CITADEL User Manual
Version 1.1

Contents

1 What is CITADEL? 1
1.1 Daikon o o o e e e e e e e 1
1.2 Contract inference in Fiffel e 2
1.3 Design and Implementation of CITADEL 4

2 Compiling CITADEL 5

3 Using CITADEL 5

4 Tests 7

1 Whatis CITADFEL?

CITADEL (Contract Inference Tool Applying Daikon to the FEiffel language) is an Fiffel [1, 2] front-end
for the Daikon assertion detector [3, 4].

1.1 Daikon

A dynamic assertion detector is a tool that determines conditions holding throughout a software system
execution. After these conditions have been found developers can assume that they also hold for all other
executions and therefore form a specification (a set of contracts) of the system.

To infer program properties Daikon observes values of certain variables at specific program points
during program executions. Interesting program points can be, for instance, routine entries and exits.
Variables are different expressions which make sense at a specific program point, such as the currently
executing object, routine arguments, the return value of a function, attributes of other variables, etc.

Daikon maintains a list of assertion templates which it instantiates using such program variables at
specified program points, and checks if they hold for the executions of the program through a given set
of test cases. As soon as an assertion does not hold for an execution, it is eliminated and not checked
again for further executions.

Daikon’s dynamic contract inference system consists of several components, as shown in figure 1. The
main steps involved in the contract inference process are the following:

1. An instrumenter modifies the program source so that, at certain program points, it saves the
values of the variables in scope to a data trace file. The instrumenter also produces program point
declarations (static information about program points and variables).

I

Execution

Source | : : [Instrumented
code | : code

————— Instrumenter

A

— e
: | Declarations Trace

; Y
Formatted |:
assertions | ;| Postprocessor |:

< (printer, annotator, [* Detector
Annotated || ete.) Inferrei
code : | assertions
Language- ;

Figure 1: Dynamic contract inference system.

2. The instrumented program is exercised through a test suite. Each run of the program results in a
data trace file.

3. Daikon instantiates assertion templates from its list using variables of appropriate types. This
results in a list of potential assertions, which are then checked against the variable values recorded
in the data trace files.

4. The inferred assertions can be post-processed, for instance by a pretty-printer, and inserted into
the original source code as annotations.

Out of these components, only the instrumenter and the postprocessor depend on the programming
language in which the original system is written. These two components form a front-end that allows
the universal assertion detector to work for software systems written in different languages (and even
with data that was generated through other means than during program execution). CITADEL is one
of such front-ends that allows Daikon to work with software systems written in Fiffel. Other examples
include Chicory (for Java), Kvasir and Mangel-Wurzel for C/C++, dfepl for Perl. Their description can
be found in [4].

1.2 Contract inference in Fiffel

Contract inference can be used in Fiffel to strengthen programmer-written specifications (mainly, feature
postconditions and class invariants). Sometimes it can also be used to correct existing specifications
(strengthening preconditions).

Assertions produced by CITADEL are intended to become part of regular Eiffel contracts, hence the
choice of program points and variables is constrained by language rules for assertions:

e Program points of interest in CITADEL correspond one-to-one to Fiffel assertions:

— routine entry points correspond to preconditions;

routine exit points correspond to postconditions;
— stable time points correspond to class invariants;
— loop points correspond to loop invariants.

e The basic set of variables visible at each program point consists of entities that can be accessed
from the corresponding assertions:

Current for stable times;

— formals for creation procedure entry;

— Current and formals for regular routine entry or procedure exit;
— Current, formals and Result for function exit;

— Current, formals and locals for a loop inside a procedure;

— Current, formals, locals and Result for a loop inside a function.

The full set of variables at each program point is obtained from the basic set by wunfolding each
of its variables, i.e. calling suitable queries on them. A query is suitable for unfolding if it is
exported to both the surrounding class of the inferred assertion and to its guarantor (the class
that should guarantee assertion fulfillment). Unfolding is performed to a fixed depth (e.g. in
Result.queryl.query2 depth is 2), usually equal to 1.

Due to the uniform access principle not only attributes are used in unfolding, but also zero-argument
functions. Functions with arguments could also be used, but this feature is currently not imple-
mented in CITADEL. In Fiffel it should be safe to use functions in unfolding, because they should
always be pure (according to the command-query separation principle).

When a function is used in unfolding it might be called in a state when its value cannot be calculated.
Thus before calculating a function value, the instrumented system checks the programmer-written
precondition for this function. If the precondition doesn’t hold, the instrumented system outputs
the standard Daikon value “nonsensical” instead of the real function value. This value is also used
for queries called on a void target.

For each variable from the full (unfolded) set the instrumented system will output its identity.
What this identity actually is, depends on the FEiffel type of the variable:

— If a variable has a type that corresponds to one of the types that Daikon understands (boolean,
integer, real or string), then we take the variable value as an identity. We call such variables
printable.

— If a variable is not printable and has reference type, then its address is taken as an identity.

— If a variable is not printable and has expanded type, some function of its fields’ identities is
taken as an identity.

Daikon compares variables by their identities. Thus the notion of identity corresponds to equality
semantics, that is if the identities of two variables are equal (for Daikon), then these variables should
be equal (in the Eiffel sense). This is not true for strings, because they are compared by reference in
Eiffel and by value in Daikon. CITADEL distinguishes between string-references and string-values,
treating the former as reference variables and the latter as printable ones. String-references are
used to infer equalities of strings and string-values are used for other assertions.

The actual kind of identity for a variable is generally determined during runtime, based on its
dynamic type, whereas the set of queries that are used in variable unfolding is determined by its
static type. The precondition that should be checked for each query is also determined by the static
type. Variables of generic types (containing formal parameters) are treated as if they had a base
type (i.e. the constraining type).

If once functions are used in unfolding they can be called in a different context that in the original
system and thus yield a different value and spoil the execution. We don’t know the perfect solution
to this problem, that is why CITADEL offers several strategies for using once functions in unfolding:
— don’t use them at all;
— use them like normal functions with a risk of changing system behavior;

— before calling a once function in unfolding check whether it has already been called in the
original context; if not, output the value as “nonsensical”.

1.3 Design and Implementation of CITADFEL

CITADEL consists of two main components: the instrumenter and the annotator. Besides, there exists
a CITADFEL-specific version of Daikon that can output inferred assertions in Eiffel format.

The instrumenter is the most complex part of the front-end. An input to the instrumenter consists
of an Eiffel software system (a set of classes with a “.ecf” configuration file) and a set of clusters and
classes to instrument. The instrumenter performs the following steps:

1. Syntax and type analysis of the original system.
Finding program points of interest in the abstract syntax tree (AST) of the original system.
Finding the basic set of visible variables at each program point of interest.

Unfolding variables.

ook

Creating a declarations file, which contains — for each program point — its name, the names and
types of its variables and other compile-time information.

6. Finding in the the AST right places to insert instructions that will output variable values to the
trace file.

7. Generating these instructions (including the checks for each variable that it can be evaluated, i.e.
checks for void targets and checks of preconditions).

8. Generating code that calculates the variable identity during runtime (in particular, that distin-
guishes between variables of printable, expanded and reference types).

9. Generating code that keeps track of the status of each once function (if this option is enabled).

The instrumenter’s output consists of a declarations file and an instrumented system: instrumented
classes, auxiliary classes (that work with the trace file, identities and once functions status) and a new
configuration file.

After that CITADEL compiles and runs the instrumented system. This execution results in a trace
file, which, together with the declarations file, is given as input to the Daikon detector. Daikon was
modified in such a way that it produces textual form of assertions already in Eiffel format.

These assertions together with the original software system are then given to the annotator, which
finds in the AST of the original system places where inferred assertions should be inserted. Besides that it
does some postprocessing of assertions (to be removed in future versions of CITADFEL). The annotator’s
output is the set of classes from the original system, which were chosen for processing, with inferred
assertions added to their contracts.

For syntax and type analysis CITADEL uses the Gobo Tools library. To compile the instrumented
system it uses the ISE FEiffel compiler.

Current limitations of CITADEL include:

e It is unable to instrument deferred and external features.
e Functions with arguments are not used in unfolding.
e It is not compatible with the new version of the Gobo library, which comes with FiffelStudio 6.2.

e It doesn’t use the program point hierarchy that allows assertions from one program point to suppress
corresponding assertions from the others.

e It doesn’t implement variable comparability analysis that would allow to eliminate many uninter-
esting assertions (mainly, comparisons between unrelated variables).

e It doesn’t support the online inference mode, when the execution trace is not written to a file, but
is directly forwarded to Daikon.

e It doesn’t support concurrent programs.

2 Compiling CITADEL

To compile CITADEL you need:
e CITADEL sources available from http://se.inf.ethz.ch/polikarpova/citadel;
o FiffelStudio 6.1 available from www.eiffel.com;
e FErl-G library version 1.3.1 (e.g. revision 740) available from http://se.ethz.ch/people/leitner/erl_g;
e Autotest sources version 1.3.2 (e.g. revision 740) available from http://se.ethz.ch/research/autotest;
e FiffelStudio sources revision 70887 available from http://eiffelstudio.origo.ethz.ch.

The CITADEL configuration file refers to the home directories of FiffelStudio sources, Erl-G and
Autotest as EIFFEL_SRC, ERL_G and AUTO_TEST correspondingly. You should set these environment
variables to wherever you put the libraries mentioned above.

The main configuration file for CITADEL is src/citadel/citadel.ecf.

3 Using CITADEL

To use CITADEL you additionally need the CITADFEL-specific version of Daikon (both sources and com-

piled version are available from http://se.inf.ethz.ch/polikarpova/citadel). If you don’t want to modify

the sources you only need the compiled version, which consists of a single file daikon. jar. Set the envi-

ronment variable DATKONDIR to wherever you put this file. Daikon uses Java, so you should have JRE or

JDK installed and one of the environment variables JREDIR or JDKDIR set to wherever JRE or JDK is.
You will usually run CITADEL using the following syntax:

citadel ecf_filename {-1 cluster_to_instrument}* {-c class_to_instrument}*

If no clusters are specified, then all clusters from the system are chosen, and if no classes are specified,
then all classes from the chosen clusters are chosen. So, for example, to instrument a single class TESTER
from cluster example in system example, write

citadel example.ecf -1 example -c TESTER

(if you write just citadel example.ecf -c TESTER, it will choose TESTER from example plus all classes

from all other clusters in the system).

The full list of CITADEL options can be found in the table below.
Full name | Short name | Argument | Description

help h Output help message and exit
version v Output version information and exit
quiet q Don’t output progress information
target t string Target that should be used for con-

tract inference (if the original system
has multiple targets)

cluster 1 string Cluster to instrument

class c string Class to instrument

output) string Output directory for instrumented and
annotated systems and auxiliary files

start s integer Step to start with (1 = instrument orig-

inal system; 2 = compile instrumented
system; 3 = execute instrumented sys-
tem; 4 = infer assertions; 5 = annotate
original system). Default value is 1
end e integer Step to end with. Default value is 5

http://se.inf.ethz.ch/polikarpova/citadel
file:www.eiffel.com
http://se.ethz.ch/people/leitner/erl_g
http://se.ethz.ch/research/autotest
http://eiffelstudio.origo.ethz.ch
http://se.inf.ethz.ch/polikarpova/citadel

use-old-decl-format

Use the old version of the daikon decla-
ration file format

unfolding-depth

integer

Depth to which variables are unfolded.
Default value is 1

impure

string

Name of impure function that should
not be used in unfolding in format
CLASS_NAME.function_name

only-attributes

Don’t use functions in unfolding (only
attributes)

unfold-printable

Unfold variables of printable types (sig-
nificantly enlarges output, but may give
some useful information about variables
of printable types)

any-queries

Use queries inherited from class ANY
in unfolding (may significantly enlarge
output)

obsolete—queries

Use obsolete queries in unfolding

inapplicable-queries

N

Use inapplicable queries in unfolding

once-status

integer

Once functions status tracking mode (0
= once functions are not used in un-
folding; 1 = only once functions from
instrumented classes are used in unfold-
ing; 2 = all once functions are used, but
requires modification of the whole sys-
tem, not just instrumented classes; 3 =
once functions are used without watch-
ing their status (can lead to system be-
havior alteration). Default value is 1

finalize

Finalize instrumented system before
running

instrumented-args

string

Arguments to pass to instrumented sys-
tem

daikon-args

Arguments to pass to Daikon

java-memory

integer

Memory size for JVM when running
Daikon and PrintInvariants

disable-suppression

Disable suppression of pre- and post-
conditions by class invariants (always
enabled with -m)

disable-nonres-suppression

Disable suppression of pure function
postconditions not involving Result
(always disabled with -m)

disable-loop-suppression

Disable suppression of loop invariants
not involving variables modified in the
loop body (always disabled with -m)

disable-supplier-suppression

Disable suppression of clauses by class
invariants of the involved variables (al-
ways disabled with -m)

keep-original

string

What should CITADEL do with origi-
nal contracts in the annotated system
(0 = remove; 1 = keep; 2 = flatten).
Default value is 2

Full name

Short name

Argument

Description

4 Tests

To try CITADEL out you may use the set of tests available from the website. These tests exercise 25
classes from widely-used libraries (FiffelBase, Gobo, MML), Traffic application and student projects.

All the tests are joined into a single system tests.ecf. To compile this system except for FiffelStudio
6.1 you will additionally need:

e MML library available from https://svn.origo.ethz.ch/eiffelstudio /branches/eth/ballet /mml;
e Traffic application (version 3.3.1079) available from http://traffic.origo.ethz.ch.

All the tests are unit tests of single classes. To test a particular class uncomment the creation of
a corresponding tester class in the root class TESTER. Then run the testing system under CITADEL,
instrumenting the class under test. For example, to obtain inference results for class TRAFFIC_BUILDING
you may run CITADEL with the following arguments:

citadel <tests_dir>\tests.ecf -o <output_dir> -d "--config
<citadel_dir>\daikon_config" -1 traffic/building -c TRAFFIC_BUILDING

References

[1] B. Meyer Object-Oriented Software Construction, 2nd Edition. Prentice Hall, 1997.

[2] Standard ECMA-367. Eiffel: Analysis, Design and Programming Language. ECMA International,
2006. http://www.ecma-international.org/publications/standards/Ecma-367.htm

[3] M.D. Ernst Dynamically Discovering Likely Invariants. PhD Dissertation. University of Washington,
2000.

[4] Daikon Invariant Detector User Manual, 2007.

https://svn.origo.ethz.ch/eiffelstudio/branches/eth/ballet/mml
http://traffic.origo.ethz.ch
http://www.ecma-international.org/publications/standards/Ecma-367.htm

