
Automated Fixing of Programs
with Contracts

Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva,
Stefan Buchholz, Bertrand Meyer and Andreas Zeller

Chair of Software Engineering, ETH Zürich

Software Engineering Chair, Saarland University

Context

2

Testing finds faults;

Automated debugging finds locations;

Automated fixing finds corrections.

Automatic fixing in production software

• 16 out of 42 (38%) faults are fixed.

• Capable for fixing faults due to missing method calls.

• Average fixing time is 2.6 minutes per fault.

• It takes 3 to 5 minutes to understand a fix.

• In a small user study, 4 out of 6 of the selected fixes
are the same as those from programmers.

3

Fixing process overview

4

Random
test suite

Finite-state
abstraction

Fault
profile

Candidate
fixes

Valid
fixes

Validation &
ranking

Fix candidate
generation

Behavioral analysis

Fault analysis

Fault in TWO_WAY_SORTED_SET.duplicate

duplicate (n: INTEGER): TWO_WAY_SORTED_SET
-- Copy of sub-set beginning at cursor position,
-- containing at most n element.
-- Class implemented using a LINKED_LIST.

5

forth

item

back

start

cursor

before after

item: ANY
-- Element under cursor

require
(not before) and (not after)

Failure in implementation

duplicate (n: INTEGER): TWO_WAY_SORTED_SET
do

pos := cursor
Result := new_chain

Result.forth

from until (counter = n) or after loop

Result.put_left (item)
forth
counter := counter + 1

end

go_to (pos)
end

6

before after

Proposed fix
duplicate (n: INTEGER): …

do

pos := cursor

Result := new_chain

Result.forth

from until (counter =n) or after loop

end

go_to (pos)

end

7

duplicate (n: INTEGER): …

do

pos := cursor

Result := new_chain

Result.forth

from until (counter =n) or after loop

if before then

forth

else

Result.put_left (item)

forth

counter := counter + 1

end

end

go_to (pos)

end

Result.put_left (item)

forth

counter := counter + 1

Faulty version Fixed version

Steps to generate fixes

1. Abstract program state.

2. Compare passing and failing state invariant.

3. Synthesize candidates from fix schema and
behavioral model.

4. Validate and then rank candidates.

8

Abstracting state through boolean queries

Boolean queries are argument-less functions returning

a boolean value:

• Define object states absolutely.

• Usually don’t have preconditions.

• Widely used in contracts, capturing important object
properties.

9

For TWO_WAY_SORTED_SET, the abstract state

consists of: after, before, is_empty, …

State invariant difference as fault profile

• Apply random testing.

• Retrieve states represented as boolean queries.

• Derive state invariant at each program location.

• Compare state invariant difference between passing
and failing runs.

10

Deriving state invariant
duplicate (n: INTEGER): TWO_WAY_SORTED_SET

-- Copy of sub-set beginning at cursor position,

-- containing at most n element.

do

pos := cursor

Result := new_chain

Result.forth

from until (counter = n) or after loop

Result.put_left (item)

forth

counter := counter + 1

end

go_to (pos)

end

11

Passing test 1

not is_empty

not before

not after

isfirst

Passing test 2

not is_empty

not before

not after

not isfirst

Passing test 3

not is_empty

not before

not after

sorted

Passing state invariant:

not is_empty

not before

not after

Failing test 1

not is_empty

before

not after

Failing test 2

not is_empty

before

not after

sorted

Failing state invariant:

not is_empty

before

not after

Use

Benefits of state invariant

• Pinpoint the essential difference between passing
and failing runs.

• Avoid generating fixes specific to a particular test.

12

Empirically, non-invariant properties tend to be
filtered out easily.

In our experiment, the per-fault average number of
passing and failing test cases is 9 and 6.5.

Synthesizing fixes

Assumptions:

1. State invariant difference is the cause of the failure.

2. Minimizing the difference before system fails should
bring the system back to a normal configuration.

Synthesis steps:

1. generate method calls to minimize state invariant
difference using object behavioral model.

2. Arrange generated method calls in fix schema.

13

Object behavioral model

The model suggests ways to change a state property:

calling forth can change before from true to false.

Object behavioral model is a set of transitions:

the starting and ending points are abstract states;
the label is a method.

14

not is_empty
before
not after

not is_empty
not before
not after

forth

All the transitions are observed in random tests.

Fix schema

Fix schema capture common fixing styles. For a fault,
different schema are tried.

The schema used in the running example:

if failing_condition then

snippet
else

original statements
end

15

If the failure is going to happen,
snippet brings the system back
to normal.

Otherwise, invoke original
statements to preserve normal
behavior.

Instantiating an actual fix from schema

16

if failing_condition then
snippet

else
original statements

end

Fix schema Actual fix

if before then

forth
else

Result.put_left (item)
forth
counter := counter + 1

end

Validating candidate fixes

Run the patched program against both passing and

failing tests, requiring:

• Passing tests still pass.

• Failing tests now pass.

17

Ranking valid fixes statically and dynamically

• Static metrics favors:

– simple textual changes
– changes close to the failing location
– changes involving less original statements

• Dynamic metric favors behavioral preservation:

Passing tests should end with similar resulting
abstract states.

18

Human solutions vs. tool solutions

• Sent 3 faults to 2 professional Eiffel programmers.

• In 4 out of 6 cases, the reported fixes are the same as
automated proposed ones.

19

What’s the difference then?
duplicate (n: INTEGER):…

do

pos := cursor

Result := new_chain

Result.forth

from

if before then start end

until (counter =n) or after loop

Result.put_left (item)

forth

counter := counter + 1

end

go_to (pos)

end

20

duplicate (n: INTEGER): …

do

pos := cursor

Result := new_chain

Result.forth

from until (counter =n) or after loop

if before then

forth

else

Result.put_left (item)

forth

counter := counter + 1

end

end

go_to (pos)

end

Tool solutionHuman solution

Has better
run-time
Performance.

start seems more
related to the
concept before.

Summary

21

