
Freefinement

Stephan van Staden
ETH Zurich

Stephan.vanStaden@inf.ethz.ch

Cristiano Calcagno
ETH Zurich, Imperial College London

and Monoidics Ltd
c.calcagno@imperial.ac.uk

Bertrand Meyer
ETH Zurich

Bertrand.Meyer@inf.ethz.ch

Abstract
Freefinement is an algorithm that constructs a sound refinement cal-
culus from a verification system under certain conditions. In this
paper, a verification system is any formal system for establishing
whether an inductively defined term, typically a program, satisfies a
specification. Examples of verification systems include Hoare log-
ics and type systems. Freefinement first extends the term language
to include specification terms, and builds a verification system for
the extended language that is a sound and conservative extension of
the original system. The extended system is then transformed into
a sound refinement calculus. The resulting refinement calculus can
interoperate closely with the verification system – it is even possi-
ble to reuse and translate proofs between them. Freefinement gives
a semantics to refinement at an abstract level: it associates each
term of the extended language with a set of terms from the original
language, and refinement simply reduces this set. The paper applies
freefinement to a simple type system for the lambda calculus and
also to a Hoare logic.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms Languages, Theory, Verification

Keywords Formal Systems, Proof Theory, Refinement

1. Introduction
Many theories in computer science are presented, or approximated,
by compositional verification systems. In this paper, a verification
system is any formal system for establishing whether an inductively
defined term, typically a program, satisfies a specification. For ex-
ample, Hoare logics and type systems can be viewed as verifica-
tion systems. In the case of Hoare logics, the system proves that a
statement satisfies certain specifications given as preconditions and
postconditions. In the case of type systems, the system proves that
a term has a certain type in a type context.

Refinement systems play a similar role to verification systems,
the main difference being that they relate terms to other terms, in-
stead of terms and specifications. Another difference is that they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

typically include so-called specification terms. Intuitively, a term
refines another if it is ‘better’, i.e. if it satisfies more specifications.
Refinement calculi are formal systems for establishing refinements.
For example, the calculus of Morgan [9] derives refinements be-
tween statements based on total correctness specifications. Starting
from an appropriate specification statement, one can derive a cor-
rect algorithm for computing the factorial of a number by applying
Morgan’s refinement rules.

This paper originates from the observation that a Hoare logic
and a refinement calculus for a command language do not have
to be independent entities: once the Hoare logic is extended with
specification statements, the two systems can be accommodated
in a single theory. Moreover, there is a strong relation between
the two systems. The paper explains that this relation is not a
coincidence: it is possible to analyze the structure of the inference
rules defining a verification system, and automatically generate
a related refinement calculus. Freefinement is an algorithm that
implements this transformation. Surprisingly, freefinement is not
limited to Hoare logics, but can be applied to any verification
system whose inference rules satisfy certain conditions. Several
refinement rules proposed in the literature in different contexts arise
in this way.

The freefinement algorithm works as follows. Given a term lan-
guage and an accompanying verification system V1 that satisfies
certain conditions, freefinement extends the term language with
specification terms and builds a verification system V2 for extended
terms. The conditions on V1 ensure that it is possible to extend the
terms without breaking the inference rules; V2 is consequently a
sound and conservative extension of V1. Moreover, freefinement
proposes a sound refinement system R that is in harmony with
V2. Harmony means that the two formal systems can interoperate
smoothly. It entails, for example, that a term satisfies a specification
according to V2 if and only if it is possible to refine the specification
into the term with R. In fact, proof translation between V2 and R
becomes possible because harmony is demonstrated constructively.
Freefinement internally constructs the refinement calculus by ‘lin-
earizing’ V2 in a series of steps. The conditions on V1 ensure that
successful linearization is possible. According to the presentation
below, at most six steps are needed for this ‘refinement of refine-
ment systems’. The situation is summarized as follows:

Sound & Conservative Extension{

Harmony
{

V2
� R1

� · · · � R6

�

V1

Freefinement requires no human intervention. The conditions it
imposes are fulfilled by many program logics and type systems:
examples include Hoare logic, separation logic, the simply-typed

lambda calculus and System F. Freefinement defines the semantics
of refinement at an abstract level: it associates each term of the
extended language with a set of terms from the original language,
and refinement simply reduces this set.

With freefinement, tools that are based on verification systems
can readily include refinement as a complementary or alternative
development style. Freefinement provides correctness by construc-
tion for free.

Outline. Section 2 describes the freefinement algorithm, which
is applied in Section 3 to a simple type system for the lambda
calculus and also to Hoare logic. Section 4 concludes with related
work.

2. Freefinement
2.1 The Inputs

Freefinement requires four things as input:

1. A set of constructors K. The constructors give rise to a term
language T, where an arbitrary term t of T is defined by the
grammar:

t ::= C(t1, . . . , tn)

where C ∈ K.

2. A set of specifications S.

3. A binary relation |=V1 Sat between terms and specifications.
Intuitively, |=V1 t Sat S denotes that term t ∈ T satisfies specifi-
cation S ∈ S.

4. A formal system V1(K, S, |=V1 Sat), which consists of a set
of inference rules for proving sentences of the form t Sat S.
Each rule of V1 must have the form A1 or B1:

t1 Sat S1 . . . tn Sat Sn
A1

C(t1, . . . , tn) Sat S
provided Pred(C, S1, . . . , Sn, S).

t Sat S1 . . . t Sat Sm
B1

t Sat S
provided Pred(S1, . . . , Sm, S).

The t’s, S’s and C in the rule forms indicate where the rules of
V1 must use metavariables. Thus a rule of form A1 has only
the freedom to choose a concrete n and a definition for its
proviso predicate Pred; the proviso predicate implements the
side condition of the rule based on the arguments C, S1, . . . ,
Sn and S. A rule of form B1 is also a pair: a concrete m and
a definition of a predicate with arguments S1, . . . , Sm and S.
Freefinement requires that the rules must be sound with respect
to the following semantics:

Definition 1 (Semantics of the Inference Rules). .

1.1 For rules of the form A1:
Pred(C, S1, . . . , Sn, S) ⇒ [∀t1, . . . , tn ∈ T · |=V1 t1 Sat S1

∧ . . .∧ |=V1 tn Sat Sn ⇒ |=V1C(t1, . . . , tn) Sat S]

1.2 For rules of the form B1:
Pred(S1, . . . , Sm, S) ⇒ [∀t ∈ T · |=V1 t Sat S1 ∧ . . .∧
|=V1 t Sat Sm ⇒ |=V1 t Sat S]

The rule forms stipulate that the rules of V1 must be highly
compositional – a requirement that freefinement will exploit. For
example, rules cannot inspect or constrain the t’s that appear in
premises. This will allow freefinement to reuse the rules after
specification terms are added to the term language.

Consider the following three rules over K = {0, succ, pred} and
S = {N}, where n is a metavariable:

n : N
1

succ(n) : N

succ(n) : N
2

pred(succ(n)) : N

n : N
3

pred(n) : N

provided positive(n).

Rule 1 can be written in form A1 with n = 1 by defining the proviso
Pred(C, S1, S) as C = succ ∧ S1 = S = N. Rule 2 is unacceptable,
because its premise inspects the term and requires it to match
succ(n). Rule 3 is also unacceptable, because it constrains the term
in its proviso.

It will become clear later that the ‘structural’ rules of Hoare
logic, such as the rule of consequence, are examples of rules of
form B1. Other rules of Hoare logic, such as the assignment axiom
and rule for sequential composition, have the form A1.

Let �V1 t Sat S denote that t Sat S is derivable with V1. The
soundness of the rules with respect to the semantics of Definition 1
implies the soundness of V1:

Theorem 1 (Soundness of V1). �V1 t Sat S ⇒ |=V1 t Sat S

Proof. By induction on the derivation of t Sat S:

• A rule of the form A1 was last applied. Assume Pred(C, S1,
. . . , Sn, S) and the induction hypothesis |=V1 t1 Sat S1 ∧ . . .∧
|=V1 tn Sat Sn. Then |=V1C(t1, . . . , tn) Sat S by Definition 1.1.

• A rule of the form B1 was last applied. Assume Pred(S1, . . . ,
Sm, S) and also the induction hypothesis |=V1 t Sat S1 ∧ . . .∧
|=V1 t Sat Sm. From Definition 1.2 follows |=V1 t Sat S.

Freefinement does not assume the completeness of V1, i.e. it never
assumes |=V1 t Sat S ⇒ �V1 t Sat S.

2.2 The Extended Language and Formal System

This section extends the language T with specification terms that
are useful for refinement. It gives a semantics to the resulting
language U, and extends V1 in a sound and conservative way to
prove sentences of the form u Sat S where u ∈ U.

2.2.1 The Extended Language U

Suppose K and S are disjoint (if they are not, then they can always
be decorated to become disjoint) and do not contain a symbol

⊔
.

The extended set of constructors

K
′ = K ∪ S ∪ {⊔ with arity n | n ∈ N}

gives rise to an extended language U, which can also be written as:

u ::= C(u1, . . . , un) | S | ⊔(u1, . . . , un)

A term of the form S is called a spec term, and a term of the form⊔
(u1, . . . , un) is called the join of u1, . . . , un. Intuitively, S is a

generic term that satisfies S, and
⊔

(u1, . . . , un) is a generic term
that satisfies any S that any of the u1, . . . , un satisfy. Although
the details will become clear later, the reasons for adding these
terms are simple: the refinement system should be able to refine
spec terms into other terms for top-down development, and join
terms will be important for simplifying rules of the form B1 where
m > 1. If there are no rules of the form B1 where m > 1, then
join terms and their consequent treatment can be omitted.

A couple of constructs are used for giving a semantics to U. Let
X denote a subset of T, and let Y denote a subset of S. Specs(X)
is the set of all specifications that all the terms in X satisfy, and
Terms(Y) is the set of terms of T that satisfy all the specifications
in Y:

Definition 2 (Specs and Terms). .

• Specs(X)
def
= {S | ∀t ∈ X· |=V1 t Sat S}

• Terms(Y)
def
= {t | ∀S ∈ Y· |=V1 t Sat S}

An antitone Galois connection1 exists between Specs and
Terms:

Lemma 1. X ⊆ Terms(Y) ⇔ Y ⊆ Specs(X)

Proof. X ⊆ Terms(Y)
⇔ {definition of Terms and ⊆}

∀t ∈ X · ∀S ∈ Y · |=V1 t Sat S
⇔ {predicate calculus}

∀S ∈ Y · ∀t ∈ X · |=V1 t Sat S
⇔ {definition of Specs and ⊆}

Y ⊆ Specs(X)

Antitone Galois connections have several well-known proper-
ties. For instance, (Terms ◦ Specs) and (Specs ◦Terms) are exten-
sive, increasing and idempotent and therefore closure operators.
Freefinement relies on the following properties (their proofs appear
in the Appendix):

Corollary 1. .

1.1 X ⊆ Terms(Specs(X))
1.2 Terms(Specs(Terms(Y))) = Terms(Y)
1.3 Specs(X) ⊆ Specs(X′)

⇔ Terms(Specs(X)) ⊇ Terms(Specs(X′))
1.4 Terms(Y ∪ Y′) = Terms(Y) ∩ Terms(Y′)

The following auxiliary definition provides a shorthand for the
set of all terms of the form C(t1, . . . , tn) where t1 ∈ X1, . . . ,
tn ∈ Xn:

C(X1, . . . , Xn)
def
= {C(t1, . . . , tn) | ∧i∈1..n ti ∈ Xi}

For example, it yields a singleton set for nullary constructors:

{C() | ∧i∈1..0 ti ∈ Xi} = {C() | True} = {C()}
The semantics of U is given by the function [[]] of type U →

P(T), i.e. every term in U denotes a set of terms from T:

Definition 3 (Semantics of U). .

[[C(u1, . . . ,un)]]
def
= Terms(Specs(C([[u1]], . . . , [[un]])))

[[S]]
def
= Terms({S})

[[
⊔

(u1, . . . , un)]]
def
=

⋂
i∈1..n [[ui]]

If the relation |=V1 Sat is well-behaved in a sense that will
be made precise later, then [[u]] has a simple intuitive explanation: it
denotes the set of all primitive terms, i.e. terms from T, that refine u.
For a term C(u1, . . . ,un), first consider C([[u1]], . . . , [[un]]) – the set
of terms of the form C(t1, . . . ,tn) where t1 ∈ [[u1]] (i.e. t1 refines
u1) and . . . and tn ∈ [[un]]. All the specifications that all these terms
implement are then collected, and any primitive term that satisfies
all such specifications refines C(u1, . . . ,un). The primitive terms
that refine S are exactly those that satisfy S. Finally,

⊔
(u1, . . . , un)

is refined by any primitive term that refines all u1, . . . , un.
For all u, the set [[u]] is a fixpoint of Terms ◦ Specs and hence a

closed element:

Lemma 2. Terms(Specs([[u]])) = [[u]]

Proof. By induction on the structure of u:

• If u has the form C(u1, . . . ,un) or S, then [[u]] = Terms(Y) for
some Y and the result follows by Corollary 1.2.

• If u has the form
⊔

(u1, . . . , un), assume [[ui]] = Terms(Specs([[ui]]))
for all i ∈ 1..n. So [[

⊔
(u1, . . . , un)]] =

⋂
i∈1..n Terms(Specs([[ui]]))

= Terms(
⋃

i∈1..n Specs([[ui]])) by Corollary 1.4, and Corol-
lary 1.2 concludes the proof.

1 Also known as an order-reversing or contravariant Galois connection.

The rest of the paper introduces further properties of the seman-
tics as needed.

2.2.2 Extending V1: Preliminaries

The next section will extend V1 to obtain a formal system V2 for
proving sentences of the form u Sat S. The aim is to construct
a sound and conservative extension of V1. Informally, a sound
extension of V1 must have equal or more power:

Definition 4 (Sound Extension). V2(K′, S′, |=V2 Sat) is a sound
extension of V1(K, S, |=V1 Sat) if and only if

1. V2 uses richer terms and specifications:
K ⊆ K

′ and S ⊆ S
′

2. V2 can prove everything that V1 can prove:
∀t ∈ T, S ∈ S · �V1 t Sat S ⇒ �V2 t Sat S

3. V2 uses a richer semantics:
∀t ∈ T, S ∈ S · |=V2 t Sat S ⇒ |=V1 t Sat S

4. V2 is sound:
∀u ∈ U, S′ ∈ S

′ · �V2u Sat S′ ⇒ |=V2u Sat S′

As a consequence, ∀t ∈ T, S ∈ S · �V2 t Sat S ⇒ |=V1 t Sat S,
which intuitively means that V2 restricted to K and S is sound with
respect to the semantics of V1.

In a sound and conservative extension, the converse of require-
ment 2 also holds:

Definition 5 (Sound and Conservative Extension). A formal sys-
tem V2(K′, S′, |=V2 Sat) is a sound and conservative extension
of V1(K, S, |=V1 Sat) if and only if

1. V2 is a sound extension of V1.
2. V1 and V2 restricted to K and S have equal derivability:

∀t ∈ T, S ∈ S · �V1 t Sat S ⇔ �V2 t Sat S

Although a sound and conservative extension cannot prove
more sentences of the form t Sat S, it is still useful for extend-
ing the term language and installing a richer semantics. It can also
extend the specifications, but the V2 of the next section will simply
use S.

2.2.3 The Extended Formal System V2

The construction of V2 starts with the empty set of rules and
proceeds in two steps:

1. For each rule of V1, replace t’s by u’s and add the resulting rule.
This change of metavariables yields the rule forms A2 and B2

in V2:

u1 Sat S1 . . . un Sat Sn
A2

C(u1, . . . , un) Sat S
provided Pred(C, S1, . . . , Sn, S).

u Sat S1 . . . u Sat Sm
B2

u Sat S
provided Pred(S1, . . . , Sm, S).

2. Add the following rules for spec terms and joins:

SPEC
S Sat S

u Sat S
JOIN ⊔

(. . . , u, . . .) Sat S

By induction on the derivation, V1 and V2 are equivalent with
respect to derivability on T, i.e. �V1 t Sat S ⇔ �V2 t Sat S. So for
V2 to be a sound and conservative extension of V1, it will suffice to
equip V2 with a richer semantics and to prove it sound.

The Sat relation between U and S is defined as follows:

Definition 6 (Extended Satisfaction). .
|=V2u Sat S

def
= ∀t ∈ [[u]] · |=V1 t Sat S

Furthermore, the U-semantics of t contains t as an element:

Lemma 3 (Term Embedding). ∀t ∈ T · t ∈ [[t]]

Proof. By induction on the structure of t. Suppose t = C(t1, . . . , tn)
and assume t1 ∈ [[t1]], . . . , tn ∈ [[tn]]. So t ∈ C([[t1]], . . . , [[tn]]), which
is a subset of Terms(Specs(C([[t1]], . . . , [[tn]]))) by Corollary 1.1.

Therefore |=V2 t Sat S ⇒ |=V1 t Sat S holds, and the soundness
proof of V2 establishes that V2 is a sound and conservative exten-
sion of V1:

Theorem 2 (Soundness of V2). �V2u Sat S ⇒ |=V2u Sat S

Proof. By induction on the structure of the derivation:

• For each rule of the form A2, assume Pred(C, S1, . . . , Sn, S)
and assume

∀t1 ∈ [[u1]] · |=V1 t1 Sat S1

...
∀tn ∈ [[un]] · |=V1 tn Sat Sn

So ∀t1 ∈ [[u1]], . . . , tn ∈ [[un]] · |=V1C(t1, . . . , tn) Sat S because
the corresponding rule of the form A1 in V1 is sound with
respect to Definition 1.1. So S ∈ Specs(C([[u1]], . . . , [[un]])) and
hence ∀t ∈ Terms(Specs(C([[u1]], . . . , [[un]]))) · |=V1 t Sat S.

• For each rule of the form B2, assume Pred(S1, . . . , Sm, S) and
assume ∀t ∈ [[u]] · |=V1 t Sat S1 ∧ . . . ∧ |=V1 t Sat Sm.
Now ∀t ∈ [[u]] · |=V1 t Sat S because the corresponding rule of
the form B1 in V1 is sound with respect to Definition 1.2.

• SPEC: ∀t ∈ Terms({S}) · |=V1 t Sat S by definition.
• JOIN: Assume ∀t ∈ [[u]] · |=V1 t Sat S. If t ∈ [[

⊔
(. . . , u, . . .)]] then

t ∈ [[u]] and hence |=V1 t Sat S.

Extended satisfaction has an alternative characterization that
freefinement will also use:

Lemma 4. |=V2u Sat S ⇔ S ∈ Specs([[u]])

Proof. |=V2u Sat S
⇔ {definition}

∀t ∈ [[u]] · |=V1 t Sat S
⇔ {definition of Specs}

S ∈ Specs([[u]])

2.3 System V2 and Refinement

The next section will construct several refinement systems, or cal-
culi, that are based on V2. These refinement systems are formal
systems for proving sentences of the form u � u′. The definition of
the refinement relation makes the semantics of refinement precise:

Definition 7 (Refinement). |=u � u′ def
= [[u]] ⊇ [[u′]]

This definition leads to simple proofs, and is equivalent to sev-
eral other formulations. The following theorem states one such al-
ternative, and its proof mentions others:

Lemma 5 (Equivalent Characterization of Refinement). .
|=u � u′ ⇔ ∀S · |=V2u Sat S ⇒ |=V2u′ Sat S

Proof. [[u]] ⊇ [[u′]]
⇔ {Lemma 2}

Terms(Specs([[u]])) ⊇ Terms(Specs([[u′]]))
⇔ {Corollary 1.3}

Specs([[u]]) ⊆ Specs([[u′]])
⇔ {definition of ⊆}

∀S · S ∈ Specs([[u]]) ⇒ S ∈ Specs([[u′]])
⇔ {Lemma 4}

∀S · |=V2u Sat S ⇒ |=V2u′ Sat S

If |=V1 Sat is well-behaved, then there is also another expla-
nation for defining |=u � u′ as [[u]] ⊇ [[u′]]: u′ refines u iff every
primitive term that refines u′ also refines u. Put differently, u′ re-
fines u iff u′ constrains the set of eventual primitive terms that re-
finement can produce to the same or higher degree compared to u.
So u can be seen as a placeholder for any of the primitive terms in
[[u]], and the role of refinement is to reduce the uncertainty.

Many examples of refinements will follow later, so here is a
small one: a join term implements the least upper bound (join)
of its immediate subterms with respect to �, hence the name. In
particular:

1. ∀i ∈ 1..n · |=ui � ⊔
(u1, . . . , un)

2. If (∀i ∈ 1..n · |=ui � u), then |=⊔
(u1, . . . , un) � u.

The notation u ≡ u′ is a shorthand for [[u]] = [[u′]], which is
equivalent to |=u � u′ ∧ |=u′ � u.

A refinement system R will be sound if and only if �Ru � u′

implies |=u � u′. In the next section, freefinement will construct
several sound refinement systems where each system R is related
to V2 by the properties Harmony 1 and 2 below.

Harmony 1. If �V2u Sat S and �Ru � u′, then �V2u′ Sat S.

Intuitively, Harmony 1 says that V2 contains sufficient machin-
ery to prove the same properties about u′ that it could prove about
u. In other words, R is not too powerful for V2.

Harmony 2. If �V2u Sat S, then �RS � u.

Intuitively, Harmony 2 means that the refinement system R
contains sufficient machinery to refine a specification into any term
that satisfies it according to V2. In other words, V2 is embedded in
R and hence R is not too weak.

Harmony 1 is stronger than the converse of Harmony 2:

Theorem 3. If V2 and a refinement system R are related by Har-
mony 1, then �RS � u ⇒ �V2u Sat S.

Proof. Assume �RS � u. Since �V2S Sat S by SPEC, it follows
from Harmony 1 that �V2u Sat S.

A refinement system R is called harmonic iff it satisfies Har-
mony 1 and 2. Harmonic refinement systems interoperate nicely
with V2. In fact, the proofs of Harmony 1 and 2 in the next sec-
tion are constructive in the sense that they enable proof translation.
Given a V2-proof of u Sat S and an R-proof of u � u′, they describe
a V2-proof of u′ Sat S. Based on a V2-proof of u Sat S, they show
how to build an R-proof for S � u. Since Harmony 1 is established
constructively, given an R-proof of S � u, the proof of Theorem 3
shows how to build a V2-proof for u Sat S.

The final refinement system that freefinement produces will also
have a specific desired form. This form guarantees that refinement
proofs are ‘linear’ developments where terms can be refined in-
place. Formally, a refinement system has the desired form if the
rules with premises describe either the transitivity or the mono-
tonicity of refinement. All the other rules must be axioms, i.e. with-
out any premise.

2.4 The Refinement of Refinement Systems

V2 can be linearized in a series of steps to obtain a sound and
harmonic refinement system of the desired form. At most six steps
are necessary according to this presentation – the exact number
depends on V1. The steps make it easy to prove and maintain

soundness and harmony, which would otherwise be more complex
to establish for the final refinement calculus.

Many of the steps take a previously constructed refinement
system and add or remove rules to obtain a new system. If a sound
and harmonic refinement system is extended with a rule that is
sound and respects Harmony 1, then the resulting system will be
sound and harmonic. There is no need to prove Harmony 2 again,
because the new refinement system can still derive all sentences
that the old one could derive. If a rule is removed from a sound
and harmonic refinement system, then the resulting system remains
sound and will also be harmonic if it satisfies Harmony 2. A simple
way of showing that Harmony 2 still holds is to show that any
application of the old rule can be achieved by a combination of
rules that remain in the system.

2.4.1 Getting Started: R1

The first refinement system R1 is obtained from V2 by a simple
syntactic transformation: each sentence u Sat S becomes S � u. R1

has rules of the form A3 and B3, a SPEC rule and also a JOIN rule
if join terms were needed:

S1 � u1 . . . Sn � un
A3

S � C(u1, . . . , un)
provided Pred(C, S1, . . . , Sn, S).

S1 � u . . . Sm � u
B3

S � u
provided Pred(S1, . . . , Sm, S).

SPEC
S � S

S � u
JOIN

S � ⊔
(. . . , u, . . .)

V2 and R1 are isomorphic: a proof of u Sat S in V2 corresponds to a
proof of S � u in R1 and vice versa, so �V2u Sat S ⇔ �R1S � u.
The soundness proof of R1 relies on the following equivalence:

Lemma 6. |=V2u Sat S ⇔ |=S � u

Proof. |=V2u Sat S
⇔ {Lemma 4}

{S} ⊆ Specs([[u]])
⇔ {Lemma 1}

[[u]] ⊆ Terms({S})

Theorem 4 (Soundness of R1). �R1u � u′ ⇒ |=u � u′

Proof. If �R1u � u′, then u has the form S and �V2u′ Sat S. The
soundness of V2 implies |=V2u′ Sat S, and Lemma 6 in turn implies
|=S � u′.

Theorem 5. R1 is harmonic.

Proof. Harmony 2 holds by construction. For Harmony 1, assume
�R1u � u′. Then u has the form S′′ and �V2u′ Sat S′′ by construc-
tion. That �V2u Sat S′ (i.e. �V2S′′ Sat S′) implies �V2u′ Sat S′ for
all S′ follows by induction on the derivation of S′′ Sat S′:

• SPEC: S′ and S′′ are the same. Since �V2u′ Sat S′′, it holds that
�V2u′ Sat S′.

• For each rule of the form B2: S and S′ are the same. Assume
Pred(S1, . . . , Sm, S), �V2u Sat S1, . . . , �V2u Sat Sm, and by the
induction hypothesis also �V2u′ Sat S1, . . . , �V2u′ Sat Sm. So
the rule being considered is applicable and �V2u′ Sat S. Hence
�V2u′ Sat S′.

Note: if V2 has only rules of the form A2 where n = 0 and/or
rules of the form B2 where m = 0, then R1 is a refinement system
of the desired form and freefinement stops.

2.4.2 Adding Transitivity: R2

The refinement system R2 extends R1 with the rule TRANS which
states that refinement is transitive:

u1 � u2 u2 � u3
TRANS

u1 � u3

TRANS is sound because ⊇ is transitive, and it maintains Har-
mony 1 since implication is transitive. So R2 is sound and har-
monic.

2.4.3 Simplification: R3

The presence of SPEC and TRANS in R2 allows the simplification
of rules of the form B3 with m = 1:

S1 � u
B3

S � u
provided Pred(S1, S).

For an arbitrary rule of this form, consider the derivation

SPEC
S1 � S1

B3
S � S1

provided Pred(S1, S).

By virtue of having been derived, the new rule
B3

S � S1

provided Pred(S1, S).

is sound and maintains Harmony 1, and can therefore be added
to R2 to obtain a sound and harmonic refinement system. In fact,
it can replace the old version without breaking Harmony 2, since
removing the old version will not decrease the derivable set of sen-
tences: every application of the old B3 can be changed into:

B3
S � S1 S1 � u

TRANS
S � u

since Pred(S1, S) is guaranteed.
The refinement system R3 is the same as R2, except that the

rules of the form B3 with m = 1 are replaced by their simplified
versions. R3 is sound and harmonic.

Note: if V2 has only rules of the form A2 where n = 0 and rules
of the form B2 where m ≤ 1, then R3 is a refinement system of the
desired form and freefinement stops.

2.4.4 Adding Monotonicity: R4

All the constructors of U are monotone with respect to �, i.e. the
following rules are sound:

ui � u′i
C-i

C(u1, . . . , ui, . . . , un) � C(u1, . . . , u′i, . . . , un)

ui � u′i
JOIN-i ⊔

(u1, . . . , ui, . . . , un) � ⊔
(u1, . . . , u′i, . . . , un)

Moreover, these rules maintain harmony:

Lemma 7. C-i maintains Harmony 1.

Proof. Assume ∀S′ · �V2ui Sat S′ ⇒ �V2u′
i Sat S′. That ∀S ·

�V2C(u1, . . . , ui, . . . , un) Sat S ⇒ �V2C(u1, . . . , u′
i, . . . , un) Sat

S follows by induction on the derivation of C(u1, . . . , ui, . . . , un)
Sat S:

• A2: Suppose �V2uj Sat Sj for j ∈ 1..n, and also suppose
Pred(C, S1, . . . , Sn, S) holds. Since �V2u′

i Sat Si, the same
rule A2 can be applied to derive C(u1, . . . , u′

i, . . . , un) Sat S.

• B2: Suppose �V2C(u1, . . . , ui, . . . , un) Sat Sj for j ∈ 1..m,
and suppose Pred(S1, . . . , Sm, S). The induction hypothesis is
the assumption �V2C(u1, . . . , u′

i, . . . , un) Sat Sj for j ∈ 1..m.
Since Pred(S1, . . . , Sm, S), the same rule B2 is applicable and
hence �V2C(u1, . . . , u′

i, . . . , un) Sat S.

Lemma 8. JOIN-i maintains Harmony 1.

Proof. Assume ∀S′ · �V2ui Sat S′ ⇒ �V2u′
i Sat S′. That ∀S ·

�V2

⊔
(u1, . . . , ui, . . . , un) Sat S ⇒ �V2

⊔
(u1, . . . , u′

i, . . . , un) Sat
S follows by induction on the derivation of

⊔
(u1, . . . , ui, . . . , un)

Sat S:

• JOIN: Suppose uj Sat S was the premise for some j ∈ 1..n.
If j �= i, then apply JOIN to the premise uj Sat S to derive
the required

⊔
(u1, . . . , u′

i, . . . , un) Sat S. If j = i, then by
assumption �V2u′

i Sat S holds, and the result follows by JOIN.
• B2: Suppose �V2

⊔
(u1, . . . , ui, . . . , un) Sat Sj for j ∈ 1..m,

and suppose Pred(S1, . . . , Sm, S). The induction hypothesis is
the assumption �V2

⊔
(u1, . . . , u′

i, . . . , un) Sat Sj for j ∈ 1..m.
Since Pred(S1, . . . , Sm, S), the same rule B2 is applicable and
hence �V2

⊔
(u1, . . . , u′

i, . . . , un) Sat S.

Let the notation v[u] denote a term in U whose parse tree is
factored into two parts: a core tree v with a ‘hole’ where the sub-
tree for u fits. The rule MONO packages C-i and JOIN-i in a single
convenient form:

u � u′
MONO

v[u] � v[u′]

Informally, the rule MONO allows in-place refinement: if u0 can be
factored as v[u], and u′ refines u, then v[u′] refines u0.

MONO is sound and maintains harmony because C-i and JOIN-i
are sound and maintain harmony. The refinement system R4 ex-
tends R3 with MONO. It is sound and harmonic.

2.4.5 Simplification: R5

The rule MONO makes it possible to simplify:

• The JOIN rule:

S � u
JOIN

S � ⊔
(. . . , u, . . .)

• Rules of the form A3 with n ≥ 1:

S1 � u1 . . . Sn � un
A3

S � C(u1, . . . , un)
provided Pred(C, S1, . . . , Sn, S).

Consider the derivation:
SPEC

S � S
JOIN

S � ⊔
(. . . , S, . . .)

By virtue of having been derived, the simplified rule

JOIN
S � ⊔

(. . . , S, . . .)

is sound and respects Harmony 1. It can replace the old version of
JOIN without decreasing derivability, because any application of
the old version can be achieved by:

JOIN
S � ⊔

(. . . , S, . . .)

S � u
MONO ⊔

(. . . , S, . . .) � ⊔
(. . . , u, . . .)

TRANS
S � ⊔

(. . . , u, . . .)

Likewise, for each rule of the form A3, the derived rule
A3

S � C(S1, . . . , Sn)
provided Pred(C, S1, . . . , Sn, S).

is sound and respects harmony. It makes the old version redundant,
since any application of the old rule can be replaced by:

A3
S � C(S1, . . . , Sn)

E1
. . .

En

where Ei is given by:

S � C(u1, . . . , ui−1, Si, . . . , Sn) Pi
TRANS

S � C(u1, . . . , ui, Si+1, . . . , Sn)

and Pi is the proof tree:

Si � ui
MONO

C(u1, . . . , ui−1, Si, . . . , Sn) � C(u1, . . . , ui, Si+1, . . . , Sn)

Apart from these simplifications, the refinement system R5 is
the same as R4. It is sound and harmonic.

Note: if V2 does not include rules of the form B2 where m > 1,
then R5 has the desired form and freefinement stops.

2.4.6 Wrapping Up: R6

It remains to simplify rules of the form B3 with m > 1:

S1 � u . . . Sm � u
B3

S � u
provided Pred(S1, . . . , Sm, S).

If Pred(S1, . . . , Sm, S), then R5 can derive:

JOIN
S1 � ⊔

(S1, . . . , Sm) · · · JOIN
Sm � ⊔

(S1, . . . , Sm)
B3

S � ⊔
(S1, . . . , Sm)

The derived rule
B3

S � ⊔
(S1, . . . , Sm)

provided Pred(S1, . . . , Sm, S).

is therefore sound and respects Harmony 1. Together with the rule:

UNJOIN ⊔
(u, . . . , u) � u

which is trivially sound and respects Harmony 1, it can replace the
old B3 because any application of the old rule can be rewritten as:

B3
S � ⊔

(S1, . . . , Sm)

F1
. . .

Fm G
TRANS

S � u

where G is UNJOIN, Fi is given by:

S � ⊔
(

i−1︷ ︸︸ ︷
u, . . . , u, Si, . . . , Sm) Qi

TRANS
S � ⊔

(u, . . . , u, Si+1, . . . , Sm)

and Qi is the proof tree:

Si � u
MONO ⊔

(u, . . . , u, Si, . . . , Sm) � ⊔
(u, . . . , u︸ ︷︷ ︸

i

, Si+1, . . . , Sm)

R6 is the same as R5, except that it includes UNJOIN and
replaces rules of the form B3 where m > 1 with their simplified
versions. R6 is sound, harmonic and of the desired form.

2.5 Discussion

R6 can be made more powerful in several ways. For example,
the following generalization of JOIN is sound and preserves Har-
mony 1:

JOIN′
u � ⊔

(. . . , u, . . .)

The same holds for the reflexivity of refinement, which generalizes
SPEC, and other rules such as UNNEST:
UNNEST ⊔

(u1, . . . , un) � ⊔
(u1, . . . , ui−1, u′1, . . . , u′m, ui+1, . . . , un)

provided 1 ≤ i ≤ n and ui =
⊔

(u′1, . . . , u′m).

In specific applications of freefinement, it might also be useful
to add derived rules to R6. Examples of this will follow later.

Freefinement assumes as little as possible about |=V1 Sat and
is consequently very generic. As one might expect, additional as-
sumptions can help to construct more powerful refinement systems.
For example, suppose ‘plus’ is a constructor that is commutative in
the sense that

∀t1, t2 ∈ T, S ∈ S · |=V1plus(t1, t2) Sat S ⇔ |=V1plus(t2, t1) Sat S

Then Specs(plus([[u1]], [[u2]])) = Specs(plus([[u2]], [[u1]])) because

S ∈ Specs(plus([[u1]], [[u2]]))
⇔ ∀t1 ∈ [[u1]], t2 ∈ [[u2]] · |=V1plus(t1, t2) Sat S
⇔ ∀t1 ∈ [[u1]], t2 ∈ [[u2]] · |=V1plus(t2, t1) Sat S
⇔ S ∈ Specs(plus([[u2]], [[u1]]))

So [[plus(u1, u2)]] = [[plus(u2, u1)]] and therefore the refinement rule
plus(u1, u2) ≡ plus(u2, u1) is sound. Depending on the rules of V1,
it might also preserve harmony.

As mentioned before, the semantic function [[]] and the refine-
ment order � have nice interpretations when |=V1 Sat is well-
behaved. Here is the definition:

Definition 8 (Well-behavedness). |=V1 Sat is well-behaved iff
∀C∈ K, t1, . . . , tn ∈ T, S ∈ S · |=V1C(t1, . . . , tn) Sat S ⇒
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))) · |=V1 t Sat S

There is also an alternative characterization of well-behavedness:

Lemma 9. |=V1 Sat is well-behaved iff
∀C∈ K, t1, . . . , tn ∈ T · Terms(Specs({C(t1, . . . , tn)})) =
Terms(Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))))

Proof. ti ∈ Terms(Specs({ti})) for i ∈ 1..n by Corollary 1.1, so
{C(t1, . . . , tn)}⊆ C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))).
Hence by Corollary 2.3 in the Appendix, Specs({C(t1, . . . , tn)}) ⊇
Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))).

Therefore:
|=V1 Sat is well-behaved

⇔
∀C∈ K, t1, . . . , tn ∈ T, S ∈ S · |=V1C(t1, . . . , tn) Sat S ⇒
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))) · |=V1 t Sat S

⇔
∀C∈ K, t1, . . . , tn ∈ T, S ∈ S · S ∈ Specs({C(t1, . . . , tn)}) ⇒
S ∈ Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))))

⇔
∀C∈ K, t1, . . . , tn ∈ T · Specs({C(t1, . . . , tn)}) ⊆
Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))))

⇔ {by the reasoning above}
∀C∈ K, t1, . . . , tn ∈ T · Specs({C(t1, . . . , tn)}) =
Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))))

The result then follows by Corollary 1.3.

Freefinement does not require well-behavedness of |=V1 Sat ,
but the next theorem shows that the intuitions behind the definitions

are simple when |=V1 Sat is well-behaved. For example, Theo-
rem 6.3 says that [[u]] is the set of all primitive terms that refine u.

Theorem 6. If |=V1 Sat is well-behaved, then

6.1 ∀t ∈ T · [[t]] = Terms(Specs({t}))
6.2 ∀t ∈ T, S ∈ S · |=V1 t Sat S ⇔ |=V2 t Sat S
6.3 ∀t ∈ T, u ∈ U · t ∈ [[u]] ⇔ |=u � t

Proof. .

6.1 By induction on the structure of t. Suppose t = C(t1, . . . , tn)
and assume [[ti]] = Terms(Specs({ti})) for i ∈ 1..n. Then:
[[t]] = Terms(Specs(C([[t1]], . . . , [[tn]])))

= {induction hypothesis}
Terms(Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))))

= {Lemma 9}
Terms(Specs({C(t1, . . . , tn)})) = Terms(Specs({t})).

6.2 |=V1 t Sat S
⇔ {definition of Specs}

S ∈ Specs({t})
⇔ {Corollary 2.7 in the Appendix}

S ∈ Specs(Terms(Specs({t})))
⇔ {Theorem 6.1}

S ∈ Specs([[t]])
⇔ {Lemma 4}

|=V2 t Sat S

6.3 The ⇐ proof is trivial since t ∈ [[t]]. For ⇒, assume {t} ⊆
[[u]]. Then Terms(Specs({t})) ⊆ Terms(Specs([[u]])) by Corol-
lary 2.5 in the Appendix, and [[t]] ⊆ [[u]] by Theorem 6.1 and
Lemma 2.

Whether |=V1 Sat is well-behaved depends partly on the
expressivity of specifications. For example, suppose

K = {x := e | e is an arithmetic expression} ∪ { � }
i.e. there is a nullary constructor x := e for all arithmetic expres-
sions e, and a binary constructor for sequential composition. Sup-
pose S = {Even x}, and |=V1 t Sat Even x holds iff, if t is executed
in any state where x is even, then x is even in every resulting state.
So |=V1x := x + 1 � x := x + 1 Sat Even x, but it is not the case that
|=V1x := x + 1 Sat Even x. In fact, x := x + 1 does not satisfy any
specification. This implies that Terms(Specs({x := x + 1})) = T, so
x := 1 � x := 1 ∈ Terms(Specs({x := x + 1})) � Terms(Specs({x :=
x + 1})). But |=V1x := 1 � x := 1 Sat Even x does not hold, hence
|=V1 Sat is not well-behaved.

Even though |=V1 Sat is not well-behaved, it is still possi-
ble to have inference rules that are amenable to freefinement, for
example:

1
x := e Sat Even x

provided e ∈ {. . . , -2, 0, 2, . . .}.

t Sat Even x t′ Sat Even x
2

t � t′ Sat Even x

If S is instead a set of specifications of the form [P, Q], where
P is a precondition and Q a postcondition, and

|=V1 t � t′ Sat [P, Q] ⇔ ∃R· |=V1 t Sat [P, R] ∧ |=V1 t′ Sat [R, Q]

then it is easy to show that this |=V1 Sat is well-behaved.
The completeness of V1 is a sufficient condition for the well-

behavedness of |=V1 Sat :

Theorem 7. If V1 is complete, then |=V1 Sat is well-behaved.

Proof. If V1 is complete, then |=V1C(t1, . . . , tn) Sat S ⇔
�V1C(t1, . . . , tn) Sat S. The well-behavedness of |=V1 Sat fol-
lows by induction on the derivation of C(t1, . . . , tn) Sat S:

• For each rule of the form A1, assume Pred(C, S1, . . . , Sn, S) and
Si ∈ Specs({ti}) for all i ∈ 1..n. So ∀t′i ∈ Terms(Specs({ti}))·
|=V1 t′i Sat Si for all i ∈ 1..n. The rule is sound with respect to
Definition 1.1, hence
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))·|=V1 t Sat S.

• For each rule of the form B1, assume Pred(S1, . . . , Sm, S) and
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))·|=V1 t Sat Si

for all i ∈ 1..m. The rule is sound w.r.t. Definition 1.2, so
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))·|=V1 t Sat S.

3. Applications
3.1 Lambda Calculus

The top left corner of Figure 1 contains a type system λ1 for the
lambda calculus. By considering pairs of the form (typing context,
type) as specifications, it is possible to apply freefinement and
obtain a refinement calculus for (extended) lambda terms in the
spirit of Denney [4]. The inputs to freefinement are as follows:

1. K = Var ∪ {λx. | x ∈ Var} ∪ { }
Note that K defines the language T of lambda terms:

e ::= x | λx. e | e e′

Here and in the following, x ranges over the set of variables Var,
and e ranges over T.

2. S = {[Γ; τ] | Γ ∈ Context ∧ τ ∈ Type}, where Context is the
set of typing contexts and Type is the set of types that contains
the type constructor → . The intended representation of a
typing context Γ is a list of variable names paired with types.
Variables may appear more than once in Γ, and variable lookup
uses the rightmost occurrence. In the following, σ and τ range
over Type, and Γ ranges over Context.

3. |=V1 Sat is defined by:

• |=V1x Sat [Γ; τ] ⇔ x : τ ∈ Γ

• |=V1λx. e Sat [Γ; τ] ⇔
∃σ, τ ′ · τ = σ → τ ′ ∧ |=V1e Sat [Γ, x : σ; τ ′]

• |=V1e e′ Sat [Γ; τ] ⇔
∃σ · |=V1e Sat [Γ; σ → τ] ∧ |=V1e′ Sat [Γ; σ]

4. V1, shown in the top right corner of Figure 1, is obtained from
λ1 by replacing Γ � e : τ with e Sat [Γ; τ]. The rules VAR, ABS
and APP are all of the form A1 with n = 0, 1 and 2 respectively.
For example, in the case of ABS, Pred(C, S1, S) is defined as
∃x, Γ, σ, τ · C = λx. ∧ S1 = [Γ, x : σ; τ] ∧ S = [Γ; σ → τ].

Since V1 does not contain rules of the form B1 where m > 1,
freefinement does not add join terms to the lambda calculus. The
system λ2 in Figure 1 is V2 where f Sat [Γ; τ] is written instead as
Γ � f : τ . The system R5, shown in the bottom right of Figure 1, is
the final harmonic refinement calculus that freefinement produces.

Here is an example top-down typing derivation with R5:

[Γ; (σ → τ) → (σ → τ)]
� “ABS”

λx. [Γ, x : σ → τ ; σ → τ]
� “MONO with ABS”

λx. λy. [Γ, x : σ → τ , y : σ; τ]

� “MONO with APP”
λx. λy. ([Γ, x : σ → τ , y : σ; σ → τ] [Γ, x : σ → τ, y : σ; σ])

� “Twice MONO with VAR”
λx. λy. (x y)

λ1 V1

x : τ ∈ Γ
VAR

Γ � x : τ

Γ, x : σ � e : τ
ABS

Γ � λx. e : σ → τ

Γ � e : σ → τ
Γ � e′ : σ

APP
Γ � e e′ : τ

VAR
x Sat [Γ; τ]

provided x : τ ∈ Γ.

e Sat [Γ, x : σ; τ]
ABS

λx. e Sat [Γ; σ → τ]

e Sat [Γ; σ → τ]
e′ Sat [Γ; σ]

APP
e e′ Sat [Γ; τ]

λ2 R5

x : τ ∈ Γ
VAR

Γ � x : τ

Γ, x : σ � f : τ
ABS

Γ � λx. f : σ → τ

Γ � f : σ → τ
Γ � f′ : σ

APP
Γ � f f′ : τ

SPEC
Γ � [Γ; σ] : σ

VAR
[Γ; τ] � x

provided x : τ ∈ Γ.

ABS
[Γ; σ → τ] � λx. [Γ, x : σ; τ]

APP
[Γ; τ] � [Γ; σ → τ] [Γ; σ]

SPEC
[Γ; σ] � [Γ; σ]

f1 � f2 f2 � f3
TRANS

f1 � f3

f � f′
MONO

g[f] � g[f′]

Figure 1. Freefinement and a typed lambda calculus

Since R5 is harmonic and V2 is a sound and conservative extension
of V1, it holds that �λ1Γ � λx. λy. (x y) : (σ → τ) → (σ → τ).

One might wish to extend R5 using knowledge particular to
lambda calculus typing. It is simple to show that V1 is complete, so

�λ1Γ � e : τ ⇔ �V1e Sat [Γ; τ] ⇔ |=V1e Sat [Γ; τ]

Furthermore, by Theorems 7 and 6.2,

|=V1e Sat [Γ; τ] ⇔ |=V2e Sat [Γ; τ]

and because V2 is a sound and conservative extension of V1,

�V1e Sat [Γ; τ] ⇔ �V2e Sat [Γ; τ]

Consider the property of preservation:

Definition 9. A relation� ⊆ T × T satisfies preservation
def
=

∀Γ, τ , e, e′ · if �λ1Γ � e : τ and e� e′, then �λ1Γ � e′ : τ .

Theorem 8. If� satisfies preservation, then:

8.1 If e� e′, then |=e � e′.
8.2 If �V2e Sat [Γ; τ] and e� e′, then �V2e′ Sat [Γ; τ].

Proof. The proof of 8.2 is trivial. For 8.1:
∀Γ, τ , e, e′ · �λ1Γ � e : τ ∧ e� e′ ⇒ �λ1Γ � e′ : τ

⇔ {predicate logic}
∀e, e′ · e� e′ ⇒ (∀Γ, τ · �λ1Γ � e : τ ⇒ �λ1Γ � e′ : τ)

⇔
∀e, e′ · e� e′ ⇒ (∀S ∈ S · |=V2e Sat S ⇒ |=V2e′ Sat S)

⇔ {Lemma 5}
∀e, e′ · e� e′ ⇒ |=e � e′

So any relation that satisfies preservation contains only sound
refinements that satisfy Harmony 1, and can augment R5 to yield a
sound and harmonic refinement system. Examples of relations that
satisfy preservation include:

• The α-conversion relation.

• The β-reduction relation.

• The η-contraction relation. So λx. (e x) � e, provided x does
not appear free in e.

• The relation ≤ on closed terms, where e ≤ e′ exactly when e
has fewer types than e′.

Here is a small example that uses the η-contraction extension:

λx. λy. λz. ((x y) z)
� {MONO with η-contraction}

λx. λy. (x y)
� {MONO with η-contraction}

λx. x

3.2 Hoare Logic

The top left corner of Figure 2 contains system H, a Hoare logic for
simple imperative programs. P is a precondition, Q a postcondition,
and c a command in the Hoare triple {P}c{Q}, and |=H{P}c{Q}
is the usual partial correctness interpretation of {P}c{Q}. By inter-
preting a specification as a pre-post pair, the rules of H do not fit the
rule forms A1 and B1, since the proviso of AUXVARELIM inspects
the command c to determine the variables that it writes and reads.
However, if specifications also keep track of written and read vari-
ables, then it becomes possible to apply freefinement to obtain a
refinement calculus in the spirit of Morgan [9]. Here are the inputs:

1. There are constructors for assignments, sequential composition,
conditionals and loops:

K = {x := e | x ∈ Var ∧ e ∈ IntExp}
∪ { � }
∪ {if b then else | b ∈ BoolExp}
∪ {while b do | b ∈ BoolExp}

2. A specification consists of two sets of variables and two asser-
tions, written in a notation resembling Morgan’s specification
statement [8]:

S =
{

x; y :{P, Q} | x, y ∈ P(Var) ∧ P, Q ∈ Assertion
}

3. In the specification x; y : {P, Q}, the x and y are upper bounds
on the sets of variables written and read by the command re-
spectively, the P is a precondition and the Q a postcondition:

|=V1c Sat x; y : {P, Q} def
= writes(c) ⊆ x ∧ reads(c) ⊆ y ∧

|=H{P}c{Q}
4. V1, shown in the top right corner of Figure 2, has the following

relationship with H:

�V1c Sat x; y : {P, Q} ⇔ writes(c) ⊆ x ∧ reads(c) ⊆ y ∧
�H{P}c{Q}

Note that:

• The non-structural rules of H have counterparts in V1 that
embody the definitions of writes and reads. For example,
the conclusion of COND reflects that

writes(if b then c else c′) def
= writes(c) ∪ writes(c′) and

reads(if b then c else c′) def
= reads(c) ∪ reads(c′) ∪ FV(b).

• The structural rules of H that inspect c for its write and/or
read sets have counterparts in V1 that consult the specifica-
tion instead. See for example the proviso of AUXVARELIM.

• CONSEQUENCE in V1 allows the enlargement of write and
read sets. This loosening of the bounds is useful in refine-
ment developments, because then the resulting code is not
forced to write and read all the variables that were originally
available for writing and reading.

The V1-counterparts of the structural rules of H are all of the
form B1. For example, m = 1 in the case of CONSTANCY,
and m = 2 for DISJ. The other rules are of the form A1. For
example, n = 2 in the case of COND, and n = 1 for LOOP.

The systems V2 and R6 that freefinement produces appear at
the bottom of Figure 2. R6 yields several derived rules that may be
useful in practical refinement developments. For example, the rule:

DERIVEDVARASSIGN
x; y :{P, Q} � z := e

provided z ∈ x and FV(e) ⊆ y and P ⇒ Q[e/z].

can replace VARASSIGN, and is similar to the assignment law of
Morgan (Law 1.3 on p. 8 of [9]). Likewise, the derived rule:

FOLLOWINGVARASSIGN
x; y :{P, Q} � x; y :{P, Q[e/z]} � z := e

provided z ∈ x and FV(e) ⊆ y.

is similar to the following assignment law of Morgan (Law 3.5 on
p. 32 of [9]).

Here is an example showing that R6 can derive a correct facto-
rial algorithm starting with its specification:

y,z; x,y,z :{true, y = x!}
� “SEQCOMP”

y,z; ∅ :{true, y = 1 ∧ z = 0} � y,z; x,y,z :{y = 1 ∧ z = 0, y = x!}

The first spec statement is refined as follows:

y,z; ∅ :{true, y = 1 ∧ z = 0}
� “SEQCOMP”

y; ∅ :{true, y = 1} � z; ∅ :{y = 1, y = 1 ∧ z = 0}
� “Twice MONO with CONSEQUENCE”

y; ∅ :{1 = 1, y = 1} � z; ∅ :{y = 1 ∧ 0 = 0, y = 1 ∧ z = 0}
� “Twice MONO with VARASSIGN”

y := 1 � z := 0

And for the second spec statement:

y,z; x,y,z :{y = 1 ∧ z = 0, y = x!}
� “CONSEQUENCE”

y,z; x,y,z :{y = z!, y = z! ∧ ¬z
=x}
� “LOOP”

while z
=x do y,z; y,z :{y = z! ∧ z
=x, y = z!}
� “MONO with SEQCOMP”

while z
=x do z; z :{y = z! ∧ z
=x, y·z = z!} � y; y,z :{y·z = z!, y = z!}

H V1

{P}c{Q}
AUXVARELIM {∃v · P}c{∃v · Q}
provided v /∈ writes(c) ∪ reads(c).

{P′}c{Q′}
CONSEQUENCE {P}c{Q}
provided P ⇒ P′ and Q′ ⇒ Q.

{P}c{Q}
CONSTANCY {P ∧ R}c{Q ∧ R}
provided FV(R) ∩ writes(c) = ∅.

{P}c{Q} {P′}c{Q′}
DISJ {P ∨ P′}c{Q ∨ Q′}
VARASSIGN {P[e/x]}x := e{P}

{P}c{Q} {Q}c′{R}
SEQCOMP {P}c � c′{R}

{P ∧ b}c{Q} {P ∧ ¬b}c′{Q}
COND {P}if b then c else c′{Q}

{I ∧ b}c{I}
LOOP {I}while b do c{I ∧ ¬b}

c Sat x; y :{P, Q}
AUXVARELIM

c Sat x; y :{∃v · P, ∃v · Q}
provided v /∈ x ∪ y.

c Sat x′; y′ :{P′, Q′}
CONSEQUENCE

c Sat x; y :{P, Q}
provided x ⊇ x′ and y ⊇ y′ and P ⇒ P′ and Q′ ⇒ Q.

c Sat x; y :{P, Q}
CONSTANCY

c Sat x; y :{P ∧ R, Q ∧ R}
provided FV(R) ∩ x = ∅.

c Sat x; y :{P, Q} c Sat x; y :{P′, Q′}
DISJ

c Sat x; y :{P ∨ P′, Q ∨ Q′}
VARASSIGN

x := e Sat x; FV(e) :{P[e/x], P}

c Sat x; y :{P, Q} c′ Sat x′; y′ :{Q, R}
SEQCOMP

c � c′ Sat x ∪ x′; x ∪ x′ :{P, R}
c Sat x; y :{P ∧ b, Q} c′ Sat x′; y′ :{P ∧ ¬b, Q}

COND
if b then c else c′ Sat x ∪ x′; y ∪ y′ ∪ FV(b) :{P, Q}

c Sat x; y :{I ∧ b, I}
LOOP

while b do c Sat x; y ∪ FV(b) :{I, I ∧ ¬b}
V2 R6

s Sat x; y :{P, Q}
AUXVARELIM

s Sat x; y :{∃v · P,∃v · Q}
provided v /∈ x ∪ y.

s Sat x′; y′ :{P′, Q′}
CONSEQUENCE

s Sat x; y :{P, Q}
provided x ⊇ x′ and y ⊇ y′ and P ⇒ P′ and Q′ ⇒ Q.

s Sat x; y :{P, Q}
CONSTANCY

s Sat x; y :{P ∧ R, Q ∧ R}
provided FV(R) ∩ x = ∅.

s Sat x; y :{P, Q} s Sat x; y :{P′, Q′}
DISJ

s Sat x; y :{P ∨ P′, Q ∨ Q′}
VARASSIGN

x := e Sat x; FV(e) :{P[e/x], P}

s Sat x; y :{P, Q} s′ Sat x′; y′ :{Q, R}
SEQCOMP

s � s′ Sat x ∪ x′; x ∪ x′ :{P, R}
s Sat x; y :{P ∧ b, Q} s′ Sat x′; y′ :{P ∧ ¬b, Q}

COND
if b then s else s′ Sat x ∪ x′; y ∪ y′ ∪ FV(b) :{P, Q}

s Sat x; y :{I ∧ b, I}
LOOP

while b do s Sat x; y ∪ FV(b) :{I, I ∧ ¬b}
SPEC

x; y :{P, Q} Sat x; y :{P, Q}

s Sat x; y :{P, Q}
JOIN ⊔

(. . . , s, . . .) Sat x; y :{P, Q}

AUXVARELIM
x; y :{∃v · P, ∃v · Q} � x; y :{P, Q}

provided v /∈ x ∪ y.

CONSEQUENCE
x; y :{P, Q} � x′; y′ :{P′, Q′}

provided x ⊇ x′ and y ⊇ y′ and P ⇒ P′ and Q′ ⇒ Q.

CONSTANCY
x; y :{P ∧ R, Q ∧ R} � x; y :{P, Q}

provided FV(R) ∩ x = ∅.

DISJ
x; y :{P ∨ P′, Q ∨ Q′} � ⊔

(x; y :{P, Q}, x; y :{P′, Q′})

VARASSIGN
x; FV(e) :{P[e/x], P} � x := e

SEQCOMP
x ∪ x′; x ∪ x′ :{P, R} � x; y :{P, Q} � x′; y′ :{Q, R}

COND
x ∪ x′; y ∪ y′ ∪ FV(b) :{P, Q}
� if b then x; y :{P ∧ b, Q} else x′; y′ :{P ∧ ¬b, Q}

LOOP
x; y ∪ FV(b) :{I, I ∧ ¬b} � while b do x; y :{I ∧ b, I}

SPEC
x; y :{P, Q} � x; y :{P, Q}

JOIN
x; y :{P, Q} � ⊔

(. . . , x; y :{P, Q}, . . .)

s1 � s2 s2 � s3
TRANS

s1 � s3

s � s′
MONO

t[s] � t[s′]

UNJOIN ⊔
(s, . . . , s) � s

Figure 2. Freefinement and Hoare logic

� “MONO with VARASSIGN”

while z
=x do z; z :{y = z! ∧ z
=x, y·z = z!} � y := y·z
� “MONO with CONSEQUENCE”

while z
=x do z; z :{y·(z+1) = (z+1)!, y·z = z!} � y := y·z
� “MONO with VARASSIGN”

while z
=x do z := z+1 � y := y·z

Since �R6y,z; x,y,z : {true, y = x!} � y := 1 � z := 0 � while z�=x do
z := z+1 � y := y·z, it is the case that �V1y := 1 � z := 0 � while z�=x
do z := z+1 � y := y·z Sat y,z; x,y,z : {true, y = x!} and hence also
�H{true}y := 1 � z := 0 � while z�=x do z := z+1 � y := y·z{y = x!}.

Here is another example of using R6; it involves join statements.
The statement

⊔
(x; y : {P1, Q1}, x; y : {P2, Q2}) is the join of

the specification statements x; y : {P1, Q1} and x; y : {P2, Q2}.
Expressing it as a spec statement is simple because

⊔
(x; y :{P1, Q1}, x; y :{P2, Q2}) ≡ x; y :{P1, Q1} also {P2, Q2}

where the definition of {P1, Q1} also {P2, Q2}, taken from [11],
is: {(P1 ∧ z=1) ∨ (P2 ∧ z�=1), (Q1 ∧ z=1) ∨ (Q2 ∧ z�=1)} where
z is fresh. R6 can derive both directions of refinement. Firstly:

⊔
(x; y :{P1, Q1}, x; y :{P2, Q2})

� “Twice MONO with CONSEQUENCE”⊔
(x; y :{∃z· (P1∧z=1 ∨ P2∧z�=1) ∧ z=1, ∃z· (Q1∧z=1 ∨ Q2∧z�=1) ∧ z=1},

x; y :{∃z· (P1∧z=1 ∨ P2∧z�=1) ∧ z�=1, ∃z· (Q1∧z=1 ∨ Q2∧z�=1) ∧ z�=1})

� “Twice MONO with AUXVARELIM”⊔
(x; y :{(P1∧z=1 ∨ P2∧z�=1) ∧ z=1, (Q1∧z=1 ∨ Q2∧z�=1) ∧ z=1},

x; y :{(P1∧z=1 ∨ P2∧z�=1) ∧ z�=1, (Q1∧z=1 ∨ Q2∧z�=1) ∧ z�=1})

� “Twice MONO with CONSTANCY”⊔
(x; y :{P1∧z=1 ∨ P2∧z�=1, Q1∧z=1 ∨ Q2∧z�=1},

x; y :{P1∧z=1 ∨ P2∧z�=1, Q1∧z=1 ∨ Q2∧z�=1})

� “UNJOIN”

x; y :{P1, Q1} also {P2, Q2}

Secondly:

x; y :{(P1 ∧ z=1) ∨ (P2 ∧ z�=1), (Q1 ∧ z=1) ∨ (Q2 ∧ z�=1)}
� “DISJ”⊔

(x; y :{P1 ∧ z=1, Q1 ∧ z=1}, x; y :{P2 ∧ z�=1, Q2 ∧ z�=1})

� “Twice MONO with CONSTANCY”⊔
(x; y :{P1, Q1}, x; y :{P2, Q2})

Leino and Manohar [7] mention several uses of the join of spec-
like statements.

3.3 Discussion

The type system λ1 considered above is very simple. Freefinement
also applies to System F and other more sophisticated type systems.

Although λ1 had only rules of the form A1, typing rules of the
form B1 are quite common – examples include rules for subtyping
and intersection types:

Γ � e : τ
SUB

Γ � e : τ ′
provided τ <: τ ′.

Γ � e : τ Γ � e : τ ′
INTER

Γ � e : τ∧τ ′

There is no golden recipe for adapting proof systems to make
them amenable to freefinement. However, enriching specifications
and/or terms might help. The Hoare logic example used enriched
specifications to keep track of write and read sets. Consider again
the two problematic rules from before:

succ(n) : N
2

pred(succ(n)) : N

n : N
3

pred(n) : N

provided positive(n).

Rule 2 can be accommodated by choosing S = {‘z’,‘s’,‘p’} × {N}.
Intuitively, the specification (‘s’, N) tracks the fact that the outer-
most constructor is ‘succ’. The rule then becomes:

n : (‘s’, N)
2

pred(n) : (‘p’, N)

Rule 3 can be accommodated by choosing S = N × {N}. Then the
sentence n : (i, N) tracks the fact that term n denotes the natural
number i. The adapted rule is of the form A1 with n = 1:

n : (i, N)
3

pred(n) : (i − 1, N)
provided i > 0.

In some cases it might be useful to enrich the term language.
For example, consider the rule of concurrent separation logic [3]
that removes auxiliary commands (ghost assignments):

Γ � {P}c{Q}
AUXILIARY

Γ � {P}c\a{Q}
provided a ∈ aux(c) and a ∩ (FV(P) ∪ FV(Q)) = ∅.

This rule is not of the form A1 or B1, because it contains a meta-
operation in the conclusion. However, if the meta-operation is
turned into an explicit constructor (and specifications track auxil-
iaries), then the rule is of the form B1 with m = 1 and freefinement
can handle it.

To get an approximate idea of what will happen when free-
finement is applied to a separation logic, consider the frame and
concurrency rules:

{P}c{Q}
FRAME {P ∗ R}c{Q ∗ R}

{P1}c1{Q1} {P2}c2{Q2}
CONCURRENCY {P1 ∗ P2}c1||c2{Q1 ∗ Q2}

A concrete setting and system will typically make syntactic restric-
tions on the commands in the triples. So the specification statement
{P, Q} might contain more components, but freefinement will yield
refinement versions of the rules that look roughly as follows:

FRAME {P ∗ R, Q ∗ R} � {P, Q}

CONCURRENCY {P1 ∗ P2, Q1 ∗ Q2} � {P1, Q1} || {P2, Q2}

4. Related Work

In his work on refinement for the lambda calculus, Denney [4]
treats types as rudimentary specifications and introduces a speci-
fication construct ?τ for each type τ . Conceptually, ?τ corresponds
to [Γ; τ] where the context Γ is left implicit. For example, con-
sider the term λx : σ. ?τ in the context Γ. The ?τ inside the term
corresponds to [Γ, x : σ; τ]. Denney also considers richer specifica-
tions for lambda terms in his PhD thesis [5]. This results in a more

powerful refinement calculus in which specification constructs can
contain logical assumptions.

The specification statement x : [P, Q] of Morgan [8] is analo-
gous to x; Var :{P, Q}, since there is no restriction on the variables
that the statement may read. However, his specification statement is
a total correctness specification, and the accompanying refinement
calculus [9] establishes total correctness. Similar refinement cal-
culi for total correctness were proposed by Back [1, 2], Morris [10]
and Hehner [6]. The books [2, 6, 9] contain many examples of how
correct algorithms can be constructed from their specifications via
refinement.

Leino and Manohar [7] consider the join of Morgan’s specifica-
tion statements x : [P1, Q1] and x : [P2, Q2], and mention several
of its uses. Freefinement adds explicit constructors for joins, and re-
lies on the ability to join arbitrary terms from U in order to establish
harmony.

There is a relationship between observational equivalence of
terms and the function Specs, because |=V1 Sat gives rise to
a notion of observability from the specification point of view. In
particular, two terms t and t′ are observationally equivalent in this
sense iff t ∼ t′, where

t ∼ t′ def
= Specs({t}) = Specs({t′})

It is trivial to check that ∼ is an equivalence relation. If |=V1 Sat
is well-behaved, then t ∼ t′ ⇔ [[t]] = [[t′]] (i.e. t ∼ t′ ⇔ t ≡ t′) by
Corollary 2.9 in the Appendix and Theorem 6.1.

Acknowledgments

Van Staden was supported by ETH Research Grant ETH-15 10-1.
Calcagno was partially funded by EPSRC.

References
[1] R.-J. Back. Correctness preserving program refinements: Proof theory

and applications. Mathematical Centre Tracts, 131, 1980.

[2] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998. Graduate Texts in Computer
Science.

[3] S. Brookes. A semantics for concurrent separation logic. Theor.
Comput. Sci., 375:227–270, April 2007.

[4] E. Denney. Simply-typed underdeterminism. Journal of Computer
Science and Technology, 13:491–508, 1998.

[5] E. Denney. A theory of program refinement. Technical Report ECS-
LFCS-99-412, University of Edinburgh, 1999.

[6] E. C. R. Hehner. A practical theory of programming. Springer-Verlag
New York, Inc., New York, NY, USA, 1993.

[7] K. R. M. Leino and R. Manohar. Joining specification statements.
Theor. Comput. Sci., 216(1-2):375–394, 1999.

[8] C. Morgan. The specification statement. ACM Trans. Program. Lang.
Syst., 10:403–419, July 1988.

[9] C. Morgan. Programming from specifications (2nd ed.). Prentice Hall
International (UK) Ltd., Hertfordshire, UK, 1994.

[10] J. M. Morris. A theoretical basis for stepwise refinement and the
programming calculus. Sci. Comput. Program., 9:287–306, December
1987.

[11] M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and
inheritance. In POPL ’08, pages 75–86, New York, NY, USA, 2008.
ACM.

A. Antitone Galois Connections

Lemma 1 established that an antitone Galois connection exists
between the functions Specs and Terms:

X ⊆ Terms(Y) ⇔ Y ⊆ Specs(X) (∗)

Theorems derived from this equivalence come in pairs because
of the symmetry between Specs and Terms. Here are a few well-
known ones together with their proofs:

Corollary 2. .

2.1 X ⊆ Terms(Specs(X))

2.2 Y ⊆ Specs(Terms(Y))

2.3 X ⊆ X′ ⇒ Specs(X) ⊇ Specs(X′)
2.4 Y ⊆ Y′ ⇒ Terms(Y) ⊇ Terms(Y′)
2.5 X ⊆ X′ ⇒ Terms(Specs(X)) ⊆ Terms(Specs(X′))
2.6 Y ⊆ Y′ ⇒ Specs(Terms(Y)) ⊆ Specs(Terms(Y′))
2.7 Specs(Terms(Specs(X))) = Specs(X)

2.8 Terms(Specs(Terms(Y))) = Terms(Y)

2.9 Specs(X) ⊆ Specs(X′)
⇔ Terms(Specs(X)) ⊇ Terms(Specs(X′))

2.10 Terms(Y) ⊆ Terms(Y′)
⇔ Specs(Terms(Y)) ⊇ Specs(Terms(Y′))

2.11 Specs(X ∪ X′) = Specs(X) ∩ Specs(X′)
2.12 Terms(Y ∪ Y′) = Terms(Y) ∩ Terms(Y′)

Proof. .

2.1 In (∗), instantiate Y with Specs(X).

2.3 X ⊆ “Assumption” X′ ⊆ “2.1” Terms(Specs(X′)). In (∗),
instantiate Y with Specs(X′).

2.5 If X ⊆ X′, then Specs(X) ⊇ Specs(X′) holds by 2.3. The
result follows from 2.4.

2.7 From 2.1 and 2.3 follows Specs(X) ⊇ Specs(Terms(Specs(X))).
Instantiating Y with Specs(X) in 2.2 yields Specs(X) ⊆
Specs(Terms(Specs(X))).

2.9 ⇒ holds by 2.4. From Terms(Specs(X)) ⊇ Terms(Specs(X′))
and 2.3, Specs(Terms(Specs(X))) ⊆ Specs(Terms(Specs(X′))).
Specs(X) ⊆ Specs(X′) by 2.7.

2.11 Proof by indirect equality. For arbitrary Y:

Y ⊆ Specs(X ∪ X′)
⇔ {By (∗)}

X ∪ X′ ⊆ Terms(Y)
⇔ {Set theory}

X ⊆ Terms(Y) ∧ X′ ⊆ Terms(Y)
⇔ {By (∗)}

Y ⊆ Specs(X) ∧ Y ⊆ Specs(X′)
⇔ {Set theory}

Y ⊆ Specs(X) ∩ Specs(X′)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

