
Applying Search in an Automatic
Contract-Based Testing Tool

Alexey Kolesnichenko, Christopher M. Poskitt, and Bertrand Meyer

ETH Zürich, Switzerland

Abstract. Automated random testing has been shown to be effective
at finding faults in a variety of contexts and is deployed in several test-
ing frameworks. AutoTest is one such framework, targeting programs
written in Eiffel, an object-oriented language natively supporting exe-
cutable pre- and postconditions; these respectively serving as test filters
and test oracles. In this paper, we propose the integration of search-based
techniques—along the lines of Tracey—to try and guide the tool towards
input data that leads to violations of the postconditions present in the
code; input data that random testing alone might miss, or take longer
to find. Furthermore, we propose to minimise the performance impact of
this extension by applying GPU programming to amenable parts of the
computation.

1 Introduction

Automated random testing has become widely used, in part because it is inex-
pensive to run, relatively simple to implement, and most importantly has been
demonstrated to be effective at finding bugs in programs; the technique having
been implemented in several testing frameworks including AutoTest [7], JCrasher
[3], and Randoop [8]. Using random testing comes with the cost of only using
straightforward strategies, and in particular, not leveraging information from
previous executions or specifications that—if provided—might otherwise help
guide towards test data revealing undiscovered bugs.

The AutoTest framework targets programs written in the object-oriented
language Eiffel, which natively supports contracts [6], i.e. executable pre- and
postconditions for routines (although the framework could be adapted to other
contract-equipped languages such as Java with JML). Contracts go hand-in-
hand with random testing, with preconditions serving as filters for test data,
and postconditions serving as test oracles. Furthermore, there are techniques to
guide the selection of inputs towards ones that satisfy preconditions, e.g. the
precondition-satisfaction strategy of AutoTest [12]. We claim in this short paper
however that there is still more to be gained from contracts in automated testing.
In particular, we propose that contracts are ideal for integration with search-
based techniques for test data generation [5]; passing tests could be “measured”
against how close they are to violating the postconditions, with fitness functions
then favouring input data that optimises this measure. This strategy exploits

ready-to-use contracts to focus the generation of test data towards objects that
get closer to violating postconditions, hence possibly revealing bugs that random
testing alone might miss, or take longer to find.

Applying search to test data generation is of course a computationally more
expensive task—whilst the envisaged techniques might reveal individual bugs
that random testing might miss, the approach quickly loses appeal if the ratio
of bugs encountered over time suffers. Hence, we propose to investigate how
to implement the computationally expensive parts on modern GPU devices,
following on from previous work in the search community (e.g. [13]).

The rest of the paper is structured as follows: Section 2 provides an overview
of AutoTest and how search-based techniques might be applied; Section 3 spec-
ulates on measuring how “close” input data is to deriving outputs that vio-
late postconditions; Section 4 discusses the application of GPU computation to
search; and Section 5 outlines our plans and concludes.

2 Extending the AutoTest Workflow

Having introduced the idea of AutoTest in the previous section, we illustrate
its workflow via a simple example. Consider the square root routine in List-
ing 1; implementation details are not given, but we provide its contract. The
precondition, given after require, expresses that the input is non-negative; the
postcondition, given after ensure, expresses the same. Recall that in AutoTest,
preconditions are filters and postconditions are oracles. Hence in this example,
sqrt is only tested on non-negative inputs, and any negative output indicates
that its implementation does not meet its specification.

sqrt (a : DOUBLE) : DOUBLE
require

a >= 0
ensure

Result >= 0
end

Listing 1: Square root contracts

The current workflow of AutoTest is roughly as follows: firstly, random in-
puts satisfying the routine’s precondition are generated. Secondly, the routine is
executed on the generated data. If there is a postcondition violation, then the
test fails and is recorded. Otherwise, the test passes. The overall picture is shown
in Figure 1.

Fig. 1. High-level overview of the AutoTest workflow

This workflow however does not take into account information from successful
test cases. Currently, we can say that they satisfied the test oracle; but more
interestingly, can we measure how “close” they came to failing it, and use this
information in search to derive input data that gets even closer? A high-level
picture of the proposed extension to AutoTest is shown in Figure 2. We discuss
the issues of search and measuring “closeness” in the following section.

Fig. 2. High-level overview of the proposed extension to the AutoTest workflow

We remark that search was applied to AutoTest previously in [10]; however,
their approach differs in that they use genetic algorithms to generate an effi-
cient testing strategy by evolving random ones. Other authors [2] have suggested
that condition coverage on postconditions—in a testing tool for Java programs
equipped with contracts—seems promising in generating test data, but as far as
we know, did not publish implementations or evaluations of such algorithms.

3 Optimising Postcondition Violations

A key part of our proposal involves evaluating how “close” input data is to
deriving a postcondition violation. We propose to follow Tracey [11], who defined
objective functions for logical connectives and relations over data of primitive
types. The concepts can be applied to similarly simple contracts, so we illustrate
with an example (based on the counter algorithm presented in [11,5]). A faulty
wrapping counter is shown in Listing 2. It is supposed to take an integer between
0 and 10 (see the precondition), returning that integer incremented by 1 if it was
less than 10, and 0 otherwise (see the postcondition).

We can negate the postcondition, and add it in conjunction to the precondi-
tion to form a constraint only satisfiable by input data that derives a fault; for
example:

(n ≥ 0 ∨ n ≤ 10) ∧ ¬((n = 10→ Result = 0) ∧ (n 6= 10→ Result = n + 1)).

We can apply Tracey’s objective functions to the relations and connectives of the
constraint, yielding a value indicating the “closeness” to satisfying it (smaller
values indicating that we are closer). For example, for relations a = b, we can
define obj(a = b) to return the absolute difference between the values of a and
b. Other relational predicates can be measured in a similar fashion. Objective
functions are defined inductively for logical connectives. For example, consider

cyclic_increment (n : INTEGER) : INTEGER
require

n >= 0 and n <= 10
do

i f (n > 10) then
Result := 0

else
Result := n + 1

end
ensure

(n = 10 implies Result = 0) and (n /= 10 implies Result = n + 1)
end

Listing 2: Faulty wrapping counter

the formula a∨b. A suitable definition of obj(a∨b) would be min(obj(a), obj(b)),
i.e. the minimum value of the two parameters. With a fitness function including
such a measure, we hope to apply metaheuristic search techniques [4], optimising
the search towards input data that gets closer to violating postconditions (i.e.
revealing bugs).

In our wrapping counter example, the smallest output of the objective func-
tion should be yielded for n = 10, since the implementation incorrectly incre-
ments the counter for this value.

For real object-oriented programs, we encounter the challenge of hidden
states: objects tend to conceal their implementation details. For example, a
routine of a bounded buffer might assert in its postcondition that the buffer
is not full. Expressed as buffer.count < buffer.size, we can apply objective
functions as we have described. However, the postcondition might instead be
expressed as not buffer.is_full, i.e. a Boolean query. Boolean queries are not
informative for metaheuristic search because of their “all or nothing” nature. In
this example, we cannot distinguish between a buffer that is completely empty
and another that is close to being full. Postconditions containing Boolean queries
should be transformed into equivalent postconditions that are more amenable
for testing. A solution proposed by [1] is to “expand” Boolean queries using
their specifications; an approach compatible with our contract-based one. For
example, the postcondition of is_full might express that the result is true if
and only if count >= size; this being an assertion to which objective functions
can be applied more successfully.

4 Performance Considerations

The ideas described in the previous sections do not come for free. Additional
computation increases the running time of the tool, and may adversely affect the
ratio of bugs found over time. In order to keep the performance as reasonable as
possible, we propose to apply GPU computing to speed-up the computationally
intensive aspects of the search. Consider for example the family of genetic algo-
rithms (GAs). The population can be encoded as a numerical vector, and the
fitness function as a vector function f : Rn → R.

Essentially, the GA input can be represented as a matrix m× n, where m is
the population size, and n is the size of the chromosome vector. Thus, to evaluate
a fitness function, one just needs to apply some vector function to each matrix
row. A mutation operation (changing chromosomes of some species subset) can
also be performed row-wise. Crossover operation is also essentially row-based.

GPUs are very different to conventional CPUs. Whereas CPUs are designed
as general-purpose computing devices, with lots of optimisations like branch pre-
diction, multi-level caches, etc., the processing units of GPUs are much simpler.
A GPU’s processing unit cannot handle the processing of arbitrary data as effi-
ciently as CPUs can; they do not possess sophisticated hardware optimisations.
However, there are many more processing cores on a GPU device, compared to
the CPU. GPUs are tuned for data parallelism, implementing the SIMD (Single
Instruction - Multiple Data) processing model, allowing the execution of thou-
sands of threads in parallel. GPUs have proven to be extremely efficient with
matrix-style computations [9], providing a convincing speed-up of 2-3 orders of
magnitude.

GPU acceleration was used for the problem of minimising test suite size
in [13], and demonstrated that speed-ups of over 25x are possible using GPU
computing.

5 Research Plans and Conclusion

The proposed ideas—namely implementing search-based techniques to improve
the fault discovery rate of a contract-based random testing tool, and using GPU
acceleration to limit the performance hit—need to be carefully evaluated. While
we believe that search will enhance the quality of inputs in AutoTest, there are
several risks and challenges to be dealt with along the way to confirming or
disproving this hypothesis.

A first challenge is the previously mentioned implementation hiding in object-
oriented languges, that makes guided search ineffective without first transforming
Boolean queries into postconditions that are better suited for objective functions.
A second challenge: one should never forget that the goal of testing tools is to
reveal as many faults as possible. That is why the enhanced tool needs to be
tested against previously successful strategies, e.g. the precondition-satisfaction
strategy [12] of AutoTest.

Thirdly, some thought needs to be given as to the particular type of search
algorithm to apply (e.g. a genetic algorithm), and how to best encode the objects
and data on which these algorithms operate. The final choice will be determined
by the quality of inferred data and amenability to GPU-style computations. Fi-
nally, one needs to take into account, that GPU acceleration may be overwhelmed
by the additional overhead of copying data from main memory to the GPU, and
vice versa. Thus, GPU computing should only be applied to computationally
intensive parts of the proposed AutoTest workflow.

Acknowledgments. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291389,
the Hasler Foundation, and ETH (ETHIIRA). The authors would like to thank
Simon Poulding for helpful discussions.

References

1. Y. Cheon and M. Kim. A specification-based fitness function for evolutionary test-
ing of object-oriented programs. In Proc. Genetic and Evolutionary Computation
Conference (GECCO 2006), pages 1953–1954. ACM, 2006.

2. Y. Cheon, M. Kim, and A. Perumandla. A complete automation of unit testing
for Java programs. In Proc. International Conference on Software Engineering
Research and Practice (SERP 2005), pages 290–295. CSREA Press, 2005.

3. C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness tester for java.
Software: Practice and Experience, 34(11):1025–1050, 2004.

4. M. Harman. The current state and future of search based software engineering. In
Proc. Future of Software Engineering (FOSE 2007), pages 342–357. IEEE, 2007.

5. P. McMinn. Search-based software test data generation: a survey. Software Testing,
Verification and Reliability, 14(2):105–156, 2004.

6. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.
7. B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs that test

themselves. IEEE Computer, 42(9):46–55, 2009.
8. C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .NET with feedback-

directed random testing. In Proc. International Symposium on Software Testing
and Analysis (ISSTA 2008), pages 87–96. ACM, 2008.

9. S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In Proc. Symposium on Principles and Practice of Parallel
Programming (PPOPP 2008), pages 73–82. ACM, 2008.

10. L. S. Silva, Y. Wei, B. Meyer, and M. Oriol. Evotec: Evolving the best testing strat-
egy for contract-equipped programs. In Proc. Asia Pacific Software Engineering
Conference (APSEC 2011), pages 290–297, 2011.

11. N. J. Tracey. A Search-Based Automated Test-Data Generation Framework for
Safety-Critical Software. PhD thesis, The University of York, 2000.

12. Y. Wei, S. Gebhardt, M. Oriol, and B. Meyer. Satisfying test preconditions through
guided object selection. In Proc. International Conference on Software Testing,
Verification and Validation (ICST 2010), pages 303–312. IEEE, 2010.

13. S. Yoo, M. Harman, and S. Ur. Highly scalable multi objective test suite minimisa-
tion using graphics cards. In Proc. International Symposium on Search-Based Soft-
ware Engineering (SSBSE 2011), volume 6956 of LNCS, pages 219–236. Springer,
2011.

	Applying Search in an Automatic Contract-Based Testing Tool

