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ABSTRACT
Most approaches to testing use branch coverage to decide on the
quality of a given test suite. The intuition is that coveringbranches
relates directly to uncovering faults. In this article we present an
empirical study that applied random testing to14 Eiffel classes for
a total of2520 hours and recorded the number of uncovered faults
and the branch coverage over time. Our results show that: (1)in
the tested classes, random testing reaches93% branch coverage
(2) it exercises almost the same set of branches every time, (3) it
detects different faults from time to time, (4) during the first 10
minutes of testing while branch coverage increases rapidly, there
is a strong correlation between branch coverage and the number of
uncovered faults, (5) over50% of the faults are detected at a time
where branch coverage hardly changes and the correlation between
branch coverage and the number of uncovered faults is weak.

These results provide evidence that branch coverage is not agood
stopping criterion for random testing. They also show that branch
coverage is not a good indicator for the effectiveness of a test suite.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging, Test cov-
erage of code, Testing tools

General Terms
Measurement, Experimentation

Keywords
random testing, branch coverage, experimental evaluation

1. INTRODUCTION
Various studies [16, 28, 23, 17, 4] show that random testing is

an effective way of detecting faults. Random testing is alsoattrac-
tive because it is easy to implement and widely applicable. For
example, when insufficient information is available to perform sys-
tematic testing, random testing is more practical than any alterna-
tive [15]. A question often asked about random testing is thebranch
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coverage it achieves. The assumption is: the higher the branch cov-
erage achieved by a test suite, the higher the number of faults it
uncovers.

Branch coverage of a test suite is the percentage of branchesof
the program that the test suite exercises. As advocated by My-
ers [22], it is a weaker indicator of the quality of a test suite than
other coverage criteria such as predicate coverage or path cover-
age. Although weak, branch coverage is widely used because of its
ease of implementation and its low overhead on the executionof
the program [29] under test.

This article presents an extensive study of the branch coverage
that random testing achieves over time and its correlation with the
number of faults uncovered. Despite the popularity of both ran-
dom testing and branch coverage, there is little data available on
the topic. We tested14 Eiffel classes using our random testing
tool for 2520 hours. It tested each class in30 sessions with each
session6 hour long. The testing sessions are fully automated and
consists of a single run of AutoTest [4, 5, 20], a random testing tool
for Eiffel. For each test run, we recorded the exercised branches
and detected faults over time. The main results of the study are as
follows:

• Random testing reaches93% of the branch coverage on av-
erage.

• Different test runs with different seeds for the pseudo random
number generator of the same class exercise almost the same
branches, but detect different faults.

• At the beginning of the testing session, both branch coverage
and faults dramatically increase and they are strongly corre-
lated.

• 90% of all the exercised branches are exercised in the first
10 minutes. After10 minutes, the branch coverage level in-
creases slowly. After30 minutes, branch coverage further
increases by only4%.

• Over 50% of faults are detected after30 minutes while the
branch coverage level hardly increases after this time.

• There is a weak correlation between number of faults found
and the coverage over the2520 hours of testing.

The main implication of these results is that branch coverage is
an inadequate stopping criteria for random testing. As AutoTest
conveniently builds test suites randomly as it tests the code, the
branch coverage achieved at any point in time corresponds tothe
branch coverage of the test suite built since the beginning of the
testing session. Because there is a strong correlation between faults
uncovered and branch coverage when the coverage increases,higher



branch coverage implies uncovering more faults. Because with
very little if any added coverage,50% of the faults can be further
discovered, and given that the correlation between the number of
faults uncovered and the branch coverage is weak, this meansthat
branch coverage by itself is not a good indicator of the quality of a
test suite in general.

A package is available online1 containing the source code of the
AutoTest tool and instructions to reproduce the experiment.

Section 2 describes the design of our experiment. Section 3
presents our results. We discuss the results in Section 4 andthe
threats to validity in Section 5. We present related work in Sec-
tion 6 and conclude in Section 7.

2. EXPERIMENT DESIGN
The experiment on which we base our results consists of run-

ning automated random testing sessions of Eiffel classes. We first
describe contract-based unit testing for O–O program, thenintro-
duce AutoTest, and eventually present the classes under test, testing
time and computing infrastructure.

2.1 Contract-Based Unit Testing for O–O Pro-
grams

In O–O programs, a unit test can be assimilated to a method
call on an instance using previously created instances as arguments.
Test engineers write unit tests and check that the result of calls are
equal to pre-calculated values. In a Hoare-triple style this means
that a unit test can be modelled as (v, o, o1,... are variables,inito,inito1

...
expressions that return instances,m the method called, andv0 a
value):

{}o := inito; o1 := inito1
; ...; v := o.m(o1, ..., on){v = v0}

In a contract-enabled environment, methods are equipped with con-
tracts from the start:

{Pre}o.m(o1, ..., on){Post}

Unit tests can rely on contracts to check the validity of the call.
It then consists only in writing the code to initialize instances that
would satisfy the precondition of the method:

{}o := inito; o1 := inito1
; ...{Pre}

In this article we use contract-based automated random testing. In
such an approach the testing infrastructure automaticallytakes care
of this last part. In practice, it generates the sequence of instructions
at random and proceeds with the call.

When making a call, if the generated instances do not check the
precondition of the method, the result of the call is ignored. After
the precondition is checked, any contract violation or any excep-
tion triggered in the actual call then corresponds to a failure in the
program.

As the random testing tool is not able to avoid executing similar
test cases, it might uncover the same failure multiple times. Thus,
it maps failures to faults by defining a fault as a triple:

< m, line number of the error, type of exception >

2.2 The AutoTest Tool
This section presents a general view of how AutoTest works.

Note that more detailed explanations on AutoTest are available in
previous publications [4].

1http://se.inf.ethz.ch/people/wei/download/
branch_coverage.zip

AutoTest is a tool implementing a random testing strategy for
Eiffel integrated in EiffelStudio 6.3 [3]. Given a set of classes and
a time frame, AutoTest tries to test all their public methodsin the
time frame.

To generate test cases for methods in specified classes, AutoTest
repeatedly performs the following three steps:

Select method: AutoTest maintains the number of times that each
method has been tested, then it randomly selects one of the
least tested methods as the next method under test, thus try-
ing to test methods in a fair way.

Prepare objects: To prepare objects needed for calling the selected
method, AutoTest distinguishes two cases: basic types and
reference types.

For a basic type such as INTEGER, DOUBLE and BOOLEAN,
AutoTest maintains a predefined value set. For example,
for INTEGER, the predefined value set is0, +/ − 1, +/ −
2, +/−10, +/−100, maximum andminimum integers.
It then chooses at random either to pick a predefined value or
to generate it at random.

AutoTest also maintains an object pool with instances cre-
ated for all types. When selecting a value of a reference type,
it either tries to create a new instance of a conforming type by
calling a constructor at random or it retrieves a confroming
value from the object pool. This allows AutoTest to use old
objects that may have had many methods called on them, re-
sulting in states that would otherwise be unreachable.

Invoke method under test: Eventually, the method under testis
called with the selected target object and arguments. The
result of the execution, possible exceptions and its branch
coverage information is recorded for later use.

2.3 Experiment Setup
Class selection.We chose the classes under test from the library

EiffelBase [2] version 5.6. EiffelBase is production code that pro-
vides basic data structures and IO functionalities. It is used in al-
most every Eiffel program, so the quality of its contracts should be
better than average Eiffel libraries. This is an important point, be-
cause as described in section 2.1, we assume the present contracts
are correct. In order to increase the representativeness ofthe test
subjects, we tried to pick classes with various code structure and
intended semantics. Table 1 shows the main metrics for the chosen
classes. Note that the branches shown in Table 1 is the numberof
testable branches, obtained by subtracting dead branches from the
total number of branches in the corresponding class.

Test runs. We tested each class in30 runs with different seeds
with each run6 hour long. This supposedly made the test runs long
enough so that branch coverage level reaches a plateau. But we
found out that even after16 hours, random testing is still capable
of exercising some new branches with a very low probability.We
chose6 hour runs because the branch coverage level already in-
creases very slowly after that, and because6 hours corresponds to
an overnight testing session.

Computing infrastructure. We conducted the experiment on 9
PCs with Pentium 4 at 3.2GHz, 1GB of RAM, running Linux Red
Hat Enterprise 4. The version of AutoTest in EiffelStudio 6.3 used
in the experiment is modified to include instrumentation forbranch
coverage monitoring. AutoTest was the only CPU intensive pro-
gram running during testing.

3. RESULTS



Table 1: Metrics for tested classes
Class LOC Methods Contract assertions Faults Branches Branch Coverage
ACTIVE_LIST 2433 157 261 16 222 92%
ARRAY 1263 92 131 23 118 98%
ARRAYED_LIST 2251 148 255 22 219 94%
ARRAYED_SET 2603 161 297 20 189 96%
ARRAYED_STACK 2362 152 264 10 113 96%
BINARY_SEARCH_TREE 2019 137 143 42 296 83%
BINARY_SEARCH_TREE_SET 1367 89 119 10 123 92%
BINARY_TREE 1546 114 127 47 240 85%
FIXED_LIST 1924 133 204 23 146 90%
HASH_TABLE 1824 137 177 22 177 95%
HEAP_PRIORITY_QUEUE 1536 103 146 10 133 96%
LINKED_CIRCULAR 1928 136 184 37 190 92%
LINKED_LIST 1953 115 180 12 238 92%
PART_SORTED_TWO_WAY_LIST 2293 129 205 34 248 94%
Average 1950 129 192 23 189 93%
Total 27302 1803 2693 328 2652 93%

This section presents results that answer the five followingmain
questions:

1. Is the level of the branch coverage achieved by random test-
ing predictable?

2. Is the branch coverage exercised by random testing similar
from one test run to another?

3. Is the number of faults discovered by random testing pre-
dictable?

4. Are the faults uncovered by different test runs similar?

5. Is there a correlation between the level of coverage and the
number of faults uncovered?

3.1 Predictability of coverage level
Because AutoTest might not be able to test all branches of a class

due to its random nature, it is very unlikely that testing sessions
achieve total coverage, let alone constant results over alltested
classes. As an example, it might be extremely difficult to satisfy
a complex precondition guarding a method with such a random ap-
proach. Another example is that the visibility of a routine might
not let AutoTest test it freely. The branch coverage level itself is
calculated in a straightforward manner as:

Number of exercised branches

Number of branches in that class

This intuition is confirmed by the results presented in Figure 1
which shows the median of the branch coverage level for each class
over time. The branch coverage level ranges from0 to 1. As a first
result, we can see that the branch coverage of some classes reaches
a plateau at less than0.85 while most of them have a plateau at or
above0.9. The thick curve in Figure 1 is the median of medians of
the branch coverage level of all the classes. Over all14 classes, the
branch coverage level achieved after6 hours of testing ranges from
0.82 to 0.98. On average, the branch coverage level is0.92, with a
standard deviation of0.04, corresponding to4.67% of the median.

While the maximum coverage is variable from one class to an-
other, the actual evolution of branch coverage compared to the max-
imum coverage achieved through random testing is very similar:
93% of all exercised branches are exercised in the first10 minutes,
96% are exercised in30 minutes, and97% are exercised in the first
hour. Section 4 contains an analysis of branches not exercised.
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Figure 1: Medians of the branch coverage level for each class
over time and their median

In short, the branch coverage level achieved by random testing
depends on the structure of the class under test and it increases
very fast in the first10 minutes of testing and then very slowly
afterwards.

3.2 Similarity of coverage
Another important question is whether different test runs for the

same class exercise different branches. Since we are more inter-
ested in branches which are difficult to exercise, we raised the ques-
tion: Do different test runs for the same class leave the sameset of
branches unexercised? To answer the latter question, we need to
measure the difference between the sets of unexercised branches in
two test runs for the same class. We use an array per testing ses-
sion, containing a flag for each branch, indicating whether it was
visited or not.

To measure the difference of two sets of unexercised branches,
we use the Hamming distance [18]. For two strings of equal length,
the Hamming distance between them is the number of positions
at which the corresponding symbols are different. For example,
the Hamming distance between string1011101 and1001001 is 2
because the number of positions with different values is 2 (the third
and the fifth position).

Because we only focused on the branches difficult to exercise,



we defined the notion of difficult branches as: A branch in a class
is difficult to exercise if and only if it has not been exercised at least
once through the30 runs for that class.

Thedifficult branch coverage vectorof a test run for a class with
n difficult branches is a vector ofn elements, where the i-th ele-
ment is a flag for the i-th difficult branch in that class, with one
of the following value: 0, indicating that the corresponding branch
has not been exercised in that test run, or 1, indicating thatthe cor-
responding branch has been exercised in that test run.

Thebranch coverage distanceDBC between two vectorsu and
v of the a class withNb difficult branches is the Hamming distance
between them:

DBC =

N
X

i=1

ui ⊕ vi

whereui andvi is the value at thei-th position ofu andv respec-
tively, and⊕ means xor operation.DBC is in the range between
0 andNb. The larger the distance, the more different branches are
covered by these two runs.

Thebranch coverage similarityis defined as:

Nb − DBC

Nb

The intention of the similarity is that the smaller the branch cov-
erage distance, the higher the similarity and the similarity should
range between0 and1. The similarity amongk > 2 vectors is
calculated as the median of the similarity values between each two
vectors: there arek(k−1)

2
pairs ofk vectors, for each pair, a simi-

larity value is calculated, and the overall similarity is the median of
thosek(k−1)

2
values.
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Figure 2: The branch coverage similarity for each class over
time; their median

The difficult branch coverage similarity for each class overtime
is plotted in Figure 2. The thick curve in Figure 2 is the median of
the branch coverage similarity over all classes. Figure 3 shows the
standard deviation of the branch coverage similarity for each class.
Figure 2 shows that the similarity of difficult branch coverage is
already1 only after a few minutes of testing, and Figure 3 shows
that the standard deviation of difficult branch coverage similarity is
almost0.

The high median of similarity means that in general, the set of
branches from a class that are difficult to exercise are very similar
from test run to test run (for the same class), the small standard
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Figure 3: Standard deviation of the branch coverage similarity
for each class over time; their median

deviation means that this phenomenon was constantly observed
through all the runs.

The consequence drawn from Figure 2 and Figure 3 is that if
a branch is not exercised by a test run, it is unlikely that it will
be exercised by other runs for the same class. In other words,by
applying random testing with different seeds to the same class does
not help to improve branch coverage of that class. Unexercised
branches will stay unexercised.

3.3 Predictability of number of faults
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Figure 4: Medians of the number of faults detected in each class
over time

The question of predictability of number of faults was already
addressed in a previous study [6]. Our results confirm that study
and extend it to much longer testing sessions (6-hour sessions rather
than 90-minute ones), they are also using the most recent version
of AutoTest that underwent significant performance improvements.
The median of the number of faults detected for each class over
time is plotted in Figure 4. Note that all the faults found arereal
faults in a widely used Eiffel library. This also shows that our test-
ing tool is effective in finding faults. Figure 4 shows that54% of
the faults are detected in the first10 minutes,70% are detected in
30 minutes, and78% are detected in1 hour. About22% of the
faults are detected after1 hour. This means after30 minutes of
testing,70% of the faults are detected although only4% additional
branches are exercised.
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Figure 5: Medians of the normalized number of faults detected
for each class over time; their median

Different classes contain different number of faults. In order to
compare fault detection across different classes, we use the normal-
ized number of faults, obtained by dividing the number of faults
detected by each test run by the total number of faults found in all
test runs for that particular class. The number of normalized faults
for a particular test run represents the percentage of faults found in
that test run against all faults that we know in the class. Themedi-
ans of the number of the normalized faults detected over timefor
each class are shown in Figure 5. The thick curve in Figure 5 isthe
median of the medians of the number of normalized faults detected
over time for all classes.

For most of the classes, the median of the normalized number of
faults does not reach1 at the end of testing, indicating that different
runs detect different faults. Because if every test run for aclass
found the same number of faults, the number of normalized faults
for those runs should be1.

3.4 Similarity of faults
As in the case of the branch coverage level, we are interested

in the similarity of detected faults for the same class amongtest
runs. The detected faults are similar when different test runs find
the same faults. Similarly to section 3.2 we introduce the fault
detection vector, distances and similarity.

TheFault detection vectorof a class in a particular test run is a
vector ofn elements, withn being the total number of faults de-
tected for that class over all runs. Because we do not know the
actual number of faults in a class, we can only use the total number
of faults that are found by AutoTest for that class as an estimation.
Each element in the vector has one of the following values: 0,indi-
cating that the corresponding fault is not detected in this particular
run, or 1, indicating that the corresponding fault is detected.

Given two fault detection vectorsr ands for the same class, in
which the total number of found faults isNf , the fault detection
distanceDf betweenr ands is defined as

Df =
N

X

i=1

ri ⊕ si

whereri andsi is the value at thei-th position ofr ands respec-
tively, and⊕ means xor operation.Df is in the range between 0
andNf .

The fault detection similaritybetween them is then defined as:

Nf − Df

Nf

The fault detection similarity ranges from0 to 1. The larger the
similarity, the more faults are detected in both test runs orin nei-
ther. Fault detection similarity among more than two vectors is
calculated similarly to branch coverage similarity.

Figure 6 shows the similarity of detected faults in different test
runs for each class. The median of the fault detection similarity for
all classes (the thick curve in Figure 6) ranges from0.84 to 0.90.
As can be seen in Figure 6, most of the faults can be detected inev-
ery test run, but (because the median does not reach 1.0 ) in order
to get as many faults as possible, multiple test runs for thatclass are
necessary. Figure 7 shows the standard deviation of the fault detec-
tion similarity for each class. The median of the standard deviation
of the fault detection similarity (the thick curve in Figure7) ranges
from 0.07 to 0.05, corresponding to8% to 5% of the median of
fault detection similarity for all classes.

This implies that most faults are discovered by most testingruns,
but several runs produce better results. Seeds have a stronger im-
pact on fault detection than on branch coverage.
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Figure 6: Fault detection similarity for each class over time;
their median
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Figure 7: Standard deviation of the fault detection similarity
for each class over time; their median

3.5 Correlation between branch coverage and
number of faults
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Figure 8: Median of the branch coverage level and median of the normalized number of faults for each class over time

As previously written, the correlation between branch coverage
and number of faults is something that is usually taken for granted.
Here we take a closer look at it, and it seems that it is not as clear
as one might expect. While it is true that a higher coverage gives
higher number of faults, it is clearly not sufficient as an indicator.

In order to study the correlation between branch coverage level
and fault detection ability, the median of the branch coverage level
and the median of the normalized number of faults for the tested
classes are superimposed in Figure 8. Figure 8 shows that in the
first few minutes of testing when the branch coverage level in-
creases quickly, faults are also found quickly. After a while, the
increase of the branch coverage slows down. The speed of fault de-
tection also decreases, although less dramatically than the branch
coverage level. After30 minutes, the branch coverage level only
increases slightly, but during that period, many faults aredetected.

The correlation between the branch coverage level and the nor-
malized number of faults and for each class across all test runs is
shown in Figure 9. Each subgraph shows the value of the corre-
lation coefficientr. The correlation between the branch coverage
level and the normalized number of faults shows a positive correla-
tion, but varies much from class to class, from0.3 to0.97 and there
seems to be no common pattern among the tested classes.

The implications of these results are twofold: (1) when coverage
increases, faults discovered increase as well, (2) when coverage
stagnates, faults are still found. Thus increasing the branch cov-
erage clearly increases the number of faults found. It is however
clearly not sufficient to have a high value of the branch coverage to
assess the quality of a testing session.

The next section further elaborates on these findings as wellas
their limitations.

4. DISCUSSION
The results of the previous section enable us to answer the three

following main questions:

• Is branch coverage a good stopping criterion for random test-
ing?

• Is branch coverage a good measure of the testing effective-
ness?

• What are the unexercised branches?

4.1 Branch Coverage as Stopping Criterion for
Random Testing

Since in general, random testing cannot achieve100% branch
coverage in finite time, total branch coverage is certainly not a fea-
sible stopping criterion. In practice, the percentage of code cover-
age is often used as an adequacy criterion, the greater the percent-
age, the more adequate the testing [30], and testing can be stopped
if the generated test suite reached certain level of adequacy. In
our experiments, after1 hour, the branch coverage level hardly in-
creases, so it will be unpractical to extend the testing timeuntil full
coverage is reached. Instead, the only reasonable way to usebranch
coverage would be to evaluate the expectation of finding new faults.
As shown in the previous section, the number of faults only evolves
closely with the branch coverage level in the first few minutes of
testing. On testing sessions longer than10 minutes, the correlation
between number of faults and branch coverage degrades. In fact,
about50% of the faults are found in the period where the branch
coverage level hardly increases. This means that branch coverage
is not a good predictor for the number of faults remaining to be
found.
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Figure 9: Correlation between the branch coverage level andthe normalized number of faults for each class over 360 minutes

The correlation between the branch coverage level and the num-
ber of detected faults greatly varies from class to class. For some
classes such as BINARY_SEARCH_TREE, the correlation coeffi-
cient is0.98 and the scatter graph shows the correlation is almost
linear, but for other classes such as ARRAYED_STACK, the cor-
relation is weak (0.3), especially for longer testing sessions. This
variation on the class under test reduces the precision if branch cov-
erage is used as a stopping criterion.

Random testing also detects different faults in different test runs
while it exercises almost the same branches. This confirms that
multiple restarts improve drastically the number of faultsfound [6]:
in order to find as many faults as possible, a class should be random
tested multiple times with different seeds, even though thesame
branches are exercised every time.

Thus branch coverage alone cannot be used as a stopping crite-
rion for random testing.

4.2 Branch Coverage as Measure of Testing
Effectiveness

As a preamble, it is important to understand that running ran-
dom testing longer is the same as adding new test cases into a test
suite. The reason is that testing for a longer time means thatmore
method calls are executed on the class under test. Each method call
is actually the last line of a test case that contains all previous calls
participating to the state of data used in the call (see [20] for a de-
tailed explanation of test case construction and simplification). To
push further the analogy, testing a class in different runs is the same
as providing different test suites for that class.

Our experiments tested production code in which the existing
number of faults is unknown. As a result, we cannot use the ratio
of detected faults against the total number of faults to measure the
effectiveness of testing. Instead, we measure testing effectiveness

in two ways: (the number of) faults that are detected and the speed
at which those faults are detected.

Two results show that different faults can be detected at thesame
level of branch coverage: (1) in a test run, new faults were detected
in a period where branch coverage hardly changes; (2) in differ-
ent test runs for the same class, different faults were detected while
almost the same branches were exercised. In other words, differ-
ent tests suites satisfying the same branch coverage criterion may
detects different faults.

These two observations indicate that the degree of test adequacy
in terms of branch coverage level is highly predictable, notonly
in how many branches are covered, but also in what the covered
branches are. Put another way, when applying random testingto a
class, the same level of branch coverage adequacy is always achieved.
Also, for all the tested classes, the branch coverage adequacy level
stabilized after some time (1 hour in our case), which means even
continue the testing for a much longer time, the branch coverage
level would not going to be increased.

But when looked at the testing effectiveness in terms of number
of found faults, random testing can continue find new faults when
the branch coverage level is not increasing. Although we do not
know how many faults are to be found in those tested classes, the
fact that over50% of new faults were found in the period when the
branch coverage level stagnates is not neglectable.

These results provided evidence of the lack of reliability [12] of
branch coverage criterion achieved by random testing. Reliability
requires that a test criterion always produce consistent results. In
the context of our experiments, reliability requires that two test runs
achieving the same branch coverage of a class should deliversimi-
lar number of faults. But our results show that the number of faults
from different test runs will differ from each other by at least50%.

In terms of speed of fault detection, we can only consider ran-



Table 2: Unexercised branches
Reason % of branches
Branch condition not satisfied 45.6%
Linear constraint not satisfied 12.9%
Call site not exercised 13.7%
Unsatisfiable branches 13.7%
Crash before branch 8.6%
Implementation limitation 2.5%
Concurrent context needed 1.7%

dom testing. In the first few minutes of random testing, the branch
coverage level increases quickly, and the number of faults increases
accordingly. There is a strong correlation between the number of
faults found and the coverage during that period. This meansthat
branch coverage is good in measuring testing effectivenessin the
first few minutes. But after a while, the branch coverage level
hardly increases, the fault detection speed also slows downbut less
dramatically than the branch coverage level. In fact, many faults are
detected in the period where the branch coverage hardly changes.
This means in the later period, branch coverage is not a good mea-
sure for testing effectiveness.

In general, to detect as many faults as possible, branch coverage
is necessary but not sufficient.

4.3 Unexercised branches
We analyzed the179 branches in all14 classes that were not

exercised in our experiments. Among these branches, there are
116 distinct branches, and63 duplicated branches because they
appear in inherited methods. Table 2 shows the reasons why cer-
tain branches were not exercised and the percentage of unexercised
branches that fall into that each reason. In Table 2 the categories
are as follows:

Branch condition not satisfied means that those branches were not
exercised because their branch condition is not met. This is
the most common case.

Linear constraint not satisfied means that in the branch condition,
there is a linear constraint, and they were not satisfied by the
random strategy. Actually, linear constraint is a special case
of branch condition, but we think it is an important category
because a random strategy usually has great difficulty satis-
fying these constraints.

Call site not exercised means that the call site of a method con-
taining the unexercised branches were not executed.

Unsatisfiable branches means that the branch checks on condi-
tions that will never be satisfied because the condition can
never be true.

Fault before branch means that there was always a fault foundbe-
fore those unexercised branches, interrupting the execution.

Implementation limitation means that because of the limitation of
the AutoTest tool, those branches were not exercised.

Concurrent context needed means that those branches are only
exercisable when tested in a concurrent context. But our ex-
periments were conducted in a sequential setting.

Table 2 shows that58.5% of the unexercised branches fall into
the first two reasons (Branch condition not satisfied, linear con-
straint not satisfied). A following question would be how to satisfy

these branch conditions. A common solution to satisfy branch con-
ditions is to use symbolic execution to collect path conditions un-
der which certain statement can be executed and propagate the path
conditions up to the method entry so particular inputs can begener-
ated. However, symbolic executors often entails a great complexity
and they usually come with a large overhead. We analyzed those
unexercised branches falling into the first two reasons to see how
often a symbolic executor is needed: In32.3% of cases, a symbolic
executor to propagate path conditions is needed, for the rest 67.7%,
simply concatenate all dominating path conditions and select in-
puts at the method entry satisfying the concatenated path condition
would suffice to exercise those branches (a linear constraint solver
is needed when there is linear constraint in the concatenated path
condition). Of course, there is no guarantee that certain branches
will be exercised by doing this (for example, it is possible that there
is no object satisfying the concatenated path condition forthe test-
ing strategy to choose from), but it may direct the testing strategy
more effectively in exercising more branches. Also, by doing this,
it is possible to reduce the number of unexercised in theCall site
not exercisedcategory because if the branch containing the call sit
of a method is exercised, the branches in side the called method
may be exercised also.67.7% is high enough not to be ignored, so
we think this method is worthy trying.

For those unexercised branches in theFault before branchcate-
gory, the faults must be fixed first and then retest the class again.
For branches in theImplementation limitationandConcurrent con-
text neededcategories, we can enhance the AutoTest tool to support
the creation of agents and to support testing in a concurrentenvi-
ronment.

5. THREATS TO VALIDITY
We detail mainly five threats to validity for our results.
First, although the classes under test in our experiment arefrom

the widely used Eiffel library EiffelBase and they vary in terms of
various code metrics and intended semantics, we make no claim
regarding theirrepresentativenessof O–O programs in general.

Second, AutoTest is one implementation of a random testing
strategy. It uses a pseudo-random number generator, and chooses
some interesting values for primitive types such as integers, reals
and characters with some probability. We tried to keep the algo-
rithm of AutoTest as general as possible, butother implementations
of random testingmay produce different results.

Third, the heuristics used in mapping from failures to faults mostly
assume the correctness of contracts: a precondition violation on
method entry identifies the caller of that method as faulty, and a
postcondition violation on method exit identifies the method itself
as faulty. This may cause AutoTest to miss some faults because
if the contracts of a method are not correct callers might contain
faults that are unnoticed. Unfortunately, in case of a contract viola-
tion, deciding whether it is because of a wrong contract of a wrong
implementation cannot be done automatically. To limit thisrisk,
we chose classes from the EiffelBase library, whose contracts are
used and reviewed by many programmers during a long period of
time. After testing, we manually inspected the faults that are sug-
gested by the heuristic, and in all the cases, the faulty method is
correctly identified. The fact that AutoTest relies on contracts as
test oracle does not limit its applicability to languages without con-
tracts because when AutoTest runs on Eiffel classes with runtime
contract monitoring turned off (essentially equals to testclasses
without contracts), it can catch faults due to exceptions other than
contract violation, for example, null pointer dereferencing, division
by zero, system level error. However, without contracts specifying
what a class is supposed to do, an automatic testing tool onlycan



found low level faults. According to our experience,60% of the
faults found by AutoTest are contract related.

Fourth, in the experiment, classes are tested in isolation in each
test run. This means that in each test run, only methods from that
particular class under test are tested directly (methods they transi-
tively call will be tested indirectly). The result may be different if
the library is tested as a whole, meaning that all classes from the
library are tested together.

Last, for all classes, thebranch coverage level is below100%,
due to the limitations of the random testing strategy and theway
branch coverage is calculated. We do not know if the correlation
between the branch coverage level and the number of faults still
holds when all branches are exercised. Also, we only have data
on faults detected by random testing, we don’t know how many
faults are still undetected in the chosen classes even if thenumber
of faults found by random testing is much higher in general than
manual testing [5].

6. RELATED WORK
Intuitively, random testing cannot compete in terms of effective-

ness with systematic testing because it is less likely that randomly
selected inputs will be interesting enough to reveal faultsin the pro-
gram under test. However, some studies [16, 28, 23] have shown
that random testing is as effective as some systematic methods such
as partition testing. Our results also showed that random testing is
effective: in the experiment, random testing detected328 faults in
14 classes in EiffelBase library while in the past3 years, only28
faults were reported by users.

The advantage of cheap implementation and easy applicability
makes random testing attractive. It has been used in testingoperat-
ing systems [21, 9], as well as O–O programs [7, 8, 25, 24, 26].

Ciupa et al. [6] investigated the predictability of random testing
and showed that in terms of the number of faults detected overtime,
random testing is predictable, meaning that different runsfor the
same class will detects roughly the same number of faults, while in
terms of the kind of faults, random testing is unpredictable, mean-
ing that different runs for the same class detects differentkinds of
faults. Figure 5 and Figure 6 confirm their results.

The branch coverage criterion for measuring testing strategy ef-
fectiveness is compared with other criteria in many studies. Frankl
et al. [10] compared the branch coverage criterion with the all-uses
criterion and concluded that for their programs under test,all-uses
adequate test sets performs better than branch adequate test sets,
and branch adequate test sets do not perform significantly better
than null-adequate test sets, which are test sets containing randomly
selected test cases without any adequacy requirement. Theydefined
the effectiveness of an adequacy criterion to be the probability that
a test set selected randomly according to that adequacy criterion
will expose an error. Based on this definition, they evaluated branch
coverage effectiveness in test sets as small as possible. Inour study,
we are more interested the branch coverage level achieved byran-
dom testing in a certain amount of time and the number of faults
found in that period.

Hutchins et al. [19] also compared the effectiveness of the branch
coverage criterion and the all-uses criterion. They found that for
both criteria, test sets achieving coverage levels over 90%showed
significantly better fault detection than randomly selected test sets
of the same size. This means that a lot of faults could be detected
when the coverage level approaches 100%. They also concluded
that in terms of effectiveness, there is no winner between branch
coverage and all-uses criterion. Our results on the correlation be-
tween the branch coverage level and the number of detected faults
also shows a similar pattern that many faults are detected athigher

coverage levels, in our experiment, however, the branch coverage
level did not reach100%, while in their study, manually written
test sets guaranteed total branch coverage. Also, in their study, pro-
grams under test were seeded with faults, while in our experiment,
programs were tested as they are.

Gupta et al. [13] compared the effectiveness (the ability tode-
tect faults) and efficiency (the average cost for detecting afault) of
three code coverage criteria: predicate coverage, branch coverage
and block coverage. They found that predicate coverage is the most
effective but the least efficient, block coverage is the least effec-
tive but most efficient, while branch coverage is between predicate
coverage and block coverage in terms of both effectiveness and effi-
ciency. Their results suggest that branch coverage is the best among
those three criteria for getting better results with moderate testing
efforts.

Many methods have been proposed to maximize branch cover-
age, many of which are based on random testing or use random
testing in an initial phase. Gupta et al. [14] presented a method to
dynamically switch to a path that offers relatively less resistance to
generation of an input to force execution to reach an unexercised
branch. DART [11] combined random testing and symbolic exe-
cution to achieve path coverage. Pex [27] also uses symbolicexe-
cution to achieve high branch coverage. Our experiment provided
results showing how random testing performs in terms of branch
coverage, it can be used as a benchmark in evaluating the enhance-
ment of those branch coverage maximizing methods.

7. CONCLUSIONS AND FUTURE WORK
We have assessed how random testing performs in terms of branch

coverage. Our results show that the branch coverage level achieved
by random testing varies depending on the structure of the program
under test, but on average, is very high (93%). Within the branches
that are exercised by random testing, most of them are exercised
very quickly (in the first10 minutes of testing) regardless of the
class under test. For the same class, branches exercised in different
test runs are almost the same. In terms of fault detection, different
test runs for the same class will detect roughly10% different faults.
Over50% of the faults are detected in the period when branch cov-
erage hardly changes.

Our results indicate that branch coverage is not a good stopping
criterion for random testing. One should test a program in multiple
test runs to find as many faults as possible even though by doing
so the branch coverage level will not be increased in general. Also,
one should not stop random testing when the branch coverage level
stops increasing or only increases very slowly.

Another deduction from our results is that branch coverage in
general is not a good indicator of the quality of a test suite.In our
experiments, more than50% of the faults are uncovered while cov-
erage is at a plateau. Although many studies showed that branch
coverage is weak, we found little evidence showing a random test-
ing strategy continues finding faults when the branch coverage stag-
nates.

Future work includes investigating how to reach even higherbranch
coverage (100%) as well as to analyze the reasons for not reaching
total coverage.

AcknowledgementWe thank Ilinca Ciupa, Andreas Leitner, Si-
mon Poulding, and Stephan van Staden for their insightful com-
ments.

8. REFERENCES
[1] ECMA-367 Eiffel: Analysis, Design and Programming

Language, 2nd Edition.



http://www.ecma-international.org/
publications/standards/Ecma-367.htm.

[2] EiffelBase. Eiffel Software.http:
//www.eiffel.com/libraries/base.html.

[3] EiffelStudio. Eiffel Software.
http://www.eiffel.com/.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software. In
Proceedings of the International Symposium on Software
Testing and Analysis 2007 (ISSTA’07), pages 84–94, 2007.

[5] I. Ciupa, B. Meyer, M. Oriol, and A. Pretschner. Finding
faults: Manual testing vs. random+ testing vs. user reports.
In 19th International Symposium on Software Reliability
Engineering (ISSRE’08), pages 157–166.

[6] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer.
On the predictability of random tests for object-oriented
software. InFirst International Conference on Software
Testing, Verification, and Validation 2008 (ICST’08), pages
72–81.

[7] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic
robustness tester for java.Softw. Pract. Exper.,
34(11):1025–1050, 2004.

[8] C. Csallner and Y. Smaragdakis. Dsd-crasher: a hybrid
analysis tool for bug finding. InISSTA ’06: Proceedings of
the 2006 international symposium on Software testing and
analysis, pages 245–254. ACM, 2006.

[9] J. E. Forrester and B. P. Miller. An empirical study of the
robustness of windows nt applications using random testing.
In WSS’00: Proceedings of the 4th conference on USENIX
Windows Systems Symposium, pages 6–6, Berkeley, CA,
USA, 2000. USENIX Association.

[10] P. Frankl and S. Weiss. An experimental comparison of the
effectiveness of branch testing and data flow testing.
Software Engineering, IEEE Transactions on,
19(8):774–787, Aug 1993.

[11] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. InPLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 213–223, New York, NY,
USA, 2005. ACM.

[12] J. B. Goodenough and S. L. Gerhart. Toward a theory of test
data selection.IEEE Trans. Software Eng., 1(2):156–173,
1975.

[13] A. Gupta and P. Jalote. An approach for experimentally
evaluating effectiveness and efficiency of coverage criteria
for software testing.Int. J. Softw. Tools Technol. Transf.,
10(2):145–160, 2008.

[14] N. Gupta, A. Mathur, and M. Soffa. Generating test data for
branch coverage.Automated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International
Conference on, pages 219–228, 2000.

[15] D. Hamlet. When only random testing will do. InRT ’06:
Proceedings of the 1st international workshop on Random
testing, pages 1–9, New York, NY, USA, 2006. ACM.

[16] D. Hamlet and R. Taylor. Partition testing does not inspire
confidence.IEEE Trans. Softw. Eng., 16(12):1402–1411,
1990.

[17] R. Hamlet. Random testing. InEncyclopedia of Software
Engineering, pages 970–978. Wiley, 1994.

[18] R. W. Hamming. Error detecting and error correcting codes.
The Bell System Technical Journal, 26(2):147–160, 1950.

[19] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. InICSE ’94:
Proceedings of the 16th international conference on
Software engineering, pages 191–200, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

[20] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
Efficient unit test case minimization. InProceedings of the
22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE’07), pages 417–420, November
2007.

[21] B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of unix utilities.Commun. ACM,
33(12):32–44, 1990.

[22] G. J. Myers.The Art of Software Testing, 2nd edition. John
Wiley and Sons, 2004.

[23] S. Ntafos. On random and partition testing. InISSTA ’98:
Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis, pages 42–48,
New York, NY, USA, 1998. ACM.

[24] C. Oriat. Jartege: A tool for random generation of unit tests
for java classes. InQuality of Software Architectures and
Software Quality, First International Conference on the
Quality of Software Architectures, QoSA 2005 and Second
International Workshop on Software Quality, SOQUA 2005,
pages 242–256, 2005.

[25] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. InECOOP 2005 —
Object-Oriented Programming, 19th European Conference,
pages 504–527, Glasgow, Scotland, July 27–29, 2005.

[26] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. InICSE ’07:
Proceedings of the 29th International Conference on
Software Engineering, pages 75–84, Washington, DC, USA,
2007. IEEE Computer Society.

[27] N. Tillmann and J. de Halleux. Pex-white box test generation
for .net. InTests and Proofs, Second International
Conference(TAP’08), pages 134–153, 2008.

[28] E. Weyuker and B. Jeng. Analyzing partition testing
strategies.IEEE Transactions on Software Engineering,
17(7):703–711, 1991.

[29] Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based
testing tools. InAST ’06: Proceedings of the 2006
international workshop on Automation of software test,
pages 99–103, New York, NY, USA, 2006. ACM.

[30] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy.ACM Comput. Surv., 29(4):366–427,
1997.


