
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

AutoProof Meets Some Verification Challenges

Julian Tschannen · Carlo A. Furia · Martin Nordio

Abstract AutoProof is an automatic verifier for func-

tional properties of programs written in Eiffel. This pa-

per illustrates some of AutoProof’s capabilities when

tackling the three challenges of the VerifyThis veri-

fication competition held at FM 2012, as well as on

three other problems proposed in related events. Auto-

Proof’s design focuses on making it practically appli-

cable with reduced user effort. Tackling the challenges

demonstrates to what extent this design goal is met in

the current implementation: while some of AutoProof’s

current limitations prevent us from verifying the com-

plete specification of the prefix sum and binary search

tree algorithms, we can still prove some partial proper-

ties on interesting special cases, but with the advantage

of requiring little or no specification.

1 Verification Benchmarks Can Shape the Field

For better or worse, benchmarks shape a field [16]. Pat-

terson’s compelling analysis of the coming of age of

computer architecture seems to fit the progress of for-

mal software verification too – possibly with a couple-

of-decade time shift. As verification techniques left the

realm of pure theory and became implementable and

usable, they often reported incomparable results: dif-

ferent tools that work on different languages and solve

different problems (such as extended static checking,

functional correctness, shape analysis, and so on).

Verification competitions and challenges [9,4,5,7]

can help in this regard: by providing benchmarks for

J. Tschannen · C. A. Furia · M. Nordio
ETH Zurich
Chair of Software Engineering
Clausiusstrasse 59
8092 Zurich
E-mail: firstname.lastname@inf.ethz.ch

verification techniques and tools, they help assess prog-

ress, compare different approaches, and reward incre-

mental, yet practically relevant, advancements. Hope-

fully, this will also lead to an outcome similar to com-

puter architecture’s: when a field has good benchmarks,

we settle debates and the field makes rapid progress [16].

This paper assesses the capabilities of AutoProof [22,

21], a static verifier for programs written in Eiffel, de-

scribing its capabilities at the time of writing based on

solving the challenges of the VerifyThis competition [7]

held at FM 2012.1

AutoProof – whose fundamental features are pre-

sented in Section 2 – still is largely work-in-progress,

and hence has some significant limitations compared to

more mature verification environments (such as Veri-

Fast [8], Dafny [11], or Why3 [3], to mention just a

few). However, rather than replicating the functional-

ities of other similar verifiers, AutoProof’s design fo-

cuses on offering improved usability to programmers

with relatively little background in formal techniques.

Its performance with the three challenges of VerifyThis

partly demonstrates this underlying goal: while Auto-

Proof can completely solve only the first challenge, it

provides partial interesting solutions to the second and

third challenges, but with the advantage of requiring

little or no specification compared to that needed for

full-fledged proofs.

From the perspective of its developers, tackling ver-

ification competition challenges has also been quite use-

ful to highlight some important limitations and subtle

shortcomings of the current implementation. The next

development steps – some of which are already under-

way – will benefit from this improved understanding.

1 AutoProof was not used during the actual VerifyThis
competition, but only later on the competition’s problems.

2 Julian Tschannen et al.

Sections 3–5 describe how AutoProof fares on the

three VerifyThis challenges. Section 6 describes other

related challenges which highlight more peculiarities of

AutoProof.

2 AutoProof

AutoProof is an automatic verifier of functional prop-

erties working on Eiffel programs. It is available as an

online command-line tool usable without installation,

as well as integrated in EVE [20], the Eiffel Verifica-

tion Environment IDE, distributed as free software and

available for download. Visit the homepage of Auto-

Proof for detailed information (and its latest features):

http://se.inf.ethz.ch/research/autoproof

The source code of the verification challenges presented

here is also available online, and can be verified with

AutoProof’s online version:

http://se.inf.ethz.ch/research/autoproof/sttt

AutoProof is written in Eiffel.

AutoProof uses Boogie [10] as backend: it translates

Eiffel programs to Boogie programs, invokes the Boogie

verifier on the latter, and traces the outcome back to

the corresponding Eiffel code. AutoProof is completely

automatic and can verify individual routines, classes,

or entire applications. Figure 1 shows a screenshot of

AutoProof in EVE, showing a detailed report of a veri-

fication attempt on the problem discussed in Section 3.

Items in the report can be expanded to display more in-

formation, such as which assertions failed, or which at-

tempts were successful only under simplifying assump-

tions.

2.1 What AutoProof Can Do

AutoProof has extended support of Eiffel language fea-

tures. Besides the fundamental procedural language con-

structs (such as routines and routine calls), it fully sup-

ports reasoning about objects with polymorphic assign-

ments and dynamic binding. It also supports a

methodology to prove programs using agents [14] (which

are Eiffel’s function objects).

In terms of basic types, AutoProof treats integers as

machine integers, with modular arithmetic and check-

ing for possible overflows consistently with their run-

time semantics. It has limited support of floating-point

numbers, which are translated to rationals in Boogie

(infinite precision).

The Eiffel language natively supports contracts (pre-

and postconditions and class invariants), which con-

sists of executable assertions used to specify program

behavior and are checked at runtime. AutoProof trans-

lates Eiffel contracts into Boogie specification elements.

Since regular routines can be used in Eiffel contracts,

whereas Boogie procedures cannot directly appear in

annotations, AutoProof also performs some checks of

well-formedness of routines used in contracts. In par-

ticular, it checks that they conform to the notion of

purity [13]: for every routine r appearing in contracts,

AutoProof generate verification conditions that encode

that executing r produces no effects on the heap; such

verification conditions become part of r’s proof obliga-

tions, which are discharged as part of r’s normal verifi-

cation process.

We recently improved the usability of AutoProof

with two-step verification [23], a technique that pro-

vides detailed user feedback on failed verification at-

tempts. The basic idea of two-step verification is to

perform two attempts for each item to be verified; the

first attempt follows standard modular reasoning tech-

niques, and the second attempt inlines calls to rou-

tines and unrolls loops to some finite bound.2 Since we

can reason about inlined calls and unrolled loops with

less specification (using their actual implementations

instead), the second verification attempt may succeed

in cases where the first modular one fails. These cases

suggest that the implementation is likely correct, but

the specification is not accurate enough to successfully

prove it. Users can then decide to improve the specifi-

cation to match the implementation, or to simply use

the inlined code to prove a routine correct on some spe-

cific inputs. As we demonstrate in the rest of the pa-

per, this makes for successful partial verifications that

require very few annotations; and generally provides

better feedback, suggesting whether the problems with

failed verification attempts are in the specification or

the implementation. Two-step verification is also use-

ful in cases where we run up against limitations in the

underlying reasoning capabilities of the prover, where

verification may fail even if specifications are perfectly

adequate in principle. We presented the details of two-

step verification elsewhere [23]; the present paper fo-

cuses on how two-step verification can be used in prac-

tice on verification challenges.

2.2 What AutoProof Cannot Do

Only a few features of the Eiffel language are currently

not supported by AutoProof, most notably expanded

types (with semantics based on values rather than refer-

2 AutoProof performs inlining while translating Eiffel to
Boogie. Within AutoProof’s architecture, this solution offers
more flexibility than directly using Boogie’s inlining feature.

http://se.inf.ethz.ch/research/autoproof
http://se.inf.ethz.ch/research/autoproof/sttt

AutoProof Meets Some Verification Challenges 3

Fig. 1 Screenshot of the EVE IDE integrating AutoProof. The bottom pane shows a verification report for the code in the
top pane (discussed in Section 3). The first two features (in green) are successfully verified; the third feature (in red) failed
verification; the fourth and fifth features (in yellow) are verified but only under restricting assumptions (as in the two-step
verification technique described in Section 2). One can click on the yellow and red items to get more detailed error reports and
suggestions on how to fix the problems.

ences, similar to value types in C#); and strings. We de-

veloped a translation [22] for exceptions (whose seman-

tics [15] is different compared to other object-oriented

languages), but we have not implemented it yet in Au-

toProof.

A major limitation follows from the fact that Eiffel

does not support annotations for framing and lacks a

complete methodology to reason about class invariants

in the presence of dependencies between different ob-

jects [2]. Consequently, AutoProof currently only sup-

ports proofs that do not require complex frame specifi-

cations – in which case they can be generated automat-

ically based on the items mentioned in postconditions.

Adequate support for framing and class invariants is the

next major milestone for AutoProof; some preliminary

work has laid the groundwork for it [18,17].3

Finally, AutoProof is limited in terms of features

to interact with the backend prover and to formulate

background theories or prove intermediate lemmas nec-

essary for verification. It currently uses a library of

Boogie background theories, including axiomatizations

3 At the time of finalizing this article, we have completed
a flexible methodology for class invariants [19] in AutoProof.

of items such as arrays, the heap, and machine inte-

gers, but there is no mechanism to express and man-

age domain-specific theories at the level of the input

programming language. Providing such mechanisms is
another major priority in the ongoing development of

AutoProof.

2.3 Using Boogie as Backend

While AutoProof’s architecture is extensible to support

multiple backend provers, the current implementation

depends on Boogie as an intermediate verification layer.

Boogie is a language for verification [10], as well as an

automated verifier that takes programs written in the

Boogie language as input.

AutoProof verifies Eiffel programs annotated with

contracts by encoding their semantics into the Boogie

language. Eiffel routines map to Boogie procedures that

explicitly operate on the heap encoded as a mapping of

references to allocated primitive values. Eiffel contracts

become annotations in Boogie’s typed first-order logic.

Consistency between the Eiffel and the Boogie repre-

sentations is guaranteed by a background theory: a col-

4 Julian Tschannen et al.

lection of axioms, predicate definitions, and global vari-

ables which we wrote as part of AutoProof and which

defines the correct semantics of Eiffel within Boogie.

For example, Eiffel INTEGER variables become int

variables in Boogie, but the background theory con-

straints such variables so that they possess the features

of machine integers (e.g., they are bounded) rather than

those of mathematical integers (which Boogie’s int type

represents).

After translating a routine and its specification to

Boogie, AutoProof verifies it by calling the Boogie ver-

ifier on the translation. At this point, Boogie is entirely

responsible of generating verification conditions and in-

terfacing with a solver (Z3 by default) to discharge

them. Boogie’s output feeds back to AutoProof, which

presents it in the context of the original Eiffel program

as shown in Figure 1. This is possible because Auto-

Proof’s translation from Eiffel to Boogie also includes

structured machine-generated comments, useful for de-

bugging of the translation as well as to trace the verifi-

cation outcome in Boogie – and in particular failed ver-

ification attempts – back to the source Eiffel program

that has been translated. Details about AutoProof’s

Boogie translation are presented in related work [22].

3 Longest Common Prefix

The first VerifyThis challenge is a longest common pre-

fix algorithm: given an integer array a and two in-

dexes x and y within its bounds, determine the length

of the longest common prefix starting at positions x

and y (that is the length of the maximal subarrays

from x and y). Consider, for example, the integer array

� 1, 2, 3, 4, 1, 2, 3� and the indexes4 1 and 5 within it:

the longest common prefix is the sequence � 1, 2, 3 �
of length 3. For the same array, the longest common

prefix for indexes 1 and 3 is the empty sequence be-

cause the elements at positions 1 and 3 differ; and the

longest common prefix for indexes 1 and 1 is obviously

the whole array (of length 7).

Figure 2 shows an Eiffel implementation of the long-

est common prefix algorithm, as a routine lcp fully

annotated with precondition (require), postcondition

(ensure), loop invariant and loop variant (also called

“ranking function”). The contracts consist of implicitly

conjoined assertions; each assertion may have a label,

such as a in range on line 5. AutoProof can automat-

ically verify this implementation against its specifica-

tion. Specifically, it proves that, for inputs satisfying

the precondition, the postcondition holds when the rou-

4 We assume arrays numbered from one, as is the norm in
Eiffel.

tine terminates, the loop invariant is inductive, the loop

terminates, all array accesses are valid, and there are

no integer overflows. We now look into these aspects in

detail.

3.1 Functional Correctness

The postcondition specifies the functional correctness

of lcp by describing three characterizing properties that

the returned integer Result must satisfy to represent

correct output:

– in range: the output Result defines valid subarrays

at x and y.

– is prefix : the two subarrays a[x:x+Result−1] and

a[y:y+Result−1] of length Result starting at x

and y are pairwise identical. This postcondition uses

Eiffel’s across..all syntax equivalent to the univer-

sal quantification ∀i ∈ [0..Result − 1] : a[x + i] =

a[y+i] over the finite integer range [0..Result − 1].

– longest prefix : the two subarrays of length Result

starting at x and y are maximal; that is, either one of

them runs until a’s end or the next pair of characters

after the subarrays differ. This postcondition uses

Eiffel’s or else short-circuited disjunction.

The specification is completed by the loop invari-

ant: its first three components (inv1, inv2, inv3) are

necessary to establish the postcondition in range, and

its last component inv4 to establish is prefix . Postcon-

dition longest prefix follows from the exit conditions

on lines 17–19. Notice the peculiar structure of Eiffel

loops: the from clauses is evaluated once, as if it were
regular code appearing before the loop (it is just syn-

tactic sugar); the exit condition in the until clause is

evaluated before every iteration; correspondingly, the

loop body (loop clause) may be executed zero times or

more.

Our initially unsuccessful attempts at verifying lcp

prompted us to introduce an improvement in the Boogie

translation which is more amenable to automated rea-

soning with Boogie. The original translation rendered

inv4 roughly as follows:

∀ i : int • (0 ≤ i ∧ i ≤ Result−1) =⇒
(Heap[a, x+i] = Heap[a, y+i])

where Heap is a mapping representing fields allocated

in the heap. Boogie cannot establish that this assertion

implies the translation of is prefix , even if the two as-

sertions are identical in Eiffel (and hence in Boogie).

The problem traced back to using the arithmetic oper-

ation + to adding a logic variable and a global variable

(the problem does not occur when we add a variable

AutoProof Meets Some Verification Challenges 5

1 lcp (a: ARRAY [INTEGER]; x, y: INTEGER): INTEGER

2 note

3 pure
4 require

5 a in range : 1 ≤ a.count and a.count < {INTEGER}.max value

6 x in range : 1 ≤ x and x≤ a.count
7 y in range : 1 ≤ y and y≤ a.count

8 do
9 from

10 Result := 0
11 invariant
12 inv1 : Result ≥ 0
13 inv2 : x + Result≤a.count + 1
14 inv3 : y + Result≤a.count + 1
15 inv4 : across 0 |..| (Result−1) as i all a[x+i] = a[y+i] end

16 until

17 x + Result = a.count + 1 or else
18 y + Result = a.count + 1 or else

19 a[x+Result] 6= a[y+Result]
20 loop
21 Result := Result + 1
22 variant
23 a.count − Result
24 end
25 ensure
26 in range : (Result ≥ 0) and

27 (x + Result≤a.count + 1) and
28 (y + Result≤a.count + 1)
29 is prefix : across 0 |..| (Result−1) as i all a[x+i] = a[y+i] end

30 longest prefix : (x + Result = a.count + 1) or else
31 (y + Result = a.count + 1) or else
32 (a[x+Result] 6=a[y+Result])
33 end

Fig. 2 Implementation of the lcp algorithm.

to a numeric constant). We solved the problem by in-

troducing Boogie logic functions wrapping arithmetic

operations within the scope of quantifiers, such as

function add(a, b: int): int { a + b }

for addition. The Boogie translation of the loop invari-

ant inv4 simply becomes

∀ i : int • (0 ≤ i ∧ i ≤ Result−1) =⇒
(Heap[a, add(x, i)] = Heap[a, add(y, i)])

which Boogie can reason about without difficulties.

This trick does not affect the semantics of the trans-

lation or what properties can be expressed, but was

necessary to accommodate a peculiarity of Boogie’s be-

havior, namely that instantiation triggers cannot in-

clude interpreted symbols like the plus sign [12]. This

is a recurring scenario for tool developers whose imple-

mentations depend on others’ tools.

3.2 Framing

As mentioned in Section 2, AutoProof currently sup-

ports only limited forms of framing specifications, and

has to resort to special annotations because Eiffel does

not have constructs to natively express framing. The

framing specification for routine lcp is, however, quite

simple: the routine does not modify any global variable

nor allocates new objects and is therefore (strongly)

pure [13]. Line 3 specifies this using a note clause (sim-

ilar to C#’s attributes or Java’s annotations). Auto-

Proof processes note clauses and verifies that the rou-

tine is indeed pure, that is side-effect free.

3.3 Array Accesses

Using the precondition and the loop invariants which

restrict the range of the two index variables to always

be in the range of the array, AutoProof also verifies that

all array accesses are within a’s bounds. This entails,

in particular, that predicates involving arrays used in

the specification are well-formed; the loop’s exit condi-

tion, for example, evaluates the last disjunct only if the

first two evaluate to false (or else is short-circuited),

which implies that x + Result and y + Result are in

bounds.

6 Julian Tschannen et al.

3.4 Integer Overflows

AutoProof has an option, enabled by default, to verify

that no arithmetic operations may overflow. Precondi-

tions x in range and y in range specify that x and y are

in bounds, but this is not enough to guarantee that no

overflow occurs: the index of the last element of an ar-

ray with size the largest machine integer max value is

the value 1 + max value (array indexing starts at 1 in

Eiffel), which produces an overflow. Thus, precondition

a in range restricts the size of the array to less than

the maximum integer value. Under this additional pre-

condition, AutoProof verifies that there are no integer

overflows.

3.5 Termination

AutoProof uses the loop variant on line 23 to prove

termination of the loop. It also checks that the variant

is a valid variant, that is it decreases after every loop

iteration, and has a lower bound (determined in this

case by the size of the array a.count).

3.6 Clients

In addition to verifying the lcp routine against its speci-

fication, we can use AutoProof to check client code that

calls lcp. For example, the following test cases initialize

an array with seven integer values (using the Eiffel syn-

tax� ... �), call lcp on the array with different values

for x and y, and assert (check in Eiffel) that the results

are correct.

local

a: ARRAY [INTEGER]

do

a := � 1, 2, 3, 4, 1, 2, 3 �
check lcp (a, 1, 5) = 3 end

check lcp (a, 2, 6) = 2 end

check lcp (a, 1, 1) = 7 end

check lcp (a, 1, 3) = 0 end

end

Even if all assertions are logical consequences of

lcp’s postcondition, the Boogie translation produced by

AutoProof fails to verify the last one. At this point, two-

step verification (see Section 2) makes an additional at-

tempt consisting of inlining lcp’s body at the call site

while ignoring its postcondition; since this attempt suc-

cessfully verifies all calls, AutoProof feedback suggests

that lcp’s implementation is correct (after all, it even

satisfies its postcondition), but the way the postcondi-

tion is written prevents the prover from succeeding.

We find a quick fix consisting of adding an assertion

that explicitly mentions a special fact about the array

values:

check a[1 + 0] 6=a[3 + 0] end

The translation of this new assertion acts as a trigger

to instantiate quantifiers, which Boogie passes on to Z3

and makes verification of the following assertion suc-

ceed. The assertion a[1 + 0] 6=a[3 + 0] may be placed

at any point in the client before the assertion where the

trigger is necessary, since Boogie collects all assertions

it has encountered so far. Based on this additional ex-

plicit piece of information, Boogie realizes that there

are no valid instantiations of the quantifier, and hence

the result must be 0.

Since it may be hard for the client to anticipate

the need for such an additional assertion, we suggest

generalizing it into a postcondition of lcp:5

(Result = 0) = (a[x] 6=a[y])

which does not affect the specification of the routine but

makes it more readily usable to verify arbitrary clients.

With this postcondition, Boogie also verifies calls to lcp

that return 0 without the need to suggest quantifier

instantiations.

4 Prefix Sum

The second VerifyThis challenge is a prefix sum algo-

rithm: given an array a of integers, construct an array b

of the same length, such that b’s kth element b[k] equals

the sum
∑

1≤i<k a[k] of all elements in a at positions

up to k excluded. For example, if a is � 1, 2, 3, 4 �, b

is � 0, 1, 3, 6�.

The challenging aspect of the VerifyThis algorithm

is that it is based on a version of prefix sum that com-

putes b in place, that is by directly modifying a without

allocating a fresh array. This is achieved in two passes

called upsweep and downsweep. For simplicity, assume

that a’s size is a power of two, so that we can iden-

tify the array elements with the leaves of a complete

binary tree. The upsweep phase propagates the sum of

the children up to the parents in the tree, with as many

rounds as the tree’s height; for example, � 1, 2, 3, 4�
first becomes � 1,3, 3,7 � and then � 1, 3, 3,10 �
(we mark in bold the elements modified in each round).

The downsweep starts by putting a zero in the right-

most array cell (corresponding to the tree’s root); then,

each node passes its value to its left child, and passes

the sum of the left child’s overwritten value and its own

5 The operator = represents both equality and double im-
plication (for Booleans).

AutoProof Meets Some Verification Challenges 7

1 array : ARRAY [INTEGER]
2
3 upsweep: INTEGER
4 local
5 space , left , right : INTEGER

6 do
7 from

8 space := 1
9 until

10 space ≥ array .count

11 loop
12 from
13 left := space

14 until
15 left > array .count
16 loop

17 right := left + space
18 array [right] := array [left] + array[right]
19 left := left + space ∗ 2
20 end
21 space := space ∗ 2
22 end

23 Result := space
24 end

25 downsweep (a space: INTEGER)
26 local

27 space , left , right , temp: INTEGER
28 do

29 space := a space

30 array [array .count] := 0
31 from

32 space := space // 2 −− integer division
33 until

34 space ≤ 0
35 loop
36 from

37 right := space ∗ 2
38 until
39 right > array .count

40 loop

41 left := right − space
42 temp := array[right]
43 array [right] := array [left] + array[right]
44 array [left] := temp
45 right := right + space ∗ 2
46 end
47 space := space // 2 −− integer division
48 end
49 end

Fig. 3 Implementation of the iterative prefix-sum algorithm without any specification.

value to its right child. Continuing the example, start

from � 1, 3, 3,0�, which becomes � 1,0, 3,3� and

then � 0,1,3,6�, which is the correct solution. Fig-

ure 3 shows an implementation of this algorithm, as two

routines upsweep and downsweep working iteratively on

a global array variable array.

4.1 Modular Verification

Some restrictions of the Eiffel language for assertions

prevents us from readily expressing the specification of

upsweep and downsweep. Specifically, old expressions

(which refer to the value of their argument at the rou-

tine’s entry) cannot be used in loop invariants, but any

reasonable specification of upsweep and downsweep’s

loops must express how the original array is modified

at each iteration. Using an implementation based on re-

cursion, rather than iteration, would not solve the prob-

lem, as old expressions are also forbidden in postcondi-

tions within the scope of bounded across quantifiers.6

Even though it might be possible to use workarounds,

such as making copies of arrays in the beginning of the

routine which can then be used instead of old expres-

sions or by defining specific predicates for each prop-

erty, these workarounds make the specification and sub-

6 The rationale for these rules is to simplify the runtime
checking of assertions; they are, however, unnecessarily re-
stricting for specifications meant for static verification.

sequent verification too difficult at the moment or hin-

der the flexibility of the developer.

4.2 Client Verification

Even if upsweep and downsweep have no specification,

AutoProof can verify concrete clients by inlining the

routines’ bodies in the client code. Consider, for exam-
ple, the following test case with an array of size eight:

local

p: PREFIX SUM ITER

space : INTEGER

do

a := � 3, 1, 7, 0, 4, 1, 6, 3 �
create p.make (a)

space := p.upsweep

check p.array = � 3, 4, 7, 11, 4, 5, 6, 25 �
p.downsweep (space)

check p.array = � 0, 3, 4, 11, 11, 15, 16, 22 �
end

AutoProof deploys two-step verification (see Section 2)

and reports a “conditional” success (such as the lines

highlighted in yellow in Figure 1): the assertions in the

test case are verified only using inlining and exhaus-

tively unrolling the loops. This suggests that the im-

plementation is probably correct (at least with respect

8 Julian Tschannen et al.

to the usage done in the given client), but the specifi-

cation is insufficient to generalize the proof to a mod-

ular setting. Our experience suggests that this kind of

feedback is generally quite useful: it helps speedup the

debugging of failed verification attempts and it guides

the generalization of partial verification attempts.

4.3 Arrays of Fixed Size

We can take advantage of a simplifying suggestion men-

tioned in VerifyThis’s challenge, consisting of assuming

that the algorithm only work on arrays of eight ele-

ments. Under this assumption, we can prove upsweep

and downsweep correct using AutoProof by generaliz-

ing what is done in the previous subsection. First, we

add the simplifying assumption array.count = 8 explic-

itly as a precondition of both upsweep and downsweep.

Then, we exhaustively specify their postconditions for

arrays of size eight; upsweep’s postcondition is then:

ensure

array [1] = old(array[1])

array [2] = old(array[1] + array[2])

array [3] = old(array[3])
array [4] = old(array[1] + array[2] + array[3] +

array [4])

array [5] = old(array[5])

array [6] = old(array[5] + array[6])

array [7] = old(array[7])

array [8] = old(array[1] + array[2] + array[3] +
array [4] + array[5] + array[6] +

array [7] + array[8])

end

Routine downsweep’s postcondition is similar, but

expressing the final result; and downsweep’s precondi-

tion also has to include upsweep’s postcondition, since

the former is correct only when called after the latter.

With this setup, AutoProof verifies the implementation

in Figure 3 by exhaustively unrolling the loops. This

corresponds to a complete verification for arrays of size

eight without requiring to write any loop invariant.

4.4 Other Properties

As in the problem of Section 3, AutoProof also verifies

that all array accesses are in bounds, and establishes

termination (trivially, since the loops iterate 3 = log2 8

times). AutoProof can also verify generic clients that

conform to the simplifying precondition (arrays of size

eight) using modular reasoning.

Finally, AutoProof verifies absence of overflows un-

der the additional precondition that:

1 search tree delete min (old root : TREE NODE):
2 [new root : TREE NODE; min: INTEGER]
3 local
4 tt , pp, p, new root : TREE NODE

5 min: INTEGER

6 do
7 p := old root . left

8 if p = Void then
9 min := old root .data

10 new root := old root . right

11 else
12 from

13 pp := old root

14 tt := p. left
15 until

16 tt = Void

17 loop
18 pp := p

19 p := tt
20 tt := p. left
21 end

22 min := p.data
23 tt := p. right
24 pp. set left (tt)
25 new root := old root
26 end

27 Result := [new root, min]
28 end

Fig. 4 Implementation of the tree-deletion algorithm.

across 1 |..| 8 as i all

−100000000≤array[i] ≤ 100000000

end

5 Binary Search Tree: Deletion

The third VerifyThis challenge is an algorithm to delete

the node containing the minimum value in binary search

trees. To this end, it is sufficient to traverse the tree

starting from the root, always visiting the left child of

the current node until a leaf is found; the leaf stores the

minimum value by construction.

Figure 4 shows an implementation of the algorithm

in Eiffel, following the outline given in the VerifyThis

competition. Routine search tree delete min returns the

deleted minimum value, as well as a new root node

(which changes if the minimum is stored in the root);

the two returned values are packed in a tuple (denoted

by square brackets in Eiffel). The implementation oper-

ates on objects of class TREE NODE, whose definition

is outlined in Figure 5 for reference (some inessential

details are omitted for simplicity).

The current limitations on the expressible assertions

prevent us from formalizing the complete routine spec-

ification in a form that AutoProof can process. Specif-

ically, the gist of the specification requires expressing

AutoProof Meets Some Verification Challenges 9

1 class TREE NODE

2
3 make (l , r : TREE NODE; v: INTEGER)
4 require

5 left smaller : l 6=Void implies l.data ≤ v

6 right larger : r 6=Void implies r.data ≥ v
7 do

8 left := l
9 right := r

10 data := v

11 end
12
13 left : TREE NODE

14 right : TREE NODE
15 data : INTEGER

16
17 end

Fig. 5 Implementation of the TREE NODE class.

the sequence of values stored in the nodes and visited

during the loop, as well as to formalize the impact of

modifying a leaf node on the whole tree structure (that

is, framing). We are working on supporting such spec-

ifications in AutoProof based on the notion of model-

based contracts [17,18], but, at the time of writing, Au-

toProof cannot verify the tree algorithm in the general

case.

However, as we did for the previous problems, we

can still verify given client code by using the exhaus-

tive inlining and unrolling capabilities of AutoProof, ac-

tivated automatically by two-step verification. For ex-

ample, consider the following code fragment creating a

tree with three nodes and deleting the minimum.

treedel client (a, b, c: INTEGER)

require

a <b and b <c

local

node1, node2, node3: TREE NODE

res : [root : TREE NODE; min: INTEGER]

do

create node3.make (Void, Void, a)

create node2.make (Void, Void, c)

create node1.make (node3, node2, b)

res := search tree delete min (node1)

check res.root = node1 end

check res.min = b end

end

The concluding check instructions assert that the two

components of the returned tuple are indeed the root

(unchanged in this case) and the minimum value. While

this does not meet the full challenge, it is interesting

that AutoProof can verify the algorithm for all trees

with a given structure and size without requiring any

specification but only based on the semantics of instruc-

tions.

6 Other Challenges

We briefly present solutions to challenges offered by

other verification competitions, to further demonstrate

AutoProof’s current capabilities, specification style, and

limitations. All three challenges consist of algorithms

working on arrays; since, as we repeatedly remarked in

the paper, AutoProof’s main current limitation is the

lack of complete support for framing specifications, al-

gorithms working on linked data structures are largely

beyond its current capabilities.

6.1 Maximum in an Array

The COST 2011 competition [4] required to verify an

algorithm that finds the maximum element in unsorted

arrays. The twist is the requirement to perform a two-

way search, which scans the array content from both

ends and terminates when the two indexes meet in the

middle. Figure 6 shows an annotated implementation in

Eiffel which AutoProof can verify; routine max in array

returns the index of the largest element.

The peculiarity of the implementation reflects on

the structure of the loop invariant, which includes two

symmetric across quantifications over the left-hand side

and the right-hand side of the array scanned so far. Also

notice that postcondition is max uses the across quan-

tifier in a different way, since it directly quantifies over

array elements rather than over integer ranges as done

in previous examples. As usual, AutoProof also verifies

that all array accesses are in bounds and that the loop

terminates. Verifying the absence of overflows requires a

stronger precondition that the array length is less than

the largest machine integer (see Section 3.4).

6.2 Sum and Max

The VSTTE 2010 competition [9] required to verify an

algorithm that computes the sum and the maximum

element of an array. The specification to be proven

is not complete, but only asserts that the maximum

value times the array length is an upper bound on the

sum. Figure 7 shows an Eiffel implementation with the

given specification, which AutoProof can verify; routine

sum and max returns a tuple with the values for sum

and max.

10 Julian Tschannen et al.

1 max in array (a: ARRAY [INTEGER]): INTEGER

2 note

3 pure
4 require

5 not empty: a.count > 0
6 local
7 x , y: INTEGER

8 do
9 from

10 x := 1
11 y := a.count
12 invariant

13 1 ≤ x and x≤ y and y≤ a.count

14 across 1 |..| x as i all
15 a[i] ≤ a[x] or a[i] ≤ a[y] end

16 across y |..| a.count as i all

17 a[i] ≤ a[x] or a[i] ≤ a[y] end
18 until

19 x = y
20 loop
21 if a[x] ≤ a[y] then

22 x := x + 1
23 else
24 y := y − 1
25 end
26 variant

27 y − x
28 end
29 Result := x

30 ensure
31 in range : 1 ≤ Result and Result≤a.count
32 is max: across a as e all e ≤ a[Result] end
33 end

Fig. 6 Implementation of the max in array challenge of COST
2011.

Two aspects of this algorithm are interesting from

the perspective of automated verification. First, the as-

sertions use nonlinear arithmetic (that is, multiplica-

tion of variables). Boogie has some support for integer

multiplication and division, which AutoProof leverages

in the translation to render Eiffel’s semantics of integer

operations.

The second interesting aspect is framing, specified

using a note annotation (line 4) as done in Section 3.2.

The frame specification for sum and max is pure fresh ,

which denotes routines that do not modify the object

state but may allocate and change fresh objects (this

notion is also called weak purity [13]). In fact, line 29

implicitly creates a new tuple 7 to store the result.

6.3 Two-way Sort

The VSTTE 2012 competition [5] required to verify an

algorithm that sorts Boolean arrays in linear time. The

algorithm scans the input array from both ends, look-

7 TUPLE is a reference type in Eiffel.

1 sum and max (a: ARRAY [INTEGER]):
2 [sum, max: INTEGER]
3 note
4 pure fresh

5 require

6 not empty: a.count > 0
7 not negative : across a as j all j ≥ 0 end

8 local
9 i , sum, max: INTEGER

10 do

11 from
12 i := 1
13 invariant

14 1 ≤ i and i≤ a.count + 1
15 across 1 |..| (i−1) as j all a[j] ≤ max end

16 sum≤ (i−1) ∗ max

17 across a as j all j ≥ 0 end
18 until

19 i > a.count
20 loop
21 sum := sum + a[i]
22 if a[i] >max then
23 max := a[i]
24 end
25 i := i + 1
26 variant

27 a.count − i + 1
28 end
29 Result := [sum, max]
30 ensure
31 sum in range: Result.sum≤a.count ∗ Result.max
32 end

Fig. 7 Implementation of the sum & max challenge of
VSTTE 2010.

ing for and swapping pairs of inverted elements. It is a

technique similar to Dijkstra’s Dutch flag algorithm [6]

but working on the two Boolean values rather than on

the three flag colors. The specification is that the array

is sorted when the algorithm terminates.

Our initial solution directly used arrays containing

BOOLEAN values, which AutoProof translates to ar-

rays of bool in Boogie. Unfortunately, Boogie cannot

reason efficiently about Boolean arrays, and in fact it

could not prove this initial solution even if it was cor-

rect. Therefore, we tried another solution: using arrays

of integer type constrained to contain only the values 0

and 1. This solution, shown in Figure 8, is much more

amenable to Boogie’s automatic reasoning, and in fact

AutoProof can prove its correctness without difficul-

ties. The precondition on line 4 and the loop invariant

on line 15 restrict the input array to only contain values

0 and 1; establishing the other components required for

functional correctness depends on this restriction.

An interesting aspect which demonstrates the ca-

pabilities of AutoProof is the usage of a separate rou-

tine swap called to switch inverted elements. Standard

verifiers leverage modular reasoning, which entails that

AutoProof Meets Some Verification Challenges 11

1 two way sort (a: ARRAY [INTEGER])
2 require

3 not empty: a.count ≥ 0
4 boolean : across a as k all k = 0 or k = 1 end

5 local

6 i , j : INTEGER
7 do

8 from
9 i := 1

10 j := a.count

11 invariant
12 i ≥ 1 and i≤ j + 1 and j≤ a.count

13 across a as k all k = 0 or k = 1 end

14 across 1 |..| (i−1) as k all a[k] = 0 end
15 across (j+1) |..| a.count as k all a[k] = 1 end

16 until

17 i ≥ j
18 loop

19 if a[i] = 0 then
20 i := i + 1
21 elseif a[j] = 1 then

22 j := j − 1
23 else
24 swap (a, i , j)
25 i := i + 1
26 j := j − 1
27 end
28 variant
29 j − i + 1
30 end
31 ensure
32 sorted : across 1 |..| (a.count−1) as k all

33 a[k] ≤ a[k+1] end
34 end
35
36 swap (a: ARRAY [INTEGER]; i, j: INTEGER)
37 note

38 inline in caller

39 local
40 t : INTEGER

41 do

42 t := a[i]
43 a[i] := a[j]
44 a[j] := t
45 end

Fig. 8 Implementation of the two-way sort challenge of
VSTTE 2012 using integer arrays.

the effect of a routine call within the caller is limited

to what is mentioned in the callee’s specification (its

postcondition, in particular). Therefore, verification of

implementations such as that in Figure 8 would fail

because swap has no specification, and hence its effect

within two way sort is undetermined. AutoProof, how-

ever, supports two-way verification: after a first unsuc-

cessful attempt at modular verification, it tries to inline

swap’s body within two way sort and notices that verifi-

cation is successful in this case. AutoProof reports such

“partially successful” attempts in yellow in the GUI

(see Figure 1), and offers two options: either just use

swap inlined whenever it is called, or provide a suitable

specification to swap so that the correctness proof can

be carried out modularly. In this simple example, where

swap is just a helper function and writing its complete

specification seems an overkill, we opted for the first

option: we added the annotation inline in caller on

line 38, which makes AutoProof inline swap whenever

necessary without complaining about its lack of specifi-

cation. This reduces the specification burden on users,

thus making the whole verification a bit more practical.

7 Conclusions & Lessons Learned

The VerifyThis 2012 challenges were a valuable testbed

for AutoProof. They showed that the tool has finally

reached a stage where it can completely verify nontriv-

ial problems such as the first challenge. They also al-

lowed us to demonstrate some features of two-step veri-

fication, which can provide informative feedback and re-

duce the amount of annotation required in simple cases.

In particular, Sections 4.3 and 5 discussed how we ver-

ified the second and third challenges in special cases

with little or no specification. Even if their complete

verification is still beyond AutoProof’s current capabil-

ities, it is within the reach of the planned improvements

to the tool.

Assessing AutoProof’s limitations was also valuable

and useful to define its future development agenda in

detail. It is clear that the major feature that is lacking is

a comprehensive methodology to specify abstractly and

to reason about complex object structures and about

framing. This will be the next major improvement in-

troduced in AutoProof.

Lessons Learned. Generalizing from our experience with

AutoProof, there are some lessons learned which em-

phasize the complex trade-offs involved in turning for-

mal verification into something practical.

The first lesson follows from the observation – ob-

vious in hindsight – that an automatic verifier such as

AutoProof, which aims at working on a real full-fledged

object-oriented programming language, is implemented

as a component deeply embedded in a long and com-

plex toolchain, which encompasses parsers, translators,

and multiple intermediate language representations and

abstraction levels (the compiler’s, Boogie’s, the under-

lying SMT solver’s, etc.). Such a deeply layered struc-

ture brings great advantages in terms of reuse: Auto-

Proof does not have to know, for instance, the details

of Eiffel’s multiple inheritance resolution, since it gets

the results of the compiler’s analysis; or how to best

generate and encode verification conditions in a form

amenable to the underlying SMT solver, since Boogie

12 Julian Tschannen et al.

takes care of that. At the same time, a long toolchain

is often inflexible, as it introduces fundamental depen-

dencies which may be burdensome to remove, as well

as limitations that are difficult to overcome. For exam-

ple, a few details of AutoProof’s encoding into Boogie

have been hacked out based on trials and errors and

accommodate some specific idiosyncrasies of Microsoft

Research’s verification system. Removing AutoProof’s

dependency on Boogie could be useful to avail of other

verification engines with possibly complementary char-

acteristics, but is not going to happen anytime soon

since it would likely require a major reengineering ef-

fort largely divergent from AutoProof’s primary devel-

opment goals.

Another general point is whether one should aim at

completely supporting a real programming language or,

if the goal is advancing the state of the art of program

verification, focus on simpler (possibly ad hoc) lan-

guages that are easier to implement and reason about.

This is also a complex trade-off, which involves multi-

ple local optima. On the one hand, supporting a full

programming language requires dealing with many an-

noyingly low-level details, which may seem to bring us

away from the ultimate goal of improving verification

techniques and methods. In fact, this was one of the

major lessons reported by the Spec# team [1]. On the

other hand, if we want to make verification practical

and within the capabilities of programmers who are not

fluent in formal techniques, our tools should be inter-

operable with the same tools the programmers already

use in their run-of-the-mill programming, such as IDEs,

compilers, and debuggers. Therefore, we should be able

to handle most programming language constructs that

are used in practice, or at least have well-defined bound-

aries between what can and cannot be specified and

verified.

We are looking forward to these developments and

to new verification challenges that will help us assess

the achieved progress.

Acknowledgements Work partially supported by SNF
grants LSAT/200020-134974, ASII/200021-134976; by Hasler-
Stiftung grant #2327; and by ERC grant CME/291389.

References

1. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and verification:
the spec# experience. Commun. ACM, 54(6):81–91, June
2011.

2. M. Barnett and D. A. Naumann. Friends need a bit more:
Maintaining invariants over shared state. In In MPC,
volume 3125 of LNCS, pages 54–84. Springer, 2004.

3. F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich.
Why3: Shepherd your herd of provers. In Boogie, pages
53–64, 2011.

4. T. Bormer et al. The COST IC0701 verification compe-
tition. In FoVeOos, LNCS, pages 3–21. Springer, 2012.

5. J.-C. Filliâtre, A. Paskevich, and A. Stump. The 2nd ver-
ified software competition: Experience report. In COM-

PARE, pages 36–49, 2012.
6. D. Gries. The science of programming. Springer-Verlag,

1981.
7. M. Huisman, V. Klebanov, and R. Monahan. Veri-

fyThis verification competition. http://verifythis2012.

cost-ic0701.org, 2012.
8. B. Jacobs, J. Smans, and F. Piessens. A quick tour of

the VeriFast program verifier. In Proceedings of APLAS
2010, pages 304–311. Springer, 2010.

9. V. Klebanov et al. The 1st verified software competition:
Experience report. In FM, volume 6664 of LNCS, pages
154–168. Springer, 2011.

10. K. R. M. Leino. This is Boogie 2. Technical report,
Microsoft Research, 2008.

11. K. R. M. Leino. Dafny: an automatic program verifier
for functional correctness. In LPAR-16, pages 348–370.
Springer, 2010.

12. K. R. M. Leino and R. Monahan. Reasoning about com-
prehensions with first-order SMT solvers. In S. Y. Shin
and S. Ossowski, editors, Proceedings of the 2009 ACM

Symposium on Applied Computing (SAC’09), pages 615–
622. ACM Press, 2009.

13. D. A. Naumann. Observational purity and encapsulation.
In FASE, volume 3442 of LNCS, pages 190–204. Springer,
2005.

14. M. Nordio, C. Calcagno, B. Meyer, P. Müller, and
J. Tschannen. Reasoning about Function Objects. In
Proceedings of TOOLS-EUROPE, volume 6141 of LNCS,
pages 79–96. Springer, 2010.

15. M. Nordio, C. Calcagno, P. Müller, and B. Meyer. A
Sound and Complete Program Logic for Eiffel. In
M. Oriol, editor, TOOLS-EUROPE, volume 33, pages
195–214, 2009.

16. D. Patterson. For better or worse, benchmarks shape a
field: technical perspective. Commun. ACM, 55(7):104–
104, July 2012.

17. N. Polikarpova, C. A. Furia, and B. Meyer. Specifying
reusable components. In Proceedings of VSTTE’10, vol-
ume 6217 of LNCS, pages 127–141. Springer, 2010.

18. N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and
B. Meyer. What good are strong specifications? In ICSE,
pages 257–266. ACM, 2013.

19. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer.
Flexible invariants through semantic collaboration. http:
//arxiv.org/abs/1311.6329, November 2013.

20. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer.
Usable verification of object-oriented programs by com-
bining static and dynamic techniques. In SEFM, volume
7041 of LNCS, pages 382–398. Springer, 2011.

21. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Ver-
ifying Eiffel programs with Boogie. In BOOGIE workshop,
2011. http://arxiv.org/abs/1106.4700.

22. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer.
Automatic verification of advanced object-oriented fea-
tures: The AutoProof approach. In Tools for Practical

Software Verification, volume 7682 of LNCS, pages 134–
156. Springer, 2012.

23. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer.
Program checking with less hassle. In VSTTE, volume
8164 of LNCS, pages 149–169. Springer, 2014.

http://verifythis2012.cost-ic0701.org
http://verifythis2012.cost-ic0701.org
http://arxiv.org/abs/1311.6329
http://arxiv.org/abs/1311.6329
http://arxiv.org/abs/1106.4700

	Verification Benchmarks Can Shape the Field
	AutoProof
	Longest Common Prefix
	Prefix Sum
	Binary Search Tree: Deletion
	Other Challenges
	Conclusions & Lessons Learned

