Unifying Configuration Management with
Merge Conflict Detection and Awareness Systems

H.-Christian Estler Martin Nordio

Carlo A. Furia Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
firstname.lastname @inf.ethz.ch

Abstract—As software development becomes an increasingly
collaborative effort, traditional development tools have to be
extended to support seamless collaboration while minimizing
the chances of conflicts. This paper describes CloudStudio, a
collaboration framework that integrates a fine-grained software
configuration management model and a real-time awareness sys-
tem. CloudStudio’s configuration management operates transpar-
ently by automatically sharing the changes of developers working
on the same project; the real-time awareness system allows for
dynamic views on the project selectively including or excluding
other developers’ changes. With this tight integration, conflicts
are prevented in many cases, while leaving individual developers
free to experiment without blocking others. The paper also
describes a freely available prototype web-based implementation
of CloudStudio and a case study that demonstrates the usability
of the approach for collaborative software development.

I. INTRODUCTION

Software development is overwhelmingly a group activity.
Sure, innovative software products may still be conceived by—
or even require—the stroke of genius of a solitary demiurge;
but, if they eventually become widely used and successful, it
is only through the contributions of multiple developers over
several years.

With collaborative development becoming the norm, a
number of standard processes and tools have emerged that
support multiple developers working on the same codebase.
Integrated Development Environments (IDEs) and Software
Configuration Management systems (SCMs) have thus become
the software developer’s central tools. Traditional IDEs are
essentially personal tools, where every member of a project
works on a local copy of the software under development and
periodically undergoes a process of synchronization with the
other members using the functionalities offered by the SCM.

The development paradigm embodied by the combination
of IDEs and SCMs has been incrementally refined and has
successfully scaled up to very large development efforts. Its
fundamental structure and mode of operation, however, have
not changed significantly since their introduction, and its
shortcomings are becoming more evident as the magnitude of
software development efforts is ever increasing. Since each
developer works off-line on a local copy of the codebase,
conflicts between her changes and another developer’s may
emerge. Conflicts complicate and slow down collaborative
development, because they require resolution: an often painful
process of analysis and coordination to produce a unique
consistent version that merges the conflicting views.

The software engineering research community is well aware
of these shortcomings [14]], [L1], [[18], [[7] and, in response, has
proposed a number of advanced techniques to support conflict
detection as soon as possible, and to improve every developer’s
awareness of what his colleagues are doing to the codebase
that may affect him. Conflict detection and awareness can
both be instrumental in reducing the likelihood and severity
of conflicts. The major limitation of the existing approaches
(reviewed in Section [l is that they have been conceived and
implemented in isolation: conflict detection systems remain
centered around the notion of conflict and resolution without
actively promoting conflict avoidance; awareness systems are
typically oblivious of the abstractions used by the SCMs, and
hence are of limited help to resolve conflicts when they cannot
be avoided.

This paper describes CloudStudio, our proposal for a collab-
orative development framework where the software configura-
tion management, conflict detection, and awareness systems
are unitarily conceived and tightly integrated. CloudStudio’s
configuration management system continuously operates in the
background to automatically share every developer’s changes
with everybody else. On top of this, the real-time awareness
system lets each user decide to selectively display, notify, or
hide the changes introduced by others. The whole development
environment is aware of the current view, and can compile,
execute, and debug the project accordingly. This tight inte-
gration of different features makes it possible to synergically
avail their combined benefits: direct conflicts are prevented in
most situations, but at the same time a developer’s work need
not block others. Real conflicts occur only when a developer
deliberately decides to branch out a new version of the code
independent of the others’ work.

CloudStudio is also the name of a web-based IDE pro-
totype that we have implemented to demonstrate the ideas
of the CloudStudio framework. You can try it out online at
cloudstudio.ethz.chl Using this prototype, we have conducted
a case study where three teams of two programmers worked
on collaborative development tasks either with CloudStudio
or with traditional a IDE and SCM (EiffelStudio and Sub-
version). Within the limits given by its scope, the case study
substantiates our claims that the CloudStudio framework can
facilitate collaborative development without interfering with
the habitual practices of programmers.

The main contributions of the paper are as follows:

o A novel software configuration management model that

cloudstudio.ethz.ch

automatically maintains multiple synchronized versions
of the codebase integrating the changes of different
developers. This facilitates conflict prevention even in
situations where multiple developers work closely on
the same portion of code. The software configuration
management model does not rely on the details of any
specific SCM and can be applied to existing repositories

e A real-time awareness system that supports multiple
views on the project, including or excluding other devel-
opers’ changes, and unobtrusively making programmers
aware of each other’s work before conflicts occur.

o A prototype implementation of the CloudStudio collab-
orative development framework into a publicly available
web-based IDE.

e A case study that gives preliminary evidence of the ad-
vantages brought by the integrated CloudStudio approach.

Outline. Section [lI| presents related work about awareness
systems and software configuration management; Section [III]
gives an overview of how developers can collaborate using
CloudStudio; Section describes CloudStudio’s configura-
tion management and awareness models; Section E discusses
the main features of the prototype web-based IDE implement-
ing the CloudStudio framework; Section presents a case
study comparing CloudStudio against traditional SCM; and
Section concludes.

II. RELATED WORK

Several proposals for awareness and advanced conflict de-
tection systems have been put forward in the last decade,
sharing the same goals of facilitating collaborative develop-
ment and improving over the standard practices based on
traditional SCMs. This section discusses the main features of
these systems, with focus on those that are directly relevant
for the CloudStudio framework discussed in the rest of the
paper; Table [I| gives a synoptic overview. The distinction
between awareness and conflict detection is not sharp as
most systems include some of both features; it is, however,
useful to highlight the focus of each approach and to discuss
how CloudStudio targets the tight integration of these two
naturally related aspects. Since CloudStudio is currently avail-
able as a web-based IDE, we also discuss some outstanding
examples of IDEs for collaborative work (Collabode [8] and
Cloud9 [5])—even though the innovations of CloudStudio are
in the underlying collaboration model rather than in its specific
implementation in a web-based IDE.

The standard approach to software configuration manage-
ment (implemented by tools such as CVS and Subversion)
uses a client/server architecture with a central repository and
local working copies with every developer. Synchronization
between developers takes place indirectly through the central
repository by explicit request of the clients: a client’s commit
operation propagates her local changes upward into the central
repository; a client’s update operation copies the central repos-
itory’s content downward to her local copy. Whenever the local

'In the current prototype, it is implemented on top of Git.

and central content diverge in irreconcilable ways, there is a
conflict that must be addressed by merging the two different
copies. While committing becomes a local operation with
distributed SCMs (such as Git and Mercurial), where every
client maintains a complete commit history of her changes,
this does not makes conflicts less likely to occur, nor obviates
the need for merging whenever a developer periodically pushes
her local changes to the other team members’ repositories.

This mode of operation can introduce two kinds of conflicts:
direct conflicts—two users editing the same piece of code in
different ways—and indirect conflicts—the edits of a user in a
portion of the code break another portion of the code written
by another user, such as when changing a method signature’s
requires the clients to change their invocations.

Awareness systems address the problem of conflicts by
allowing each developer to see the changes introduced by
others and what artifacts have been affected by the changes.
If developer u can see that developer v has changed a line,
u is aware that modifying the line may introduce a conflict,
and that he should coordinate with v to avoid it. Significant
examples of awareness systems are FastDash [[1]], Palantir [19],
Syde [15], and CollabVS [13].

Awareness mostly targets direct conflicts, but only simple
indirect conflicts such as changes to method signatures; this
is the case of Palantir and CollabVS, whereas FastDash and
Syde do not detect indirect conflicts at all. Since awareness
systems are normally not integrated with the SCM, they fail
to provide good support to resolve and merge conflicting
versions when conflicts do occur. Exceptions are CollabVS and
Syde, but their support for inspection of conflicting versions
is comparable to textual diffs like those offered by traditional
SCM.

Advanced conflict detection. Following the principle that
problems are easier to fix the sooner they are discovered,
conflict detection and conflict prediction systems monitor the
activities of all members of a development team searching for
causes of conflict and reporting them to the interested users as
soon as possible. Tools such as Crystal [2] and WeCode [12]
work by continuously (and transparently) trying to merge
the local copies of the various users; whenever a speculative
merge fails, it signals that a conflict may occur in the future.
This mode of operation covers one of the main weakness of
awareness systems: the detection of complex indirect conflicts,
since the speculative merge may include compilation or even
regression testing.

The evaluation of Crystal [2] shows that this information is
quite useful to anticipate problems during development and to
make merging less painful. On the other hand, since conflict
detection systems are not fully integrated with the rest of the
development environment, they do not offer flexible ways to
inspect the work of others when conflicts are detected in order
to facilitate resolution. A related issue is that conflict detection
works only on stored or committed files, but user activity in-
between such operations is invisible to others.

IDEs for collaboration. A diversity of tools are used

Awareness Editing
o0
- 2lg| 2
@ > oo | 2
2 = 5
s | 2| E T 2|2 2|28
- o .2 8 = = o2 2B |E o | 5
- 2 B g = = ©§ € ®[|FE ol||F% Comment
2 < 5 ‘R 2 2 2 N3 £ |8|e
= £ s S F g 4 = s | %% | =
=8 =3 @ > = S g | g Z | g
< o = < = P s S| o g
& s 2 5 S| g |E|E
s £ & s5|& B |*]|8
= 2] = N e <
FastDash [1] no no — |real-time|yes yes yes no|no no | — | — |high-level information, not specifically for conflicts
Palantir [19] detect detect ? |real-time| no yes no no | no no |no | no |only basic indirect conflicts (not compilation)
detect . cannot inspect other changes;
Syde [15] . no no |real-time| no yes no no [no no |no |no |
inspect diff-based inspection
detect . only basic indirect conflicts (not compilation);
CollabVS [13]]| detect |. yes |real-time| yes yes no no | no no |yes|no | .. y . . (P)
inspect diff-based inspection
Crystal [2] detect detect | no | commit [no no yes no | no no |no | no |cannot inspect other changes; conflicts detected after commit
WeCode [12] detect detect | no | saving | no no yes no | no no |no | no |cannot inspect other changes; conflicts detected after commit
collaborative editing does not maintain separate versions
Collabode [9] no no - no no no no no |[yes no|no | no . X
for each user; no conflict detection
collaborative editing does not maintain separate versions
Cloud9 [5] no no - no no no no no |[yes no|no | no . .
for each user; no conflict detection
revent
. p detect .
CloudStudio detect inspect | 0 real-time|yes yes yes yes|no yes|yes|yes
inspect P
TABLE I

MAIN FEATURES OF AWARENESS SYSTEMS AND CONFLICT DETECTION FRAMEWORKS.
For each system, we report: whether it supports detection of direct conflicts and of indirect conflicts; whether conflict reports may include false positives;
whether conflicts are available in real-time or upon commit; the granularity of the awareness system (line, class, branch, and whether it is customizable);
whether collaborative editing supports shared sessions a la Google Doc and automatic merging of versions; whether there are mechanisms to transfer the
changes of one user to another; and to compile the version of the project under the current view; and the main limitations of the approach.

to simplify collaboration among distributed teams, including
some commercial products such as IBM’s Jazz [4] and Mi-
crosoft’s Team Foundation [17]; a complete review is beyond
the present paper’s scope.

Recognizing the centrality of the IDE among development
tools, tools such as CodeRun [6] have brought IDEs to the
web. Using these tools requires no software installation or
configuration but only a browser. Other features, however, are
replicated as in traditional IDEs: every developer works on a
different copy of the code, stored on a server, and SCM follows
traditional practices. Thus, IDEs have followed the industry’s
trend to move to the web, but they do not address awareness
or merge conflicts in any specific way.

In a few cases, for example Cloud9 [5] and Collabode [8]],
web-based IDEs support collaborative development through
real-time code sharing: developers can simultaneously work
on the same piece of code with the same view, as if they were
editing a GoogleDoc shared document. Such an unrestricted
form of collaboration is, however, useful only in certain
circumstances where direct tight collaboration is required, such
as in pair programming practices; during general development
practices it is instead necessary to follow a more disciplined
approach that integrates with standard SCMs.

III. A SESSION WITH CLOUDSTUDIO

This section gives an overview of the CloudStudio frame-
work from the perspective of two users—Claudia and Stu—
who are working on the same project using the CloudStudio

web-based IDE. The use case scenario is shown in Figure [1]
to which the following description repeatedly refers.

After logging in on |cloudstudio.ethz.ch and selecting a
project, Claudia (rightmost column in Figure (1) starts working
on a class PARAGRAPH. CloudStudio displays the class
current base version as plain text in Claudia’s editor (C1).

Claudia is editing class PARAGRAPH concurrently with Stu,
who is working at a different location. At any time, Claudia
can show or hide Stu’s changes to the code by toggling a
button. When changes are shown, vertical bars of different
colors mark each line of code according to its edit status:
blue for lines changed or added by the current user; orange
for lines changed or added by others; lines without a colored
bar are unchanged by anyone. Claudia starts modifying class
PARAGRAPH by adding a method set_font_size (C2 and C3),
whose code is marked in blue in her editor.

In the meanwhile, Stu (leftmost column in Figure EI) starts
editing the same PARAGRAPH class. Stu’s setup is using an-
other visualization option offered by CloudStudio: it displays
only the locations of Claudia’s current changes (marked with
red arrow tips), but not the actual content of her changes.
Stu notices that the “to do” comment line is marked (S1)
and realizes that Claudia has modified that line. Stu switches
view to see exactly Claudia’s work (the implementation of
set_font_size), which now appears marked in orange in his
editor (S2). When Stu compiles the project, he can target the
base version of the code (only unchanged lines), or include his
or Claudia’s changes, or both. This mechanisms make Claudia

cloudstudio.ethz.ch

®
Compile base version {0

Compile includin
Claudia's changes

Compile including
Claudia's and Stu's

changes

Compile including,
Claudia's and Stu

changes

Compile new
base version

Opens class PARAGRAPH,

observes location of changes

by other developer

class PARAGRAPH @
size: INT
P> -- todo: size method

Switches view to
show Claudia's
changes

[set_font_size(i: INT)
do
size =i

Starts renaming
attribute

I font_size: INT

[set_font_size(i: INT)

I do

1 font_size :=i
end

Observes introduction
of changes by Claudia

I font_size: INT

[set_font_size(fs: INT)

[do

[font_size :=fs
end

Observes synchronization
with new base version

class PARAGRAPH @
font_size: INT
set_font_size(fs: INT)
do

font_size :=fs
end

Original base version

class PARAGRAPH
size: INT
-- todo: size method

New base version
after synchronization

class PARAGRAPH
. .| font_size: INT
set_font_size(fs: INT)
do
font_size :=fs
end

Opens class PARAGRAPH

@ class PARAGRAPH
size: INT
-- todo: size method

Starts implementing
routine set_font_size

@ class PARAGRAPH
size: INT
I set_font_size(i: INT)
I do
I end

Continues work

@ class PARAGRAPH
size: INT
I set_font_size(i: INT)
I do

(] size ;=i
end

Observes location of
changes by Stu

class PARAGRAPH
P size: INT

[l set_font_size(i: INT)
I do

> size ;=i
end

Switches view to
show Stu's changes

@ class PARAGRAPH
[font_size: INT
I set_font_size(i: INT)
I do
0 font_size :=i
end
———

Renames argument

—
class PARAGRAPH
[font_size: INT
[l set_font_size(fs: INT)
I do

(] font_size :=fs
end
——/
Incorporates Stu's

changes in personal version

@ class PARAGRAPH
I font_size: INT

I set_font_size(fs: INT)
I do

1 font_size :=fs
end

=

Pushes changes

class PARAGRAPH
font_size: INT
set_font_size(fs: INT)
do

font_size :=fs
end

Fig. 1. A scenario demonstrating how the CloudStudio framework supports collaborative development.
Orange [l marks lines modified by others; blue B lines modified by self; red arrow tipsP lines modified but not shown.

and Stu aware of each other’s work; they do not have to
block and immediately resolve conflicts, but they can continue
working without stomping on each other’s feet.

Fully aware of Claudia’s concurrent editing, Stu does some
light refactoring, consisting of renaming attribute size to
font_size (S3). Claudia is aware of the change, because
attribute size’s line becomes marked by a red arrow in her
editor (C4). She decides to fully display Stu’s changes (C5),
so that she can check that Stu has diligently modified the body
of set_font_size consistently with the refactoring.

At this point, Claudia and Stu continue with their concurrent
editing without need for explicit synchronization (C6 and
S4); this prevents conflicts during concurrent editing. What
they see in their editors at any time is, however, only a
real-time view constructed based on their visualization pref-
erence. Underlying the awareness system there is a full-
fledged software configuration management system that main-
tains personal development branches for Stu and for Claudia.
CloudStudio offers support to automatically synchronize and
merge personal branches into the base version.

Claudia “approves” Stu’s latest changes by storing them
in her personal branch (C7) and by pushing the final set of
changes to the master repository (C8). Since Stu has enabled
automatic synchronization, his personal repository gets im-
mediately synchronized with the latest version committed by
Claudia through the master repository (S5).

IV. How CLOUDSTUDIO UNIFIES CONFIGURATION
MANAGEMENT, CONFLICT DETECTION, AND AWARENESS

CloudStudio’s software configuration management model
combines flexibility and automation, and supports fine-grained
conflict prevention and real-time awareness within an environ-
ment that facilitates collaborative development. This section
describes the main technical details of its configuration man-
agement, conflict prevention, and awareness systems.

The CloudStudio framework builds on two fundamental
abstractions: tasks and views. A fask is a project branch
organized around the activities of groups of developers. A view
is the version of a project (or a subset thereof) obtained by
combining the contributions of multiple developers.

A. Software Configuration Management Model

The software configuration management model maintains
information about files and folders in combination with the
task structure, which is used to consistently update the tasks
and, by the awareness system, to automatically extract views
on user demand. The rest of this subsection describes in some
detail these abstractions and how they are implemented in
CloudStudio; in order to do that, it first briefly revises standard
notions used in SCMs (repositories, branches, and push/pull
operations), on top of which CloudStudio’s configuration
management model is built.

1) Repositories: A repository is a collection of revisions (or
snapshots) of a software project, consisting of files organized
in folders. Repositories are organized in DAG structures: when
it is created, a repository only contains an empty root branch.

As new revisions are committed, the root grows linearly, until
a new branch is created. Branches grow independently of the
root until they possibly merge back into it. New branches
can also spawn off other branches, thus creating subbranches.
Figure |2 shows the structure of a repository where the root
branch has revisions .o to r9.¢ and two branches originating
in r1.9 and 79 ; the first branch has a subbranch at revision
r1.1.0 and the second branch merges back into the root at
revision 7 g.

T1.1.0 > T1.1.1

/7

.0 —T11—T1.2

T0.0 — 70.1 — T0.2 — 70.3 — T0.4 — T0.5 — 70.6
2.0

2.

Fig. 2. A repository with branches and subbranches.

Synchronization between repositories occurs via push and
pull operations, usually through a master repository. The push
of a branch b from a repository R takes the content of b in R
and merges it with the content of b in the master; if no conflicts
occur, this corresponds to copying and appending b into the
master. Conversely, the pull of a branch b from a repository
R takes the content of b in the master and merges it with the
content of b in R.

2) Tasks and Subtasks: Every CloudStudio project main-
tains a master repository plus personal repositories for each
developer. Developers can work on the predefined root task,
present in the master as well as in every repository and
conventionally denoted Tj, or create new fasks. A task corre-
sponds to a branch managed according to the synchronization
policy of CloudStudio, which provides seamless and consistent
synchronization among branches. Whenever a user u creates
a new task 7, both u’s repository and the master spawn
off a new branch for T'; if, later, another user v joins task
T, v’s repository is updated with a branch for 7' as well.
Tasks can also spawn subtasks, which are implemented as
subbranches in the repositories. Figure 3] shows a CloudStudio
project involving three developers—Claudia, Stu, and Ann—
and three tasks—717, 15, and T3; T} involves Claudia and Stu,
T5 involves Stu and Ann, and 73 involves Claudia and Ann;
the root task T} is shared by everyone as usual.

3) Line Change Model: CloudStudio manages tasks ac-
cording to a model of the changes introduced by the developers

MASTER REPO

To; Th; T2; T3
CLAUDIA’S REPO STU’S REPO ANN’S REPO
To; T1; T3 To; T Tz To; T2; T3

Fig. 3. A CloudStudio project involving developers working on four tasks.

working on each task. The change model is fine-grained as
it logs changes to individual lines in every source file. For
each line of every source file, CloudStudio stores a line tree
of changes such as those in Figure f] Line trees are ordered
sequentially, according to how lines follow one another in the
repository’s files.

The root node of a tree initially stores the line in the latest
version that all developers have pulled into their personal
repositories; this is the base version initially shared by all
developers on the project. Figure [4(a)| shows the base version
of a line with the assignment instruction sum := 3. The line is
annotated with the tag “M: T},”, denoting that the line is also
stored in the master repository M and belongs to the root task
To.

When a developer modifies a line, the corresponding line
tree gets extended with a new node that stores the changed line
and who did the change. The root node, instead, still stores the
version that all “other” users—that is, all users not mentioned
in other nodes in the tree—have. If Stu initializes sum to i
instead of 3, the line tree becomes as in Figure where
the new node is tagged “Stu: 7" because it represents Stu’s
editing the root task.

The details of how a new node is added to a line tree
depend on the awareness level of the developer introducing
the change. Suppose developer u did the latest change to a
line ¢; CloudStudio stored u’s change in a node N, in £’s line
tree. If another developer v modifies ¢ again, the new node
N, with v’s changed line is added as a child of N, if and
only if v’s awareness system is showing u’s changes in real-
time. In this case, there is no need to create a conflict because
v is aware of u’s work, and therefore we can expect that its
own changes are consistent with and incremental over u’s.
Figure shows an example of this where Ann modifies the
assignment to sum again but she is aware of Stu’s changes. In
contrast, if v’s awareness system is configured not to show u’s
changes in real-time, N, is added as a sibling of V,,: v will
be able to coordinate with u only later, but for the moment the
two activities are separate. This is what happens in Figure (d)]
where we assume that, unlike Ann, Claudia is not displaying
Stu’s changes in real time.

If v is displaying «’s changes in real-time but still prefers
to branch off, it can either disable awareness of u, or switch
to another task 7’ thus forcing the node N, (with tag “v:
T"”) to become a sibling of N, and to start a new series of
independent changes. This is the case of Figure where
Ann spawns a new task 7} to accommodate her change even
if she is displaying Stu’s changes.

4) Task Synchronization: CloudStudio uses the change
model to organize the pushes of changes in tasks, in a
way consistent with the information on awareness used in
constructing the line trees to minimize conflicts.

To present the synchronization in some detail, we need the
notion of master ancestor: the master ancestor of a node N
for task 1" in a line tree is the ancestor node Ny of IN’s such
that Ny has the line version stored in the master repository
M for task T'; in other words, the unique path from Ny to N

does not contain any node with tag “M: 71" other than Nj.
Suppose a node NV, stores a developer u’s latest change /,, to
a line ¢ on task 7', and let Ny be the master ancestor of N,
for T in ¢’s line tree. Consider the subtree 7 of ¢’s line tree
rooted at Np; and let 77 be 7 with all nodes not tagged with
task 7" pruned. If 7 is a linear sequence of nodes (every node
has exactly one child), then N, is conflict free. In this case,
if developer u pushes its edits to ¢, CloudStudio enforces a
sequence of pushes, one for each node in 7p in that order,
and collapses the branch 7 by replacing Ny with the node
(ly;M,u,U: T while discarding the rest of 7r until IV,
included. All users other than w tagged in 7 are aware of u’s
latest change, therefore CloudStudio notifies them and updates
their personal repositories to coincide with the master on task
T'. The details of the notification are implementation dependent
and customizable; for example, users may be asked to approve
the push or may be lazily notified only when they want to edit
line ¢ again.

Continuing the examples of Figure [l consider again the
line tree in Figure The node with sum := i is conflict
free; if Stu pushes his changes, the line tree becomes as in
Figure ()] where the node with sum := i+j is also conflict
free. If Ann pushes next, the tree becomes as in Figure [F(g)}
Stu is aware of Ann’s changes, which have been automatically
pulled into Stu’s personal repository. The line tree ends up
as in Figure also if Ann pushes first (from the setup
in Figure f(c)). Using standard configuration management
models, where there is no notion of who’s aware of whom
and whose changes can be merged without rising a conflict, a
similar situation would force a conflict.

Branches in 7 tagged with tasks other than 7" are joined with
the collapsed 7 so as to preserve the original information (this
requires duplication of nodes in some cases, whose details are
straightforward). If V,, is not conflict free, CloudStudio cannot
push u’s edits to ¢ automatically; in this case, a conflict is
unavoidable, and the interested users are notified and required
to resolve it before pushing is possible. They can do so by
turning on awareness of each other’s work, and then agreeing
on a conflict free version of the line in question.

B. Real-time Awareness System

CloudStudio’s awareness system displays the content of
the project files based on the information in the software
configuration management model (in particular, line trees) and
displays it according to user preferences. A view is the version
of the project determined by the current user preferences.

In the basic view, the editor shows the current user’s edits,
and, for each line not modified locally since the last pull, its
base version as stored in the root node if its tree. On top
of this, CloudStudio provides options to display the changes
introduced by other developers in the current view. The current
user can select any other developer v and choose to:

« display all changes introduced by v in real time;

2U denotes the (possibly empty) list of all other users tagged in 7.

sum =3 ‘M: To sum =3 ‘M: To
() (b)

sum =3 ‘M: To — sum = | ‘Stu: To — sum =

©

sum = 2%i ‘Claudia: To
/
sum =3 ‘M: To —| sum =i ‘Stu: To
@

sum =3 ‘ To — sum =i ‘M, Stu: T

®
sum =3 ‘ To —> sum = i+j ‘M, Stu, Ann: Ty

(2

i+j ‘Ann:

— sum =i ‘Stu: To

sum = i+j ‘Ann: T
/
sum =3 |M: Ty, T — sum =i ‘Stu: To

(e)

— sum = i+j |Ann: Ty

Fig. 4. The CloudStudio change model of a line with and assignment.

o display all changes introduced by v up to the latest
successful compilation

 display where v introduced changes but do not show
them;

« do not display changes by v at all;

o display all changes introduced in the current task by any
other user.

Unlike most related work—where only committed changes
are available to the awareness system [2], [8]—CloudStudio
updates the information about changes in real-time and makes
it available to all users.

CloudStudio’s real-time awareness system integrates with
the rest of the development environment through views. The
compiler and every other tool working on the project files
(such as debuggers or testing environments) have access to
the project in the current view, even if the underlying changes
have not been pushed to the personal or master repositories yet.
This makes for a seamless integration of the awareness system
and software configuration management within the developers’
overall activity.

C. Collaborative Editing

On top of the mechanisms supporting tasks, fine-grained
versioning, and views, the CloudStudio framework includes
functionality to automatically control the synchronization of
tasks between developers and facilitate collaborative editing.

Using the awareness system, it is possible to import code
from one user’s personal repository to another’s and to start
collaborating. CloudStudio supports the importing function

3To extract the changes up to the latest successful compilation, all nodes in
the line tree that denote the current version are tagged after every successful
compilation. This is a straightforward extension of the line tree model
discussed previously.

that clones a portion of code (such as a method or a whole
class) from a user u’s personal repository to another user v’s
and turns on u and v’s awareness systems so that they can
work together on the code by relying on the conflict prevention
mechanisms described above.

The CloudStudio development environment includes a set
of options to trigger synchronization between developers auto-
matically following a compilation event. When enabled, auto-
matic synchronization triggers the following actions whenever
a user u saves and successfully compiles the project under its
current view:

1) it pushes u’s current task to the master repository;

2) it pulls these changes to the personal repositories of all
other users collaborating with u (and who have enabled
automatic synchronization).

D. Conflict Detection and Prevention

In this section so far, the presentation has focused on direct
conflicts, also known as syntactic conflicts, which occur when
two developers modify the same line. CloudStudio’s tight in-
tegration of awareness system and configuration management
prevents direct conflicts by letting developers see each other’s
work in collaborative editing and by branching out when they
deliberately decide to work in parallel ignoring each other.

In contrast, indirect conflicts, also known as semantic con-
flicts, occur when a developer’s change to a portion of the code
breaks the dependency with the work of another developer in
another portion of the code. For example, changing a method’s
signature by adding a new argument introduces an indirect
conflict in all clients that invoke the method anywhere in
the code, which have to change their calls to conform to the
new signature. CloudStudio supports indirect conflict detection
through views. Users can compile the project under the current

view, thus getting an error if any of the other users’ changes
included in the view has introduced an indirect conflict. The
option to include in the view only the changes that can be
successfully compiled adds another degree of flexibility, where
developers collaborate on “stable” versions but are still free to
experiment changes on their own that may break compilation.
In all such cases, CloudStudio’s real-time awareness features
can be useful to let two developers collaborate with the goal
of removing an indirect conflict that involve their work.

E. Limitations of CloudStudio’s SCM

CloudStudio’s change model works at the level of individual
lines of code. This achieves language-independence but also
does not take the structure and semantics of the code into
account [15]; sound refactorings, in particular, may still be
considered conflicting. While CloudStudio mainly aims at
preventing conflicts and supports compilation using other
developers’ changes, a mechanism for conflict detection based
on speculative compilation [3]] could still provide an additional
dimension of automation. We will consider these extensions
in future work.

V. CLOUDSTUDIO’S PROTOTYPE IMPLEMENTATION

The CloudStudio web-based IDE is a prototype imple-
menting the CloudStudio framework described in Section
The prototype is freely available at cloudstudio.ethz.ch; since
it is web-based, using it does not require downloading any
software. The implementation combines an editor written in
Java using the Google Web Toolkit v. 2.3, and leverages a
MySQL database and the Git SCM as back-ends.

CloudStudio currently supports development of projects in
Java, JavaScript and Eiffel, but its architecture is extensi-
ble to other programming languages. Besides the innovative
integration of the configuration management and real-time
awareness system described in Section CloudStudio offers
some of the basic functionalities of traditional IDEs such as
VisualStudio or Eclipse: an editor with syntax highlighting,
a class browser to navigate the project, integration with the
compiler, minimal support for execution, and a debugging
environment (currently available only for JavaScript projects).

The awareness system uses the color code described in
Section to highlight lines changed in real-time by other
users that have been selected by the current user. If the
awareness system is configured to display change locations
without showing the actual changes, red arrows in the margin
mark the location of changes. Hovering over a colored bar or
an arrow shows the user who has introduced the change, as
well as different versions of the line as edited by other users
active on the same task.

In continuity with our related work on formal verifica-
tion [20], the CloudStudio IDE also integrates verification
tools to help developers improve software quality. It currently
supports testing with the AutoTest framework [16f], [22],
and formal correctness proofs with AutoProof [21]. AutoTest
performs random testing of object-oriented programs with
contracts, and it has proved extremely effective in detecting

hundreds of errors in production software; AutoProof pro-
vides a static verification environment for Eiffel. Both tools
are fully automatic and integrated with CloudStudio’s SCM
system: testing and proving sessions work on the current view
selected by CloudStudio users, which flexibly may or may not
include concurrent edits by other developers (as described in
Section |IV)).

A. Limitations of Current Implementation

The current CloudStudio prototype implementation has a
number of limitations, which makes it immature compared
to most commercial IDEs. In particular, it lacks advanced
features to compare and merge different versions; and its per-
formance scales poorly with the number of users concurrently
accessing the server. Improving all these points belongs to
future work.

VI. CASE STUDY

In order to have a preliminary assessment of the CloudStu-
dio framework and its advantages for collaborative develop-
ment over traditional IDEs and SCM techniques, this section
presents a case study of two-programmer teams working on
collaborative development tasks. While small in extension, the
case study provides preliminary evidence that CloudStudio can
improve the performance of programmers working collabora-
tively.

A. Development Tasks

The case study included three program development tasks,
two focused on refactoring and one on testing; all applications
were written in Eiffel.

R1: Task RI targets an application implementing a card
game (the card deck and the game logic); the com-
plete application includes 210 lines of code over
4 classes. Task R1 requires refactoring of three
classes, and development of new functionalities by
extending the refactored classes; the task is collabo-
rative because the new functionalities must work with
the classes after refactoring. Refactoring included:
method and field renaming; enforcement of Eiffel
coding standards (e.g., capitalization, comments); re-
arrangement of methods in groups (marked by the
feature Eiffel keyword) according to their function-
alities; code extraction into a new class.

R2: Task R2 targets an application modeling a coffee
vending machine; users of the application have basic
options to select coffee and can pay and receive
change. The application includes 230 lines of code
over 3 classes. Task R2 is similar to R1 except that it
targets the coffee machine application: R2 requires
refactoring and development of new functionalities
by extending the refactored classes.

T1: Task T1 targets the same coffee machine application
as task R2. It requires development of new function-
alities (namely, the option to add milk to the coffee,

cloudstudio.ethz.ch

and the dispatching of different cup sizes) and writ-
ing of test cases that achieve 100% code coverage on
the new code. Task T1 is also inherently collaborative
as the development of new functionalities and of test
cases occur concurrently, according to the concept of
test-driven pair programming [10].

B. Subjects and Experimental Setup

The subjects used in the study were six PhD students
from our research group. All of them are experienced Eiffel
programmers who frequently develop with EiffelStudio and
Subversion (SVN) as part of their PhD research; none of
them had used CloudStudio before the study, had taken part
in its development, or has much experience with collaborative
development.

We randomly arranged the six subjects in three pairs:
Teaml, Team2, Team3. Teaml first performed task R1 with
CloudStudio and then task T1 with FEiffelStudio and SVN.
Team?2 first performed task R1 with EiffelStudio and SVN
and then task T1 with CloudStudio. Team3 first performed
task R1 with CloudStudio and then task R2 with EiffelStudio
and SVN.

Each team performed its sessions according to the following
protocol. The two team members sat at the opposite corners of
a large table with their laptops connected to the network. Be-
fore beginning, the first author (henceforth “the experimenter”)
gave a brief (5 min.) introduction to the CloudStudio SCM
and web-based IDE to both programmers at the same time,
where he showed them how to log-in and the basics of the
SCM system without any reference to the development tasks.
Then, he gave them a sheet of paper with a description of the
task they had to perform (the second task was introduced only
after completion of the first). The two programmers received
identical instruction sheets and had to coordinate in order to
split the work between them.

During the study nobody other than the experimenter and
the two programmers was in the room. The programmers were
only allowed to use instant messaging to communicate; their
position in the room and the experimenter ensured that no
other communication channel was available. The experimenter
did not interfere with the programmers other than to clarify
possible unclear points in the task description (but this was
never necessary).

There was no time limit to complete the tasks: each session
continued until the current task was completed (the experi-
menter checked completeness a posteriori by manual inspec-
tion of the codebase). After each session, the experimenter
recorded the total number of words exchanged via instant
messaging and the overall time spent to complete the task. An
a posteriori analysis of the communication logs, discussed in
Section [VI-D] supports the hypothesis that these two measures
(words and time) are reasonable proxies for the actual amount
of communication between the two programmers that took
place during the experiments.

Team 1 Team 2 Team 3

1434

215 L

Task R1

CloudStudio SUN Cloudstudio

140

Task R2

SVN

Task T1 66 51

SVN CloudsStudio

Fig. 5. Results of the case study (the scale is not uniform).

C. Results

Figure [5] reports the amount of communication between
programmers while performing the various tasks. While all
participants are competent programmers, their speed and de-
velopment style vary significantly; as a result, the random
assignment formed heterogeneous groups which may not be
directly comparable. The results in Figure [5] however, show a
consistent advantage for teams using CloudStudio over teams
using SVN: the difference is sometimes small (as for task T1),
sometimes conspicuous (as for task R1 between Team2 and
Teaml); in all cases, CloudStudio required less communication
for the same task than SVN, even if the study’s programmers
used it for the first time. Let us now describe the performance
of the various teams in more detail.

Team1 delivered the best overall performance and was
fluent both with SVN and with CloudStudio; the two program-
mers worked well together and required a limited amount of
communication to synchronize properly. The comparison with
Team?2 on the same tasks suggests that using CloudStudio is
beneficial: Team!1 outperformed Team?2 almost by an order of
magnitude when using CloudStudio on task R1, whereas their
performance became similar on task T1 where Teaml used
SVN. It was clear that Team1 was overall faster than Team2,
but the peculiarities of task R1 magnified the difference in
favor of who could rely on better collaboration tools.

The programmers in Team?2 had the greatest communication
problems in the study, as shown by their performance in task
R1. The log of their message exchanges shows that they had to
debate several points of disagreement about how to perform
the refactorings, and that not being able to see in real-time
what the other was doing (as it happened when working with
SVN) exacerbated their disagreement and frustration.

Unlike the members of the other teams, the two program-
mers in Team3 worked with wildly different speed, to the point
that in both tasks R1 and R2 a programmer completed his
part of the task when the other was still exploring the system
and understanding the instructions. The overall performance of
Team3 required little communication in all cases, but this is

mostly a result of the fact that the different programmer speed
forced a serialization between the two programmers; hence,
synchronization was not a big issue because the development
was not really collaborative and interactive.

We do not discuss in detail the time taken by program-
mers because the assignments emphasized correctness of the
solution and did not pressure the teams for time. Anyway,
and perhaps unsurprisingly, the overall time turned out to be
correlated with the amount of communication, and hence all
the experimental data point to the same qualitative conclusions.

D. Discussion

A post mortem analysis of the instant messaging logs shows
recurring patterns of communications between programmers.
The initial part of every session starts with a discussion of the
task, after which the two programmers negotiate a division
of the labor and agree on some synchronization mechanism.
During development with SVN, messages such as “Did you
update your project?” and “I’'m done with implementing X
and have committed” are frequent. With CloudStudio, the
same messages occurs much more sparingly, and some of the
remaining instances can probably be attributed to the program-
mers’ limited familiarity with CloudStudio and how it works
(in fact, in some cases of redundant notification messages
using CloudStudio, the recipient replied with sentences such
as “Just go ahead, I can see your changes live”).

After the case study, we asked the participants to complete a
simple questionnaire about their experience and with requests
for feedback. The participants unanimously appreciated Cloud-
Studio’s mechanisms for the real-time awareness of other
people’s changes, and for the prevention and easy resolution
of conflicts. Disagreement existed on how severe a problem
merge conflicts are in everyday’s software development: four
programmers consider it a serious hassle and appreciate better
mechanisms to prevent or manage conflicts; the other two
maintained that merge conflicts can be reduced to a minimum
with a little coordination.

In all, the participants to the study tend to agree with
our conclusions that CloudStudio offers valuable features
for collaborative development and a more flexible paradigm
of SCM. The generalizability of our results is necessarily
limited by the case study’s scope and size, as well as by
its reliance on specific development tasks that emphasize
real-time collaboration but may affect only a limited part of
large software projects. In this sense, the reaction of one of
the programmers in our study to task Rl is instructive: he
was initially skeptical and remarked that he “would never
do refactoring while another programmer is implementing
new functionalities”; after using CloudStudio, however, he
acknowledged that, with the right tools, such tasks can indeed
be performed in parallel.

VII. CONCLUSIONS

We described the CloudStudio framework that integrates
software configuration management with real-time awareness

to help detect and prevent merge conflicts in collaborative soft-
ware development. We implemented the CloudStudio frame-
work in a web-based IDE, and conducted a small case study
to have a preliminary assessment of its usefulness compared
to traditional IDEs and SCMs.

ACKNOWLEDGMENTS

We thank Le Minh Duc, Alexandru Dima, Alejandro Garcia,
and Sandra Weber for contributing to the prototype imple-
mentation of CloudStudio. Julian Tschannen and Yi (Jason)
Wei contributed to the integration of the verification tools, and
participated to the case study with Yu (Max) Pei, Marco Pic-
cioni, Marco Trudel, Scott West. CloudStudio’s startup funding
through the Gebert-Ruf Stiftung is gratefully acknowledged.

REFERENCES

[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson. FASTDash:
A visual dashboard for fostering awareness in software teams. In CHI,
pages 1313-1322. ACM, 2007.

[2] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Proactive detection of
collaboration conflicts. In ESEC/FSE, pages 168-178. ACM, 2011.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Crystal: Precise and
unobtrusive conflict warnings. In ESEC/FSE, pages 444-447. ACM,
2011.

[4] L.-T. Cheng, C. R. de Souza, S. Hupfer, J. Patterson, and S. Ross.
Building collaboration into ides. Queue, 1(9):40-50, December 2003.

[5] Cloud9 IDE. http://www.cloud9ide.com.

[6] CodeRun Studio. http://www.coderun.com.

[7] J. Estublier and S. Garcia. Process model and awareness in SCM. In
SCM, pages 59-74, 2005.

[8] M. Goldman, G. Little, and R. C. Miller. Collabode: Collaborative
coding in the browser. In CHASE, pages 65-68. ACM, 2011.

[91 M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding

in a web IDE. In UIST, pages 155-164. ACM, 2011.

M. Goldman and R. C. Miller. Test-driven roles for pair programming.

In CHASE, pages 13-20. ACM, 2010.

R. E. Grinter. Using a configuration management tool to coordinate

software development. In COOCS, pages 168-177, 1995.

M. L. Guimardes and A. R. Silva. Improving early detection of software

merge conflicts. In /CSE, pages 342-352. IEEE Press, 2012.

R. Hegde and P. Dewan. Connecting programming environments to

support ad-hoc collaboration. In ASE, pages 178-187, 2008.

S. Horwitz, J. Prins, and T. W. Reps. Integrating noninterfering versions

of programs. ACM Trans. Program. Lang. Syst., 11(3):345-387, 1989.

M. Lanza, L. Hattori, and A. Guzzi. Supporting collaboration awareness

with real-time visualization of development activity. In CSMR, pages

202 -211, 2010.

B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs

that test themselves. IEEE Software, pages 22-24, 2009.

Microsoft Team Foundation. http://www.microsoft.com/visualstudio/

en-us/products/2010-editions/team-foundation-server/overview, 2012.

D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale

software development: an observational case study. ACM Trans. Softw.

Eng. Methodol., 10(3):308-337, 2001.

A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting aware-

ness of indirect conflicts across software configuration management

workspaces. In ASE, pages 94-103, New York, NY, USA, 2007.

J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verifi-

cation of object-oriented programs by combining static and dynamic

techniques. In SEFM, pages 382-398. Springer, 2011.

J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Automatic verifi-

cation of advanced object-oriented features: The AutoProof approach. In

LASER Tools for Practical Software Verification, volume 7682 of LNCS,

pages 134-156. Springer, 2012.

Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer,

M. Nordio, and B. Meyer. Stateful testing: Finding more errors in code

and contracts. In ASE, pages 440-443. IEEE, 2011.

[10]
(11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

(22]

http://www.cloud9ide.com
http://www.coderun.com
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server/overview
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server/overview

	Introduction
	Related Work
	A Session with CloudStudio
	How CloudStudio Unifies Configuration Management, Conflict Detection, and Awareness
	Software Configuration Management Model
	Repositories
	Tasks and Subtasks
	Line Change Model
	Task Synchronization

	Real-time Awareness System
	Collaborative Editing
	Conflict Detection and Prevention
	Limitations of CloudStudio's SCM

	CloudStudio's Prototype Implementation
	Limitations of Current Implementation

	Case Study
	Development Tasks
	Subjects and Experimental Setup
	Results
	Discussion

	Conclusions
	References

