
Concurrency Patterns for Easier Robotic Coordination

Andrey Rusakov∗ Jiwon Shin∗ Bertrand Meyer∗†

∗Chair of Software Engineering, Department of Computer Science, ETH Zürich, Switzerland
†Software Engineering Lab, Innopolis University, Kazan, Russia

{andrey.rusakov, jiwon.shin, bertrand.meyer}@inf.ethz.ch

Abstract— Software design patterns are reusable solutions to
commonly occurring problems in software development. Grow-
ing complexity of robotics software increases the importance of
applying proper software engineering principles and methods
such as design patterns to robotics. Concurrency design patterns
are particularly interesting to robotics because robots often have
many components that can operate in parallel. However, there
has not yet been any established set of reusable concurrency
design patterns for robotics. For this purpose, we choose six
known concurrency patterns – Future, Periodic timer, Invoke
later, Active object, Cooperative cancellation, and Guarded sus-
pension. We demonstrate how these patterns could be used for
solving common robotic coordination tasks. We also discuss
advantages and disadvantages of the patterns and how existing
robotics programming frameworks can support them.

I. INTRODUCTION

In the early days of computer science, people focused
on developing algorithms. As software became more com-
plex, it became necessary to develop systematic methods
for handling software, giving birth to software engineering.
Software side of robotics is walking the same path. In the
early days of robotics, software aspect focused mainly on al-
gorithmic development; however, as robots and their software
become more complex, applying good software engineering
techniques to robotics software gains more importance. In
particular, the lessons, such as design patterns, that people
learned in software engineering can also benefit robotics.

Software design patterns are reusable solutions to com-
monly occurring problems in software development. Con-
currency patterns, which deal with the multi-threaded pro-
gramming paradigm, are particularly interesting to robotics
because robots often have many components that can operate
concurrently. Running these components concurrently would
enable robots to meet their full potential, but concurrent
programming requires additional knowledge from program-
mers and thus restricts the usage of concurrency in robotics
for non-specialists. Applying concurrency patterns would
ease the development of concurrent robotics software as
they provide templates for solving various problems using
concurrency even for novice programmers.

This paper provides an overview of six existing concur-
rency patterns that are useful solutions for common robotic
coordination tasks. The patterns – Future, Periodic timer,
Invoke later, Active object, Cooperative cancellation, and

This work was partially supported by the Hasler Foundation through
the Roboscoop project and by the European Research Council under the
European Union’s Seventh Framework Programme (ERC Grant no. 291389).

Guarded suspension – are chosen for their concurrent nature,
applicability to robotic coordination, and evidence of use
in existing robotics frameworks. The paper aims to help
programmers who are not yet experts in concurrency to
identify and then to apply one of the common concurrency-
based solutions for their applications on robotic coordination.

The rest of the paper is organized as follows: After
presenting related work in Section II, it proceeds with a
general description of concurrency approach for robotics
in Section III. Then the paper presents and describes in
detail a number of concurrency patterns related to robotic
coordination in Section IV. Section V discusses advantages
and disadvantages of using those patterns for robotic tasks.
The paper concludes with final remarks in Section VI.

II. RELATED WORK

Proper application of software engineering principles and
methods would help robotics programmers bridge the gap
between the growing complexity of robotics software and
existing robotics approaches. Developing useful robotics li-
braries [1], [2] and frameworks [3], [4] is one way of sharing
and accumulating robotics knowledge. The idea of reusing
existing software parts has evolved into Component-Based
Software Engineering (CBSE), where composing systems
from off-the-shelf and custom-built components is preferred
over traditional programming [5]. However, CBSE requires
standardization of components’ interfaces – a difficult goal
to achieve for the vast amount of existing solutions.

Another way to tackle robotics software complexity could
be using design patterns as in general computer science.
“Design Patterns: Elements of Reusable Object-Oriented
Software” by Gamma et al. [6] is a great digest of object-
oriented solutions that many programmers have reused. Later
work by Fowler [7] provides more design patterns for appli-
cations in enterprise domain. The patterns from these books
are, however, developed for general purpose programming.
Therefore, although many of those object-oriented patterns
can be applied to robotics, they do not reflect any struc-
tural robotics specifics such as, for example, Sense-Plan-Act
control loop, or a behavior-based architecture, or in general,
having a hardware part that interacts with the real world.

On the robotics side, there has been little work on intro-
ducing design patterns to robotics. The only notable work
is by Graves et al. [8] on design patterns for behavior-
based robotics. Its applicability is, however, limited to the
class of man-machine interaction. It is important to note that

behavior-based robotic architectures, such as a subsumption
architecture by Brooks [9], are essentially concurrent, and
thus could benefit from concurrency patterns.

Concurrency patterns have been developed for general
programming, and implementations exist in different object-
oriented programming languages [10], [11], [12], [13]. Leijen
et al. [14] shows results of developing a task parallel library
using concurrency patterns. Russel et al. [15] identifies a
collection of control-flow patterns, many of which have con-
current nature and could be helpful in robotic coordination.
The idea of coupling parallel tasks with robotics field has
also been proposed [16]. In the paper, the authors share their
experience of teaching three concurrency patterns Pipeline,
Delta, and Black Hole and applying the knowledge on the
small robotics setup. However, the patterns considered in
the paper are quite simple and more applicable to data
processing than to robotic coordination. Secondly, the paper
emphasizes the educational aspect, where robotics is one of
the encouraging factors to learn concurrency, not vice versa.
Therefore, it is insufficient to serve as a reference.

Mentioned attempts of combining software design patterns
with the field of robotics demonstrate a need for establishing
a set of pattern solutions in robotics programming. To
our knowledge, there is no widely accepted reference for
design patterns in robotics, and certainly not for concurrency
patterns in robotic coordination. This work demonstrates how
concurrency patterns could benefit robotics programming, es-
pecially for tasks of robotic coordination. We also speculate
about how modern programming robotics frameworks can
support proposed solutions.

III. CONCURRENCY IN ROBOTICS

Many robots are inherently concurrent; they have many
sensors and actuators functioning in parallel, often executing
several tasks simultaneously. In such situations, robotics
applications could benefit from the use of concurrency.
Unfortunately, concurrent programming requires additional
expertise and is usually more difficult than sequential pro-
gramming due to non-determinism and specific pitfalls such
as data races or deadlocks. This does not mean concurrency
should be ignored by roboticists, especially by non-experts
in programming. Concurrency brings easier implementation
of simultaneous execution of behaviors and more natural
reasoning of the system, thus we can empower roboticists if
modern approaches, tools and frameworks together support
concurrency and we utilize accumulated knowledge such as
design patterns.

Most robotics applications are complex systems where
parts can operate concurrently on many different levels.
Here we distinguish between data-centric applications and
task-centric applications of concurrency. Examples of data-
centric applications include pipeline and filtering, where data
and its processing play the main role. In contrast, task-
centric applications are built with an idea of multiple cross-
dependent tasks taking place at the same time. A represen-
tative example of a task-centric application in robotics is

the use of behavior-based architectures such as subsumption
architecture by Brooks [9].

Another widely used approach to robotic coordination is
the event-driven programming [17] where external actions
(events) determine the execution flow. Event can represent a
sensor value or a message from the current or other threads.
Every time an event occurs, it triggers associated callback
functions or event handlers. Concurrency and event-driven
approaches are not mutually exclusive – they can comple-
ment each other, such as event loop can be implemented
with multiple threads to handle callbacks concurrently.

In general, concurrency could benefit many components
of robotic applications. In this paper, we focus on task-
centric concurrency and a selection of concurrency patterns
as described in Section IV.

Frameworks
Many robotics programming frameworks were proposed to

simplify creation of robotics applications. We chose ROS [4],
Urbi [18] and Roboscoop [19] to discover their potential for
implementing considered patterns. All three frameworks have
concurrency support in their underlying languages – C++ in
ROS, urbiscript in Urbi and SCOOP in Roboscoop.

ROS is a popular robotics middleware, which has im-
plementations in several programming languages including
C++. ROS represents robotics system as a set of executable
nodes and uses publish/subscribe and service-based message-
passing model to communicate between them. ROS is essen-
tially event-driven; it uses its messages as events to execute
callback functions. Although ROS is not positioning itself
as a concurrency framework, each ROS node can use C++
features for concurrency. ROS also provides MultiThread-
edSpinner and AsyncSpinner classes to handle callbacks
concurrently. In addition to communication facilities, ROS
provides a wide variety of robotics libraries or stacks.

Urbi is a software platform for robotics, which in addition
to the C++ support, introduces urbiscript – a parallel event-
based object-oriented script language. urbiscript is used as
an orchestration language – it provides tools and syntactic
extensions for coordination and concurrency support. Among
features of urbiscript are a support for events including
conditional events and a tagging mechanism that allows to
tag sections of code and manipulate them with corresponding
Tag objects. Urbi is interoperable with ROS.

Roboscoop is a concurrency robotics framework built
on SCOOP – Simple Concurrent Object-Oriented Program-
ming[20]. SCOOP model provides simple and safe con-
currency and eliminates data races by construction. Along
with concurrency, SCOOP supports event-driven approach.
Roboscoop is a robotics library written in the Eiffel program-
ming language. Through external calls, Roboscoop facili-
tates reuse of existing C++ code such as robotics libraries. In
addition, Roboscoop provides interface with ROS, thus any
ROS applications can also be integrated into Roboscoop.

IV. PATTERNS
A design pattern is a description of a known design

problem brought together with good practices for resolving

it. Software design patterns, however, do not provide any
universal reusable components; they only explain a structure
and the way the solution should be implemented. This differs
design patterns from the CBSE in addressing an integration
problem. An integration problem comes from complexity of
using multiple different libraries and solutions in a single
robotics system. Unlike components, patterns do not provide
ready-to-use building blocks – the solution often needs to
be programmed for each individual case over again. Despite
this, design patterns help to accumulate common knowledge
for the field and patterns’ names become a terminology for
programmers. Patterns ease identification of common design
problems and the application of a solution to each problem.
Also, they do not have to be standardized and thus are
more flexible than components, since design patterns are not
bound to a particular interface, framework or a programming
language.

This section presents several concurrency design patterns,
namely Future, Periodic timer, Invoke later, Active object,
Cooperative cancellation, Guarded suspension. The criteria
for selection included 1) concurrent nature of patterns; 2)
applicability to robotic coordination; 3) evidence of use
in existing robotics frameworks. We do not claim that the
provided list of patterns is exhaustive with respect to these
criteria.

We demonstrate each of the patterns according to the
following structure:

1) intent;
2) applicability to robotics coordination;
3) possible applications in robotics;
4) use in robotics frameworks;
5) related patterns;
6) references to implementation.
The structure above is a subset of the template for

describing patterns provided by Gamma et al. [6]. The
additional value of the above list is that it takes into account
robotics aspects including examples, possible applications
and applicability to commonly used robotics architectures.
We provide sample code for each pattern and references
to implementation. In addition, to emphasize practical use-
fulness, we demonstrate how they are exploited in existing
robotics frameworks, namely, ROS, Urbi and Roboscoop.

A. Future

1) Intent: Start a task asynchronously in the background
and provide a “hook” for retrieving the result later.

2) Applicability: Use the Future pattern when a time
consuming computation may run in parallel, while a robot
still needs to execute lower-level control.

3) Possible applications: Object recognition tasks can run
in the background of an exploration process during the search
and rescue scenario. In general, the pattern can be used in
tiered architectures for running deliberation tasks.

4) In frameworks: Roboscoop uses futures implicitly
through the wait by necessity synchronization mechanism
of SCOOP. C++11 standard has a language support for
futures [21, p. 1191] with the std::future<T> templated

class. However, we could not find any use of it in current
ROS implementation nor in Urbi. A simplified C++ imple-
mentation of the aforementioned object recognition example
would look as follows:
int recognizedObjectId () { ...
} // Object recognition .

std :: future<int> f = std :: async (recognizedObjectId) ;
// Continue with other computations and retrieve the result later :
int id = f . get () ;

5) Related patterns: Future can be used in the implemen-
tation of Active object.

6) References: [11, p. 332] [14].

B. Periodic timer
1) Intent: Repeat a task or an iteration of a task regularly

in a predefined interval of time.
2) Applicability: Use the Periodic timer pattern when

a task needs to be applied repeatedly in parallel with the
currently running task.

3) Possible applications: Periodic timer can be used for
programming a robot which checks the battery level every
minute, or for another robot that uses two sensors with suffi-
ciently different update rates. In general, several independent
control loops with different predefined frequencies can be
implemented with this pattern.

4) In frameworks: In ROS, timer can be implemented
either with the ros::Timer class, or with the ros::Duration
class by manually calling a sleep() function after each
iteration. However, for concurrency support, programmers
need to use the multi-threaded version of ROS spinner, as it
is shown in the following code:
int getBatteryLevel (){ ...
} // Request to the hardware.

void checkBatteryLevel (const ros :: TimerEvent& e) {
if (getBatteryLevel () < 10) playAlarm();

}
ros :: NodeHandle n;
ros :: Timer t ; // Create a timer and assign a callback function .
t = n. createTimer (ros :: Duration(60) , checkBatteryLevel , false) ;
ros :: AsyncSpinner spinner (4) ; // Create a spinner using 4 threads .
spinner . start () ; // Start listening for callbacks .

Roboscoop provides the Timer class to run separated tasks re-
peatedly. Urbi facilitates it with the every syntactic construct,
which can be assigned to a repeatable task. every receives a
duration between task executions as a parameter.

5) Related patterns: Invoke later pattern can be imple-
mented through the current pattern.

6) References: [11, p. 298].

C. Invoke later
1) Intent: Run a task after a certain delay.
2) Applicability: Use Invoke later when execution of an

additional task taking place in parallel needs to be delayed.
3) Possible applications: Invoke later may be useful in

a scenario when a robot returns to the base if nothing new
was explored in last 5 minutes. The pattern can be used
for simulating initialization time in robotic systems with no
feedback. Another example is switching to a stand-by mode
or calling emergency when the robot got stuck for some time.

4) In frameworks: In ROS, the ros::Timer class can be
used with an additional parameter for stopping the timer after
the first execution. In Urbi, the only way we found is to start
a task in a parallel section of code with a sleep() function
right before it. Roboscoop provides the Invoker class.

5) Related patterns: Invoke later can be implemented via
a single-iteration Periodic timer.

6) References: [11, p. 296].

D. Active object

1) Intent: Associate an object with its own thread and
decouple method invocation from method execution in order
to simplify access to the object from other threads. Provide
the client interface that only forwards calls to the active
object, which resides on a separate thread and is responsible
for scheduling and running the execution.

2) Applicability: Use the Active object pattern when
robot’s parts such as actuators and sensors are represented
as active subsystems.

3) Possible applications: A robotic leg that is accessible
during the execution of a movement control, to provide
its coordinates can be implemented as an Active object. In
general, the pattern can be used for representing actuators,
sensors and subsystems of the robot as Active objects.

4) In frameworks: Roboscoop uses one of the main
concurrency mechanisms of SCOOP called separate call,
which corresponds to the Active object pattern. In SCOOP,
for its lifetime, each object is associated with its handler - an
abstract processor usually implemented as a thread. ROS and
Urbi do not provide off-the-shelf support for Active object.

The following code demonstrates on the robotic leg ex-
ample how the pattern can be implemented in C++. The
LegProxy class is the only interface available to the client.
It contains the methods available on the robotic leg but does
not implement them. Instead, the proxy class creates method
requests and enqueues them using Scheduler. To the client,
proxy provides the future objects for retrieving results later.

class LegProxy{
private :

Scheduler scheduler ; // Object that manages the methods queue.
Servant servant ; // Object where methods are implemented.

public :
// getX() method can be implemented similarly .
shared ptr<Future<bool>> move(int x, int y){

shared ptr<Future<bool>> f(new Future<bool>());
shared ptr<MethodRequest> mr(new MoveRequest(x, y, f, servant));
scheduler .enqueue(mr);
return f ;

}
};

Two auxiliary classes Mutex and Future are used to support
the pattern’s mechanisms. MethodRequest and its descendant
classes MoveRequest and XRequest are used to encapsulate
the calls to Servant, who is the real executor of the Leg-
Proxy’s methods. The guard() method in these classes is
used for enforcing the synchronization policies, which can
be different for each method.

class MethodRequest { // Base class for all method requests .
public :

virtual bool guard() = 0;
virtual void execute () = 0;

};

// XRequest class can be implemented similarly .
class MoveRequest : public MethodRequest {
private :

shared ptr<Future<bool>> f ptr;
Servant &servant;
static Mutex mtx;
int xVal ; int yVal ;

public :
MoveRequest(int x , int y , shared ptr<Future<bool>> res,

Servant& sr) : servant (sr) , f ptr (res) { xVal = x; yVal = y;}
bool guard() { return !mtx. isLocked () ;} // One request at the time.
void execute () {

mtx. lock () ;
f ptr −>set(servant.move(xVal, yVal)) ;
mtx.unlock () ;

}};

Servant is the class where all the methods are implemented.
class Servant {
public :

int getX () { ...
} // Request to the hardware.
bool move(int x , int y) { ...
} // Move the leg. Return true if success .

};

ActivationQueue is a container for method requests. Activa-
tionQueue is managed by Scheduler. The Scheduler runs its
own thread. It keeps track of the available method requests
in the ActivationQueue and executes applicable requests
asynchronously in separate threads. The results of execution
can be accessed through the future objects in the LegProxy
class. For the current example of a robotic leg, the Active
object pattern can be used as follows:

LegProxy leg ;
shared ptr<Future<bool>> fmove = leg.move(100, 200);
shared ptr<Future<int>> fx = leg.getX();

while (!(fx−>isAvalaible())){}
cout << ‘‘x = ’’ << fx−>get() << endl;

5) Related patterns: Inside the implementation of Active
object, the Future pattern is often used to return the result
of the method, if any. Periodic timer can be implemented as
an Active object which repeatedly invokes the same method.

6) References: [10, p. 369], [22].

E. Cooperative cancellation
1) Intent: Ensure that the task remains in a valid state

after cancellation. Send the cancellation request via a shared
cancellation token object.

2) Applicability: Use the Cooperative cancellation pat-
tern when there is a need to safely cancel possibly concur-
rently running tasks and leave the system in a correct state.

3) Possible applications: Cooperative cancellation can
be used for emergency stop for a robot. Another possible
application is switching between types of low-level control
depending on higher level plan. In general, in tiered archi-
tectures, the pattern can be useful for stopping lower level
tasks. Implementing cancellable control loops can also be
done with the help of the Cooperative cancellation pattern.

4) In frameworks: ROS contains the actionlib stack [23],
which implements standardized interface for preemptable
tasks. Also, for canceling and shutting down the whole ROS
application, two methods can be used: ros::isShuttingDown()
and ros::ok(). Roboscoop offers the StopSignaler class to be
used as a cancellation token for Cooperative cancellation.
Urbi handles the cancellation issue differently – it uses a
special leave event that occurs each time a task represented
by a section of code is left. leave is also fired when
execution of a task is canceled, so programmers can use it
to trigger the clean-up. In general, a cancelable control loop
implementation looks in C++ as follows:
// Need to specify next two functions for each particular task .
void iterationOfControl () { ... }
void stopSafely () { ... }

void startControl (CancellationToken token) { // Control loop .
while (! token . isStopRequested)

iterationOfControl () ;
stopSafely () ;

}
CancellationToken cancel = new CancellationToken() ;
startControl (cancel) ; // Starting the control loop .
cancel . requestStop () ; // Triggering stop later by another thread .

5) Related patterns: None.
6) References: [24].

F. Guarded suspension
Robotic tasks that jointly perform desired robotic behav-

iors can often be expressed as multiple interleaving actions
applied “at the right time”, where “right time” means certain
conditions to be met before an action starts, i.e., the action’s
precondition. In sequential case, actions are executed step by
step, and the preconditions correspond to having all previous
steps done. When actions can be executed concurrently,
it is harder to follow the execution flow; however, using
preconditions in a concurrent context, we can define for each
action an important synchronization point and therefore, ease
the coordination of tasks while still receiving the benefits of
parallel execution.

Concurrency, while beneficial, is not without a caveat.
When actions are applied concurrently to robotic parts such
as sensors or actuators, they may overwrite the effect of each
other, resulting in a deadlock. To avoid data races and to
prevent this type of deadlocks, exclusive access to shared
resources must be guaranteed. The Guarded suspension
pattern is used for this purpose.

1) Intent: Execute an action on a shared resource only
when the lock is acquired on the resource and the precondi-
tion for the action is satisfied.

2) Applicability: Use the Guarded suspension pattern
when a desired robotic behavior can be expressed with a
set of actions and their preconditions.

3) Possible applications: An application of a humanoid
robot that follows with its eyes a ball object only when
the ball is visible can be implemented with the Guarded
suspension pattern. In general, the pattern can be used
for robotic coordination that involves multiple sensors and
actuators repeatedly changing their states, such as generating
gaits or movement patterns.

4) In frameworks: Roboscoop uses the underlying
SCOOP model’s synchronization mechanism called wait
conditions. This mechanism guarantees exclusive access to
the arguments of the method call, and the execution of the
method’s body starts only when the corresponding precon-
dition is satisfied. Urbi allows conditional events with the at
syntactic construct, but for acquiring a lock on the object,
one should manually use Mutex objects. ROS has neither
automatic precondition checks nor automatic locks on shared
resources, which means the whole pattern must be imple-
mented manually. The following C++ code implements the
pattern for the humanoid robot example above. We assume
a moving ball that can provide (x,y) coordinates, which is
visible when its coordinates are within the range of -100
and 100. We assume functions followBall and updateBall
are executed by different threads.

class Eye {
private :

bool isBallVisible ;
std :: mutex m; std :: condition variable cv ;

public :
void followBall (Ball ball) {

std :: unique lock<std::mutex> lk(m, std :: try to lock) ;
std :: lock (lk) ; // Automatically released when out of scope.
cv . wait(lk , []{return isBallVisible ;}) ;
// Code for moving the eye here .

}
void updateBall (Ball ball) {

std :: unique lock<std::mutex> lk(m, std :: try to lock) ;
std :: lock (lk) ; // Automatically released when out of scope.
isBallVisible = abs(ball .x) < 100 && abs(ball.y) < 100;
cv . notify all () ;

}};

5) Related patterns: None.
6) References: [11, p. 183], [12, p. 445], [20, p. 68].

V. DISCUSSION

The previous section provided a number of concurrency
patterns that can solve commonly occurring robotics prob-
lems. In this section, we summarize the value of those
patterns for robotic coordination and discuss the aspects
to which robotics programmers should pay attention when
implementing these concurrency patterns.

Future, Periodic timer, and Invoke later are useful patterns
for coordination of time-related tasks where proactive, peri-
odic, or delayed execution takes place. The fact that all three
frameworks – ROS, Urbi, and Roboscoop – support the func-
tionality attests to its importance in robotics. On the negative
side, these patterns could make the execution flow obscure
and require “concurrent” thinking from programmers.

The main purpose of using the Active object pattern is
to increase understandability of the robotic system. Treating
robot’s parts as active objects and putting the burden of
synchronization under the hood of the pattern provides
a clearer client interface for each object. This simplifies
concurrent thinking of robot’s parts, bringing coordination
closer to the sequential case. On the other side, using a
separated thread for each object may result in squandering
computational resources when many objects are involved.
In general, the pattern is tedious to implement from scratch,

but currently, only Roboscoop provides native support for the
mechanism. The pattern would be more widely used when
other frameworks also provide built-in support.

Cancellation of concurrently running robotic behaviors is
another important and popular coordination task. It is no
surprise that all three frameworks support it in one form
or another. Applying Cooperative cancellation provides a
safe solution that can be applied at different levels, from
a primitive control to a deliberation level of applications.
However, this approach assumes designing each task with the
cancellation scenario in mind, which may cause difficulty.

Coordination using Guarded suspension enables robotics
programmers to express desired behaviors in terms of pre-
conditions. Of the three frameworks, only Roboscoop sup-
ports this mechanism natively, thanks to its base language
SCOOP. An advantage of Guarded suspension is a natu-
ral translation of robotic behaviors into source code [25].
However, naive implementation of this pattern may result in
wasting computational resources since corresponding threads
are not doing any active work.

There are several benefits to using concurrency patterns
for robotic coordination. Reasonably-chosen and properly-
implemented design patterns ensure flexibility and extend-
ability of the system, thus improving its software qual-
ity. Concurrency patterns can also help programmers avoid
common concurrency pitfalls. In some cases, concurrency
eases implementation of tasks that are otherwise hard to
implement, e.g., simultaneous execution of behaviors. This
is particularly useful for robotics because it is often easier
to reason about a robotic system as a set of concurrently
running parts and their tasks, especially when it comes to
applications on coordination.

Despite the benefits, patterns should be used with care.
Although patterns can improve software design, they do not
necessarily result in better design. Improvements strongly
depend on suitability of the patterns for each particular appli-
cation and context. Applying patterns usually increases com-
plexity of the application because patterns often introduce
additional components to the system, which can result in
over-engineering and additional debugging costs, since pat-
terns may significantly change the execution flow. Also,
using concurrency brings non-determinism and additional
concurrency-related issues, such as data races or deadlocks.
Consequently, concurrent applications are usually harder to
write, test, and debug than sequential applications. In general,
because of additional design components, patterns often
introduce an overhead to application performance. In case
of concurrency patterns for task-centric applications, perfor-
mance is sacrificed for the sake of easier coordination. This
means that the gain in performance depends on the synchro-
nization costs, and for complex coordination tasks, the gain
can be sufficiently lower than in data-centric applications.

VI. CONCLUSION

This paper presented six different concurrency patterns and
explained how the patterns can be used in robotic coordi-
nation. Concurrency can greatly simplify robotic coordina-

tion, and concurrency patterns can ease the implementation
significantly, especially when supported by programming
frameworks. However, there has not yet been any established
set of reusable concurrency design patterns for robotics. We
propose this paper as a starting point for bringing design
patterns to robotics and thus minimizing the gap between
robotics and software engineering.

REFERENCES

[1] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
IEEE Int. Conf. on Robotics and Automation. IEEE, 2011, pp. 1–4.

[2] M. Rickert, “Efficient motion planning for intuitive task execution in
modular manipulation systems,” Dissertation, Technische Universität
München, Munich, Germany, 2011.

[3] J.-C. Baillie, “URBI: towards a universal robotic low-level program-
ming language,” in 2005 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2005, pp. 820–825.

[4] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in 2009 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2009.

[5] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck,
“Towards component-based robotics,” in 2005 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2005, pp. 163–168.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[7] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[8] A. R. Graves and C. Czarnecki, “Design patterns for behavior-
based robotics,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Trans. on, vol. 30, no. 1, pp. 36–41, 2000.

[9] R. A. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE J. of, vol. 2, no. 1, pp. 14–23, 1986.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture Volume 2: Patterns for Concurrent and
Networked Objects. John Wiley & Sons, 2000.

[11] D. Lea, Concurrent programming in Java: design principles and
patterns. Addison-Wesley Professional, 2000.

[12] P. Kuchana, Software architecture design patterns in Java. CRC
Press, 2004.

[13] R. Schmocker and A. Kolesnichenko, Concurrency Patterns in
SCOOP. ETH-Zürich, 2014.

[14] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel
library,” in Acm Sigplan Notices, vol. 44, no. 10. ACM, 2009, pp.
227–242.

[15] N. Russell, A. H. Ter Hofstede, and N. Mulyar, “Workflow controlflow
patterns: A revised view,” 2006.

[16] M. C. Jadud, J. Simpson, and C. L. Jacobsen, “Patterns for program-
ming in parallel, pedagogically,” in ACM SIGCSE Bulletin, vol. 40,
no. 1. ACM, 2008, pp. 231–235.

[17] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and R. Morris,
“Event-driven programming for robust software,” in Proceedings of
the 10th workshop on ACM SIGOPS European workshop. ACM,
2002, pp. 186–189.

[18] J.-C. Baillie, A. Demaille, M. Nottale, and Q. Hocquet, “Tag: Job
control in urbiscript,” in 5th National Conf. on Control Architecture
of Robots, 2010.

[19] A. Rusakov, J. Shin, and B. Meyer, “Simple concurrency for robotics
with the Roboscoop framework,” in 2014 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2014.

[20] P. Nienaltowski, “Practical framework for contract-based concurrent
object-oriented programming,” Ph.D. dissertation, ETH Zurich, 2007.

[21] “Programming languages – C++.” [Online]. Available:
https://isocpp.org/files/papers/N3690.pdf

[22] R. G. Lavender and D. C. Schmidt, “Active object–an object behavioral
pattern for concurrent programming,” 1995.

[23] [Online]. Available: http://wiki.ros.org/actionlib/
[24] A. Kolesnichenko, S. Nanz, and B. Meyer, “How to cancel a task,” in

Proceedings of the 2013 Int. Conf. on Multicore Software Engineering,
Performance, and Tools (MUSEPAT), 2013.

[25] G. Ramanathan, B. Morandi, S. West, S. Nanz, and B. Meyer,
“Deriving concurrent control software from behavioral specifications,”
in 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010.

