Strengthening Eiffel Contracts using Models

Bernd Schoeller
Swiss Federal Institute of Technology, Chair of Software Engineering
CH-8092 Zurich — Switzerland
bernd.schoeller @inf.ethz.ch

Abstract

Creating proper contracts as interface specifications for software compo-
nents is a key quality for the usability of the component in various contexts.
A major goal of software engineering is to extend the expressiveness of these
contracts and to enable component developers to use contracts for their own
benefit with as little overhead as possible. One source for this overhead might be
changes in language or paradigm.

A powerful possibility to express complex contracts for components is the use
of behavioral models. This paper explores how these model specifications can be
introduced into the Eiffel language, exploiting only standard language features
and mechanisms. It also examines how these model-based contracts can be used
to derive proof obligations as a starting point for formal verification.

1 Introduction

Specification of software components is an important but difficult task. It is important
as it enables the client of a software component to understand the requirements and
benefits he will get by using the component. Also, specifications make it possible for
the component’s creator to hide the implementation from his clients. This decoupling
of the client’s and the creator’s view on a component creates the freedom needed for
reuse and evolution of the component.

But specification is difficult as it is very hard not to introduce errors into the spec-
ifications. Components can be under-specified, leaving space for misleading assump-
tions on the client or author side of a component. Or the component is over-specified,
removing the freedom for reuse and evolution or creating a component that is impos-
sible to implement correctly.

The frame problem [1] is the best known specification problem. It describes the
whole range of problems connected to describing what has not changed during the
execution of an operation.

But the frame problem is not the only problem when dealing with specifications.
Others include the possibility to introduce errors into the specification, to create a “too
implementation oriented” specification, to introduce contradictions or too strong or too
weak specifications.

It cannot be expected that all problems connected to correct specifications will be
solved in the near future. Still, a lot can be gained by creating even suboptimal spec-



ifications. Specifications can already be used for model checking, formal verification
of implementations, debugging as well as for for documentation purposes.

In the context of software components, the documentation purpose of contracts is
significant. Software components are independent items of deployment that enable
developers reuse of code in changing contexts. Usually, the author is not the same per-
son as the user of a component. Therefore the documentation is major communication
instrument between the author and the client. High-quality documentation can remove
ambiguity and avoid misunderstandings.

Software engineering should help developers in creating good specifications for
their components. A key to the success of this endeavor is to provide software devel-
opers with methods and tools that enable developers to express their specifications in
an easy and straight-forward way. Optimally, this is done before or at the time the code
is created in the same programming language as the code itself.

1.1 Model-based Reasoning

One possibility for expressing the specifications is to relate the operations that the user
of the component can invoke to transformations of models for the component. Models
are mathematical constructs that can capture the structural semantics of the data stored
in the component. Examples for models are sequences, sets, trees, graphs, integers —
but also other properties like value-types or patterns.

The idea of using models to reason about program execution dates back to the
very early days of program verification. Already 1972, Hoare [2] related program
verification to abstract data types and models.

This approach to model-based reasoning on programs has been rediscovered in
the recent years with the integration of specification languages into modern program
development. The possibility of using static analysis tools on the basis of these speci-
fications makes them very attractive. Examples of systems that have incorporated the
idea of model based specifications into their systems are the Java Modeling Language
[3] or the Larch/C++ tool [4]. The idea of applying models in the Design by Contract
method have been developed by Meyer in [5].

1.2 Design by Contract

Design by Contract[6] is a methodology that has been introduced to software develop-
ment by the Eiffel language [7]. It enables users to use assertion mechanisms to create
specifications (i.e. contracts) for object-oriented software components .

Eiffel uses standard boolean expressions of the language to express these contracts.
In contrast, many other specification languages use first-order predicate logic or sim-
ilar description techniques. Using direct constructs of the language is very important
as the software developer has to be motivated to use contracts while developing his
application. This is one aspect of the seamless development method as advertised by
the Eiffel language (see [8, p. 931]).

!"There is no commonly accepted definition of the term “component”. Many definitions exist. Here
we consider components software elements that are meant to be used by other software elements and not
directly in interaction with the environment of the software system.



Poetzsch-Heffter criticizes operational interface specifications as used in Eiffel
(among other things) to be “suitable for verification”[9]. He comes to this conclusion
from side-effect or termination problems that are introduced by boolean expressions
and the difficulty of evaluating such contracts. Though this might be true for arbitrary
boolean expressions, specific kinds of expression? can be fed into a model-checker
or verification tools. There is no conceptual gap between the specification language
and the implementation language. The benefit is that seamless development process,
advertised by Eiffel, is retained.

In the following sections, I will explore how the Eiffel contract language can be
used in conjunction with models to increase the expressiveness of these contracts.
Then I describe a rigid set of rules to define and use these models and I will propose
approaches to verify contracts based on models.

1.3 Immutable Objects as Models

Immutable objects are objects that never change once they are created. The identity of
an immutable object — in contrast to a normal object — is defined by its state and not
by some arbitrary pointer value. That means that two objects that have the same values
are considered equal. Eiffel, like most other programming languages, does not directly
support the construction of immutable objects>. It is possible to define constraints on
the source of a class that will always result in the class to produce immutable objects.

Immutable objects have the benefit to represent the original idea of mathematical
constructs much better than normal objects do. Another advantage — which is not
directly connected to this paper — is that fields of immutable objects can be “in-
lined” into programs, using copy operations instead of reference sharing and replacing
objects “in place” instead of allocating new memory for the results of expressions.
Immutable classes (classes that define immutable objects) are very similar to basic
types in languages like Java or C#, or expanded types in Eiffel.

Immutable Eiffel objects offer the possibility to use the standard Eiffel mechanisms
for model-based assertion checking without extending the language. They can benefit
from all the advantages that normal Eiffel assertions have (e.g. runtime evaluation,
documentation).

2 Using Immutable Objects for Specifications

The JML[11] specification language offers a large set of standard models to be applied
in specifications. Figure 1 describes a sequence model in the context of Eiffel. The
excerpt of the class SEQUENCE_MODEL shows the contract of two operations, con-
catenation of two sequences as well as a query for the first n elements of a sequence.
As it is defining an immutable class, the operations never change the object itself, but
produce new objects based on the current object and the arguments. The example
also demonstrates how immutable objects can have much more expressive contracts.

2«Specific kinds of expressions” means expressions which are syntactically or semantically con-
strained to enable static analysis.

3 A language that supports immutable objects is the Sather language [10]. In Sather, immutable objects
replace the expanded construct available in Eiffel.



Especially the possibility to use recursive contract definitions (as demonstrated in the
first_n feature) increases the strength of these contracts significantly.

class interface

SEQUENCE_MODEL[G] —— (excerpt)

feature —— Extension
concat (val: like Current): like Current
—— Append val to the current sequence
ensure
count_added: Result.count = Current.count + val.count
front_is_current: Result.first_n (Current.count).equals (Current)
rest_is_val: Result.last_n (val.count).equals (val)

feature —— Deletion
first_n (n: INTEGER): like Current

—— First n elements of the sequence

require
n_not_too_small: n >=0
n_not_too_large: n <= count

ensure
empty_case: (n = 0) implies Result.is_empty
non_empty_case: (n > 0) implies Result.front.equals (first_n (n — 1))

end —— class SEQUENCE_MODEL

Figure 1: Excerpt from a sequence model class

2.1 Model Definition

To start working with models, we define a special query in the class, that should contain
model-based contracts that constructs the model from the current state of the instances.
This query should be side-effect free, except for the creation of the model object.

As for every piece of unverified code, the creation of the model can be error prone.
Fortunately, this does not introduce errors into the specification and is part of the class
implementation. And although it could affect the execution of test-cases, errors should
get detected quite easily using the model’s own contracts.

For example, a stack class is defined in terms of a sequence model. This would
result in a feature model: SEQUENCE_MODEL [G]. The implementation would
need to access hidden features of the class to construct the stack, as the construction
of the sequence is not possible from the four standard features push, pop, top and
is_empty without producing side-effects.

The implementation of such a feature for class STACK in EiffelBase, based on
the class SEQUENCE_MODEL mentioned above, is shown in figure 2. The feature



linear_representation gives a linear representation of an object that can be accessed
sequentially. It is used to get the internal representation of the stack and to produce the
corresponding sequence.

feature{MODEL} —— Model definitions
model: SEQUENCE_MODEL [G] is
—— The model of the current stack
local
linear: LINEAR [G]
do
create Result.empty_sequence
linear := linear_representation
from linear.start until linear.exhausted loop
Result := Result.append (linear.item)
linear.forth
end
ensure
model_not void: Result /= Void
end

Figure 2: Definition of a model for the class STACK in EiffelBase

On creation, the model is equivalent to a model that represents the structure of the
created object. With every change to the structure, the model is changed as well. This
is expressed by postconditions relating the new value of the model to its old value.

Most contracts can be expressed in terms of the model. The boolean expression
language of Eiffel is now usable as a functional programming language allowing re-
cursion and case differentiations (using the implies construct as shown in figure 1).

Eiffel enables the user to restrict features access to specific classes and its sub-
classes by adding the class name in curly braces behind the feature clause. The defi-
nition of the model can be exported to a special MODEL class, as shown in figure 2.
This export restriction enables the user to optionally show or hide all the model con-
tracts by using the class MODEL as a perspective class when generating the short or
the interface view # from the code. This will cause not only the model definition to
become hidden, but also all contracts that are using the model to express assertions.
This is a result of the requirement that public contracts must not use any non-exported
features. All contracts that are not relying on models (in the future called non-model
contracts) remain in the interface description.



feature {MODEL} —— Model definitions
seq-model: SEQUENCE _MODEL[G] is ...
set_model: SET_MODEL[G] is ...

feature —— Modification
extend (v: G)
—— Extend the list by one element v.
require
not_in_model: not set_model.has (v)
ensure
model_extended: sequence_model = old sequence_model.append (v)
added_to_model: set_model = old set_model.add(v)
invariant
model_size: set_model.count = seq_model.count
set_correspondance: seq_model.for_all (agent set_model.has (?))
seq-correspondance: set_model.for_all (agent seq_model.has (?))

Figure 3: Multiple model specification

2.2 A Library of Models

It is possible to capture different conceptual dimensions for the same software com-
ponent by using multiple models at once. To express that a list does not contain any
elements twice, one model connects the list to a sequence and a second model con-
nects the list to a set. How to define such contracts is demonstrated in figure 3: Multi-
ple models — as shown — can be connected with each other using invariants. These
invariants directly show the relation between the different models. In this case, the
size of the sequence must be the same as the size of the set and every element in the
sequence has to be an element of the set. The two models are connected with a “gluing
invariant” (as available in the B language[12]).

On the basis of this observation, we can create a large number of possible models
and provide them as a library to the user. The exact model can then be derived from
combining different models. This drastically improves the coverage for potential data-
structures by our models. It can be expected that the number of models for a proper
standard model library should include the same number of models as there are cur-
rently for the JML[11] jmlspec library (around 70). The work on creating this library
has begun and will be provided to the Eiffel developer community on the basis of the
Eiffel Forum (Open-Source) license.

“The short and interface views are special interface descriptions that can be automatically created
from Fiffel classes. These view only show the contracts of the features implemented or defined in a
class (short view) or the whole interface of a class, including the features inherited from parent classes
(interface view).



3 Formal Verification with Models

What exactly can be gained by using models for the verifiability of classes? Models
can — on the basis of their contracts — be transformed into a representation that is
understandable by model proof environments>.

In the next subsections, I will show a number of different proof goals for the model-
based contracts. The proof goals go into very different directions, either connecting
the model with the implementation, with other contracts or even with mathematical
theories.

3.1 Semantic Verification of Models

« Model

Mathematics has a long tradition for standard definitions of constructs. Peano’s
Axioms defines the idea of natural numbers; set theory offers a number of axioms for
the definitions of the operations on sets. An equivalence proof will create the trust
that a given model really represents the mathematical construct that it was meant to be
modelling.

Since the models are provided as a library, they can be reused in many different
contexts. Thus, the benefit of doing these proofs scales and justifies the increased
work while providing the models. I am planning to do these proofs for the Eiffel
model library.

3.2 Correctness of Non-Model Contracts

Model ‘ Non-Model

Contracts Contracts

Models enable the user to verify the correctness of the non-model contracts to-
wards the model. This can be done by transforming the model as well as the non-
model contracts into mathematical formulas and proving that the model implies the
non-model contracts. This requires a mathematical theory also for the non-model con-
tracts.

This strategy can also be used in a multi-model context. Here, it can be shown
that the different models are really compatible with each other when connected by an
invariant (as shown in figure 3).

3.3 Completeness of Non-Model Contracts

Model ’ Non-Model

Contracts Contracts

SSome transformations have been done manually into the Atelier B proof environment for the B
language. It can be expected that this process can be automated in the future.



By reversing the above strategy, the completeness of the non-model contracts can
be shown. This is done by proving that the non-model contracts imply the model
contracts.

3.4 Correctness of the Implementation

Contracts with )
4— Implementation

Models

Last, but not least, models can be helpful when trying to prove the code. There are
two reasons why a model-based contract should be easier to prove than the non-model
contract.

First, the model-based contract is more complete concerning the behavior of the
object. This is especially beneficial when trying to prove that one component behaves
correctly when using another component known only by its contracts.

Second, as the model can be reused in many places, a large theory can be cre-
ated for these models in the form of contracts and invariants. This theory is provided
with the standard library. Such a theory improves the provability of code while using
automated or manual provers.

4 Summary and Conclusion

Behavioral specifications with models as introduced by JML or the Larch tool offer a
powerful mechanism to specify contracts. This paper shows how model-based spec-
ifications can be fully implemented using standard Eiffel and the Design by Contract
method.

It has been shown how immutable objects can be used to capture the behavior
in specifications. Model-based specifications integrate seamlessly into current Eiffel
implementations without the introduction of new compiler features or the extension
of the Eiffel syntax. Models can be extracted at any time from classes using special
model creation features.

Normal export restrictions can be used to show or hide the model-based contracts
from the short and interface views of classes. Models can be left in the code and used
only by specific analysis tools, while they are transparent to developers.

Different structural aspects for the same class can be captured by different models.
The combinations of different models empower the user to capture even complex types
with the help of models. Gluing invariants connect these models.

Different verification techniques offer the possibility to reason about model-based
contracts. These proofs can be analysis oriented, by showing that the contract really
identifies the mathematic idea. They can also be design oriented by relating models to
non-model contracts. Finally they can be implementation oriented, trying to prove the
code correctness.

5 Acknowledgements

I would like to thank my supervisor, Prof. Bertrand Meyer, for developing the initial
idea of the application of models in contracts and ideas about their proofs. I would



also thank Karine Arnout, Susanne Cech, Till Bay and Markus Keller for reviewing
this paper and giving me valuable hints and comments.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]
(9]

[10]

[11]

[12]

J. McCarthy and P. J. Hayes, “Some philosophical problems from the standpoint
of artificial intelligence,” in Machine Intelligence 4 (B. Meltzer and D. Michie,
eds.), pp. 463-502, Edinburgh University Press, 1969. reprinted in McC90.

C. Hoare, “Proof of correctness of data representations,” Acta Informatica, vol. 1,
no. 4, pp. 271-281, 1972.

L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, and
E. Poll, “An overview of JML tools and applications,” Tech. Rep. R0309, NIII,
2003.

G. T. Leavens, “Larch/C++, an interface specification language for C++,” tech.
rep., lowa State University, Ames, lowa 50011 USA, August 1997.

B. Meyer, “Towards practical proofs of class correctness,” in ZB 2003 (D. B.
et al., ed.), LNCS 2651, pp. pp. 359-387, Springer-Verlag Berlin, 2003.

B. Meyer, “Applying “’design by contract”,” Computer, vol. 25, pp. 40-51, Octo-
ber 1992.

B. Meyer, Eiffel: the language. Prentice Hall, New York, NY, 1992.
B. Meyer, Object-Oriented Software Construction. Prentice Hall, 2 ed., 1997.

A. Poetzsch-Heffter, “Specification and verification of object-oriented pro-
grams.” Habilitationsschrift, Technische Univeristidt Miinchen, January 1997.

S. Omohundro and C.-C. Lim, “The sather language and libraries,” Tech. Rep.
TR-92-017, International Computer Science Institute, Berkeley, Ca., 1991.

G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML: A behav-
ioral interface specification language for Java,” Tech. Rep. 98-06t, Department of
Computer Science, lowa State University, June 1998.

J.-R. Abrial, The B-Book — assigning programs to meanings. Cambridge Univer-
sity Press, 1996.



