ(x), ρ ′(y) = ρ(y), and
dom(μ′) = dom(μ); hence, by Lemma 4.6, x�ω′

y entails x�ωy , a contradiction.
Therefore, x�ωsj−2 and x�sj−2 ∈ R. Since μ′ = μ[(μ(ρ(sj−2)).φ)(κ.f : t) �→ ρ(sj−1)],
we have, by Definition 4.2 and Lemma A.1,

Lω′ (x) = Lμ′(ρ ′(x)) = Lμ′(ρ(x)) ⊆ Lμ(ρ(x)) ∪ Lμ(ρ(sj−1)) = Lω(x) ∪ Lω(sj−1).

It is worth noting that x�ω′
y entails ρ(y) = ρ ′(y) ∈ Lω′ (x) ⊆ Lω(x) ∪ Lω(sj−1).

By hypothesis, ρ(y) /∈ Lω(x) (since x ��ωy), and therefore ρ(y) ∈ Lω(sj−1), that is,
sj−1�ωy and sj−1�y ∈ R. In conclusion, we have x�sj−2 ∈ R and sj−1�y ∈ R,
and hence x�y ∈ R2 ⊆ �(R).

—If ins = arraynew α. We have L′ =L and S ′ =S . Moreover, for every a ∈dom(τ ′)� {sj−1},
ρ ′(a) = ρ(a), while ρ ′(sj−1) = � ∈ L, where � is a fresh location, hence only reachable
from itself, and μ′ = μ[� �→ a], where a is a new array of class α containing ρ(sj−1)
elements. By Definition 5.4, �(R) = {a�b ∈ R | a, b �= sj−1} ∪ {sj−1�sj−1}. We
distinguish the following cases.
(i) If x , y �= sj−1, then, ρ ′(x) = ρ(x), ρ ′(y) = ρ(y) and for every � ∈ dom(μ), μ′(�) =

μ(�). Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R ⊆ �(R).

(ii) If x = y = sj−1, then x�y = sj−1�sj−1 ∈ �(R).
(iii) If x = sj−1 and y �= sj−1, then since � is fresh, ρ ′(y) /∈ {�} = Lω′ (x), hence x ��ω′

y .
(iv) If x �= sj−1 and y = sj−1, then since � is fresh, ρ ′(y) = � /∈ Lω′ (x), hence x ��ω′

y .

—If ins = arraylength α. We have L′ = L and S ′ = S . Moreover, for every a ∈ dom(τ ′) �

{sj−1}, ρ ′(a) = ρ(a), while ρ ′(sj−1) = μ(ρ(sj−1)).length ∈ Z, μ′ = μ. By Definition 5.4,
�(R) = {a�b ∈ R | a, b �= sj−1}. We distinguish the following cases:

(i) If x , y �= sj−1, then, ρ ′(x) = ρ(x), ρ ′(y) = ρ(y) and for every � ∈ dom(μ), μ′(�) =
μ(�). Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R ⊆ �(R).

(ii) If x = sj−1 or y = sj−1, then x ��ω′
y , since at least one of x , and y is of type int,

and these variables do not reach anything and are not reachable from anything.
—If ins = arrayload t[]. Analogously to the case ins = getfield κ.f : t, we have L′ = L,

S ′ = S � {sj−1}, μ′ = μ, and for every a ∈ dom(τ ′) � {sj−2}, ρ ′(a) = ρ(a), while
ρ ′(sj−2) = (μ(ρ(sj−2)).φ)(ρ(sj−1)). Moreover, for every a ∈ dom(τ ′) � {sj−2}, τ ′(a) = τ (a),

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:52 -D. Nikolić and F. Spoto

while τ ′(sj−2) ≤ t and τ (sj−2)�τ ′(sj−2). By Definition 5.4,

�(R) =
R1︷ ︸︸ ︷

{a�b ∈ R | a, b /∈ {sj−1, sj−2}} ∪
R2︷ ︸︸ ︷

{sj−2�b ∈ R | t�τ (b)}
{a�sj−2 | τ (a)�t �= int ∧ [a and sj−2 might share at ins]}.︸ ︷︷ ︸

R3

We distinguish the following cases.
(i) If x , y �= sj−2, then ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y). Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R,

and therefore x�y ∈ R1 ⊆ �(R).
(ii) If x = sj−2 and y �= sj−2, if sj−2�ω′

y then, by Lemma 4.10 and Definition 4.8, we
have τ ′(sj−2)�τ ′(y) = τ (y) ⇒ τ (y) ∈ T(τ ′(sj−2)). On the other hand, τ ′(sj−2) ≤ t
and, by Lemma A.8, T(τ ′(sj−2)) ⊆ T(t), hence τ (y) ∈ T(τ ′(sj−2)) ∈ T(t), that is,

t�τ (y). (12)

The locations reachable from an array element are included in those reachable
from the array itself. More precisely, since ρ ′(sj−2) = (μ(ρ(sj−2)).φ)(ρ(sj−1)) and
μ′ = μ, we have Lω′ (sj−2) ⊆ Lω(sj−2), and therefore sj−2�ω′

y entails

ρ(y) = ρ ′(y) ∈ Lω′(sj−2) ⊆ Lω(sj−2).
Therefore, sj−2�ωy and

sj−2�y ∈ R. (13)

From Eqs. (12) and (13) we conclude that x�y = sj−2�y ∈ R2 ⊆ �(R).
(iii) If y = sj−2, then if x�ω′

sj−2, by Definition 4.3, we have ρ ′(sj−2) =
(μ(ρ(sj−2)).φ)(ρ(sj−1)) ∈ L, which entails τ ′(sj−2) �= int. By type correctness,
τ ′(sj−2) ≤ t, and hence t �= int. By Lemma 4.10, x�ω′

sj−2 implies that
τ ′(x)�τ ′(sj−2), and since τ ′(sj−2) ≤ t, Lemma A.6 entails τ ′(x)�t. If x = sj−2, then
by Definition 4.8, τ (sj−2)�τ ′(sj−2)�t, hence τ (sj−2) �= int, and it is obvious that
sj−2 shares with itself at arrayload. Otherwise, if x �= sj−2, then τ (x) = τ ′(x)�t.
In this case, x�ω′

sj−2 and Lemma 4.6 entails:

ρ ′(sj−2) ∈ Lω′ (x) = Lω(x). (14)
Moreover, Definition 4.1 and the fact that ρ ′(sj−2) ∈ L ensure that

ρ ′(sj−2) = (μ(ρ(sj−2)).φ)(ρ(sj−1)) ∈ rng(μ(ρ(sj−2)).φ) ∩ L ⊆ Lω(sj−2). (15)
Thus, Eqs. (14) and (15) entail that Lω(x) ∩ Lω(sj−2) �= ∅, that is, x and sj−2 share
at ins. Therefore, τ (x)�t �= int and x and sj−2 share at ins, which entails that
x�y = x�sj−2 ∈ R3 ⊆ �(R).

—If ins = arraystore t[]. Analogously to the case ins = putfield κ.f : t, we have L′ = L,
S ′ = S � {sj−3, sj−2, sj−1}, ρ ′ = ρ, and μ′ = μ[(μ(ρ(sj−3)).φ)(ρ(sj−2)) �→ ρ(sj−1)]. By
Definition 5.4,

�(R) =
R1︷ ︸︸ ︷

{a�b ∈ R | a, b /∈ {sj−1, sj−2, sj−3}} ∪
{a�b | a, b /∈ {sj−1, sj−2, sj−3} ∧ a�sj−3 ∈ R ∧ sj−1�b ∈ R}︸ ︷︷ ︸

R2

.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:53

Assume that x�ω′
y . We distinguish two cases.

(i) If x�ωy , then x�y ∈ R, and since x , y /∈ {sj−3, sj−2, sj−1}, we have x�y ∈ R1 ⊆
�(R).

(ii) If x ��ωy , then (since x�ω′
y), we show that the following relations hold: x�ωsj−3

and sj−1�ωy . Suppose that x ��ωsj−3, then by Definition 4.3, ρ(sj−3) /∈ Lω(x). Re-
call that μ and μ′ differ on location ρ(sj−3) only, and since ρ(sj−3) /∈ Lω(x), we
have that for every � ∈ Lω(x).μ′(�) = μ(�). Moreover, ρ ′(x) = ρ(x), ρ ′(y) = ρ(y),
and dom(μ′) = dom(μ), hence, by Lemma 4.6, x�ω′

y entails x�ωy , a contradic-
tion. Therefore, x�ωsj−3 and x�sj−3 ∈ R. Since μ′ = μ[(μ(ρ(sj−3)).φ)(ρ(sj−2)) �→
ρ(sj−1)], we have, by Definition 4.2 and Lemma A.1,

Lω′ (x) = Lμ′(ρ ′(x)) = Lμ′(ρ(x)) ⊆ Lμ(ρ(x)) ∪ Lμ(ρ(sj−1)) = Lω(x) ∪ Lω(sj−1).
It is worth noting that x�ω′

y entails ρ(y) = ρ ′(y) ∈ Lω′ (x) ⊆ Lω(x) ∪ Lω(sj−1).
By hypothesis, ρ(y) /∈ Lω(x) (since x ��ωy), and therefore ρ(y) ∈ Lω(sj−1), that is,
sj−1�ωy and sj−1�y ∈ R. In conclusion, we have x�sj−3 ∈ R, and sj−1�y ∈ R
and hence x�y ∈ R2 ⊆ �(R).

—ins = dup t. We have L′ = L, S ′ = S ∪ {sj }, μ′ = μ, and for every a ∈ dom(τ ′) � {sj },
ρ ′(a) = ρ(a), while ρ ′(sj) = ρ ′(sj−1). By Definition 5.4, �(R) = R ∪ R[sj−1 �→ sj] ∪ R1,
where R1 = {sj−1�sj , sj�sj−1 | sj−1�sj−1 ∈ R}. We distinguish the following cases.

(i) If x , y �= sj , then ρ ′(x) = ρ(x), ρ ′(y) = ρ(y). Hence, by Lemma 4.6,
x�ω′

y ⇔ x�ωy ⇒ x�y ∈ R ⊆ �(R).

(ii) If x = sj or y = sj , we consider τ ′(sj): if τ ′(sj) = τ (sj−1) = int, we have x ��ω′
y .

Otherwise, we distinguish three cases.
(1) If x = sj and y �= sj , then ρ ′(x) = ρ ′(sj) = ρ(sj−1) and ρ ′(y) = ρ(y). Hence, by

Lemma 4.6,

sj�ω′
y ⇔ sj−1�ωy ⇒ sj−1�y ∈ R.

This implies x�y = sj�y ∈ R[sj−1/sj] ∪ R1 ⊆ �(R).
(2) If x �= sj and y = sj , then ρ ′(x) = ρ(x) and ρ ′(y) = ρ ′(sj) = ρ(sj−1). Hence, by

Lemma 4.6,

x�ω′
sj ⇔ x�ωsj−1 ⇒ x�sj−1 ∈ R.

This implies x�y = x�sj ∈ R[sj−1/sj] ∪ R1 ⊆ �(R).
(3) if x = y = sj , then ρ ′(x) = ρ(sj−1) and ρ ′(y) = ρ(sj−1). Hence, by Lemma 4.6,

x�ω′
y ⇔ sj−1�ωsj−1 ⇒ sj−1�sj−1 ∈ R.

This implies x�y = sj�sj ∈ R[sj−1/sj] ⊆ �(R).
—If ins = ifne t (ifeq t). We have L′ = L, S ′ = S � {sj−1}, μ′ = μ, and for every a ∈ dom(τ ′),

ρ ′(a) = ρ(a). By Definition 5.4, �(R) = {a�b ∈ R | a, b ∈ dom(τ ′)}. By Lemma 4.6,
x�ω′

y if and only if x�ωy , which entails x�y ∈ R, and therefore x�y ∈ �(R), since
x , y ∈ dom(τ ′).

—If ins ∈ {add, sub, mul, div, rem}. We have L′ = L, S ′ = S � {sj−1}, μ′ = μ, and for every
a ∈ dom(τ ′) � {sj−1}, ρ ′(a) = ρ(a), while ρ ′(sj−1) = ρ(sj−2)⊕ρ(sj−1) ∈ Z, where ⊕ is the
arithmetic operation corresponding to ins. Hence, for every variable a ∈ dom(τ ′), both
sj−1 ��ω′

a and a ��ω′
sj−1 hold. By Definition 5.4, �(R) = {a�b ∈ R | a, b ∈ dom(τ ′)}.

Suppose that x�ω′
y , then x , y �= sj−1. By Lemma 4.6, x�ω′

y if and only if x�ωy ,
which entails x�y ∈ R, and therefore x�y ∈ �(R), since x , y ∈ dom(τ ′).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:54 -D. Nikolić and F. Spoto

—If ins = inc k x . We have L′ = L, S ′ = S , μ′ = μ, and for every a ∈ dom(τ ′) � {lk },
ρ ′(a) = ρ(a), while ρ ′(lk) = ρ(lk) + x ∈ Z. Hence, for every variable a ∈ dom(τ ′),
both lk ��ω′

a and a ��ω′
lk hold. By Definition 5.4, �(R) = {a�b ∈ R | a, b ∈ dom(τ ′)}.

Suppose that x�ω′
y , then x , y �= lk . By Lemma 4.6, x�ω′

y if and only if x�ωy , which
entails x�y ∈ R, and therefore x�y ∈ �(R), since x , y ∈ dom(τ ′).

—ins ∈ {catch, exception is K }. We have L′ = L, S ′ = S = {s0}, μ′ = μ, and for every
a ∈ dom(τ ′), ρ ′(a) = ρ(a). By Definition 5.4, �(R) = {a�b ∈ R | a, b ∈ dom(τ ′)}. By
Lemma 4.6, we have x�ω′

y if and only if x�ωy , and since x , y ∈ dom(τ ′), it entails
x�y ∈ R ∈ �(R).

Moreover, we require that the propagation rules of the final arcs soundly approximate
the concrete behavior of a final bytecode instruction (return t, return void, throw κ) of
a method or a constructor belonging to the program under analysis. Similarly, the
propagation rules of the exceptional arcs simulating the exceptional executions of the
bytecode instructions which can throw an exception have to be sound. Lemmas 5.15
and 5.16 formalize these two facts, and we prove them in the following.

LEMMA B.3 (LEMMA 5.15). The propagation rules for the final arcs of Definition 5.4
are sound. That is, consider a final arc from ins and its propagation rule �, assume that
ins has static type information τ at its beginning and τ ′ immediately after its execution
(its nonexceptional execution if ins is a return, its exceptional execution if ins is a throwκ).
Then, for every R ∈ Aτ , we have

ins(γτ (R)) ⊆ γτ ′(�(R)).

(We recall that ins is the semantics of ins, see Figure 4.)

PROOF. Let dom(τ) = L ∪ S contain i local variables L = {l0, . . . , li−1} and j operand
stack elements S = {s0, . . . , sj−1}; let dom(τ ′) = L′ ∪S ′, where L′ and S ′ are the local and
operand stack variables of dom(τ ′). Consider an arbitrary abstract element R ∈ Aτ and a
state ω′ = 〈ρ ′, μ′〉 ∈ ins(γτ (R))∩
τ ′ . We prove that ω′ ∈ γτ ′(�(R)), that is, (Definition 5.2)

for every x , y ∈ dom(τ ′), x�ω′
y entails x�y ∈ �(R).

The latter can be proved by showing that either x ��ω′
y or x�y ∈ �(R). Note that by the

choice of ω′, there exists ω = 〈ρ,μ〉 ∈ γτ (R) such that ω′ = ins(ω). Moreover, ω ∈ γτ (R)
implies that for every x , y ∈ dom(τ), x�ωy entails x�y ∈ R. We analyze different
propagation rules corresponding to different types of final arcs.

—ins = return void. We have L′ = L, S ′ = ∅, μ′ = μ, and for every a ∈ dom(τ ′),
ρ ′(a) = ρ(a). By Definition 5.4, �(R) = {a�b | a, b /∈ S }. By Lemma 4.6, x�ω′

y if and
only if x�ωy , which entails x�y ∈ R, and then x�y ∈ �(R) (since x and y are local
variables).
—ins = return t. We have L′ = L, S ′ = {s0}, μ′ = μ, and for every a ∈ dom(τ ′) � {s0},

ρ ′(a) = ρ(a), while ρ ′(s0) = ρ(sj−1). By Definition 5.4, �(R) = {(a�b)[sj−1/s0] |
a�b ∈ R ∧ a, b /∈ {s0, . . . , sj−2}}. We consider the following cases.
(i) If x , y �= s0, then x and y are local variables, ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y).

Hence, by Lemma 4.6,

x�ω′
y ⇔ x�ωy ⇒ x�y ∈ R.

Therefore, since x and y are local variables, we conclude x�y ∈ �(R).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:55

(ii) If x �= s0 and y = s0, then ρ ′(x) = ρ(x) and ρ ′(y) = ρ ′(s0) = ρ(sj−1). Hence, by
Lemma 4.6,

x�ω′
s0 ⇔ x�ωsj−1 ⇒ x�y ∈ R.

Therefore, since x is a local variable and sj−1 /∈ {s0, . . . , sj−2}, we conclude
x�y = x�s0 = (x�sj−1)[sj−1/s0] ∈ �(R).

(iii) If x = s0 and y �= s0, then ρ ′(x) = ρ ′(s0) = ρ(sj−1) and ρ ′(y) = ρ(y); hence, by
Lemma 4.6,

s0�ω′
y ⇔ sj−1�ωy ⇒ x�y ∈ R.

Therefore, since sj−1 /∈ {s0, . . . , sj−2} and y is a local variable, we conclude
x�y = s0�y = (sj−1�y)[sj−1/s0] ∈ �(R).

(iv) If x = y = s0, then ρ ′(x) = ρ ′(y) = ρ ′(s0) = ρ(sj−1). Hence, by Lemma 4.6,
s0�ω′

s0 ⇔ sj−1�ωsj−1 ⇒ x�y ∈ R.

Therefore, since sj−1 /∈ {s0, . . . , sj−2}, we conclude x�y = s0�s0 =
(sj−1�sj−1)[sj−1/s0] ∈ �(R).

—ins = throw κ. We have L′ = L, S ′ = {s0}, and for every a ∈ L′, ρ ′(a) = ρ(a). By
Definition 5.4, �(R) = {(a�b)[sj−1/s0] | a�b ∈ R ∧ a, b /∈ {s0, . . . , sj−2}} ∪ {s0�s0}.
From Figure 4, we have two possibilities: either ρ ′(s0) = ρ(sj−1) and μ′ = μ, in
which case, with the same proof as for return t, we conclude that if x�ω′

y , then
x�y ∈ {(a�b)[sj−1/s0] | a�b ∈ R ∧ a, b /∈ {s0, . . . , sj−2}} ⊆ �(R). Or otherwise,
ρ ′(s0) = �, where � is fresh, and μ′ = μ[� �→ npe], where npe is a new object of class
NullPointerException containing only fresh locations (Lμ′(�)∩dom(μ) = ∅). In this
latter case, we have the following cases.
(i) If x , y �= s0, then, ρ ′(x) = ρ(x) and ρ ′(y) = ρ(y); hence, by Lemma 4.6, x�ω′

y if
and only if x�ωy , which entails x�y ∈ R, and therefore x�y ∈ �(R) (since x
and y are local variables).

(ii) If x �= s0 and y = s0, then ρ ′(x) = ρ(x) and ρ ′(y) = ρ ′(s0) = �. Since � is fresh,
Lμ′(ρ ′(x)) ⊆ dom(μ) and ρ ′(y) �∈ dom(μ), which entails x ��ω′

y .
(iii) If x = s0 and y �= s0, then ρ ′(y) = ρ(y) and ρ ′(x) = ρ ′(s0) = �; then ρ ′(y) ∈ dom(μ)

and Lμ′ (ρ ′(x)) ∩ dom(μ) = ∅. Then x ��ω′
y .

(iv) If x = y = s0, we have s0�s0 ∈ �(R).

LEMMA B.4 (LEMMA 5.16). The propagation rules for the exceptional arcs of
Definition 5.4 not leaving a call are sound. That is, consider an exceptional arc from a
bytecode ins distinct from call and its propagation rule �, assume that ins has static
type information τ at its beginning and τ ′ after its exceptional execution. Then, for every
R ∈ Aτ , we have

ins(γτ (R)) ∩
τ ′ ⊆ γτ ′(�(R)).

(We recall that ins is the semantics of ins, see Figure 4.)

PROOF. Let dom(τ) = L ∪ S contain i local variables L = {l0, . . . , li−1} and j operand
stack elements S = {s0, . . . , sj−1}; let dom(τ ′) = L′ ∪ S ′, where L′ and S ′ = {s0} are the
local and operand stack variables of dom(τ ′). Consider an arbitrary abstract element
R ∈ Aτ and a state ω′ = 〈ρ ′, μ′ ∈ ins(γτ (R)) ∩
τ ′ . We prove that ω′ ∈ γτ ′(�(R)), that is,
(Definition 5.2)

for every x , y ∈ dom(τ ′), x�ω′
y entails x�y ∈ �(R).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:56 -D. Nikolić and F. Spoto

The latter can be proved by showing that either x ��ω′
y or x�y ∈ �(R). Note that by the

choice of ω′, there exists ω = 〈ρ,μ ∈ γτ (R) such that ω′ = ins(ω). Moreover, ω ∈ γτ (R)
implies that for every x , y ∈ dom(τ), x�ωy entails x�y ∈ R. We analyze different
propagation rules corresponding to different types of exceptional arcs.

—If ins ∈ {div, rem, new, getfield, putfield, arraynew, arraylength, arrayload, arraystore}. In
this case, we have L′ = L and S ′ = {s0}. Moreover, for every a ∈ L′, ρ ′(a) = ρ(a),
while ρ ′(s0) = � ∈ L, where � is a fresh location, and μ′ = μ[� �→ o], where o is
a new instance of the subclass of Throwable thrown by ins containing only fresh
locations (Lμ′(�) ∩ dom(μ) = ∅). By Definition 5.4, �(R) = {a�b | a�b ∈ R ∧ a, b /∈
{s0, . . . , sj−1}} ∪ {s0�s0}. We distinguish the following cases.
(i) If x , y �= s0, then, ρ ′(x) = ρ(x), ρ ′(y) = ρ(y), and for every � ∈ dom(μ), μ′(�) = μ(�);

hence, by Lemma 4.6, x�ω′
y if and only if x�ωy , which entails x�y ∈ R, and

therefore x�y ∈ �(R) (since x , y ∈ L′).
(ii) If x = y = s0, we have s0�s0 ∈ �(R).

(iii) If x = s0 and y �= s0, then ρ ′(y) ∈ dom(μ) and Lμ′(ρ ′(x)) ∩ dom(μ) = ∅. Hence
x ��ω′

y .
(iv) If x �= s0 and y = s0, then ρ ′(y) = � �∈ dom(μ) and Lμ′(ρ ′(x)) ⊆ dom(μ) (since � is

fresh). Then x ��ω′
y .

—ins = throw κ. Analogously to the proof of Lemma 5.15 for throw κ, when ρ ′(s0) = �,
where � is a fresh location.

Similarly, Lemma 5.17 shows that the propagation rules of the parameter passing
arcs are sound. Namely, they soundly approximate the behavior of the makescope
function.

LEMMA B.5 (LEMMA 5.17). The propagation rules for the parameter passing arcs of
Definition 5.4 are sound. That is, consider a parameter passing arc from a call m1 . . .mn

to the first bytecode of mw , for some w ∈ [1..k], and its propagation rule �. Assume that
call m1 . . .mn has static type information τ at its beginning and that τ ′ is the static type
information at the beginning of mw . Then, for every R ∈ Aτ , we have

(makescope mw)(γτ (R)) ⊆ γτ ′(�(R)).

PROOF. Let dom(τ) = L ∪ S contain local variables L and j ≥ π operand stack ele-
ments S = {s0, . . . , sj−π , . . . , sj−1}, where π is the number of parameters of method mw

(including this). Then, dom(τ ′) = {l0, . . . , lπ−1}. Consider an arbitrary abstract element
R ∈ Aτ and a state ω′ = 〈ρ ′, μ′ ∈ ins(γτ (R)) ∩
τ ′ . We prove that ω′ ∈ γτ ′(�(R)), that is,
(Definition 5.2)

for every x , y ∈ dom(τ ′), x�ω′
y entails x�y ∈ �(R).

By the choice of ω′, there exists ω = 〈ρ,μ ∈ γτ (R) such that ω′ = (makescope mw)(ω).
Moreover, ω ∈ γτ (R) implies that for every x , y ∈ dom(τ), x�ωy entails x�y ∈ R. By
Definition 5.4,

�(R) =
{

(a�b)
[

sj−π /l0
...

sj−1/lπ−1

]∣∣∣ a�b ∈ R and a, b ∈ {sj−π , . . . , sj−1}
}

.

By Definition 3.16, for every p ∈ [0, π), ρ ′(lp) = ρ(sj−π+p) and μ′ = μ. Consider x , y ∈
dom(τ ′) = L′. There exist p, q ∈ [0..π) such that x = lp and y = lq , and therefore
ρ ′(x) = ρ ′(lp) = ρ(sj−π+p) and ρ ′(y) = ρ(lq) = ρ(sj−π+q). Hence, by Lemma 4.6,

x�ω′
y ⇔ sj−π+p�ωsj−π+q ⇒ sj−π+p�sj−π+q ∈ R.

Therefore, x�y = lp�lq = (sj−π+p�sj−π+q)[sj−π+p/lp, sj−π+q/lq] ∈ �(R).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:57

The following lemmas deal with the return from a method call. Namely, in the case
of a non-void method, the propagation rule of the return value arc expands the reach-
ability approximation immediately after a call to that method with those reachability
pairs related to the returned value. A method execution might also have side-effects
on the memory, and this is captured by the propagation rule of the side-effects arcs.
The reachability approximation after the call to the method is, therefore, determined
as the union of the propagations of a return value arc (for non-void methods) and a
side-effects arc, which is proved sound (Lemma 5.18 and Lemma 5.19).

LEMMA B.6 (LEMMA 5.18). The propagation rules for the return value arcs and side-
effects arcs are sound at a non-void method return. Namely, let w ∈ [1..n] and consider
a return value and a side-effect arc from nodes C = call m1 . . .mn and E = exit@mw to a
node Q = insq and their propagation rules �#19 and �#20, respectively. Let τc , τq , and
τe be the static type information at C, Q, and E, respectively, and let d be the denotation
of mw , that is, a partial function from a state at its beginning to the corresponding state
at its end. Then, for every Rc ∈ Aτc and Re ∈ Aτe , we have

d ((makescope mw)(γτc (Rc)) ∩
τq ⊆ γτq (�#19(Rc,Re) ∪ �#20(Rc,Re)).

PROOF. Consider states σc ∈ γτc (Rc), σe ∈ γτe (Re), and σq = d ((makescope mw)(σc)) ∈

τq , and let us show that σq ∈ γτq (Rq), where Rq = �#19(Rc,Re) ∪ �#20(Rc,Re). By
Definition 5.2,

σq ∈ γτq (Rq) ⇔ ∀a, b ∈ dom(τq).a�σq b ⇒ a�b ∈ Rq

⇔ ∀a, b ∈ dom(τq).a�b /∈ Rq ⇒ a ��σq b.

In the following, we assume that dom(τa) = La ∪ Sa , where a can be c, e, or q , Sc =
{s0, . . . , sj }, Se = {s0}, Sq = {s0, . . . , sj−π−1, sj−π }, Lq = Lc , and {l0, . . . , lπ−1} ⊆ Le , where
j and π are the number of operand stack elements in dom(τc) and the number of
the parameters of method m, respectively. By Definition 3.18, σc , σe , and σq satisfy
the following conditions: σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, μc〉, σe = 〈〈le ‖ top〉, μe〉, and
σq = 〈〈lc ‖ top :: vj−π−1 :: . . . :: v0〉, μe〉. Let a and b be two arbitrary variables from dom(τq)
and suppose that a�b /∈ Rq . We show that in that case a ��σq b. We distinguish the
following cases.

Case A. If a = b = sj−π . Rule �#15 adds the pair sj−π�sj−π only if s0�s0 ∈ Re . Thus,
sj−π�sj−π /∈ Rq implies s0�s0 /∈ Re , which entails s0 ��σe s0 (σe ∈ γτe (Re)) and is only
possible when τe (s0) = int. Since τq (sj−π) = τe (s0) = int, we conclude sj−π ��σq sj−π .

Case B. If a ∈ dom(τq) � {sj−π } and b = sj−π . If a�sj−π /∈ Rq then, by rule �#19, one
of the following hold.

(1) τq (a) ��t.

(2) There is no j − π ≤ p < j such that a might share with sp at C.

(3) There exists a j − π ≤ p < j such that a is definitely aliased to sp at C and
no store lp−j+π occurs in mw and lp−j+π�s0 /∈ Re .

We analyze these three cases.

(1) If τq (a) ��t, then since τq (sj−π) ≤ t (sj−π contains the value returned by method
m, whose type is t), by Lemma A.6, τq (a) ��τq (sj−π) holds which, by Lemma 4.10,
implies a ��σq sj−π .

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:58 -D. Nikolić and F. Spoto

(2) If there is no j − π ≤ p < j such that a might share with sp at C, that is, if at
call-time a cannot share with the parameters of method m then, by Proposition 4.7,
Lσc

(a) ⊆ Lσc
and ρq (sj−π) /∈ Lσc

, which entails ρq (sj−π) /∈ Lσc
(a). Since ρc(a) = ρq (a) ∈

Lσc
, by Lemma A.4, we have Lσc

(a) = Lσq
(a). Hence, ρq (sj−π) /∈ Lσc

(a) = Lσq
(a), that

is, a ��σq sj−π .
(3) If there exists a j − π ≤ p < j such that a is definitely aliased to sp at C, if no

store lp−j+π occurs in mw and lp−j+π�s0 /∈ Re , then we have the following.

ρc(a) = ρc(sp), [a is definitely aliased to sp at C],
ρc(sp) = ρe (lp−j+π), [sp at C corresponds to lp−j+π at E and there is no store lp−j+π

in mw],
ρc(a) = ρq (a), [a ∈ dom(τq) � {sj−π } and Definition 3.18],
lp−j+π�s0 /∈ Re ⇒ lp−j+π ��σe s0, [By Definition 5.2].

Since ρq (a) = ρe (lp−j+π), ρq (sj−π) = ρe (s0), and μq = μe (hypotheses about σq and
σe), by Lemma 4.6, a�σq sj−π ⇔ lp−j+π�σe s0. Since lp−j+π ��σe s0, we conclude that
a ��σq sj−π .

Thus, we proved that a ��sj−π /∈ Rq entails a ��σq sj−π .
Case C. If a = sj−π and b ∈ dom(τq) � {sj−π }. If sj−π�b /∈ Rq then, by rule �#19, one

of the following hold.

(1) t ��τq (b).

(2) There is no j − π ≤ p < j such that sp�b ∈ Rc .

(3) There exists a j − π ≤ p < j such that b is definitely aliased to sp at C and
no store lp−j+π occurs in mw and s0�lp−j+π /∈ Re .

We analyze these three cases.

(1) If t ��τq (b), then τq (b) /∈ T(t). Since sj−π contains the value returned by method m
whose type is t, we have τq (sj−π) ≤ t. By Lemma A.8, T(τq (sj−π)) ⊆ T(t), which entails
τq (b) /∈ T(τq (sj−π)), that is, τq (sj−π) ��τq (b), and by Lemma 4.10, sj−π ��σq b.

(2) If there is no j − π ≤ p < j such that sp�b ∈ Rc , then by Definition 5.2, for each
j−π ≤ p < j , sp ��σcb, that is, ρc(b) /∈ ⋃

p∈[j−π,j) Lσc
(sp). By Proposition 4.7, ρc(b) ∈ Lσc

and ρq (sj−π) /∈ Lσc
. By Lemma A.3, Lσq

(sj−π) ∩ Lσc
= ∅, hence ρc(b) /∈ Lσq

(sj−π) and,
since ρc(b) = ρq (b), we conclude that ρq (b) /∈ Lσq

(sj−π), that is, sj−π ��σq b.
(3) If there exists a j − π ≤ p < j such that b is definitely aliased to sp at C, if no

store lp−j+π occurs in mw and s0�lp−j+π /∈ Re , we have as follows.

ρc(b) = ρc(sp), [b is definitely aliased to sp at C],
ρc(sp) = ρe (lp−j+π), [sp at C corresponds to lp−j+π at E and there is no store lp−j+π

in mw],
ρc(b) = ρq (b), [b ∈ dom(τq) � {sj−π } and Definition 3.18],
s0�lp−j+π /∈ Re ⇒ s0 ��σe lp−j+π , [By Definition 5.2].

Since ρq (sj−π) = ρe (s0), ρq (b) = ρe (lp−j+π), and μq = μe (hypotheses about σq and
σe), by Lemma 4.6, sj−π�σq b ⇔ s0�σe lp−j+π . Since s0 ��σe lp−j+π , we conclude that
sj−π ��σq b.

Thus, we proved that sj−π�b /∈ Rq implies that sj−π ��σq b.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:59

Case D. If a, b ∈ dom(τq) � {sj−π }. In this case, ρc(a) = ρq (a) and ρc(b) = ρq (b)
(Definition 3.18). If a�b /∈ Rq then, by rule �#20, one of the following hold.

(1) [a�b /∈ Rc and τq (a) ��τq (b)].

(2) [a�b /∈ Rc and ∀j − π ≤ pa < j , a does not share with spa
at C].

(3) [a�b /∈ Rc and ∀j − π ≤ pb < j , spb
�b /∈ Rc].

(4) [a�b /∈ Rc and ∀j − π ≤ qa , qb < j , a is definitely aliased to sqa
at C, and

b is definitely aliased to sqb
at C, and no store lqa−j+π nor store lqb−j+π

occurs in mw and lqa−j+π�lqb−j+π /∈ Re].

We analyze these four cases.

(1) If τq (a) ��τq (b), then by Lemma 4.10, a ��σq b.
(2) If a�b /∈ Rc , and for each j − π ≤ pa < j , a does not share with spa

, then from the
last condition, we conclude that a does not share with any actual parameter of m at
call time, and by Proposition 4.7, Lσc

(a) ⊆ Lσc
. By Lemma A.4, ρc(a) = ρq (a) entails

Lσc
(a) = Lσq

(a). Since a�b /∈ Rc , by Definition 5.2 a ��σcb, that is, ρc(b) /∈ Lσc
(a) =

Lσq
(a). Moreover, ρq (b) = ρc(b), hence ρq (b) /∈ Lσc

(a) = Lσq
(a), and therefore a ��σq b.

(3) If a�b /∈ Rc , and for each j − π ≤ pb < j , spb
�b /∈ Rc , then from the last condition,

we conclude that ρc(b) is not a location reachable from the actual parameters of
m at call time, and therefore, by Proposition 4.7, ρc(b) ∈ Lσc

. Since a�b /∈ Rc , by
Definition 5.2 a ��σcb, that is, ρc(b) /∈ Lσc

(a), and therefore ρc(b) /∈ Lσc
(a) ∩ Lσc

. By
Lemma A.5, ρc(a) = ρq (a) entails Lσc

(a) ∩Lσc
= Lσq

(a) ∩Lσc
and, since ρc(b) = ρq (b),

we have ρq (b) /∈ Lσq
(a), that is, b ��σq a.

(4) In this case, for every j − π ≤ qa , qb < j , we have as follows.
ρc(a) = ρc(sqa

), [a is definitely aliased to sj−π+qa at C],
ρc(sqa

) = ρe (lqa−j+π), [sqa at C corresponds to lqa−j+π at E and no store lqa−j+π occurs
in mw],

ρc(a) = ρq (a), [a ∈ dom(τq) � {sj−π } and Definition 3.18],
ρc(b) = ρc(sqb

), [b is definitely aliased to sqb at C],
ρc(sqb

) = ρe (lqb−j+π), [sqb at C corresponds to lqb−j+π at E and no store lqb−j+π occurs
in mw],

ρc(b) = ρq (b), [b ∈ dom(τq) � {sj−π } and Definition 3.18],
lqa−j+π�lqb−j+π /∈ Re ⇒ lqa−j+π ��σe lqb−j+π , [By Definition 5.2].

Since ρq (a) = ρe (lqa−j+π), ρq (b) = ρe (lqb−j+π), and μq = μe , by Lemma 4.6, a�σq b
⇔ lqa−j+π�σe lqb−j+π . Since lqa−j+π ��σe lqb−j+π , we conclude that a ��σq b.

LEMMA B.7 (LEMMA 5.19). The propagation rule for the side-effects arcs is sound
for void methods. Namely, let w ∈ [1..n] and consider a side-effect arc from nodes
C = call m1 . . .mn and E = exit@mw to a node Q = insq and its propagation rule �#20.
Let τc , τq , and τe be the static type information at C, Q, and E, respectively, and let d
be the denotation of mw , that is, a partial function from a state at its beginning to the
corresponding state at its end. Then, for every Rc ∈ Aτc and Re ∈ Aτe , we have

d ((makescope mw)(γτc (Rc)) ∩
τq ⊆ γτq (�#20(Rc,Re)).

PROOF. The proof is analogous to that of Case D of Lemma B.6.

The following lemma deals with the the executions of a method that end up in an
exception being thrown. Namely, the approximation of the reachability information at

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:60 -D. Nikolić and F. Spoto

the catch that runs from the exceptional states must consider the possible side-effects
on the initial memory due to the execution of the method. This is the task of the
propagation rules of the side-effects arcs. On the other hand, that approximation must
also consider the case when the method is invoked on null. As in the previous case,
the approximated reachability information must hence be consistent with both these
situations and Lemma 5.20 shows it correct.

LEMMA B.8 (LEMMA 5.20). The propagation rules for the exceptional arcs of the call
and side-effects arcs are sound when a method call throws an exception. Namely, given
nodes Q = catch , C = call m1 . . .mn , and E = exception@mw , for a suitable w ∈ [1..n],
consider an exceptional arc from C to Q and a side-effect arc from C and E to Q, with
their propagation rules �#16 and �#20, respectively. Let τc , τq , and τe be the static type
information at C, Q, and E, respectively, and let d be the denotation of mw , that is, a
partial function from a state at its beginning to the corresponding state at its end. Then,
for every Rc ∈ Aτc and Re ∈ Aτe , we have

d ((makescope mw)(γτc (Rc)) ∩
τq
⊆ γτq (�#16(Rc) ∪ �#20(Rc,Re)).

PROOF. Consider states σc ∈ γτc (Rc), σe ∈ γτe (Re), and σq = d ((makescope mw)(σ)) ∈

τq

and let us show that σq ∈ γτq (Rq), where Rq = �#16(Rc) ∪ �#20(Rc,Re). By
Definition 5.2,

σq ∈ γτq (Rq) ⇔ ∀a, b ∈ dom(τq).a�σq b ⇒ a�b ∈ Rq

⇔ ∀a, b ∈ dom(τq).a�b /∈ Rq ⇒ a ��σq b.

In the following, we assume that dom(τa) = La ∪ Sa , where a can be c, e or q ,
Sc = {s0, . . . , sj }, Se = {s0}, Sq = {s0}, Lq = Lc and {l0, . . . , lπ−1} ⊆ Le , where j and
π are the number of the operand stack elements in dom(τc) and the number of the
parameters of method m, respectively. By Definition 3.18, σc , σe , and σq have to satisfy
the following conditions: σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, μc〉, σe = 〈〈le ‖ �〉, μe〉, and
σq = 〈〈lc ‖ �〉, μe〉, where � represents the location holding the exception thrown by mw .
Hence, τe (s0) ≤ Throwable and τq (s0) ≤ Throwable. Let a and b be two arbitrary vari-
ables from dom(τq) and suppose that a�σq b. We show that in this case, a�b ∈ Rq . We
distinguish the following cases.

—a = s0 and b �= s0. Since s0�σq x then, by Lemma 4.6 and Definition 4.8, τq (s0)�τq (b),
that is, τq (b) ∈ T(τq (s0)). Since τq (s0) ≤ Throwable we have, by Lemma A.8, T(τq (s0)) ⊆
T(Throwable), and therefore τq (b) ∈ T(Throwable), that is, Throwable�τq (b). Moreover
x /∈ Sq and hence a�b = s0�b ∈ �#16(Rc) ⊆ Rq .

—a �= s0 and b = s0. Since a�σq s0, then by Lemma 4.6, τq (a)�τq (s0). Moreover, τq (s0) ≤
Throwable, and by Lemma A.6, τq (a)�Throwable. Since a /∈ Sq , we have a�b =
a�s0 ∈ �#16(Rc) ⊆ Rq .

—a = b = s0. In this case, a�b = s0�s0 trivially belongs to �#16 ⊆ Rq .
—a, b ∈ dom(τq) � {s0}. In this case, we suppose that a�b /∈ Rq and show that a ��σq b.

The proof is analogous to that of Case D of Lemma B.6.

Finally, Theorem 5.21 shows that our reachability analysis is sound, that is, at each
program point, the set of reachability pairs obtained by our analysis represents an
over-approximation of the actual reachability information available at that point.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:61

THEOREM B.9 (THEOREM 5.21). Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest

→
→

b1· · ·
bm

‖ σ 〉 :: a be the ex-

ecution of our operational semantics, from the block bfirst(main) starting with the first
bytecode instruction of method main, ins0, and an initial state ξ ∈ �τ0 (containing no
reachability except this that reaches itself and the args parameter that reaches itself),
to a bytecode instruction ins and assume that this execution leads to a state σ ∈ �τ ,
where τ0 and τ are the static type information at ins0 and ins, respectively. Moreover,
let A ∈ Aτ be the reachability approximation at ins, as computed by our reachability
analysis. Then, σ ∈ γτ (A) holds.

PROOF. The blocks in the configurations of an activation stack, except the topmost,
cannot be empty and with no successor. This is because the configurations are only
stacked by Rule (2) of Figure 5, and if rest is empty there, then m ≥ 1 or otherwise, the
code ends with a call bytecode with no return, which is illegal in Java bytecode [Lindholm
and Yellin 1999].

We proceed by induction on the length n of the execution 〈bfirst(main) ‖ ξ〉 ⇒∗

〈 ins
rest

→
→

b1· · ·
bm

‖ σ 〉 :: a.

Base Case. If n = 0 the execution is just 〈bfirst(main) ‖ ξ . In this case, τ0 = τ and
A0 = A = Sfirst(main). Since ξ contains no reachability, except for this and args held
in l0 and l1 that reach themselves, that is, l0�ξ l0, l1�ξ l1, and since our reachability
analysis is a solution where Sfirst(main) = {l0�l0, l1�l1} (Definition 5.12), we have σ =
ξ ∈ γτ0 ({l0�l0, l1�l1}) ⊆ γτ (Sfirst(main)) = γτ (A0) = γτ (A).

Inductive Step. Assume now that the thesis holds for any such execution of length

k ≤ n. Consider an execution 〈bfirst(main) ‖ ξ〉 ⇒n+1 〈 insq

restq︸ ︷︷ ︸
bq

→
→

b1· · ·
bm

‖ σq 〉 :: aq , with insq (σq)
defined. This execution must have the form

〈bfirst(main) ‖ ξ 〉 ⇒np 〈

bp︷ ︸︸ ︷
insp

restp

→
→

b ′
1· · ·

b ′
m ′

‖ σp〉 :: ap ⇒n+1−np 〈bq ‖ σq 〉 :: aq , (16)

with 0 ≤ np ≤ n, that is, it must have a strict prefix of length np whose final activation
stack has the topmost configuration with a nonempty block bp . Let such np be maximal.
Given a bytecode insa , let τa and Ra be the static type information and the approxima-
tion of the reachability information at the ACG node insa , respectively. By inductive
hypothesis, we know that σp ∈ γτp (Rp), and we show that also σq ∈ γτq (Rq) holds. We
distinguish on the basis of the rule of the operational semantics that is applied at the
beginning of the derivation ⇒n+1−np in Equation (16).

Rule (1). If this rule is applied, then insp(σp) is defined, and insp is not a call. We
distinguish the following cases.

case a: insp is not a return nor a throw.

If restp is nonempty, then by the maximality of np , Eq. (16) must be

〈bfirst(main) ‖ ξ〉 ⇒np 〈 insp

insq

restq︸ ︷︷ ︸
bp

→
→

b1· · ·
bm

‖ σp〉 :: ap
(1)⇒〈 insq

restq︸ ︷︷ ︸
bq

→
→

b1· · ·
bm

‖ insp(σp)︸ ︷︷ ︸
σq

〉 :: ap︸︷︷︸
aq

.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:62 -D. Nikolić and F. Spoto

Otherwise, m ′ ≥ 1 (legal Java bytecode can only end with a return or a throw κ), and by
the maximality of np , it must be bq = b ′

h for a suitable 1 ≤ h ≤ m ′ so that Eq. (16) must
have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 insp︸ ︷︷ ︸
bp

→
→

b ′
1· · ·

b ′
m ′

‖ σp〉 ::ap

(1)⇒ 〈 →
→

b ′
1· · ·

b ′
m ′

‖
σq︷ ︸︸ ︷

insp(σp)〉 ::
aq︷︸︸︷
ap

(6)⇒〈bq ‖ σq〉 :: aq .

In both cases, the ACG contains a sequential arc from insp to insq and Rq = �(Rp),
where � is the propagation rule of that arc (Definition 5.4). We have

σq = insp(σp)
= insp(σp) ∩
τq [σq ∈
τq]
⊆ insp(γτp (Rp)) ∩
τq [By hypothesis and by monotonicity of insp]
⊆ γτq (�(Rp)) = γτq (Rq) [By Lemmas 5.14 and 5.16].

case b: insp is a return t.

We show the case when t �= void, since the other case is simpler (there is no return
value to consider). Then restp is empty and m ′ = 0 (no code is executed after a return in
legal Java bytecode, but the method terminates), and since insp(σp) ∈
 (definition of
return t), Eq. (16) must have one of the following two forms, depending on the emptiness
of block b in Rule (4):

〈bfirst(main) ‖ ξ〉 ⇒np 〈 return t︸ ︷︷ ︸
bp

‖ 〈〈lp ‖ top :: sp〉, μp︸ ︷︷ ︸
σp

〉〉 ::

call-time︷ ︸︸ ︷
〈bq ‖ 〈〈lc ‖ sc〉, μc〉〉 :: aq︸ ︷︷ ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ top〉, μp〉〉 :: ap
(4)⇒〈bq ‖

σq︷ ︸︸ ︷
〈〈lc ‖ top〉 :: sc〉, μp〉〉 :: aq ,

(17)

or

〈bfirst(main) ‖ ξ〉 ⇒np 〈 return t︸ ︷︷ ︸
bp

‖ 〈〈lp ‖ top :: sp〉, μp︸ ︷︷ ︸
σp

〉〉 ::

call-time︷ ︸︸ ︷
〈 →

→
b ′

1· · ·
b ′
m ′

‖ 〈〈lc ‖ sc〉, μc〉〉 :: aq︸ ︷︷ ︸
ap

(1)⇒ 〈 ‖ 〈〈lp ‖ top〉, μp〉〉 :: ap
(4)⇒〈 →

→
b ′

1· · ·
b ′
m ′

‖ 〈〈lc ‖ top :: sc〉, μp〉〉 :: aq

(6)⇒ 〈bq ‖ 〈〈lc ‖ top :: sc〉, μp〉〉 :: aq

where, in the latter case, by maximality of np , we have bq = b ′
h for a suitable 1 ≤ h ≤ m ′.

We only prove the case for Eq. (17), the other being similar. Consider the configuration
at call-time. Since only Rule (2) can stack configurations, call-time was the topmost
one when the call was executed and, for a suitable 1 ≤ w ≤ n, Eq. (17) must have the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:63

following form

〈bfirst(main) ‖ ξ 〉 ⇒nc 〈 call κ.m1 . . . κ.mn

insq

restq

→
→

b ′
1· · ·

b ′
m ′

‖ 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, μc︸ ︷︷ ︸
σc

〉〉 :: aq

(2)⇒ 〈first(κ.mw) ‖ 〈〈[vj−π 〉〉 :: . . . :: vj−1] ‖ ε〉, μc〉〉 :: ap

⇒np−nc−1 〈bp ‖ σp〉 :: ap
(1)⇒ 〈 ‖ 〈〈lp ‖ top〉, μp〉〉 :: ap

(4)⇒ 〈bq ‖ σq 〉 :: aq ,

where j is the number of operand stack elements before insC = call κ.m1 . . . κ.mn is
executed, π is the number of parameters of method m, and the rules in the portion
⇒np−nc−1 never make the operand stack lower than at the beginning of that portion.

We consider σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, μc〉 and σp = 〈〈lp ‖ top :: sp〉, μp〉. By
inductive hypothesis for nc and np , we know that σc ∈ γτc (Rc) and σp ∈ γτp (Rp). It is
worth noting that in this case, σq = d ((makescope mw)(σc)), and since σq ∈
τq and
σc ∈ γτc (Rc), we have

σq ⊆ d ((makescope mw)(γτc (Rc))) ∩
τq . (18)

Let σe = return t(σp) = 〈〈lp ‖ top〉, μp〉. Then, the ACG contains a final arc from return t

to exit@mw : t for a suitable 1 ≤ w ≤ n, and Re = �(Rp), where � is the propagation rule
#13 (Definition 5.4). The following relations hold.

σe = return t(σp)
⊆ return t(γτp (Rp)) [by hypothesis and monotonicity of return],
⊆ γτe (�(Rp)) = γτe (Re) [by Lemma 5.15].

In this case, there are two multi-arcs (a return value and a side-effect arc) going into
insq (see Figure 12), and Rc and Re represent the correct approximations of the reach-

ability information at the sources of these arcs. Let Rq = �#19(Rc,Re) ∪ �#20(Rc,Re),
where �#19 and �#20 are the propagation rules #19 and #20 introduced in Definition 5.4.
By Eq. (18) and by Lemma 5.18, we have σq ∈ γτq (Rq).

case c: insp is a throw.

If restp is empty and m ′ > 0, the execution of Eq. (16) must have the form

〈bfirst(main) ‖ ξ 〉 ⇒np 〈 throw κ︸ ︷︷ ︸
bp

→
→

b ′
1· · ·

b ′
m ′

‖ 〈〈lp ‖ e :: sp〉, μp︸ ︷︷ ︸
σp

〉〉 :: ap

(1)⇒ 〈 →
→

b ′
1· · ·

b ′
m ′

‖
σq︷ ︸︸ ︷

〈〈lp ‖ e〉, μp〉〉 :: ap
(6)⇒ 〈bq ‖ σq 〉 ::

aq︷︸︸︷
ap ,

where, by maximality of np , we have bq = b ′
h for a suitable 1 ≤ h ≤ m ′. If restp is

nonempty, the Execution of Eq. (16) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ

catch
restq︸ ︷︷ ︸
bp

→
→

b1· · ·
bm

‖ 〈〈lp ‖ e :: sp〉, μp︸ ︷︷ ︸
σp

〉〉 :: ap

(1)⇒ 〈

bq︷ ︸︸ ︷
catch
restq

→
→

b ′
1· · ·

b ′
m ′

‖
σq︷ ︸︸ ︷

〈〈lp ‖ e〉, μp〉〉 ::
aq︷︸︸︷
ap ,

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:64 -D. Nikolić and F. Spoto

since catch is the only bytecode whose semantics can be defined on the exceptional state
σq . In both these cases, by inductive hypothesis, we have σp ∈ γτp (Rp), the ACG contains
an exceptional arc from throw κ to catch , and Rq = �(Rp), where � is the propagation
rule #15 (Definition 5.4). In this case, σq ∈
τq

, and we have

σq = throw κ(σp),
= throw κ(σp) ∩
τq

[σq ∈
τq
],

⊆ throw κ(γτp (Rp)) ∩
τq
[by hypothesis and monotonicity of throw],

⊆ γτq (�(Rp)) = γτq (Rq) [by Lemma 5.16].

If restp is empty and m ′ = 0, the execution of Eq. (16) must have one of these two
forms, depending on the emptiness of block b in Rule (5):

〈bfirst(main) ‖ ξ 〉 ⇒np 〈 throw κ︸ ︷︷ ︸
bp

‖ 〈〈lp ‖ e :: sp〉, μp︸ ︷︷ ︸
σp

〉 ::

call-time︷ ︸︸ ︷
〈bq ‖ 〈〈lc ‖ sc〉, μc〉〉 :: aq︸ ︷︷ ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ e〉, μp〉〉 :: ap
(5)⇒ 〈bq ‖

σq︷ ︸︸ ︷
〈〈lc ‖ e〉, μp〉〉 :: aq ,

(19)

or

〈bfirst(main) ‖ ξ 〉 ⇒np 〈 throw κ︸ ︷︷ ︸
bp

‖ 〈〈lp ‖ e :: sp〉, μp︸ ︷︷ ︸
σp

〉〉 ::

call-time︷ ︸︸ ︷
〈 →

→
b ′

1· · ·
b ′
m ′

‖ 〈〈lc ‖ sc〉, μc〉〉 :: aq︸ ︷︷ ︸
ap

(1)⇒〈 ‖ 〈〈lp ‖ e〉, μp〉〉 :: ap
(5)⇒〈 →

→
b ′

1· · ·
b ′
m ′

‖
σq︷ ︸︸ ︷

〈〈lc ‖ e〉, μp〉〉 :: aq
(6)⇒〈bq ‖ σq 〉 :: aq ,

where, by maximality of np , we have bq = b ′
h for a suitable 1 ≤ h ≤ m ′. We only prove

Eq. (19), the other being similar. Consider the configuration at call-time. Since only
Rule (2) can stack configurations, call-time was the topmost one when the call was
executed and Eq. (19) must have the following form

〈bfirst(main) ‖ ξ〉

⇒nc 〈 call κ.m1 . . . κ.mn

insq

restq

→
→

b ′
1· · ·

b ′
m ′

‖
σc︷ ︸︸ ︷

〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, μc〉〉 :: aq

(2)⇒〈first(κ.mw) ‖ 〈〈[vj−π 〉 :: . . . :: vj−1] ‖ ε〉, μq 〉〉 :: 〈bq ‖ 〈〈lq ‖ sq 〉, μq 〉〉 :: aq

⇒np−nc−1 〈bp ‖ σp〉 :: ap
(1)⇒ 〈 ‖ 〈〈lp ‖ e〉, μp〉〉 :: ap

(5)⇒〈bq ‖ σq 〉〉 :: aq ,

where j is the number of operand stack elements before insC = call κ.m1 . . . κ.mn is
executed, π is the number of parameters of method m, and the rules in the portion
⇒np−nc−1 never make the operand stack lower than at the beginning of that portion.
Since σq ∈
, the only possibility for insq is to be a catch.

We consider σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, μc〉 and σp = 〈〈lp ‖ e :: sp〉, μp〉. By in-
ductive hypothesis for nc and np , we know that σc ∈ γτc (Rc) and σp ∈ γτp (Rp). It is
worth noting that, in this case, σq = d ((makescope mw)(σc)), and since σq ∈
τq

and
σc ∈ γτc (Rc), we have

σq ⊆ d ((makescope mw)(γτc (Rc))) ∩
τq
. (20)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:65

Let σe = throw κ(σp) = 〈〈lp ‖ e〉, μp〉. Then, the ACG contains a final arc from throw κ to
exit@mw : t , for a suitable 1 ≤ w ≤ n, Re = �(Rp), where � is the propagation rule #14

(Definition 5.4), and the following relations hold

σe = throw t(σp),
= throw t(σp) ∩
τq

[σq ∈
τq
],

⊆ throw t(γτp (Rp)) ∩
τ1
[by hypothesis and monotonicity of throw],

⊆ γτe (�(Rp)) = γτe (Re) [by Lemma 5.15].

In this case, there are two arcs (a side-effect and an exceptional arc) going into catch

(see Figure 13), and Rc and Re represent the correct approximations of the reachability
information at the sources of these arcs. Let Rq = �#16(Rc) ∪ �#20(Rc,Re), where �#16

and �#20 are the propagation rules #16 and #20 introduced in Definition 5.4. By Eq. (20)
and by Lemma 5.20, we have σq ∈ γτq (Rq).

Rule (2). By definition of makescope, Eq. (16) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 call κ.m1 . . . κ.mn︸ ︷︷ ︸
bp

→
→

b ′
1· · ·

b ′
m ′

‖ 〈〈lp ‖ vj−1〉 :: . . . :: vj−π :: . . . :: v0〉〉, μp︸ ︷︷ ︸
σp

::ap

(2)⇒ 〈
bq︷ ︸︸ ︷

first(κ.mw) ‖
σq︷ ︸︸ ︷

〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, μp〉〉 :: aq ,

where j is the number of operand stack elements before call κ.m1 . . . κ.mn is executed,
and π is the number of parameters of method m. In this case, the ACG contains a
parameter passing arc from call κ.m1 . . . κ.mn to first(κ.mw) for a suitable w ∈ [1..n] and
Rq =�(Rp), where � is the propagation rule #18 (Definition 5.4). We have

σq = makescope(σp),
⊆ makescope(γτp (Rp)) [by hypothesis and monotonicity of makescope],
⊆ γτq (�(Rp)) = γτq (Rq) [by Lemma 5.17].

Rule (3). Let i and j be the number of local variables and operand stack elements before
call κ.m1 . . . κ.mn is executed, and π be the number of parameters of method m. In this
case, Eq. (16) must have the form

〈bfirst(main) ‖ ξ〉
⇒np 〈 call κ.m1 . . . κ.mn

restp︸ ︷︷ ︸
bp

→
→

b ′
1· · ·

b ′
m ′

‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π+1 :: null :: . . . :: v0〉, μp︸ ︷︷ ︸
σp

〉〉 :: ap

(3)⇒ 〈
bq︷ ︸︸ ︷

restp
→
→

b ′
1· · ·

b ′
m ′

‖
σq︷ ︸︸ ︷

〈〈lp ‖ �〉, μp[� �→ npe]〉〉 :: aq ,

when restp is nonempty, while otherwise it has the form

〈bfirst(main) ‖ ξ 〉
⇒np 〈 call κ.m1 . . . κ.mn︸ ︷︷ ︸

bp

→
→

b ′
1· · ·

b ′
m ′

‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π+1 :: null :: . . . :: v0〉, μp︸ ︷︷ ︸
σp

〉〉 ::ap

(3)⇒ 〈 →
→

b ′
1· · ·

b ′
m ′

‖
σq︷ ︸︸ ︷

〈〈lp ‖ �〉, μp[� �→ npe〉〉 :: aq
(6)⇒ 〈bq ‖ σq 〉 :: aq ,

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:66 -D. Nikolić and F. Spoto

where, by maximality of np , we have bq = b ′
h for a suitable 1 ≤ h ≤ m ′. In both cases,

the ACG contains an exceptional arc from insp to insq , and Rq = �#16(Rp), where �#16

is the propagation rule #16 introduced in Definition 5.4.
Suppose that σp = 〈ρp, μp ∈
τp and σq = 〈ρq , μq ∈
τq

, where τp and τq are such
that dom(τp) = {l0, . . . , li−1, s0, . . . , sj−1}, while dom(τq) = {l0, . . . , li−1, s0}. We have that
for each r ∈ [0, i), ρq (lr) = ρp(lr), while ρq (s0) = � ∈ L, where � is a fresh location and
μq = μp[� �→ o], where o is a new instance of Throwable. Moreover, by Definition 5.4,

�#16(Rp)={a�b ∈ Rp | a, b ∈ {l0, . . . , li−1} ∪ {s0�s0}
∪ {a�s0 | a ∈ L ∧ τ (a)�Throwable}︸ ︷︷ ︸

R1

∪ {s0�a | a ∈ L ∧ Throwable�τ (a)}︸ ︷︷ ︸
R2

.

We must prove that σq ∈ γτq (�#16(Rp)), that is, (Definition 5.2) that is,

for every x , y ∈ dom(τq), x�σq y ⇒ x�y ∈ �#16(Rp).

The latter can be proved by showing that either x ��σq y or x�y ∈ �#16(Rp). Note that
by hypothesis, σp ∈γτp (Rp), that is, for every x , y ∈dom(τp), x�σpy ⇒ x�y ∈ Rp . Let x
and y be arbitrary variables from dom(τq). We distinguish the following cases.

—If x , y ∈ {l0, . . . , li−1}, then ρq (x) = ρp(x) and ρq (y) = ρp(y); hence, by Lemma 4.6,
x�σq y if and only if x�σpy , which entails x�y ∈ Rp , and therefore x�y ∈ �#16(Rp).

—If x = s0 and y �= s0, then if there exists a variable z ∈ {l0, . . . , li−1} such that
s0�σq z , then by Lemma 4.10, τq (s0)�τq (z) = τp(z), that is, τp(z) ∈ T(τq (s0)). Moreover,
τq (s0) ≤ Throwable, hence by Lemma A.8, T(τ (s0)) ⊆ T(Throwable), which entails
τ (z) ∈ T(Throwable), that is, Throwable�τp(z). Hence, s0�z ∈ R2.

—If x �= s0 and y = s0, then if there exists a variable z ∈ {l0, . . . , li−1} such that
z�σq s0, then by Lemma 4.10, τp(z) = τq (z)�τq (s0), that is, τq (s0) ∈ T(τp(z)). Moreover,
τq (s0) ≤ Throwable, that is, Throwable ∈ compatible(τq (s0)), hence by Lemma A.6,
τp(z)� Throwable. Hence, z�s0 ∈ R1.

—If x = y = s0, then since τq (s0) ∈ K, x�σq y . Moreover, s0�s0 ∈ �#16(Rp).

Therefore, σq ∈ γτq (�#16(Rp)).

REFERENCES

ALBERT, E., ARENAS, P., GENAIM, S., PUEBLA, G., AND ZANARDINI, D. 2007. Cost analysis of Java bytecode. In
Proceedings of the 16th European Symposium on Programming (ESOP). Lecture Notes in Computer
Science, vol. 4421, Springer, Berlin, 157–172.

BALABAN, I., PNUELI, A., AND ZUCK, L. D. 2005. Shape analysis by predicate abstraction. In Proceedings of
the 6th International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI).
Lecture Notes in Computer Science, vol. 3385, Springer, 164–180.

BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. 2001. Automatic predicate abstraction of C programs.
In Proceedings of the 22nd Conference on Programming Language Design and Implementation (PLDI).
Vol. 36, ACM, New York, 203–213.

BALL, T., MILLSTEIN, T., AND RAJAMANI, S. K. 2005. Polymorphic predicate abstraction. ACM Trans. Program.
Lang. Syst. (TOPLAS) 27, 314–343.

BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., O’HEARN, P., WIES, T., AND YANG, H. 2007. Shape analysis
for composite data structures. In Proceedings of the 19th International Conference on Computer Aided
Verification (CAV). Lecture Notes in Computer Science, vol. 4590, Springer, 178–192.

BRYANT, R. E. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 8, 35,
677–691.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

Reachability Analysis of Program Variables 14:67

CALCAGNO, C., DISTEFANO, D., O’HEARN, P., AND YANG, H. 2009. Compositional shape analysis by means of
bi-abduction. In Proceedings of the 36th Symposium on Principles of Programming Languages (POPL).
ACM, New York, 289–300.

CHATTERJEE, S., LAHIRI, S., QADEER, S., AND RAKAMARIC, Z. 2009. A low-level memory model and an accompanying
reachability predicate. Int. J. Softw. Tools Technol. Transfer 11, 2, 105–116.

CORBETT, J. C. 2000. Using shape analysis to reduce finite-state models of concurrent Java programs. ACM
Trans. Softw. Eng. Methodo. 9, 1, 51–93.

COUSOT, P. AND COUSOT, R. 1977. Abstract Interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th Symposium on Principles of
Programming Languages (POPL). ACM, 238–252.

COUSOT, P. AND COUSOT, R. 1979. Systematic design of program analysis frameworks. In Proceedings of the 6th
Symposium on Principles of Programming Languages (POPL). ACM, 269–282.

DAMS, D. AND NAMJOSHI, K. S. 2003. Shape analysis through predicate abstraction and model checking. In Pro-
ceedings of the 4th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI). Springer, Berlin, 310–324.

DISTEFANO, D., O’HEARN, P., AND YANG, H. 2006. A local shape analysis based on separation logic. In Proceedings
of the 2nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 3920, Springer, 287–302.

GENAIM, S. AND ZANARDINI, D. 2010. The acyclicity inference of COSTA. In Proceedings of the International
Workshop on Termination (WST). Edinburgh.

GENAIM, S. AND ZANARDINI, D. 2012. Reachability-based acyclicity analysis by abstract interpretation. Theo-
retical Comput. Sci. 474, 25, 60–79.

HARDEKOPF, B. C. 2009. Pointer analysis: Building a foundation for effective program analysis. Ph.D. thesis,
University of Texas, Austin.

HIND, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of the Workshop on
Program Analysis for Software Tools and Engineering (PASTE). ACM, New York, 54–61.

JUMP, M. AND MCKINLEY, K. S. 2009. Dynamic shape analysis via degree metrics. In Proceedings of the 8th
International Symposium on Memory Management (ISMM). H. Kolodner and G. L. J. Steele, Eds., ACM,
119–128.

LHOTÁK, O. 2006. Program analysis using binary decision Diagrams. Ph.D. thesis, McGill University.
LHOTÁK, O. AND CHUNG, K.-C. A. 2011. Points-to analysis with efficient strong updates. In Proceedings of the

38th Symposium on Principles of Programming Languages (POPL). ACM, 3–16.
LHOTÁK, O. AND HENDREN, L. 2003. Scaling Java points-to analysis using SPARK. In Proceedings of the

12th International Conference on Compiler Construction. Lecture Notes in Computer Science, vol. 2622.
Springer, Berlin, 153–169.

LINDHOLM, T. AND YELLIN, F. 1999. The JavaTM Virtual Machine Specification 2nd Ed. Addison-Wesley.
MARRON, M., HERMENEGILDO, M. V., KAPUR, D., AND STEFANOVIC, D. 2008. Efficient context-sensitive shape

analysis with graph based heap models. In Proceedings of the 17th International Conference on Compiler
Construction (CC). L. J. Hendren, Ed., Lecture Notes in Computer Science, vol. 4959, Springer, 245–259.

NELSON, G. 1983. Verifying reachability invariants of linked structures. In Proceedings of the 8th Symposium
on Principles of Programming Languages (POPL). 38–47.

NIKOLIĆ, -D. 2013. A general framework for constraint-based static analyses of Java bytecode programs. Ph.D.
thesis, University of Verona.

NIKOLIĆ, -D. AND SPOTO, F. 2012a. Automaton-based array initialization analysis. In Proceedings of the 6th
International Conference on Language and Automata Theory and Applications (LATA’12). Lecture Notes
in Computer Science, vol. 7183. Springer, Berlin, 420–432.

NIKOLIĆ, -D. AND SPOTO, F. 2012b. Definite expression aliasing analysis for Java bytecode. In Proceedings of
the 9th International Colloquium on Theoretical Aspects of Computing (ICTAC’12). Lecture Notes in
Computer Science, vol. 7521, Springer-Verlag, Berlin, 74–89.

NIKOLIĆ, -D. AND SPOTO, F. 2012c. Reachability analysis of program variables. In Proceedings of the 6th Inter-
national Joint Conference on Automated Reasoning (IJCAR’12). Lecture Notes in Artificial Intelligence,
vol. 7364, Springer-Verlag, Berlin, 423–438.

NIKOLIĆ, -D. AND SPOTO, F. 2013. Inferring complete initialization of arrays. Theor. Comput. Sci. 484, 16–40.
PALSBERG, J. AND SCHWARTZBACH, M. I. 1991. Object-oriented type inference. In Proceedings of the ACM Confer-

ence on Object-Oriented Programming: Systems, Languages & Applications (OOPSLA). ACM SIGPLAN
Notices, vol. 26, 11, ACM, 146–161.

PAPI, M. M., ALI, M., CORREA, T. L., PERKINS, J. H., AND ERNST, M. D. 2008. Practical pluggable types for Java. In
Proceedings of the International Symposium on Software Testing and Analysis (ISSTA). ACM, 201–212.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

14:68 -D. Nikolić and F. Spoto

PAYET, É. AND SPOTO, F. 2007. Magic-sets transformation for the analysis of Java bytecode. In Proceedings of
the 14th International Static Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 4634,
Springer, 452–467.

PHENG, S. AND VERBRUGGE, C. 2005. Dynamic shape and data structure analysis in Java. Tech. rep., School of
Computer Science, McGill University.

ROSSIGNOLI, S. AND SPOTO, F. 2006. Detecting non-cyclicity by abstract compilation into boolean functions. In
Proceedings of the 7th International Conference on Verification, Model Checking and Abstract Interpre-
tation (VMCAI). Lecture Notes in Computer Science, vol. 3855, Springer, 95–110.

ROUNTEV, A., MILANOVA, A., AND RYDER, B. G. 2001. Points-to analysis for Java using annotated constraints.
In Proceedings of the 16th ACM Conference on of Object-Oriented Programming: Systems, Languages &
Applications (OOPSLA). ACM, 43–55.

SAGIV, M., REPS, T., AND WILHELM, R. 1998. Solving shape-analysis problems in languages with destructive
updating. ACM Trans. Program. Lang. Syst. 20, 1–50.

SAGIV, M., REPS, T., AND WILHELM, R. 2002. Parametric shape analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst. 24, 217–298.

SALCIANU, A. D. 2006. Pointer analysis for Java programs: Novel techniques and applications. Ph.D. thesis,
MIT, Cambridge, MA.

SECCI, S. AND SPOTO, F. 2005. Pair-sharing analysis of object-oriented programs. In Proceedings of the 12th
International Static Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 3672, Springer,
320–335.

SMARAGDAKIS, Y., BRAVENBOER, M., AND LHOTÁK, O. 2011. Pick your contexts well: Understanding object-
sensitivity. In Proceedings of the 38th Symposium on Principles of Programming Languages (POPL).
ACM, 17–30.

SPOTO, F. 2008. Nullness analysis in boolean form. In Proceedings of the 6th IEEE International Conference
on Software Engineering and Formal Methods. IEEE, Los Alamitos, CA, 21–30.

SPOTO, F. 2011. Precise null-pointer analysis. Softw. Syst. Model. 10, 2, 219–252.
SPOTO, F. AND ERNST, M. D. 2011. Inference of field initialization. In Proceedings of the 33rd International

Conference on Software Engineering (ICSE). ACM, 231–240.
SPOTO, F., MESNARD, F., AND PAYET, E. 2010. A termination analyzer for Java bytecode based on path-length.

ACM Trans. Program. Lang. Syst. 32, 3, 1–70.

Received May 2012; revised January, July 2013; accepted August 2013

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 4, Article 14, Publication date: December 2013.

