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1 Introduction

GP (for Graph Programs) is an experimental nondeterministic programming
language which allows for the manipulation of graphs at a high level of abstrac-
tion [11]. The program states of GP are directed labelled graphs. These are
manipulated directly via the application of (conditional) rule schemata, which
generalise double-pushout rules with expressions over labels and relabelling. In
contrast with graph grammars, the application of these rule schemata is directed
by a number of simple control constructs including sequential composition, con-
ditionals, and as-long-as-possible iteration. GP shields programmers at all times
from low-level implementation issues (e.g. graph representation), and with its
nondeterministic semantics, allows one to solve graph-like problems in a declar-
ative and natural way.

An important question to ask of any program is whether it is correct with
respect to its specification. For more traditional programming languages, verifi-
cation techniques to help answer this have been studied for many years [1]. But
a number of issues prevent these techniques being used for graph programs “out
of the box” (e.g. the state we must reason about is a graph, not a mapping from
variables to values). Fortunately, research into verifying graph transformations
is gaining momentum, with numerous verification approaches emerging in recent
years [15,2,9,3,8] (though typically focusing on sets of rules or graph grammars).
Recent work by Habel, Pennemann, and Rensink [5,6] contributed a weakest pre-
condition based verification framework for a language similar to GP, although
this language lacks important features like expressions as graph labels in rules.

2 Research Aims and Progress

Our research programme is concerned with the challenge of verifying graph pro-
grams using a Hoare-style approach, especially from a theoretical viewpoint so
as to provide the groundwork for later development of e.g. tool support, and
formalisations in theorem provers. The particular contributions we aim to make
in our thesis are discussed below.

Nested conditions with expressions. In [5,6], nested conditions are studied as an
appropriate graphical formalism for expressing and reasoning about structural
properties of graphs. However, in the context of GP, where graphs are labelled



over an infinite label alphabet and graph labels in rules contain expressions,
nested conditions are insufficient. For example, to express that a graph contains
an integer-labelled node, one would need the infinite condition ∃( 0 )∨∃( 1 )∨
∃( -1 ) ∨ ∃( 2 ) ∨ ∃( -2 ) ∨ · · · .

In [13,12], we added expressions and assignment constraints to yield nested
conditions with expressions (short E-conditions). E-conditions can be thought
of as finite representations of (usually) infinite nested conditions, and are shown
to be appropriate for reasoning about first-order properties of structure and la-
bels in the graphs of GP. For example, an E-condition equivalent to the infinite
nested condition earlier is ∃( x | type(x) = int), expressing that the variable x
must be instantiated with integer values. A similar approach was used earlier by
Orejas [10] for attributed graph constraints, but without e.g. the nesting allowed
in E-conditions. Despite the graphical nature of E-conditions, they are precise
(the formal definition is based on graph morphisms), and thus suitable for use
as an assertion language for GP.

Many-sorted predicate logic. In [14] we defined a many-sorted first-order predi-
cate logic for graphs, as an alternative assertion language to E-conditions. This
formalism avoids the need for graph morphisms and nesting, and is more familiar
to classical logic users. It is similar to Courcelle’s two-sorted graph logic [4] in
having sorts (types) for nodes and edges, but additionally has sorts for labels
(the semantic domain of which is infinite): these are organised into a hierarchy
of sorts corresponding to GP’s label subtypes. This hierarchy is used, for exam-
ple, to allow predicates such as equality to compare labels of any subtype, while
restricting operations such as addition to expressions that are of type integer.
We have shown that this logic is equivalent in power to E-conditions, and have
constructed translations from E-conditions to many-sorted formulae and vice
versa.

Hoare Logic. In [13,12] we proposed a Hoare-style calculus for partial correct-
ness proofs of graph programs, using E-conditions as the assertion language. We
demonstrated its use by proving properties of graph programs computing colour-
ings. In proving ⊢ {c} P {d} where P is a program and c, d are E-conditions,
from our soundness result, if P is executed on a graph satisfying c, then if a
graph results, it will satisfy d. Currently we are extending the proof rules to al-
low one to reason about both termination and freedom of failure. We require the
termination of loops to be shown outside of the calculus, by defining termination
functions # mapping graphs to naturals, and showing that executing loop bodies
(rule schemata sets) yields graphs for which # returns strictly smaller numbers.

Case studies and further work. We will demonstrate our techniques on larger
graph programs in potential application areas, e.g. in modelling pointer manip-
ulations as graph programs and verifying properties of them. Also, the chal-
lenges involved in formalising our Hoare logic in an interactive theorem prover
like Isabelle will be explored. Finally, we will discuss how our calculus could be



extended to integrate a stronger assertion language such as the HR conditions
of [7], which can express non-local properties.
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3. Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositional verification of
architectural refactorings. In Proc. Architecting Dependable Systems VI (WADS
2008), volume 5835, pages 308–333. Springer-Verlag, 2009.

4. Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 5.
Elsevier, 1990.

5. Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transforma-
tion systems relative to nested conditions. Mathematical Structures in Computer
Science, 19(2):245–296, 2009.

6. Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weakest precondi-
tions for high-level programs. In Proc. International Conference on Graph Trans-
formation (ICGT 2006), pages 445–460. Springer-Verlag, 2006.

7. Annegret Habel and Hendrik Radke. Expressiveness of graph conditions with vari-
ables. In Proc. Colloquium on Graph and Model Transformation on the Occasion
of the 65th Birthday of Hartmut Ehrig, volume 30 of Electronic Communications
of the EASST, 2010.

8. Barbara König and Javier Esparza. Verification of graph transformation systems
with context-free specifications. In Proc. Graph Transformations (ICGT 2010),
volume 6372, pages 107–122. Springer-Verlag, 2010.

9. Barbara König and Vitali Kozioura. Towards the verification of attributed graph
transformation systems. In Proc. Graph Transformations (ICGT 2008), volume
5214, pages 305–320. Springer-Verlag, 2008.

10. Fernando Orejas. Attributed graph constraints. In Proc. International Conference
on Graph Transformation (ICGT 2008), volume 5214, pages 274–288. Springer-
Verlag, 2008.

11. Detlef Plump. The graph programming language GP. In Proc. Algebraic Infor-
matics (CAI 2009), volume 5725, pages 99–122. Springer-Verlag, 2009.

12. Christopher M. Poskitt and Detlef Plump. A Hoare calculus for graph programs.
In Proc. International Conference on Graph Transformation (ICGT 2010), volume
6372, pages 139–154. Springer-Verlag, 2010.

13. Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph pro-
grams. Fundamenta Informaticae, 118(1-2):135–175, 2012.

14. Christopher M. Poskitt, Detlef Plump, and Annegret Habel. A many-sorted logic
for graph programs, 2012. Submitted for publication.
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