
Stateful Testing: Finding More Errors
in Code and Contracts

Yi Wei · Hannes Roth · Carlo A. Furia · Yu Pei · Alexander Horton · Michael Steindorfer · Martin Nordio · Bertrand Meyer
Chair of Software Engineering, ETH Zurich, Switzerland

{yi.wei, carlo.furia, yu.pei, martin.nordio, bertrand.meyer}@inf.ethz.ch {haroth, ahorton, msteindorfer}@student.ethz.ch

Abstract—Automated random testing has shown to be an
effective approach to finding faults but still faces a major
unsolved issue: how to generate test inputs diverse enough to
find many faults and find them quickly. Stateful testing, the
automated testing technique introduced in this article, generates
new test cases that improve an existing test suite. The generated
test cases are designed to violate the dynamically inferred
contracts (invariants) characterizing the existing test suite. As
a consequence, they are in a good position to detect new faults,
and also to improve the accuracy of the inferred contracts by
discovering those that are unsound.

Experiments on 13 data structure classes totalling over 28,000
lines of code demonstrate the effectiveness of stateful testing in
improving over the results of long sessions of random testing:
stateful testing found 68.4% new faults and improved the
accuracy of automatically inferred contracts to over 99%, with
just a 7% time overhead.

Keywords-random testing, dynamic analysis, automation

I. INTRODUCTION

Drawing inputs at random may sound like a desultory
approach to testing, since it ignores any information about
the structure of the system under test. This intuition, however,
turns out to be largely flawed: there is now a compelling
amount of evidence—both empirical [1] and analytical [2]—
showing that random testing is a quite effective testing tech-
nique that can uncover many subtle faults in real programs.

Random testing sessions must last several hours to max-
imize fault-finding effectiveness [1], [2]. During testing, all
generated objects are usually kept in a pool for later reuse.
A drawback of this necessity is that the object pool grows to
contain a large number of objects, even when duplicates are
pruned. Therefore, the probability of generating at random test
cases that would expose new bugs significantly decreases over
time: the objects needed to generate the “missing” test cases
may already be in the object pool, but they are unlikely to be
drawn at random because they constitute only a small fraction
of the whole pool.

This paper presents stateful testing, a dynamic analysis
technique that builds on top of random testing and magnifies
its effectiveness. Stateful testing takes over where random
testing gives up: after long sessions of random test case
generation, the number of faults found reaches a plateau or
grows sluggishly, and the object pool contains thousands of
objects. At this point, stateful testing populates a database
with the content of the pool stored as serialized objects; the
database is searchable for objects that satisfy given predicates.

After populating the database, stateful testing runs dynamic
contract inference [3] on all passing test cases generated
during random testing; the result of this step is a collection of
pre and postcondition clauses that summarize the properties
of the test cases. Dynamic contract inference characterizes
the passing test cases with pre and postconditions based on
templates, which capture recurring usage patterns that lend
themselves to “meaningful” generalization. For object-oriented
programs, the set of public queries (functions) of a class often
provides a valuable collection of predicates to be combined in
templates. Since the inference is based on a finite number of
observations and on heuristics in the form of templates, some
of the inferred contracts can be unsound: they merely are a
reflection of the test cases that have been exercised.

Stateful testing combines the information stored in the
database of objects and the inferred contracts, with the goal
of mutually enhancing the test suite and the contracts, along
the lines of Xie and Notkin’s proposal [4]. Stateful testing
proceeds by systematically searching the database for objects
that violate some of the inferred contracts and therefore
enable the creation of new test cases. A new test case that
executes successfully shows that an inferred contract can be
violated without compromising execution, hence the contract
is unsound and should be discarded. A new test case that
triggers a failure exposes a fault overlooked in the previous
testing session, corresponding to an input never tried before.
Either way, the new test cases improve over the previous
testing session by reaching out regions of the object space
previously unexplored.

We implemented stateful testing within our AutoTest [1]
framework for random testing of object-oriented Eiffel ap-
plications. In an extensive set of experiments described in
the paper, we applied stateful testing to the historical data
generated by running AutoTest for 520 hours on 13 data
structure classes. AutoTest exposed 95 faults in the classes,
and inferred hundreds of contracts. We applied stateful testing
for 36 hours on this massive data set. In this relatively limited
amount of time, stateful testing exposed 65 new faults (68.4%
improvement) and invalidated 39.3% of the inferred contracts;
manual inspection reveals that almost all the retained contracts
are sound. These figures are promising and demonstrate that
stateful testing is an effective technique to boost the effective-
ness of random testing and dynamic analysis.

II. EXAMPLES

Unsound preconditions. The first example shows
how stateful testing can generate tests with a better
coverage and detect unsound preconditions. Class
TWO WAY SORTED SET is the standard Eiffel
implementation of sets with ordered elements. The class
includes a public routine

merge (other : TWO WAY SORTED SET)

which inserts all elements of other into the Current set (this
in Java or C#). After running for 40 hours, AutoTest reports
a dynamically inferred precondition for merge:

pre 1: Current. disjoint (other) ,

indicating that it has only been called on disjoint sets:
Current ∩ other = ∅, hence the functionality of merge has
not been tested thoroughly.

Stateful testing takes over from this situation and tries to
generate new test cases that cover the deficiency. To this end, it
looks up the database—filled with data from hours of random
testing—for objects of suitable type that violate pre 1; namely,
it searches for two objects o1, o2 such that:

(1) o1. type = TWO WAY SORTED SET ,
(2) o2. type = TWO WAY SORTED SET ,
(3) not o1. disjoint (o2) .

Even if AutoTest never drew such objects during the 40-hour
session, there are several pairs satisfying the three constraints
(1–3) in the database. For every such pair of objects, stateful
testing generates the new test case o1.merge (o2).

Executing the new test cases improves the coverage of
routine merge; it also reveals that the inferred precondition
pre 1 is unsound and must be reduced, hence removing an
error in the inferred contracts.

Unsound postconditions. The second example shows how
stateful testing can detect unsound dynamically inferred post-
conditions. Routine merge left (other : LINKED LIST) in
class LINKED LIST merges the content of other into the
Current list. Extensive dynamic analysis reports, among oth-
ers, the following postcondition for merge left :

post 2 : old Current.is equal (other)
implies Current.is empty .

That is, whenever Current and other contain the same ele-
ments (they are equal), they are actually empty lists. post 2 is
unsound, as it merely reflects the fact that the test suite never
ran merge left on lists that are equal but not empty.

Stateful testing targets the antecedent in the implication
post 2, which refers to the state before executing merge left
by means of the old notation. The antecedent suggests to exer-
cise the routine on objects o1, o2 where old o1. is equal (o2)
is the case, but not o1.is empty, with the hope of showing
that post 2’s consequent does not hold after the call. Stateful
testing creates a new test case o1. merge left (o2) for every
pair of objects in the database that satisfy the criteria. Since
merge left does not remove any element from the target o1,

not o1.is empty still holds after executing the test cases, thus
invalidating post 2 and increasing the coverage of merge left .

III. HOW STATEFUL TESTING WORKS

Figure 1 provides a bird’s eye view of how stateful testing
works. Stateful testing is a fully automated technique that
produces new test cases from an existing test suite:

1) Running AutoTest, the automatic random testing
framework for Eiffel, for several hours produces a large
pool of objects, and a test suite based on those objects.

2) Stateful testing selects and extracts information from the
object pool and the test suite and stores it in a relational
database: the object database.

3) AutoInfer [3], the dynamic contract inference compo-
nent of AutoTest, summarizes the behavior of the test
cases in the form of dynamically inferred contracts.

4) The reduction phase extracts objects from the database
that violate some of the inferred contracts. The extracted
objects support the generation of a new test suite, which
exercises the classes under tests differently than in the
original test suite.

5) Executing the new test suite can uncover new faults in
the code under test, and can reveal which of the inferred
contracts are incorrect and should be discarded.

A. Random Test-case Generation

Stateful testing first applies random testing to generate
a test suite for classes under test. During random testing,
stateful testing keeps all objects in serialized form along with
their abstract state predicate evaluations. After random testing,
stateful testing stores all the objects and their abstract states in
an object database, implemented using a relational database
techinque.

B. Dynamic Contract Inference

To get a concise characterization of the test suite in terms
of class features, stateful testing performs contract inference
with dynamic techniques. The implementation uses AutoInfer,
the inference component of the AutoTest framework.

The inferred contracts are typically different than those
programmers write: the former tend to be more detailed and
numerous than the latter, especially in the case of postcon-
ditions, which programmers neglect but dynamic analysis is
effective at reporting [5]. Furthermore, dynamically inferred
contracts have no guarantee of being correct: since they are
based on a finite number of observations, they may merely be
a reflection of a not sufficiently varied test suite, such as the
two examples discussed in the previous section.

C. Reduction

After building the object database and collecting the inferred
contracts, stateful testing generates a new test suite by precon-
dition reduction. The basic idea is partitioning the input space:
a predicate p defines two regions, one where p holds and one
where it doesn’t; a comprehensive test suite should cover every
region, for every combination of “interesting” predicates, with

ReductionEiffel

classes

AutoTest

Historical data Stateful testing

Object database

Inferred contracts

New test suite:

more detected faults,

better contracts

AutoInfer

Data

extraction

Test

suite

violates

selects

Fig. 1. Overview of how stateful testing works.

at least one test case. This is clearly unfeasible, because the
predicates are too many; precondition reduction is a heuristic
technique that considers a reduced number of partitions based
on the inferred preconditions.

1) Precondition Reduction: The precondition reduction of
a routine r generates new inputs to test r by trying to invalidate
r’s inferred preconditions. Suppose r has m arguments, and
let require(r) denote r’s programmer-written preconditions.
Select a dynamically inferred precondition p from the set
pre(r) and build the predicate:

♣r
p : ¬p ∧ require(r) .

♣r
p characterizes objects that satisfy r’s programmer-written

preconditions but violate the inferred p, hence they can be
used to test r in a way not covered by the existing test suite.

Stateful testing searches the object database for tuples
of objects 〈o0, o1, . . . , om〉 that satisfy ♣r

p (expressed as
a conjunction of elementary expressions). For each tuple
〈o0, o1, . . . , om〉 retrieved in the search, it constructs the new
test case

tnew = o0.r (o1, . . . , om) .

In practice, there is a cut-off on the number of retrieved tuples
(if they are too many, only a few are tried) and a time-out on
the time spent searching the database (if no tuple is found by
the time-out, we move to the next reduction). If tnew is passing,
then precondition p is unsound and removed from pre(r); if
tnew is failing, a fault is found (and p is also unsound). Since
the information stored in the database is incomplete, tnew may
also be invalid, in which case it is simply discarded.

2) Detecting Unsound Postconditions: Inferred postcondi-
tions can be unsound, too, but we cannot directly select objects
that violate postconditions, because we do not have direct
control over post-states. Precondition reduction, however, can
also help to invalidate inferred postconditions, while testing
routines more thoroughly. Consider an inferred postcondition
q in post(r) in the form:

q : old(A) =⇒ C .

We focus on postconditions in this form, because q naturally
expresses many postconditions where a property C of the post-
state is a consequence of a property A of the pre-state (old).
Invalidating the implication q means producing test cases that
start in a pre-state where A holds and reach a post-state
where ¬C holds. The existing test suite does not include such
test cases, otherwise P would not be a dynamically inferred
postcondition.

The inferred preconditions, however, help select pre-states
that may challenge the validity of q. To this end, consider the
set pre(r|A) of r’s dynamically inferred preconditions that
hold when A also holds. Select a p ∈ pre(r|A) among these
preconditions and build the predicate:

♠r
p,q : A ∧ ♣r

p .

Then, select objects 〈o0, . . . , om〉 that satisfy ♠r
p,q , and gen-

erate the new test case tnew that calls r on 〈o0, . . . , om〉
(as in Section III-C1). If tnew is valid and passing (with
respect to r’s programmer-written contracts only) but C is
false after executing it, the postcondition q is unsound and is
removed from post(r); if tnew is failing (again with respect to
r’s programmer-written contracts, which are always assumed
correct), it also shows a fault.

IV. EVALUATION

A. Experimental Setup

The experiments targeted 13 data structure classes from the
libraries EiffelBase and Gobo. Table I lists the size of each
class in lines of code (LOC) and public routines (#R).

1) Random Testing: To generate the original test suite—
upon which stateful testing builds—AutoTest ran 30 sessions
of random testing for each of the 13 classes. A session lasts
80 minutes. This 520 hours of testing generated a test suite
revealing 95 distinct faults1 (column #E of Table I).

2) Stateful Testing Running Time: AutoInfer processed the
test suite for 16 hours and reported 1741 preconditions and 973
postconditions expressible as implications, shown in column
#Tp and #Tq in Table I. Manual inspection revealed that

1Two faults are distinct if they violate two different contract clauses.

TABLE I
CLASSES UNDER TEST AND RESULTS.

RANDOM TESTING STATEFUL TESTING WITH PRECONDITIONS STATEFUL TESTING WITH POSTCONDITIONS
CLASS LOC #R #E #Tp #Up #Vp #Ep #Mp #Tq #Uq #Vq #Eq #Mq

ARRAY 1466 65 9 111 23 23 (100%) 2 52′ 14 1 1 (100%) 0 5′
ARRAYED QUEUE 1064 40 0 17 13 13 (100%) 0 7′ 19 0 0 N/A 0 9′
ARRAYED SET 2343 46 9 55 18 18 (100%) 1 25′ 141 0 0 N/A 0 10′
BOUNDED QUEUE 1130 40 0 20 16 16 (100%) 0 7′ 22 0 0 N/A 0 9′
DS ARRAYED LIST 2760 104 5 178 107 107 (100%) 4 92′ 170 16 11 (69%) 0 154′
DS HASH SET 3074 82 1 279 173 173 (100%) 2 40′ 51 3 3 (100%) 0 5′
DS LINKED LIST 3432 100 5 196 120 120 (100%) 2 106′ 129 1 0 (0%) 1 88′
DS LINKED STACK 934 28 0 39 38 38 (100%) 0 4′ 4 0 0 N/A 0 1′
HASH TABLE 2032 58 1 117 88 87 (99%) 1 16′ 63 10 10 (100%) 0 30′
LINKED LIST 1998 72 1 53 46 46 (100%) 0 9′ 149 13 13 (100%) 1 22′
LINKED SET 2366 80 13 91 47 47 (100%) 4 33′ 176 15 15 (100%) 1 28′
TWO WAY SORTED SET 2866 92 29 221 120 120 (100%) 15 49′ 25 7 7 (100%) 0 2′
TWO WAY TREE 3316 107 22 364 203 198 (98%) 26 75′ 10 3 0 (0%) 5 4′

Total 28781 914 95 1741 1012 1006 (99.4%) 57 515′ 973 68 60 (88.2%) 8 367′

1012 (58%) of the inferred preconditions and 68 (7%) of the
inferred postconditions are unsound. Columns #Up and #Uq

respectively report the number of unsound pre and postcon-
ditions for each class. Constructing the object database from
the test suite took 5 hours. The database contains about 3.5
million objects and 18.4 million predicate evaluations. Notice
that querying the object database gives predictable results,
hence the reduction is deterministic and needs to run only
once. Stateful testing ran for 15 hours trying to violate the
inferred pre and postconditions. The times (in minutes) spent
on the pre and postconditions in each class are shown in
columns #Mp and #Mq of Table I. In the experiments, every
query times out after one minute.

B. Experimental Results

In all, stateful testing discovered 65 new faults in the classes
under test, corresponding to a 68.4% improvement over the
number of faults found by random testing, with only a 7%
time overhead (36/520 hours). Columns #Ep and #Eq in
Table I respectively show the number of new faults detected
while trying to violate the inferred pre and postconditions in
each class. The performance in terms of number of unsound
preconditions and postconditions detected is given below.

1) Unsound Preconditions: Stateful testing tried to in-
validate the 1741 inferred preconditions for 8.2 hours (i.e.,
about 18 seconds per precondition), following the technique
in Section III-C1. It successfully invalidated 1006 (99.4%) of
the unsound preconditions (column #Vp of Table I, which also
report the percentages relative to column #Up), while exposing
57 new faults (column #Ep).

2) Unsound Postconditions: Stateful testing tried to inval-
idate the 973 inferred postconditions in implication form for
6 hours (i.e., about 23 seconds per postcondition), following
the technique in Section III-C2. It successfully invalidated
60 (88.2%) of the unsound postconditions (column #Vq of
Table I, which also report the percentages relative to column
#Uq), while exposing 8 new faults (column #Eq).

3) Undetected Unsound Contracts: Stateful testing only
failed to detect 6 unsound preconditions (0.6% of the total)
and 8 unsound postconditions (11.8%). In all such cases,

no serialized objects were in a state violating the contract
(or sufficiently close to it), or the predicates provided an
abstraction of the object state that was too coarse-grained for
the desired objects to be identifiable.

V. CONCLUSIONS

This paper presented stateful testing, a completely auto-
mated testing technique which generates new test cases from
an existing test suite. Stateful testing works by trying to reduce
(i.e., invalidate) the inferred contracts that characterize the
existing test suite. Extensive experiments show that stateful
testing is quite effective: it generates tests that uncover new
faults and invalidates many of the unsound contracts inferred
dynamically from the original test suite. An extended version
of this paper, including analysis of related work, is available
at:

http://arxiv.org/abs/1108.1068

Acknowledgments. Nadia Polikarpova provided sugges-
tions and comments. Work partially funded by SNF projects
200021-117995 and 200021-134976 and by the Hasler foun-
dation on related projects; the experiments used the facilities
of the Swiss National Supercomputing Centre.

REFERENCES

[1] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer, “On the
number and nature of faults found by random testing,” Softw. Test., Verif.
Reliab., vol. 21, no. 1, pp. 3–28, 2011.

[2] A. Arcuri, M. Z. Iqbal, and L. Briand, “Formal analysis of the effective-
ness and predictability of random testing,” in ISSTA. ACM, 2010.

[3] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer, “Inferring better
contracts,” in ICSE’11. ACM, 2011.

[4] T. Xie and D. Notkin, “Mutually enhancing test generation and specifi-
cation inference,” in FATES, ser. LNCS, vol. 2931, 2003, pp. 60–69.

[5] N. Polikarpova, I. Ciupa, and B. Meyer, “A comparative study of
programmer-written and automatically inferred contracts,” in ISSTA,
2009, pp. 93–104.

http://arxiv.org/abs/1108.1068

	Introduction
	Examples
	How Stateful Testing Works
	Random Test-case Generation
	Dynamic Contract Inference
	Reduction
	Precondition Reduction
	Detecting Unsound Postconditions

	Evaluation
	Experimental Setup
	Random Testing
	Stateful Testing Running Time

	Experimental Results
	Unsound Preconditions
	Unsound Postconditions
	Undetected Unsound Contracts

	Conclusions
	References

