
Separation, Abstraction, Multiple Inheritance
and View Shifting

Stephan van Staden1 and Cristiano Calcagno??2

1 ETH Zurich, Switzerland
Stephan.vanStaden@inf.ethz.ch

2 Imperial College, London
ccris@doc.ic.ac.uk

Abstract. Inheritance is a central mechanism in object-oriented pro-
gramming. Many popular object-oriented languages support multiple in-
heritance or limited versions thereof. This work extends a powerful mod-
ular proof system for single inheritance, which uses separation logic and
abstract predicate families, to multiple inheritance. The extended sys-
tem allows view shifting in the logic: the ability to view an object under
different abstractions and to shift between such views. Several examples
illustrate the system’s use and utility.

Key words: Object-orientation, Separation logic, Abstraction, Abstract
predicate families, Multiple inheritance, View shifting

1 Introduction

Inheritance is a central concern in object-oriented program verification. Many
languages offer multiple inheritance (e.g. C++ and Eiffel [1]) or limited versions
thereof (e.g. Java interfaces). While multiple inheritance is more expressive, it
is also harder to reason about.

Few logics exist for reasoning about multiple inheritance, while many pro-
gram logics accommodate single inheritance. Parkinson and Bierman [3] recently
presented a sound proof system for single inheritance with several useful proper-
ties: 1) it offers local reasoning despite aliasing, 2) the logic supports abstraction
and information hiding well with abstract predicate families (abbreviated apfs),
3) the system is modular and every method body is verified only once, and 4) a
wide range of inheritance uses and abuses can be verified. These properties make
their system attractive for extension to the multiple inheritance case.

We considered EiffelBase, a library of data structures and algorithms which
uses multiple inheritance extensively to implement orthogonal features of col-
lections, such as being ordered, or providing random or sequential access, and
investigated how interesting uses of multiple inheritance impact reasoning. The
main challenges we encountered are: 1) methods and state (fields and data rep-
resentations) from several parents must be handled, also in the case of diamond

?? This work was done while visiting ETH Zurich.

2 Stephan van Staden and Cristiano Calcagno

inheritance where a class has common ancestors, and 2) relationships between
different views (abstractions) of an object, which abstract predicates capture,
must be described and verified. Parent classes are often developed independently,
and their views must be reconciled in child classes for the verification of typical
code.

After experimenting with Parkinson and Bierman’s system, it became clear
that extensions were required to accommodate inherited state and enforce rela-
tionships between abstractions. We introduce two new specification mechanisms:
1) export clauses for static relationships among predicates which apply to one
class only, and 2) axioms for dynamic relationships which must be preserved
by all subclasses. Export clauses and axioms offer two complementary ways to
achieve view shifting in the logic. View shifting is pervasive and not limited to
multiple inheritance: an object can go through a long initialization process after
which it is viewed as ready for use, or a method can view an object as read-only.
The examples given in this paper illustrate important uses of our extensions.
Other uses include abstract class and interface verification, constraining sub-
class data representations, and view shifting in single inheritance programs.

A gentle warm-up follows in Section 2. Section 3 introduces a programming
language with multiple inheritance and Section 4 formalizes its proof system. It
is possible to understand the examples in Section 5 at least partially without
complete knowledge of the formalization. We discuss limitations of the approach
in Section 6, and Section 7 concludes and mentions related work.

2 Warm-up

An apf [4, 3] provides an abstract predicate p for which each class G can define
an entry p@G. In Figure 1 on page 3, class COUNTER introduces an apf named
Cn which provides an abstraction of integer-valued counters in the logic. It fur-
thermore defines its entry for Cn, namely the Cn@COUNTER predicate. The
first argument of an apf predicate is its root object. Since the meaning of an
apf predicate depends on the dynamic type of the root object, it can be seen as
mirroring dynamic dispatch of object-orientation in the logic. The second argu-
ment of an apf predicate or entry is a set of tagged arguments, where tag names
provide useful hints about the purpose of tagged values. For example, the tag
name cnt describes the value of the counter in Cn apf predicates and entries.
Apfs offer high levels of abstraction: apf predicates and entries are treated ab-
stractly by clients, unless information about them is made available in export
and axiom clauses as we shall see.

Consider for example class CCELL in Figure 2 on page 4 which inherits
from CELL and COUNTER. It combines a mutable integer-valued cell with a
counter and increments the count every time a value is stored. Class CCELL
introduces apf Cc, which provides an abstraction of such objects in the logic.
The val and cnt tags in Cc apf predicates and entries label the stored value
and count respectively. The constructor of CCELL yields a Cc apf predicate, as
indicated by the postcondition of its Hoare-style specification after the keyword

Separation, Abstraction, Multiple Inheritance and View Shifting 3

class CELL
define Cell@CELL(x, {val=v}) as x.value ↪→ v
feature

introduce CELL(v: int)
dynamic {Current.value ↪→ } {Cell(Current,{val=v})}
do Current.value := v end

introduce value(): int
dynamic {Cell(Current,{val=v})} {Cell(Current,{val=v}) ∗ Result = v}
do Result := Current.value end

introduce set value(v: int)
dynamic {Cell(Current,{val= })} {Cell(Current,{val=v})}
do Current.value := v end

value: int
end

class COUNTER
define Cn@COUNTER(x,{cnt=c}) as x.count ↪→ c
feature

introduce COUNTER()
dynamic {Current.count ↪→ } {Cn(Current,{cnt=0})}
do Current.count := 0 end

introduce count(): int
dynamic {Cn(Current,{cnt=c})} {Cn(Current,{cnt=c}) ∗ Result = c}
do Result := Current.count end

introduce increment()
dynamic {Cn(Current,{cnt=c})} {Cn(Current,{cnt=c+1})}
do tmp: int tmp := Current.count Current.count := tmp + 1 end

count: int
end

Fig. 1. The CELL and COUNTER classes.

4 Stephan van Staden and Cristiano Calcagno

class CCELL inherit CELL COUNTER
define
Cell@CCELL(x,{val=v;cnt=c}) as Cc@CCELL(x,{val=v;cnt=c})
Cn@CCELL(x,{cnt=c}) as Cn@COUNTER(x,{cnt=c})
Cc@CCELL(x,{val=v;cnt=c}) as Cell@CELL(x,{val=v})∗Cn@COUNTER(x,{cnt=c})
export
∀x· x : CCELL ⇒ [∀c,v· Cc(x,{val=v;cnt=c})) ⇔ Cell(x,{val=v;cnt=c}) ⇔
(Cn(x,{cnt=c}) ∗ Rest(x,v))] where { Rest(x,v) = Cell@CELL(x,{val=v})}

feature
introduce CCELL(v: int) dynamic
{Current.value ↪→ ∗ Current.count ↪→ } {Cc(Current,{val=v;cnt=0})}
do Precursor{CELL}(v) Precursor{COUNTER}() end

inherit value(): int dynamic
{Cc(Current,{val=v;cnt=c})} {Cc(Current,{val=v;cnt=c}) ∗ Result = v} also
{Cell(Current,{val=v;cnt=c})} {Cell(Current,{val=v;cnt=c}) ∗ Result = v}

override set value(v: G)
dynamic {Cc(Current,{val= ;cnt=c})} {Cc(Current,{val=v;cnt=c+1})}

also {Cell(Current,{val= ;cnt=c})} {Cell(Current,{val=v;cnt=c+1})}
do Current.CCELL::increment() Current.CELL::set value(v) end

inherit count(): int dynamic
{Cc(Current,{val=v;cnt=c})} {Cc(Current,{val=v;cnt=c}) ∗ Result = c}
also {Cn(Current,{cnt=c})} {Cn(Current,{cnt=c}) ∗ Result = c}

inherit increment()
dynamic {Cc(Current,{val=v;cnt=c})} {Cc(Current,{val=v;cnt=c+1})}

also {Cn(Current,{cnt=c})} {Cn(Current,{cnt=c+1})}
end

// In an arbitrary class or library:
use counter(c: COUNTER)

dynamic {Cn(c,{cnt=v})} {Cn(c,{cnt=v+10})}

use cell(c: CELL, v: int)
dynamic {Cell(c,{val= })} {Cell(c,{val=v})}

Fig. 2. The CCELL class and two library methods.

dynamic. However, the library routine use counter at the bottom of Figure 2
demands a Cn apf predicate, as it was developed without knowledge of counted
cells. A verification problem arises whenever use counter is reused to operate
on an instance of CCELL. This is shown in the following proof attempt where
assertions and statements are interleaved.

{true}
cc := new CCELL(5)

Separation, Abstraction, Multiple Inheritance and View Shifting 5

{Cc(cc,{val=5;cnt=0})}
{???}
{Cn(cc,{cnt=0})}

use counter(cc)
{Cn(cc,{cnt=10})}
{???}
{Cc(cc,{val=5;cnt=10})}

In order to fill the gaps indicated by ???, we need to relate the abstract Cc and
Cn views of a CCELL instance while preserving information about its stored
value. If the use cell method is called right after the call to use counter, a view
shift to obtain a Cell apf predicate is similarly needed. Completing the proof
becomes easy with the formal system defined in Section 4.

3 A programming language with specifications

3.1 Syntax

The grammar of our kernel language with multiple inheritance and specifications
is shown in Figure 3. A sequence of c’s is denoted by c. The letters G and H are
used for class names, p for apf names, t for tag names, w for ordinary predicate
names, a for axiom names, m for method names, and f for field names. Variables
are denoted by u, x, y and z.

A definition L of class G is divided into different sections: inherit, define,
export, axiom and feature. Define clauses are written in the define section
and give the apf entries for G. Export and axiom clauses provide additional
information which can be used for reasoning. They can be used to specify view
shifts, in particular, as will be shown later. Method and field declarations are
contained in the feature section of a class.

Separate namespaces exist for class names, p, w, a, m and f. The type system
ensures absence of clashes when names are introduced. This precludes method
overloading and field shadowing, for instance, and guarantees that methods or
fields with the same name in parent classes stem from common ancestors.

Call statements of the form x := y.G::m(z) and y.G::(z) denote direct method
calls in C++ style. Such calls follow static dispatch and can be used to call
ancestor versions of a method or constructors in parent classes, for example.

Constructors are not treated the same as in [3], where the parent class con-
structor is implicitly called. A constructor here is simply an introduced method
m where m is a class name. Except for the restriction that subclasses cannot
inherit or override constructors, no special treatment is needed otherwise.

To provide subclasses with the opportunity to respecify a method and to
simplify the proof rules that follow later, we require a subclass to inherit or
override explicitly all non-constructor methods present in its parents. The shared
semantics of multiple inheritance is used, which is popular in Eiffel and known as
‘virtual’ inheritance in C++. If field f is listed in multiple parents of G, a single
field f will be available in G. If a method is overridden, all ancestor versions of

6 Stephan van Staden and Cristiano Calcagno

L ::= Ab class G inherit H define D export E axiom A feature M F end
Ab ::= abstract | ε
D ::= p@G(x,{t = y}) as P Define clause

E ::= P where {W} Export clause
W ::= w(x) = P Where clause
A ::= a: P Axiom clause
M ::= introduce m(Args) Rt Sd Ss B Method declaration
| override m(Args) Rt Sd Ss B
| inherit m(Args) Rt Sd Ss
| introduce abstract m(Args) Rt Sd
| inherit abstract m(Args) Rt Sd

F ::= f: Type Field declaration
Sd ::= dynamic Spec Dynamic specification
Ss ::= static Spec Static specification
Spec ::= {P} {Q} | {P} {Q} also Spec Specification
B ::= do s end Method body
s ::= x: Type Local variable declaration
| x := e Assignment
| x := y.f Field lookup
| x.f := e Field assignment
| x := y.m(z) | y.m(z) Dynamically dispatched call
| x := y.G::m(z) | y.G::m(z) Direct method call
| x := new G Object allocation

e ::= x | e + e | e = e | Void | 0 | 1 | 2 | . . . Expression
Type ::= int | bool | G

Args ::= x: Type Formal arguments
Rt ::= ε | : Type Return type

Fig. 3. The kernel language grammar.

it are overridden. To avoid ambiguity, a class can inherit a method only if its
implementation (if there is one) is the same along all inheritance paths. Direct
method calls can encode language mechanisms which allow a particular ancestor
implementation to be chosen, so no generality is lost.

We assume the formal argument names of methods stay the same in sub-
classes. This simplifies the proof rules that follow, which would otherwise need
additional substitutions.

Void corresponds to ‘null’ in other languages. Two reserved program vari-
ables Current and Result denote the current object (‘this’) and the result of
a function call respectively. Current is never Void.

3.2 Operational semantics

Restrictions imposed by the type system together with the shared semantics of
multiple inheritance ensure the absence of ambiguity in field and method lookup.

Separation, Abstraction, Multiple Inheritance and View Shifting 7

The shared semantics also ensures that 1) only dynamic type information is
needed at runtime (cf. what ‘select’ clauses of Eiffel demand), and 2) the usual
semantics of casts can be adopted (cf. C++, where the cast expression and the
casted expression might differ in value [5]). Point 2 is already reflected in the
grammar, where assignment can be performed without explicit upcasting.

The operational semantics is standard and omitted. Configurations contain
a stack, a heap and a sequence of statements under execution. The stack maps
variables to values which include object ids. The heap maps object ids to records
containing a dynamic type G and field-value mappings.

4 Formalization of the proof system

An extension of the proof system in [3] is described here. For space reasons
we focus mostly on the new extensions. Details of the formal system are best
understood by studying the examples in Section 5.

4.1 Logic syntax and semantics

The predicates used in specifications and proofs have the following grammar.
P, Q, S, T, ∆ ::= ∀x·P | P⇒Q | false | e1 = e2 | x : G | x <: G | x.f ↪→ e | P ∗ Q

| p(x,{t = e}) Apf predicate
| p@G(x,{t = e}) Apf entry
| w(x) Ordinary predicate

The predicate x : G means x references an object whose dynamic type is
exactly G, and x <: G means x references an object whose dynamic type is a
subtype of G. In both cases x 6= Void, and x : G ⇒ x <: G holds. Within a
context, if x is declared of type G then x <: G whenever x 6= Void.

The notation used for apf predicates and their entries for particular classes
comes from jStar [6]. The second argument is a set of tagged expressions where
each tag (denoted by t) can occur at most once. Two such sets are equal if they
use the same tags and associate equal expressions with equal tags. Bundling
several arguments of a predicate into a tagged set provides order-independence,
which is especially useful for multiple inheritance. Each class can provide def-
initions of its apf entries in the define section. An informal discussion of apfs
was given in Section 2. For their formal semantics the reader is referred to [3]
for lack of space. The root object of an apf predicate is never Void.

Other predicates have the usual intuitionistic separation logic semantics. In-
formally the predicate x.f ↪→ e means that the f field of object x has value e, and
P ∗ Q means that P and Q hold for disjoint portions of the heap. Readers are
referred to [7–9] for a formal treatment of separation logic. Symbols such as ⇔,
¬, true, ∨, ∧ and ∃ are encoded in the standard way. Every occurrence of in a
predicate denotes a fresh existentially quantified variable, where the quantifier
is placed in the innermost position. FV (P) denotes the free variables of P; every
method precondition P must satisfy Result /∈ FV (P).

In the rest of the paper the symbols P, Q, S and T are used for assertions
and predicates, and ∆ for assumptions.

8 Stephan van Staden and Cristiano Calcagno

4.2 Specification refinement

Parkinson and Bierman introduced the notion of specification refinement in [3]
to formalize behavioral subtyping. If the specification {P1} {Q1} is refined by
{P2} {Q2}, then any s which satisfies {P1} {Q1} also satisfies {P2} {Q2}. If this
is the case we write ∆ ` {P1} {Q1} =⇒ {P2} {Q2}, which denotes the existence
of a proof tree with leaves ∆ ` {P1} {Q1} and root ∆ ` {P2} {Q2} built with
the structural rules of separation logic (Consequence, Frame, Auxiliary Variable
Elimination, Disjunction, and others). In the context of method specification
refinement, the Frame and Consequence rules are given by:

∆ ` {P} {Q}
Frame∆ ` {P ∗ T} {Q ∗ T}

∆⇒(P′⇒P) ∆ ` {P} {Q} ∆⇒(Q⇒Q′)
Conseq∆ ` {P′} {Q′}

provided Result /∈ FV (T).

The Frame rule expresses that disjoint potions of the heap stay unchanged.
Method specifications can be combined with also (Definition 1 in [3]):

{P1} {Q1} also {P2} {Q2}
def= {(P1 ∧ x = 1) ∨ (P2 ∧ x 6= 1)} {(Q1 ∧ x = 1) ∨ (Q2 ∧ x 6= 1)}

where x denotes a fresh auxiliary variable. The specifications {P1} {Q1} and
{P2} {Q2} are equivalent w.r.t. ∆ iff both ∆ ` {P1} {Q1} =⇒ {P2} {Q2} and
∆ ` {P2} {Q2} =⇒ {P1} {Q1}. Two specifications are equivalent iff they are
equivalent w.r.t. all ∆. It can be shown that also is commutative, associative
and idempotent modulo equivalence with identity {false} {true}. The notation
alsoi∈I {Pi} {Qi} abbreviates {Pe1} {Qe1} also . . . also {Pem} {Qem}, where e1

. . . em are the elements of set I. Furthermore, when I is the empty set:

alsoi∈∅ {Pi} {Qi}
def= {false} {true}

It always holds that ∆ ` {P} {Q} =⇒ {false} {true}. Other useful lemmas
involving also are given in Section 4.9. Finally, following [3],

∆ ` {P1} {Q1}
Current : G=⇒ {P2} {Q2}

def= ∆ ` {P1} {Q1} =⇒ {P2 ∗Current : G} {Q2}.

4.3 The specification environment

Most of the proof rules which follow use an environment Γ, which maps axiom
and method names to their specifications for all classes in a program:

Γ ::= G.a 7→ P Axiom specification
| G.m 7→ (x,{P} {Q}) Method dynamic specification
| G::m 7→ (x,{S} {T}) Method static specification

| Γ

The x in a specification of m denote its formal argument names. Γ is guaran-
teed to be a partial function for well-typed programs, and we write Γ(G.a) = P
for G.a 7→P ∈ Γ, etc.

Separation, Abstraction, Multiple Inheritance and View Shifting 9

4.4 Export information verification

A class can make information about itself available to other classes in an export
clause. Export clauses are frequently used to specify view shifts in terms of
relationships between apfs or their entries, and to expose apf entry definitions.
Information can also be hidden in predicates defined after the keyword where:
the definitions are not exported, so other classes must treat these predicates
abstractly.

Export information must be verified since other classes use it for reasoning.
Under the predicate definitions following where, the assumptions about a class
must imply exported information:

[∆ ∧ (∀x1 ·w1(x1) ⇔ Q1) ∧ . . . ∧ (∀xn ·wn(xn) ⇔Qn)] ⇒ P (Validity)
∆ `e P where {w1(x1) = Q1; . . . ; wn(xn) = Qn}

In Figure 2, for example, class CCELL exports the equivalence of Cc and Cell
apf predicates whenever the root object has dynamic type CCELL.

4.5 Axiom verification

Information about a class and all its subclasses can be made available in an
axiom clause. This knowledge can be used later to verify method bodies.

In the rules for axiom verification, the assumptions ∆ include information
about class G and export information from all other classes. A subclass must
preserve all axioms of its parents and may refine the predicate associated with
an axiom name (see the Parent consistency proof obligation). A non-abstract
class must also show that the predicate holds for its instances (the Implication
obligation).

∀i ∈ I· Γ(Hi.a) = Qi ∧ ∀j ∈ (1..n \ I)· Hj.a /∈ dom(Γ)
(∆ ∧ P)⇒

∧
i∈I Qi (Parent consistency)

(∆ ∧Current : G)⇒ P (Implication)
∆; Γ `a a: P in G parents H1 . . . Hn

∀i ∈ I· Γ(Hi.a) = Qi ∧ ∀j ∈ (1..n \ I)· Hj.a /∈ dom(Γ)
(∆ ∧ P)⇒

∧
i∈I Qi (Parent consistency)

∆; Γ `a a: P in abstract G parents H1 . . . Hn

The diamond inheritance example in Section 5.3 uses axioms extensively.

4.6 Statement verification

The assumptions ∆ used to verify statements contain information about the
enclosing class as well as export and axiom information from all other classes.
The rules for most statements are standard (see e.g. [9, 3]). For allocation:

allfields(G) = {f1,f2,. . . ,fn}
∆; Γ `s {true}x := new G{x.f1 ↪→ ∗ x.f2 ↪→ ∗ . . . ∗ x.fn ↪→ ∗ x : G}

10 Stephan van Staden and Cristiano Calcagno

where allfields(G) denotes the set of field names listed in G and all its ancestors.
Dynamically dispatched calls use the dynamic specs of methods in Γ, while

direct calls use the static ones. Provided x is not y and x is not in z, the rules
for result-returning calls are:

Γ(G.m) = (u,{P} {Q})
∆; Γ `s {P[y, z/Current,u] ∗ y <: G}

x := y.m(z)
{Q[y, z, x/Current,u,Result]}

Γ(G::m) = (u,{S} {T})
∆; Γ `s {S[y, z/Current,u] ∗ y 6= Void}

x := y.G::m(z)
{T[y, z, x/Current,u,Result]}

Two important structural rules here are Frame and Consequence. The Frame
rule is the key to local reasoning. Provided s modifies no variable in FV (T):

∆; Γ `s {P}s{Q} Frame∆; Γ `s {P ∗ T}s{Q ∗ T}

The rule of Consequence allows the use of assumptions ∆:

∆⇒(P′⇒P) ∆; Γ `s {P}s{Q} ∆⇒(Q⇒Q′)
Conseq∆; Γ `s {P′}s{Q′}

4.7 Method verification

The rules for method verification in [3] are extended here to the multiple in-
heritance case. As for statement verification, the assumptions ∆ used to verify
method definitions contain information about the method’s enclosing class as
well as export and axiom information from all other classes.

The rule for method introduction requires no modification for multiple inher-
itance. A newly introduced method’s static and dynamic specifications must be
consistent (the Dynamic dispatch proof obligation), and its body must satisfy
the static specification (the Body verification obligation).

B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {SG} {TG}

Current : G=⇒ {PG} {QG} (Dynamic dispatch)
∆; Γ `s {SG}s{TG} (Body verification)
∆; Γ `m introduce m(Args) Rt Sd Ss B in G parents H

An abstract method can be introduced without any proof obligations, since
there is only a dynamic specification and no method body.

∆; Γ `m introduce abstract m(Args) Rt Sd in G parents H

Separation, Abstraction, Multiple Inheritance and View Shifting 11

The next rule is used whenever an abstract method is implemented or a
method body is redefined. Consistency must be proven between the new dy-
namic specification and those in parent classes (the Behavioral subtyping proof
obligation). The other proof obligations are identical to those for method intro-
duction above. The H1 . . . Hn are the immediate superclasses of G.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi}) ∧ ∀j ∈ (1..n \ I)· Hj.m /∈ dom(Γ)
B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) (Behavioral subtyping)
∆ ` {SG} {TG}

Current : G=⇒ {PG} {QG} (Dynamic dispatch)
∆; Γ `s {SG}s{TG} (Body verification)
∆; Γ `m override m(Args) Rt Sd Ss B in G parents H1 . . . Hn

When a non-abstract method is inherited, its static specification must follow
from those in parents (the Inheritance obligation ensures this). The Behavioral
subtyping and Dynamic dispatch obligations serve the same purposes as men-
tioned before.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi}) ∧ ∀k ∈ (1..n \ I)· Hk.m /∈ dom(Γ)
∀j ∈ J· Γ(Hj::m) = (x,{SHj} {THj}) ∧ ∀l ∈ (1..n \ J)· Hl::m /∈ dom(Γ)
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) (Behavioral subtyping)
∆ ` (alsoj∈J {SHj} {THj}) =⇒ {SG} {TG} (Inheritance)
∆ ` {SG} {TG}

Current : G=⇒ {PG} {QG} (Dynamic dispatch)
∆; Γ `m inherit m(Args) Rt Sd Ss in G parents H1 . . . Hn

The next rule applies whenever an abstract method is inherited or a non-
abstract method is inherited and made abstract. Such a method has no static
specification, so only the consistency of its dynamic specification w.r.t those in
parent classes is required with the Behavioral subtyping proof obligation.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi}) ∧ ∀j ∈ (1..n \ I)· Hj.m /∈ dom(Γ)
Sd = dynamic {PG} {QG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) (Behavioral subtyping)
∆; Γ `m inherit abstract m(Args) Rt Sd in G parents H1 . . . Hn

4.8 Class and program verification

Consider the following two verification rules. For class verification, different
assumptions are used to verify the various class sections. The formula ∆APF

contains class-specific information and is used to verify export clauses. The as-
sumptions ∆E contain export information from all classes, and are used together
with ∆APF to verify axioms. The formula ∆A contains axiom information of all
classes, and is used with ∆APF and ∆E in method definition verification.

12 Stephan van Staden and Cristiano Calcagno

∀Ei ∈ E ·∆APF `e Ei

∀Ai ∈ A · (∆APF ∧∆E); Γ `a Ai in Ab G parents H
∀Mi ∈ M · (∆APF ∧∆E ∧∆A); Γ `m Mi in G parents H
∆APF ,∆E ,∆A; Γ
`c Ab class G inherit H define D export E axiom A feature M F end

Finally, here is the rule for program verification:

∀i ∈ 1..n· Li = . . . class Gi . . . export Ei axiom Ai feature . . . end
∆E =

∧
i∈1..n

∧
Eik∈Ei

exportinfo(Eik)
∆A =

∧
i∈1..n

∧
Aik∈Ai

axiominfo(Gi,Aik)
Γ = specs(L1 . . . Ln)
∀i ∈ 1..n· apf (Li), ∆E ,∆A; Γ `c Li

∆E ∧∆A; Γ `s {true}s{true}
`p L1 . . . Ln s

exportinfo(P where . . .) def= P
axiominfo(G, a: P) def= ∀x <: G · P[x/Current], where x is fresh.

Predicate definitions following the where keyword are hidden by exportinfo,
and the definition of axiominfo reflects the fact that subclasses preserve axioms.

The function apf translates the abstract predicate family definitions of a
class into a formula. It is adapted from [3] for tagged predicate arguments:

apf (Ab class G . . . define D1 D2 . . . Dn export . . . end)
def= apf G(D1) ∧ . . .∧ apf G(Dn)

apf G(p@G(x,Y) as P)
def= FtoE (p,G,Y) ∧ EtoD(p@G(x,Y) as P) ∧ (∀x <: G · TR(p,x,Y))

FtoE (p,G,{t = y})
def= ∀x,y· x : G ⇒ [p(x,{t = y}) ⇔ p@G(x,{t = y})]

EtoD(p@G(x,{t = y}) as P)
def= ∀x,y· p@G(x,{t = y}) ⇔ P

TR(p,x,{t = y})
def=

∧
t′=y′ + t′′=y′′ ≡ t=y ∀y′· p(x,{t′ = y′}) ⇔ p(x,{t′ = y′ + t′′ = })

Theorem. The program verification rule is sound. (The proof depends on the
layered assumption structure which avoids circularity in reasoning.)

4.9 Useful lemmas

Lemmas 1 and 2 are frequently used in proofs of Behavioral Subtyping and
Inheritance:

Lemma 1. ∆ ` (alsoi∈I {Pi} {Qi}) =⇒ {Pk} {Qk} for all k ∈ I.

Separation, Abstraction, Multiple Inheritance and View Shifting 13

Lemma 2. If ∆ ` {P} {Q} =⇒ {Si} {Ti} for all i ∈ I, then
∆ ` {P} {Q} =⇒ (alsoi∈I {Si} {Ti}).
For Body Verification:

Lemma 3. If ∆; Γ `s {Si}s{Ti} for all i ∈ I, then under assumptions ∆ and Γ,
s satisfies (alsoi∈I {Si} {Ti}).

5 Examples

5.1 Syntactic conventions

We introduce syntactic sugar to enhance readability and reduce space overhead.
Empty sections in classes are simply omitted. The statement x := new G(y)
abbreviates x := new G followed by x.G(y), and Precursor{G}(x) denotes the
call Current.G::G(x). An axiom clause copied verbatim from a parent is simply
left out. The notation dynstat Spec abbreviates dynamic Spec and static Spec.
Following [3], we use the inductive syntactic function 〈〈P〉〉G to derive static from
dynamic specifications, whose only interesting case is

〈〈p(Current, {t = e})〉〉G
def= p@G(Current,{t = e})

If only the dynamic specification {P} {Q} is given for a non-abstract method
in class G, its static specification is assumed to be {〈〈P〉〉G} {〈〈Q〉〉G}. The dy-
namic dispatch obligation is then trivially satisfied:

Lemma 4 (Lemma 5 from [3]). apf (L) ` {〈〈P〉〉G} {〈〈Q〉〉G}
Current : G=⇒ {P} {Q},

where L is class G’s definition.

Suppose H lists M=. . . C. . . where C=Ab m(Args) Rt Sd and m 6=H. Then
if G inherits from H and omits m it is assumed to list inherit C. The static
specification of m in G is then derived as usual with 〈〈P〉〉G if Ab 6= ε.

The examples assume that every class implicitly exports tag reduction infor-
mation. In other words, for every entry (p@G(x,Y) as P) in the define section
of a class G, (∀x <: G · TR(p,x,Y) where {}) is implicitly exported.

5.2 Intertwining ancestor functionality

Classes CELL and COUNTER are shown in Figure 1. CELL models mutable
integer-valued cells and introduces apf Cell, while COUNTER introduces apf
Cn. Class CCELL in Figure 2 inherits from both and overrides set value to
store the value and increment the count. CCELL introduces apf Cc to provide
an abstraction of such objects in the logic. The single export clause is easy to
verify. For the constructor we have to prove Body Verification:

{Current.value ↪→ ∗ Current.count ↪→ }
Current.CELL::CELL(v)

{Cell@CELL(Current,{val=v}) ∗ Current.count ↪→ }
Precursor{COUNTER}()

{Cell@CELL(Current,{val=v}) ∗ Cn@COUNTER(Current,{cnt=0})}
{Cc@CCELL(Current,{val=v;cnt=0})}

14 Stephan van Staden and Cristiano Calcagno

The constructor body simply passes the needed attributes to parent constructors
and treats their internal representations abstractly thereafter.

For value, Inheritance is proved by Lemma 2: an application of the Frame
rule (with C@COUNTER(Current,{cnt=c})) and then Consequence derives
each also-ed static spec in CCELL. In the proof of Behavioral Subtyping, we
‘choose’ the Cell dynamic spec with Lemma 1 and perform tag reduction with
Auxiliary Variable Elimination and Consequence.

Behavioral Subtyping of set value is similar and its Body Verification pro-
ceeds as follows:

{Cell@CCELL(Current,{val= ;cnt=c})}
Current.CCELL::increment()

{Cell@CCELL(Current,{val= ;cnt=c+1})}
{Cell@CELL(Current,{val= }) ∗ Cn@COUNTER(Current,{cnt=c+1})}

Current.CELL::set value(v)
{Cell@CCELL(Current,{val=v;cnt=c+1})}

An application of Consequence proves the other also-ed static spec, and Lemma
3 combines them. Note that Cell@CCELL must be ‘grown’ to include the state
parcels Cell@CELL and Cn@COUNTER because set value operates on both.

Now consider the two library routines at the bottom of Figure 2. The export
clause enables the necessary view shifts to prove:

{true} cc := new CCELL(5) use counter(cc) {Cc(cc,{val=5;cnt=10})}
{true} cc := new CCELL(5) use cell(cc,20) {Cc(cc,{val=20;cnt= })}

Information about cnt is lost in the second triple’s postcondition, which is sound
because use cell can potentially call set value many times. In a version of CCELL
where Cn@CCELL is defined to include the Cell@CELL state and the equiva-
lence of Cc, Cn and Cell is exported, information about val will likewise be lost
in the first triple.

Note that dynamic type information is required for the export-based view
shifts: CCELL does not oblige its subclasses to provide them. We will see later
that clients can perform axiom-based view shifts with only static type informa-
tion, but then subclasses are all constrained.

The proof system can enforce interesting access control patterns in verified
programs. Consider class CCEL2 in Figure 4 which has the same executable
code as CCELL but different specifications. It specifies a one-directional view
shift from Cell to Cn in an export clause. The constructor produces a Cell apf
predicate with which methods value, set value and count can be called. Verified
clients cannot call increment with the Cell view. They must shift to the Cn
view, yet they lack information to shift back after the call: no export or axiom
clause is available to do this, and every method producing a Cell predicate
requires one. So cnt in the Cell view reflects precisely how many times the value
has been set. Once increment is called, verified clients can never regain the
needed capability to call value and set value. Abstract predicates, view shifts
and method specifications can enforce complex protocols in verified code.

Separation, Abstraction, Multiple Inheritance and View Shifting 15

class CCEL2 inherit CELL COUNTER
define
Cell@CCEL2(x,{val=v;cnt=c}) as Cell@CELL(x,{val=v})∗Cn@COUNTER(x,{cnt=c})
Cn@CCEL2(x,{cnt=c}) as Cn@COUNTER(x,{cnt=c})
export
∀x· x : CCEL2 ⇒ [∀v,c· Cell(x,{val=v;cnt=c}) ⇒ Cn(x,{cnt=c})] where {}

feature
introduce CCEL2(v: int) dynamic
{Current.value ↪→ ∗ Current.count ↪→ } {Cell(Current,{val=v;cnt=0})}
do Precursor{CELL}(v) Precursor{COUNTER}() end

inherit value(): int dynamic
{Cell(Current,{val=v;cnt=c})} {Cell(Current,{val=v;cnt=c}) ∗ Result = v}

override set value(v: G)
dynamic {Cell(Current,{val= ;cnt=c})} {Cell(Current,{val=v;cnt=c+1})}
do Current.CCEL2::increment() Current.CELL::set value(v) end

inherit count(): int dynamic
{Cell(Current,{val=v;cnt=c})} {Cell(Current,{val=v;cnt=c}) ∗ Result = c}
also {Cn(Current,{cnt=c})} {Cn(Current,{cnt=c}) ∗ Result = c}

end

Fig. 4. The CCEL2 class.

5.3 Diamond inheritance

Verification of multiple inheritance requires proper handling of state from sev-
eral parent classes. Diamond inheritance complicates matters because common
ancestor state is shared. This is unproblematic for our proof system, although ab-
straction of the shared state is typically lost. Diamond inheritance can moreover
require much view shifting, which this example achieves with axiom clauses.

Consider in Figure 5 classes PERSON and STUDENT, which introduce apfs
P and S respectively. View shifts between S and P are specified in the axiom
section of STUDENT. Class MUSICIAN (not shown) is similar to STUDENT.
It introduces apf M and specifies axiom-based view shifts between M and P.
In Figure 6 class SMUSICIAN inherits from STUDENT and MUSICIAN. It
introduces apf SM and more view shifts. A diamond is formed with PERSON
at the top, and the state from PERSON is shared in SMUSICIAN.

The Implication proof of axiom SM S uses export information from STU-
DENT and MUSICIAN. Under the assumption Current : SMUSICIAN

SM@SMUSICIAN(Current,{age=a;exm=e;pfm=p})
⇔ P@PERSON(Current,{age=a}) ∗ RestStoP@STUDENT(Current,{exm=e}) ∗

RestMtoP@MUSICIAN(Current,{pfm=p})
⇔ S@STUDENT(Current,{age=a;exm=e}) ∗

RestMtoP@MUSICIAN(Current,{pfm=p})

16 Stephan van Staden and Cristiano Calcagno

⇔ S@SMUSICIAN(Current,{age=a;exm=e}) ∗
RestSMtoS@SMUSICIAN(Current,{pfm=p})

Note that a class whose only parent is STUDENT will likely need the first
export clause in STUDENT to prove Implication of S P. The second export
clause is required in addition by SMUSICIAN, which demands a description of
the state shared between S@STUDENT and M@MUSICIAN. The constructor’s
Body Verification further needs the export clause in PERSON:

{Current.age ↪→ ∗Current.exams ↪→ ∗Current.performances ↪→ }
Precursor{STUDENT}(a,e)

{S@STUDENT(Current,{age=a;exm=e}) ∗ Current.performances ↪→ }
{P@PERSON(Current,{age=a}) ∗ RestStoP@STUDENT(Current,{exm=e}) ∗
Current.performances ↪→ }
{Current.age ↪→ a ∗ RestStoP@STUDENT(Current,{exm=e}) ∗
Current.performances ↪→ }

Precursor{MUSICIAN}(a,p)
{M@MUSICIAN(Current,{age=a;pfm=p}) ∗
RestStoP@STUDENT(Current,{exm=e})}
{P@PERSON(Current,{age=a}) ∗ RestMtoP@MUSICIAN(Current,{pfm=p}) ∗
RestStoP@STUDENT(Current,{exm=e})}
{SM@SMUSICIAN(Current,{age=a;exm=e;pfm=p})}

Note that class SMUSICIAN would not have needed exported information
if it simply overrode everything. The same is true for proof systems with less
abstraction where method bodies are reverified in subclasses.

Although subclasses are constrained by axiom clauses, specification overhead
can be reduced if axiom-based view shifts are used. For example, in its Body
verification, do exam performance infers SM-specs for take exam and perform:

{SM(Current,{age=a;exm=e;pfm=p})}
{S(Current,{age=a;exm=e}) ∗ RestSMtoS(Current,{pfm=p})}

Current.take exam()
{S(Current,{age=a;exm=e+1}) ∗ RestSMtoS(Current,{pfm=p})}
{SM(Current,{age=a;exm=e+1;pfm=p})}
{M(Current,{age=a;pfm=p}) ∗ RestSMtoM(Current,{exm=e+1})}

Current.perform()
{M(Current,{age=a;pfm=p+1}) ∗ RestSMtoM(Current,{exm=e+1})}
{SM(Current,{age=a;exm=e+1;pfm=p+1})}

Such specifications are guaranteed to be implemented by all subclasses, so no
dynamic type information is needed. Yet the system is still flexible – a subclass
can always choose to satisfy such constraints vacuously by defining selected apf
entries as false. Class DCell in [3] provides an example of this.

6 Limitations

Only shared multiple inheritance was considered. It appears to be significantly
harder to accommodate replicated multiple inheritance, where (some) common
ancestor state is not shared. Initial investigation shows that the fine-grained

Separation, Abstraction, Multiple Inheritance and View Shifting 17

class PERSON
define P@PERSON(x,{age=a}) as x.age ↪→ a
export ∀x,a· P@PERSON(x,{age=a}) ⇔ x.age ↪→ a where {}
feature

introduce PERSON(a: int)
dynamic {Current ↪→ } {P(Current,{age=a})}
do Current.age := a end

introduce age(): int
dynamic {P(Current,{age=a})} {P(Current,{age=a}) ∗ Result = a}
do Result := Current.age end

introduce set age(a: int)
dynamic {P(Current,{age= })} {P(Current,{age=a})}
do Current.age := a end

introduce celebrate birthday()
dynstat {P(Current,{age=a})} {P(Current,{age=a+1})}
do tmp: int tmp := Current.age() tmp := tmp+1 Current.set age(tmp) end

age: int
end

class STUDENT inherit PERSON define
P@STUDENT(x,{age=a}) as P@PERSON(x,{age=a})
S@STUDENT(x,{age=a;exm=e}) as P@STUDENT(x,{age=a}) ∗ x.exams ↪→ e
RestStoP@STUDENT(x,{exm=e}) as x.exams ↪→ e
export ∀x,a,e· [P@STUDENT(x,{age=a}) ∗ RestStoP@STUDENT(x,{exm=e})] ⇔

S@STUDENT(x,{age=a;exm=e}) where {}
∀x,a· P@STUDENT(x,{age=a}) ⇔ P@PERSON(x,{age=a}) where {}

axiom S P: ∀a, e· S(Current,{age=a;exm=e}) ⇔
[P(Current,{age=a}) ∗ RestStoP(Current,{exm=e})]

feature
introduce STUDENT(a: int, e: int)
dynamic {Current.age ↪→ ∗Current.exams ↪→ } {S(Current,{age=a;exm=e})}
do Precursor{PERSON}(a) Current.exams := e end

introduce exams(): int dynamic
{S(Current,{age=a;exm=e})} {S(Current,{age=a;exm=e}) ∗ Result = e}
do Result := Current.exams end

introduce take exam()
dynamic {S(Current,{age=a;exm=e})} {S(Current,{age=a;exm=e+1})}
do tmp: int tmp := Current.exams Current.exams := tmp + 1 end

inherit celebrate birthday()
dynstat {P(Current,{age=a})} {P(Current,{age=a+1})}

exams: int
end

Fig. 5. The PERSON and STUDENT classes.

18 Stephan van Staden and Cristiano Calcagno

class SMUSICIAN inherit STUDENT MUSICIAN
define
P@SMUSICIAN(x,{age=a}) as P@PERSON(x,{age=a})
S@SMUSICIAN(x,{age=a;exm=e}) as S@STUDENT(x,{age=a;exm=e})
M@SMUSICIAN(x,{age=a;pfm=p}) as M@MUSICIAN(x,{age=a;pfm=p})
SM@SMUSICIAN(x,{age=a;exm=e;pfm=p}) as P@PERSON(x,{age=a}) ∗

RestStoP@STUDENT(x,{exm=e}) ∗ RestMtoP@MUSICIAN(x,{pfm=p})
RestStoP@SMUSICIAN(x,{exm=e}) as RestStoP@STUDENT(x,{exm=e})
RestMtoP@SMUSICIAN(x,{pfm=p}) as RestMtoP@MUSICIAN(x,{pfm=p})
RestSMtoS@SMUSICIAN(x,{pfm=p}) as RestMtoP@MUSICIAN(x,{pfm=p})
RestSMtoM@SMUSICIAN(x,{exm=e}) as RestStoP@STUDENT(x,{exm=e})
axiom

SM S: ∀a, e, p· SM(Current,{age=a;exm=e;pfm=p}) ⇔
[S(Current,{age=a;exm=e})∗RestSMtoS(Current,{pfm=p})]

SM M: ∀a, e, p· SM(Current,{age=a;exm=e;pfm=p}) ⇔
[M(Current,{age=a;pfm=e})∗RestSMtoM(Current,{exm=e})]

feature
introduce SMUSICIAN(a: int, e: int, p: int)
dynamic {Current.age ↪→ ∗Current.exams ↪→ ∗Current.performances ↪→ }

{SM(Current,{age=a;exm=e;pfm=p})}
do Precursor{STUDENT}(a,e) Precursor{MUSICIAN}(a,p) end

introduce do exam performance()
dynstat {SM(Current,{age=a;exm=e;pfm=p})}

{SM(Current,{age=a;exm=e+1;pfm=p+1}
do Current.take exam() Current.perform() end

inherit celebrate birthday()
dynstat {P(Current,{age=a})} {P(Current,{age=a+1})}

end

Fig. 6. The SMUSICIAN class.

replication offered by Eiffel and its ‘select’ clauses breaks behavioral subtyping
in the presence of upcasts (e.g. in assignments and argument passing). In C++,
replication is coarser-grained and happens on the subobject level. Upcasts must
specify a subobject unambiguously, so their semantics should force view shifts in
the logic. Replicated multiple inheritance has been criticized by some (e.g. [10])
and the authors are uncertain about its use in C++. It is rarely used in Eiffel,
however, where non-conforming inheritance or composition can be used instead.

7 Conclusions and related work

The presented proof system offers a sound way to verify various forms and uses of
shared multiple inheritance, which include the intertwining of ancestor function-
ality and diamond inheritance. By virtue of extending Parkinson and Bierman’s

Separation, Abstraction, Multiple Inheritance and View Shifting 19

system, the examples in [3] illustrate that it can also deal with behavior ex-
tension, restriction and modification, as well as representation replacement in
subclasses. It supports view shifting in the logic in two complementary ways,
thereby permitting flexible abstraction, access control, savings in specification,
and verification of code reuse. The system is modular and every method body is
verified only once. No other proof system we are aware of provides these features.

This work is founded upon and therefore closely related to separation logic
[8, 7], which offers local reasoning for heap-manipulating programs, and its ap-
plication to object-orientation [9]. Separation logic and especially its frame rule
support concise proofs at high levels of abstraction.

Our approach uses Parkinson and Bierman’s apfs – a separation logic abstrac-
tion mechanism for reasoning about inheritance [9, 4, 3]. The system also builds
upon other ideas for single-inheritance programs in [3]: the distinction between
static and dynamic method specifications and the formalization of proof obli-
gations resulting from this distinction. The examples in [3] furthermore demon-
strate how our proof system can be applied.

The system for multiple inheritance in [12] also uses separation logic; it does
not support the modular reasoning and abstraction facilitated by apfs. A dif-
ferent but compatible approach is taken in [13], where behavioral subtyping of
methods is verified lazily, i.e. only to the extent demanded by client code.

Interface inheritance is easily handled by our proof system: an interface is
simply an abstract class with only abstract methods and no fields. Many verifica-
tion tools for object-oriented programs provide support for interface inheritance.
jStar [6] includes such support and uses separation logic with abstract predicate
families. We will soon extend it with export and axiom clauses for added expres-
siveness. The ability to constrain subclasses with axioms can even solve problems
unrelated to view shifting in single inheritance programs3. We further plan to
build upon jStar to mechanize our proof system for automated verification of
Eiffel programs.

Spec# [14] and the JML [15] toolset also offer facilities to specify and verify
interface inheritance. Both use pure expressions of the programming language
for specification, and follow an object invariant-based approach to verification.
Object invariants and axioms both constrain subclasses, but unlike object in-
variants, axioms do not specify consistency properties of objects which must be
respected by public methods.

The separation logic proof system for single inheritance by Chin et al. [16]
uses an object format which supports full and partial views of an object. These
views are used for lossless upcasting and method specifications. Views in our
work are generalized abstractions and not tightly coupled to classes or object
formats.

Finally, our export clauses are somewhat related to the lemmas of the sepa-
ration logic-based VeriFast tool [17]. The use of export information in our logic

3 Matthew Parkinson pointed out in private communication that the informal discus-
sion right before Section 5.1 and in Section 5.5 of [3] can be made rigorous by using
our export and axiom clauses.

20 Stephan van Staden and Cristiano Calcagno

loosely corresponds to reasoning about a sequence of lemma invocations in ghost
statements.

Acknowledgements
Special thanks to Matthew Parkinson, Peter O’Hearn, Bertrand Meyer, Sebas-
tian Nanz, Carlo Furia and Martin Nordio for feedback on this work.

References

1. ECMA International: Standard ECMA-367. Eiffel: Analysis, Design and Program-
ming Language. 2nd edn. (June 2006)

2. Cardelli, L.: A semantics of multiple inheritance. Inf. Comput. 76(2-3) (1988)
138–164

3. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance.
In: POPL ’08, New York, NY, USA, ACM (2008) 75–86

4. Parkinson, M., Bierman, G.: Separation logic and abstraction. SIGPLAN Not.
40(1) (2005) 247–258

5. Ellis, M.A., Stroustrup, B.: The annotated C++ reference manual. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1990)

6. Distefano, D., Parkinson J, M.J.: jStar: towards practical verification for Java. In:
OOPSLA ’08, New York, NY, USA, ACM (2008) 213–226

7. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures.
Logic in Computer Science, Symposium on 0 (2002) 55–74

8. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local Reasoning about Programs that
Alter Data Structures. In: CSL ’01, London, UK, Springer-Verlag (2001) 1–19

9. Parkinson, M.J.: Local reasoning for Java. PhD thesis, University of Cambridge,
Computer Laboratory. Technical Report UCAM-CL-TR-654 (November 2005)

10. Sakkinen, M.: Disciplined Inheritance. In: ECOOP. (1989) 39–56
11. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning

about global invariants. In: ECOOP ’08, Berlin, Heidelberg, Springer-Verlag (2008)
387–411

12. Luo, C., Qin, S.: Separation Logic for Multiple Inheritance. Electr. Notes Theor.
Comput. Sci. 212 (2008) 27–40

13. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning for mul-
tiple inheritance. In: IFM ’09, Berlin, Heidelberg, Springer-Verlag (2009) 215–230

14. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview, Springer (2004) 49–69

15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3) (2006)
1–38

16. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO verification
with separation logic. SIGPLAN Not. 43(1) (2008) 87–99

17. Jacobs, B., Piessens, F.: The VeriFast Program Verifier. Technical Report CW-520,
Katholieke Universiteit Leuven (August 2008)

Separation, Abstraction, Multiple Inheritance and View Shifting 21

Appendix

Proof system semantics

An outline of the semantics and soundness proof follows. Most of our system’s
semantics is identical to that of Parkinson and Bierman’s system in [3]. The
most interesting difference is the treatment of export and axiom information in
the soundness proof of the program verification rule (Theorem 12 below).

The semantics of the logical formula is defined in terms of a state σ, an
interpretation of predicate symbols I, and an interpretation of logical variables
L. The interpretation I maps predicate names to their definitions, whereas a
definition maps a list of arguments to a set of states:

I : Preds → (Vals∗ → P(Σ))
L : Vars → Vals

Predicates are defined in the standard way:

σ, I, L |= pred(X) ⇔ σ ∈ (I(pred)(L(X)))

Definition 5. I |= ∆ iff σ, I, L |= ∆ for all σ and L.

One can show that every set of disjoint apf and w-predicate definitions is
satisfiable:

Lemma 6. For any set of definitions W1, . . . Wm, D1, . . . Dn where Wi has form
wi(xi) = Qi and Dj is listed in class Gj, there exists an interpretation I such
that I |= [

∧
i∈1..m ∀xi· wi(xi) ⇔ Qi] ∧ [

∧
j∈1..n apf Gj(Dj)] provided that no two

distinct definitions in the set define the same predicate.

The semantics of our proof system’s judgements is defined next. We do not
define the semantics of `e and `a explicitly, since we work with their premises
(valid logical formulae whose existence is guaranteed) instead. For triples, the
usual partial-correctness semantics for separation logic is used: if the precon-
dition holds in the start state, then 1) the statements will not fault (access
unallocated memory, for example), and 2) if the statements terminate, then the
postcondition holds in the resulting state.

Definition 7. I |=n {P}s{Q} iff whenever σ, I, L |= P then ∀m ≤ n·

1. σ,s −→m fault does not hold, and
2. if σ,s −→m σ′,ε then σ′, I, L |= Q

The index n deals with mutual recursion in method definitions. I |=n Γ means
that all methods in Γ meet their specifications when executed for at least n steps.

Definition 8 (Method verification semantics). If m in G is non-abstract, let s
denote its body.
I, Γ |=0 G.m 7→ (x,{P} {Q}) always holds.
I, Γ |=n+1 G.m 7→ (x,{P} {Q}) iff

I |=n Γ ⇒ I |=n+1 {P ∗Current : G}s{Q} if m is non-abstract
in G and true otherwise.

22 Stephan van Staden and Cristiano Calcagno

I, Γ |=0 G::m 7→ (x,{S} {T}) always holds.
I, Γ |=n+1 G::m 7→ (x,{S} {T}) iff

I |=n Γ ⇒ I |=n+1 {S}s{T}

I |=n Γ iff ∀methodspec ∈ Γ· I, Γ |=n methodspec

We next define the semantics of the statement judgement.

Definition 9. ∆; Γ |= {P}s{Q} iff for all I and n, if I |= ∆ and I |=n Γ, then
I |=n+1 {P}s{Q}

In other words, for all interpretations which satisfy the assumptions ∆, if
all methods in Γ meet their specifications for at least n steps, then s meets its
specification for at least n + 1 steps.

The judgements are sound with respect to their semantics.

Lemma 10.

1. If ∆; Γ `m . . . m . . . , then ∀I· if I |= ∆ then for all n and every spec of m
we have I, Γ |=n spec

2. If ∆; Γ `s {P}s{Q} then ∆; Γ |= {P}s{Q}

Whenever a judgement is derivable under weak assumptions, it can also be
derived under stronger ones.

Lemma 11.

1. If ∆; Γ `m . . . m . . . and ∆′ ⇒ ∆, then ∆′; Γ `m . . . m . . .
2. If ∆; Γ `s {P}s{Q} and ∆′ ⇒ ∆, then ∆′; Γ `s {P}s{Q}
3. If ∆APF ,∆E ,∆A; Γ `c L and ∆′ ⇒ ∆APF , then If ∆′,∆E ,∆A; Γ `c L

Finally, here is the soundness statement and detailed proof sketch of the
program verification rule.

Theorem 12. If a program and its main body s can be proved with the program
verification rule, then ∀I,n· I |=n {true}s{true}.
Proof.

1. The goal. We have to prove ∀I,n· I |=n {true}s{true}, which abbreviates
∀I,n· whenever σ, I, L |= true, then ∀m ≤ n· 1) σ,s −→m fault does not
hold, and 2) if σ,s −→m σ′,ε then σ′, I, L |= true. This can be simplified to
∀n· σ,s −→n fault does not hold.

2. Strengthened assumptions. Let ∆T
def=

∧
i∈1..t apf (Li), where L1 . . . Lt are all

classes in the program. By Lemma 11, we can strengthen the assumptions
under which all classes and the main body have been verified. For every class
Li, we have ∆T , ∆E , ∆A; Γ `c Li, and ∆T ∧∆E ∧∆A; Γ `s {true}s{true}
also holds for the main body s.

Separation, Abstraction, Multiple Inheritance and View Shifting 23

3. The interpretation I ′. Since ∆T ∧∆E ∧∆A; Γ `s {true}s{true}, Lemma 10
guarantees ∆T ∧∆E ∧∆A; Γ |= {true}s{true}. This abbreviates ∀I,n· if I
|= ∆T ∧ ∆E ∧ ∆A and I |=n Γ, then I |=n+1 {true}s{true}, which can be
simplified to ∀I,n· if I |= ∆T ∧ ∆E ∧ ∆A and I |=n Γ, then ∀m ≤ n + 1·
σ,s −→m fault does not hold. Now if we can find an I ′ such that I ′ |=
∆T ∧ ∆E ∧ ∆A and ∀n· I ′ |=n Γ, then we can instantiate I to I ′ in the
formula and simplify to obtain ∀n· σ,s −→n fault does not hold. Therefore
I ′ serves as a witness that s will never fault, which is exactly our goal.
Let I ′ be the interpretation whose existence is guaranteed by Lemma 6 for
all the where and define clauses in the program. Clearly I ′ |= ∆T . We next
prove I ′ |= ∆E and then I ′ |= ∆A.

4. Satisfiability of ∆E . Consider an arbitrary export clause E = P where
{w1(x1) = Q1; . . . ; wn(xn) = Qn} in class L. Since apf (L) `e E, we know
[apf (L) ∧ (

∧
i∈1..n ∀xi ·wi(xi)⇔ Qi)]⇒ P. The interpretation I ′ satisfies the

antecedent, so we also have I ′ |= P. Therefore I ′ |= ∆E , and I ′ |= ∆T ∧∆E .
5. Satisfiability of ∆A. We prove this by induction. If class G has children H1

. . . Hk, let level(G) def= 1 + max(0, level(H1), . . . , level(Hk)). Furthermore,
P(n) def= ∀ G in the program such that level(G) ≤ n and for all axiom clauses
a: P in the listing of G, (∆T ∧∆E) ⇒ axiominfo(G, a: P).
– Base case. Consider an arbitrary class G with level(G) ≤ 1 and an axiom

clause a: P appearing in it. G has no subclasses, and
(a) If G is abstract, there are no objects with dynamic type G or a

subtype thereof, thus axiominfo(G, a: P) holds vacuously and ∆T ∧
∆E implies it.

(b) If G is non-abstract, then the only objects whose dynamic type is a
subtype of G are instances of G. Since (∆T ∧∆E ∧Current : G) ⇒
P by the Implication premise, we therefore also know (∆T ∧∆E) ⇒
axiominfo(G, a: P).

Thus P(1) holds.
– Step case. Suppose P(n) holds. Now consider a class G at level n+1 with

axiom clause a: P. Every child H of G must list a, say a: Q. By the
induction hypothesis we know (∆T ∧ ∆E) ⇒ axiominfo(H, a: Q), and
by the Parent Consistency premise of a: Q we know (∆T ∧ ∆E ∧ Q)
⇒ P. Therefore (∆T ∧∆E) ⇒ axiominfo(H, a: P). We have (∆T ∧∆E)
⇒ axiominfo(G, a: P) if G is abstract, and the same holds if G is non-
abstract since the Implication premise of a: P guarantees (∆T ∧ ∆E ∧
Current : G) ⇒ P. Thus P(n+1) holds.

So I ′ |= ∆T ∧∆E ∧∆A.
6. Wrapping up. We still have to prove ∀n· I ′ |=n Γ. Let m be an arbitrary

method in the program. Since ∆T ∧∆E∧∆A; Γ `m m, by Lemma 10 we know
for all n and every spec of m that I ′, Γ |=n spec. Thus ∀n · ∀methodspec ∈ Γ·
I ′, Γ |=n methodspec, in other words ∀n· I ′ |=n Γ. 2

