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Abstract

Many programmers, when they encounter an error, would like to have
the benefit of automatic fix suggestions—as long as they are, most of the
time, adequate. Initial research in this direction has generally limited itself
to specific areas, such as data structure classes with carefully designed
interfaces, and relied on simple approaches.

To provide high-quality fix suggestions in a broad area of applicability,
the present work relies on the presence of contracts in the code, and on
the availability of static and dynamic analyses to gather evidence on the
values taken by expressions derived from the code.

The ideas have been built into the AutoFix-E2 automatic fix gener-
ator. Applications of AutoFix-E2 to general-purpose software, such as
a library to manipulate documents, show that the approach provides an
improvement over previous techniques, in particular purely model-based
approaches.

1 Introduction

Debugging—the activity of finding and correcting errors in programs—is so
everyday in every programmer’s job that any improvement at automating even
parts of it has the potential for a significant impact on productivity and software
quality.

While automation remains formidably difficult in general, the last few years
have seen the first successful attempts at providing completely automated de-
bugging in some situations. This has been achieved with the combination of
several techniques developed independently: automated testing to detect errors,
fault localization to locate instructions responsible for the errors, and dynamic
analysis to choose suitable corrections among those applicable to the faulty in-
structions. Consider, for example, a routine (method) which removes the last
element in a linked list by getting a reference and deallocating it. Random
testing tries the routine on an empty list and exposes an error; fault localiza-
tion suggests that the problem is deallocating the last element when it is void
(null); dynamic analysis suggests to change the behavior of the routine so that
deallocation is performed only when the last element exists.

A few premises make such automated debugging techniques work in prac-
tice. First, the majority of errors in programs admit simple fixes [6], consisting
in adding or modifying one or two instructions; correspondingly, generating the
set of possible “small” corrections exhaustively is often computationally feasible.
Second, the availability of contracts (pre and postconditions, class invariants)
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can dramatically improve the accuracy of both error detection and fault local-
ization.

Our previous work in this area [5, 21] takes advantage of these observations
to perform an analysis of faults in object-oriented programs with contracts and
correct them. The analysis constructs an abstract model of correct and incor-
rect executions, which summarizes the information about the program state at
various locations in terms of state invariants. The invariants express the values
returned by public queries (functions) of a class—the same functions used by
developers in the contracts that document the implementation. The comparison
of the invariants characterizing correct and incorrect runs suggests how to fix
errors: whenever the state signals the “incorrect invariant”, execute actions to
avoid triggering the error. A behavioral model of the class, also relying on state
invariants, suggests the applicable “recovery” actions. We call this approach
to automated program fixing model-based, given that a model, based on state
invariants, abstracts the correct and incorrect visible behavior. In the exam-
ple of the linked list, assume that the class has a query empty, which returns
true when the list contains no elements, and that the correct and incorrect runs
respectively have invariants not empty and empty, because the failure occurs
precisely when the list is empty. A reasonable fix consists in adding a condi-
tional statement which guards the deallocation instruction and executes it only
when not empty is the case.

The efficacy of model-based fixing fundamentally depends on the quality of
the public interfaces, because invariants are mostly based on public queries. The
present paper introduces a more general approach to automated fixing which
works successfully even for classes with few public queries. The approach is still
based on the dynamic analysis of correct and incorrect runs. However, rather
than merely monitoring the value of queries, the analysis proactively gathers
evidence in terms of values taken by expressions appearing in the program
text. An algorithm built upon fault localization techniques—based on static
and dynamic analysis—ranks expressions and their values according to their
likelihood of being indicative of error. The expressions ranking highest are
prime candidates to guide the generation of fixes: when an expression takes
a “suspicious” value, execute actions that change the value to “unsuspicious”.
We call this novel approach code-based to designate the white-box search for
information denoting faults in the program text. In the sketched example of
the linked list, code-based techniques can build a fix even if a query empty is
not available, by choosing to monitor the value of the expression denoting the
reference to the last element in the list.

The designations “model-based” and “code-based” schematize the essential
differences between the two approaches, but it is important to remark that
the latter is essentially an extension (and improvement) of the former: code-
based techniques also exploit information in the form of state invariants and
public queries to reproduce the results of model-based techniques when these
are successful.

We implemented code-based fixing in the tool AutoFix-E2, successor to Au-
toFix-E [21] which implemented model-based techniques. The experiments in
Section 4 demonstrate that code-based techniques can automatically fix more
errors than model-based approaches, even beyond data structure implementa-
tions—the natural target of model-based and random-testing techniques, for
their rich public interfaces.
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The paper is organized as follows: Section 2 introduces code-based tech-
niques with an example of fix which is beyond the capabilities of model-based
techniques; Section 3 details the ingredients of code-based fixing and how they
are combined; Section 4 presents an experimental evaluation of the implemen-
tation AutoFix-E2; Section 5 discusses related work; Section 6 outlines future
work.

2 Automated Fixing: an example

This section illustrates two faults fixed by AutoFix-E2; the example shows the
edge of code-based techniques in specific fixing scenarios and is used throughout
the paper.

2.1 Two Errors in a Routine

The EiffelBase class TWO WAY SORTED SET implements a set data structure
with a doubly-linked list. An internal cursor index (an integer attribute) is useful
to navigate the content of the set: the actual elements occupy positions 1 to
count (another integer attribute, storing the total number of elements in the
set), whereas the indexes 0 and count + 1 correspond to the positions before
the first element and after the last. Listing 1 shows the routine move item of
this class, which takes an argument v of generic type G that must be a reference
to an element already stored in the set; the routine then moves v from its current
(unique) position in the set to the immediate left of the internal cursor index. For
example, if the set is 〈a, b, c, v〉 and index is 2 upon invocation, move index (v)
changes the set to 〈a, v, b, c〉. The routine’s precondition (require) formalizes
the constraint on the input. After saving the cursor position as the local variable
idx, the loop in lines 7–10 performs a linear search for the element v using the
internal cursor: when the loop terminates, index denotes v’s position in the set.
The three routine calls on lines 12–14 complete the work: remove takes v out of
the set; go i th restores index to its original value idx; put left puts v back in
the set to the left of the position index.

AutoTest [17] reveals, completely automatically, two errors in this imple-
mentation of move item. The first error is due to the fact that calling remove
decrements the count of elements in the set by one. AutoTest produces a test
(shown in Figure 1) that calls move item when index equals count + 1; after v
is removed, this value is not a valid position because it exceeds the new value of
count by two, while a valid cursor ranges between 0 and count + 1. The test vi-
olates go i th ’s precondition (line 17), which enforces the consistency constraint
on index, when invoking it on line 13.

The second error occurs when index has value 0, denoted by the boolean
query before (line 19); this is a valid position for go i th but not for put left ,
because there is no position “to the left of 0” where v can be re-inserted: the
call to put left on line 14 violates its precondition (line 18).

2.2 Code-Based Fixing at Work

The fault revealed in the invocation of go i th is actually a special case of a more
general error which occurs whenever v appears in the set in a position to the left
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Listing 1: Routines of TWO WAY SORTED SET.

1 move item (v : G)
2 −− Move ‘v’ to the left of cursor.
3 require v 6=Void ; has (v)
4 local idx : INTEGER ; found: BOOLEAN
5 do
6 idx := index
7 from start until found or after loop
8 found := (v = item)
9 if not found then forth end

10 end
11 check found and not after end
12 remove
13 go i th (idx)
14 put left (v)
15 end
16

17 go i th ( i : INTEGER) require 0≤i≤count + 1
18 put left (v: G) require not before
19 before : BOOLEAN do Result := (index = 0) end
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Figure 1: Calling remove in move item when index = count + 1 holds initially
makes the following invocation of go i th (idx) violate a precondition.

of the initial value of index: even if index≤ count initially, put left will insert v
in the wrong position as a result of remove decrementing count—which indirectly
shifts the index of every element after index to the left by one. For example, if
index is 3 initially, 〈a, v, b, c〉 becomes 〈a, b, v, c〉, instead of staying unchanged,
after calling move item (v). Such states leading to erroneous behavior go unde-
tected by AutoTest because the developers of TWO WAY SORTED SET pro-
vided an incomplete postcondition; more generally, the class lacks a query to
characterize the fault condition in general terms. Nonetheless, AutoFix-E2 can
completely correct the error, beyond the specific case reported by the failed test:
it builds the expression idx > index to characterize the error state and generates
the corresponding fix, introduced before line 13, which re-scales idx to reflect
the fact that the object in position idx has been shifted left.

if idx > index then idx := idx − 1 end

The error in the invocation of put left , on the other hand, is accurately
characterized by the public query before , which returns True whenever the call
on line 14 triggers a precondition violation. The correction suggested automati-
cally by AutoFix-E2 adds the instruction if before then forth end right before
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Figure 2: How code-based fixing works. Run AutoTest to automatically gen-
erate passing and failing test cases for the input Eiffel classes (Section 3.1);
extract a set of expressions from the text of the classes’ routines (Section 3.2);
compute the expression dependence score edep between expressions—measuring
their syntactic similarity (Section 3.3.2)—and the control dependence score cdep
between program locations—measuring how close they are on the control-flow
graph (Section 3.3.1); compute the dynamic score dyn between expressions,
measuring how more often an expression is mentioned in failing rather than
passing test cases (Section 3.4); combine the three scores (edep, cdep, dyn) into
the score fixme, which determines a global ranking of expressions (Section 3.5);
enumerate possible fixing actions for the expressions with highest fixme score
(Section 3.6); generate candidate fixes by injecting the fix actions into the faulty
routine (Section 3.7); the candidate fixes that pass all the regression test suite
are considered valid (Section 3.8).

line 14: forth moves the cursor to the first position, which is valid for put left .

2.3 Model-Based Fixing at Work

How do model-based techniques, implemented in AutoFix-E, perform on the two
errors shown? The error in the invocation of put left has a characterization in
terms of public queries and state invariants, hence AutoFix-E also produces a
correct fix, equivalent to the one from AutoFix-E2.

Model-based techniques, however, can correct the other error, in the invo-
cation of go i th , only for the specific instance exposed by the test case where
index = count + 1, that is when after holds. Based on this, a possible partial
fix consists in adding if after then back end as first instruction on line 5. This
fix is not only partial but also unlikely to be generated in practice, because it
modifies code which is several instructions away from where the contract vio-
lation occurs, but AutoFix-E’s heuristics favor fixes that are local to restrict
the search space. As shown above, code-based techniques do not suffer these
limitations.

3 Code-Based Fixing

This section describes how code-based fixing works; Figure 2 depicts the main
steps of the process. All the running examples refer to Listing 1.

Code-based fixing works on Eiffel classes equipped with contracts [16]: pre-
conditions, postconditions, and class invariants. Each contract element consists
of one or more clauses; for example, move item’s precondition on line 13 has
two clauses: v 6=Void and has(v). The contracts of a class constitute its ex-
ecutable specification, hence provide a way to determine functional errors in
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the implementation: a routine called in a state not satisfying its precondition,
terminating in a state not satisfying its postcondition or violating the class
invariant, or reaching an intermediate assertion not satisfied.

3.1 Test-Case Generation

Every session of code-based fixing starts by collecting information about the
runtime behavior of the routine under fix. The raw form of such information
is a collection of test cases, each a sequence of object creations and routine
invocations on the objects. A test case is passing if it does not violate any
contract and failing otherwise. Two failing test cases correspond to the same
error if they violate the same contract clause at the same program location; this
assumption is reasonable, given that different clauses of the same contract are
usually orthogonal.

Code-based fixing takes a set T of test cases as input, and uses them for
dynamic analysis (Section 3.4) and fix validation (Section 3.8). P and F re-
spectively denote the sets of all passing and failing test cases in T . F ,c denotes
a set of failing test cases violating the clause c at program location . For ex-
ample, the set of test cases violating put left ’s precondition in move item is

denoted by F 14,(not before). Each session of code-based fixing targets a single
fault.

The rest of the code-based fixing process is independent of whether the
test cases T are generated automatically or written manually. AutoFix-E2 uses
the random testing framework AutoTest [17] developed in previous work of
ours. The use of AutoTest makes the fixing process in AutoFix-E2 completely
automatic. The experiments described in Section 4 demonstrate that the test
cases generated by AutoTest are suitable inputs to AutoFix-E2 and support the
generation of effective fixes without any human intervention.

3.2 Predicates, Expressions, and States

Evidence takes the form of boolean predicates, built by combining expressions
extracted from the program text and the violated contract clause. The evalu-
ation of a predicate at a program location gives a component of the program
state at that location. Sections 3.3 and 3.4 rank components according to their
“suspiciousness” of being responsible for the occurrence of an error.

3.2.1 Expressions

For a routine r and a violated assertion clause c, Er,c denotes the set of non-
constant expressions (of any type) which appear in r’s body or in c. For example,
Ebefore ,index >1 for routine before is {Result, index, index = 0, index >1}.
Er,c extends the set Er,c of expressions by unfolding [18]: Er,c includes all ele-
ments in Er,c and, for every e ∈ Er,c of reference type t and for every argument-
less query q applicable to objects of type t, Er,c also includes the expression e.q.
Continuing the example, Ebefore ,index >1 = Ebefore ,index >1 because all the

expressions in Ebefore ,index >1 are of primitive type (integer or boolean).
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3.2.2 Predicates

The set Pr,c of boolean predicates generated for r and c contains the following
elements:

Boolean expressions: b, for boolean b ∈ Er,c of boolean type;

Voidness checks: e = Void, for every e ∈ Er,c of reference type;

Integer comparisons: e ∼ e′, for every e ∈ Er,c of integer type, every e′ ∈
Er,c \ {e} ∪ {0} also of integer type, and every ∼ in {=, <,≤};

Complements: ¬p, for every p ∈ Pr,c.

For example, Pbefore ,index >1 contains Result, not Result, index∼0 and

index∼1 (∼∈ {=, 6=, <,<=, >,>=}).

3.2.3 State Components

A test case t ∈ T describes a sequence loc(t) = `1, `2, . . . of executed program
locations. For an expression e and a location ` ∈ loc(t), [[e]]`t is the value of e at
` in t, if e can be evaluated at `.

The evaluation of predicate p at location ` defines the triple 〈`, p, v〉, where
v is the value [[p]]`t for some test case t which reaches `; a test case t may define
multiple triples with the same `, if ` appears more than once in loc(t). comp(T )
denotes all the triples 〈`, p, v〉 defined by the tests in the set T ; they are the com-
ponents of the program state during the tests. In the running example, every test
case reaching location 6 defines 〈6, v = Void,False〉—because the precondition
guarantees v 6=Void—but does not define any triple 〈6,Result, v〉—because
Result is not a variable in the scope of move item.

Sections 3.3–3.5 show how to rank components according to heuristics which
take into account static and dynamic measures. The ranking heuristic fixme
summarizes various sources of evidence; a triple 〈`, p, v〉 appearing high in the
ranking indicates that an error is likely to have its origin at location ` when
predicate p evaluates to v. Correspondingly, the fixes generated automatically
try to change the value of p at ` whenever it is v (Section 3.6).

3.3 Static Analysis

Static analysis extracts evidence from the program text independently of the
runtime behavior: control dependence measures the distance, in terms of num-
ber of instructions, between two program locations; expression dependence mea-
sures the syntactic similarity between two predicates. We use control depen-
dence to estimate the proximity of a location to where a failure is triggered;
then, we further differentiate among expressions evaluated at nearby program
locations according to a simple syntactic measure of similarity between each
expression and the violated contract clause. Such a lightweight static analy-
sis is sufficient for code-based fixing to work, given that the primary source of
evidence comes from dynamic analysis (Section 3.4) anyway.
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3.3.1 Control Dependence

For two program locations `1, `2, write `1  `2 if `1 and `2 belong to the same
routine and there exists a directed path from `1 to `2 on the control-flow graph
of the routine’s body; otherwise, `1 6 `2. The control distance cdist(`1, `2)
of two program locations is the length of the shortest directed path from `1
to `2 on the control-flow graph if `1  `2, and ∞ if `1 6 `2. For example,
cdist(8, 12) = 4 in Listing 1.

Correspondingly, the control dependence cdep(`, ) is the normalized score:

cdep(`, ) = 1− cdist(`, )

max{cdist(λ, ) | λ ∈ r and λ }
for `  , and 0 for ` 6 . We use control dependence to rank locations
according to proximity to the location of failure.

3.3.2 Expression Dependence

For an expression e, define the set sub(e) of its sub-expressions as follows:

• e ∈ sub(e);

• if e′ ∈ sub(e) is a query call of the form t.q (a1, . . . , am) for m ≥ 0, then
t ∈ sub(e) and ai ∈ sub(e) for all 1 ≤ i ≤ m.

This definition also accommodates infix operators (such as boolean connectives
and arithmetic operators), which are just syntactic sugar for query calls; for
example a and b are both sub-expressions of a+ b, a shorthand for a.plus (b) .
Also, unqualified query calls are treated as qualified call on the implicit target
Current.

The expression proximity eprox(e1, e2) of two expressions e1, e2 measures
how similar e1 and e2 are in terms of shared sub-expressions: eprox(e1, e2) =
|sub(e1) ∩ sub(e2)| For example, eprox(i ≤ count, 0 ≤ i ≤ count + 1) is 2, corre-
sponding to the shared sub-expressions i and count. The larger the expression
proximity between two expressions is, the more similar they are.

Correspondingly, the expression dependence edep(p, c) is the normalized score
measuring the amount of evidence that p and c are syntactically similar:

edep(p, c) =
eprox(p, c)

max{eprox(π, c) | π ∈ Pr,c}
In routine before , for example, edep(index, index = 0) is 1/3 because
edep(index, index = 0) = 1 and index = 0 itself has the maximum expression
proximity to index = 0. We use expression dependence to rank expressions
according to similarity to the contract violated by a failure. Expression depen-
dence is meaningful only for expressions evaluated in the same local environment
(that is, with strong control dependence), where the same syntax is likely to refer
to identical program elements.

3.4 Dynamic Analysis

Dynamic analysis extracts evidence from test cases in the form of score asso-
ciated to every state component generated. The higher the score dyn〈`, p, v〉 a
component 〈`, p, v〉 receives, the stronger the runtime behavior suggests that an
error originates at location ` when predicate p evaluates to v.
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3.4.1 Principles to Compute the Score

Consider an error violating the contract clause c at location  in some routine
r. Let Pr be a set of passing test cases exercising routine r, F ,c

r a set of failing
test cases exposing the same error, and T ,c

r the union Pr ∪ F ,c
r . comp(T ,c

r ) is
then the set of components describing correct and incorrect behavior of r.

For a test case t ∈ T ,c
r and a component 〈`, p, v〉 such that ` is a location in

r’s body, write 〈`, p, v〉 ∈ t if t reaches location ` at least once and p evaluates
to v there:

〈`, p, v〉 ∈ t iff ∃`i ∈ loc(t), ` = `i, and v = [[p]]`it

For every test case t ∈ T ,c
r such that 〈`, p, v〉 ∈ t, σ(t) denotes its contribu-

tion to the score of 〈`, p, v〉: a large σ(t) denotes evidence that 〈`, p, v〉 is a likely
“source” of error if t is a failing test case, and evidence against it if t is passing.

Section 3.4.2 builds a function σ according to the following principles:

(a) If there is at least one failing test case t such that 〈`, p, v〉 ∈ t, the overall
score assigned to 〈`, p, v〉 must be positive: the evidence provided by failing
test cases cannot be canceled out completely.

(b) The magnitude of each failing (resp. passing) test case’s contribution σ(t)
to the score assigned to 〈`, p, v〉 decreases as more failing (resp. passing) test
cases for that component are available: the evidence provided by the first
few test cases is crucial, while repeated outcomes carry a lower weight.

(c) The evidence provided by one failing test case is stronger than the evidence
provided by one passing test case.

The first two principles are after Wong et al.’s “Heuristic III” [23], which ex-
periments by the same authors showed to yield better fault localization accuracy
than most alternative approaches. According to these principles, components
appearing only in failing test cases are more likely to be fault causes.

Our dynamic analysis assigns scores according to the same basic principles
as Wong et al.’s, but with differences suggested by the ultimate goal of auto-
matic fixing: our score ranks state components rather than program locations,
and assigns weight to test cases differently. Contracts significantly help find
the location responsible for a fault: in many cases, it is proximate to where
the contract violation occurred; on the other hand, automatic fixing requires to
gather information not only about the location but also about the state “respon-
sible” for the fault. This observation prompted us to apply the fault localization
principles to state components.

3.4.2 Score from Dynamic Analysis

Assume an arbitrary order on the test cases and let σ(t) be αi for the i-th failing
test case t and βαi for the i-th passing test case. Selecting 0 < α < 1 decreases
the contribution of each test case exponentially, which meets principle (b); then,
selecting 0 < β < 1 fulfills principle (c).

The evidence provided by each test case adds up:

dyn〈`, p, v〉 = γ +
∑
{σ(u) | u ∈ F ,c

r } −
∑
{σ(v) | v ∈ Pr}

9



for some γ ≥ 0; the chosen ordering is immaterial. We compute the score with
the closed form of geometric progressions:

#p〈`, p, v〉 = |{t ∈ Pr | 〈`, p, v〉 ∈ t}|
#f〈`, p, v〉 = |{t ∈ F ,c

r | 〈`, p, v〉 ∈ t}|

dyn〈`, p, v〉 = γ +
α

1− α

(
1− β + βα#p〈`,p,v〉 − α#f〈`,p,v〉

)
where #p〈`, p, v〉 and #f〈`, p, v〉 are the number of passing and failing test cases
that determine the component 〈`, p, v〉. It is straightforward to prove that
dyn〈`, p, v〉 is positive if #f〈`, p, v〉 ≥ 1, for every 0 < α, β < 1, hence the
score meets principle (a) as well. Some empirical evaluation suggested to set
α = 1/3, β = 2/3, and γ = 1 in the current implementation of AutoFix-E2.

3.5 Combining Static and Dynamic Analysis

The final output of the analysis phase combines static and dynamic analysis to
assign a “suspiciousness” score fixme〈`, p, v〉 to every state component 〈`, p, v〉.

Expression dependence and control dependence are both ratios, and the score
from dynamic analysis is essentially a sum of fractional values. This suggests [3]
to combine the three scores by harmonic mean:

fixme〈`, p, v〉 =
3

edep(p, c)−1 + cdep(`, )−1 + dyn〈`, p, v〉−1

The current choice of parameters α, β, γ makes the dynamic score dyn〈`, p, v〉
dominant in determining the overall score fixme〈`, p, v〉: while expression and
control dependence vary between 0 and 1, the dynamic score has minimum 2/3
(for zero failing test cases and indefinitely many passing) and maximum 3/2 (for
zero passing test cases and indefinitely many failing). This range difference is
consistent with the principle that dynamic analysis gives the primary source of
evidence, whereas the less precise evidence provided by static analysis is useful
to discriminate among components with similar dynamic behavior.

3.6 Fixing Actions

Consider a component 〈`, p, v〉 with a high evidence score fixme〈`, p, v〉. 〈`, p, v〉
induces a number of possible actions (instructions) which try to avoid using the
value v of p at `. The actions may either modify p directly (Section 3.6.2) or
change the usage of p in the instruction at ` (Section 3.6.3).

3.6.1 Derived Expressions

Expressions of boolean and integer type are modified according to standard
patterns which may reverse common sources of mistakes—such as “off-by-one”
errors. For an expression e, the set ederiv(e) includes:

• if e is of boolean type, the constants True and False, and the expression
not e;

• if e is of integer type, the constants 0, 1,−1, and the expressions e+ 1 and
e− 1.

10



3.6.2 Expression Modification

One way to change a state component is to directly modify the expression of
that component. An expression e is modifiable at ` if: e is of reference type; or
e is of integer type and the assignment e := 0 can be executed at `; or e is of
boolean type and the assignment e := True can be executed at `. For example,
index is modifiable everywhere in routine move item because it is an attribute
of the enclosing class; in routine go i th , instead, i is not modifiable anywhere
because arguments are read-only in Eiffel.

Since an expression in a state component may not be directly modifiable, we
also consider sub-expressions. The definition of sub-expression (Section 3.3.2)
induces a partial order �: e1 � e2 iff e1 ∈ sub(e2); correspondingly, it de-
fines the largest expressions in a set. For example, the largest expressions of
integer type in sub(idx < index or after) are idx and index. A pair 〈`, p〉 de-
termines the set targ〈`, p〉 of target expressions: targ〈`, p〉 includes the largest
expressions among p’s sub-expressions sub(p) that are modifiable at `. For ex-
ample, targ〈13, idx >Current.index〉 on Listing 1 includes the integer expres-
sions Current.index and idx, but no reference (Current is a sub-expression of
Current.index) or boolean expression (idx >Current.index is not modifiable
according to the definition).

Finally, populate the set emod〈`, p〉 of expression modifications induced by
the component 〈`, p, v〉 as follows:

• for e ∈ targ〈`, p〉 of boolean or integer type and every derived expression
d ∈ ederiv(e), include e := d in emod〈`, p〉;

• for e ∈ targ〈`, p〉 of reference type, if e.c (a1, . . . , an) is a call to a command
(procedure) c executable at `, include e.c (a1, . . . , an) in emod〈`, p〉.

In the running example, emod〈13, idx >Current.index〉 includes assignments
of 0, 1 and −1 to idx and index, and unit increments and decrements of the
same variables.

3.6.3 Expression Replacement

There are cases where expression modification is infeasible or undesirable. For
example, expression i in routine go i th does not have any modifiable sub-
expression. In such situations, expression replacement directly substitutes the
usage of expressions in instructions.

Every location ` labels either a primitive instruction (an assignment or a
routine call) or a boolean condition (the branching condition of an if instruction
or the exit condition of a loop). Correspondingly, define the set sub(`) of sub-
expressions of a location ` as follows:

• if ` labels a boolean condition b then sub(`) = sub(b);

• if ` labels an assignment v := e then sub(`) = sub(e);

• if ` labels a routine call t.c (a1, . . . , an) then sub(`) =
⋃
{sub(ai) | 1 ≤ i ≤

n}.

A pair 〈`, p〉 determines the set erepl〈`, p〉 of instructions with replaced ex-
pressions as follows: for each expression e among the largest sub-expressions
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of boolean or integer type in sub(p), if e ∈ sub(`) then include `[e 7→ e′] in
erepl〈`, p〉, for every e′ ∈ ederiv(e). `[e 7→ e′] denotes the instruction obtained
by replacing every occurrence of e at location ` with e′; if ` labels a boolean
condition, `[e 7→ e′] denotes the whole instruction (conditional or loop) but e′

replaces e only in the boolean condition.
In the continued example, erepl〈13, idx > index〉 includes go i th (idx − 1),

go i th (idx + 1), go i th (0), go i th (1), and go i th (−1);
erepl〈13, idx + 1 >index〉, however, is empty because the two largest integer
sub-expressions in idx + 1 >index are idx + 1 and index, none of which is a sub-
expression of idx in go i th (idx). In the same routine, erepl〈9, found〉 includes
the conditional instructions if not(not found) then forth end, if True then
forth end, and if False then forth end.

3.7 Fix Candidate Generation

At this point, for any “suspicious” state component 〈`, p, v〉 we can generate
actions that change the value (3.6.2) or the usage (3.6.3) of p at `. Each such
action generates a candidate fix if injected at location `. The injection consists
of first selecting a fix schema (3.7.1), then instantiating the schema with p and
an action derived from p (3.7.2).

3.7.1 Fix Schemas

We use the same fix schemas used for model-based fixing [21] shown in Table 1.

(a)
snippet
old stmt

(b)
if fail then

snippet
end
old stmt

(c)
if not fail then

old stmt
end

(d)
if fail then

snippet
else

old stmt
end

Table 1: Fix schemas.

3.7.2 Schema Instantiation

For a state component 〈`, p, v〉 determined by the passing test cases Pr of routine
r and the failing test cases F ,c

r violating the contract clause c at location ,
instantiate each of the schemas in Table 1 as follows:

fail takes p = v, the component’s predicate and value.

snippet takes any value in emod〈`, p〉 ∪ erepl〈`, p〉 (defined in Sections 3.6.2–
3.6.3).

old stmt is the instruction at location `.

The instantiated schema replaces the instruction at position ` in routine r; the
modified routine is a candidate fix.

12



In the running example, the component 〈13, idx > index,True〉 leads to sev-
eral candidate fixes. Schema (b) with the component’s predicate idx > index as
fail , the expression modification idx := idx − 1 as snippet, and the original
instruction go i th (idx) as old stmt produces a correct fix. A different com-
bination, which also produces a correct fix, is schema (d) with fail using the
component’s predicate idx > index, the instruction with the expression replace-
ment go i th (idx − 1) as snippet, and the original instruction go i th (idx)
as old stmt.

3.8 Validation of Candidates

The generation of candidate fixes involves the application of several heuristics
and is essentially “best effort”: there is no a priori guarantee that the candidates
actually fix the program. Each candidate fix must pass a validation phase
which determines whether its deployment removes the erroneous behavior under
consideration. The validation phase runs each candidate fix through the full set
of passing and failing test cases. A fix is validated if it passes all the previously
failing test cases F ,c

r and it still passes the original passing test cases Pr. In
general, more than one candidate fix may pass the validation phase; AutoFix-E2

ranks all valid fixes according to the score of the state component that originated
the fix and submits the top 15 to the user, who is ultimately responsible to decide
whether to deploy any of them.

The correctness of a program is defined relative to its specification; in the
case of automated program fixing, the validated fixes are only as good as the
contracts. For example, routine move item lacks a postcondition, therefore the
simple candidate fix which unconditionally adds the assignment idx := 1 before
the call to go i th is validated despite being obviously inappropriate. In spite of
these limitations in principle, the experiments in Section 4 show that the avail-
able contracts are often good enough in practice, so that AutoFix-E2 suggests
proper fixes—correct not only according to the contracts available but also to
the intuitive expectations of developers—in the large majority of cases where it
can validate some fixes. Improving the quality of the contracts is a related effort
which can also greatly benefit from automation [20] and whose results boost the
effectiveness of automated program fixing.

4 Experimental evaluation

4.1 Experimental Setup

All the experiments ran on a Windows 7 machine with a 2.66 GHz Intel dual-
core CPU and 4 GB of memory. On average, AutoFix-E2 ran for 7.6 minutes
for each fault.

4.1.1 Selection of Faults

The experiments include faults from two sources: data structure classes from
commercial libraries, and an implementation of a library to manipulate text
documents developed as student project.

Data structure libraries. Table 2 lists the 15 classes from the Eiffel-
Base [7] (rev. 507) and Gobo [9] (rev. 79072) libraries used in the experiments;
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the table reports the length in lines of code (LOC), the total number of routines
(#R) and boolean queries (#B) of each class, and the number of faults (#F)
considered in the experiments. This selection of faults combines 13 faults used
in the evaluation of model-based fixing [21] with 51 new faults recently found
by AutoTest. We did not re-use the remaining 29 faults used in [21] because
they are not reproducible in the latest revision of the libraries.

Table 2: EiffelBase and Gobo classes.
Class LOC #R #B #F
ACTIVE LIST 2162 139 19 2
ARRAY 1464 101 11 9
ARRAYED CIRCULAR 1910 133 25 3
ARRAYED SET 2345 146 18 5
DS ARRAYED LIST 2762 166 9 5
DS HASH SET 3076 169 10 1
DS LINKED LIST 3434 160 8 5
HASH TABLE 2036 118 19 2
INTEGER 32 1115 99 5 1
LINKED LIST 2000 109 16 1
LINKED PRIORITY QUEUE 2374 125 17 1
LINKED SET 2352 122 16 5
REAL 64 839 72 4 1
SUBSET STRATEGY HASHABLE 543 33 0 4
TWO WAY SORTED SET 2868 141 18 19
Total 31280 1833 195 64

A library to manipulate text documents. The second part of the
evaluation targets a library to manipulate text documents and convert them
into HTML and LATEX. The library models entities such as formatted text,
lists, tables, and images; it has been implemented as a student project of the
Software Architecture course held in the spring semester 2010 at ETH Zurich.
Table 3 lists the 3 classes of the library used in the experiments, with the same
statistics as in Table 2. Compared to EiffelBase and Gobo, the text document
library’s classes have a more primitive interface, with very few boolean queries
(31 of the 32 boolean queries of class FILE NAME are inherited from the library
class STRING, hence they are mostly unrelated to the specific semantics of
FILE NAME) and less detailed contracts; therefore, they are representative of
less mature software with functionalities complex to specify formally. AutoTest
detected 9 faults (#F) in the classes: 5 precondition violations, 3 intermediate
assertion violations, and 1 call on void target (null pointer dereference).

Table 3: Document manipulation library classes.
Class LOC #R #B #F
FILE NAME 4297 258 32 2
HTML TRANSLATOR 1148 83 0 1
LATEX TRANSLATOR 1269 90 0 6
Total 6714 431 32 9
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4.1.2 Selection of Test Cases

All the experiments used test cases generated automatically by AutoTest; this
demonstrates complete automation of the whole debugging process and mini-
mizes the potential bias introduced by experimenters. AutoTest produced an
average of 25 passing and 11 failing test cases for each fault.

4.2 Experimental Results

4.2.1 Data Structure Libraries

Table 4 summarizes the results of the experiments on the data structure li-
braries: the number #F of faults in each category, the faults fixed with model-
based techniques using AutoFix-E, and those fixed with code-based techniques
using AutoFix-E2. The count of valid fixes only includes those which are proper,
that is which manual inspection confirmed to be adequate beyond the correct-
ness criterion provided by the contracts and tests available. The faults fixed
by AutoFix-E2 are a superset of those fixed by AutoFix-E; when both tools
succeeded, they produced equivalent fixes (with possibly negligible syntactic
differences). We refrained from injecting more bugs in EiffelBase and Gobo—as
it is customary in evaluating fault localization techniques—in order to have an
evaluation that only deals with real bugs found in production software.

Of the 50 faults not fixed, about 25 expose design errors, rather than mere
programming errors: for example, several of the faults point to inconsistencies
in the inheritance hierarchy of the library. Another 19 faults originate from
incorrect or incomplete contracts, such as weak class invariants that let objects
reach inconsistent states. The remaining 6 faults are of various type, including
some non-functional properties. To our knowledge, automatically fixing most of
these “deep” errors is beyond the capabilities of any existing automatic program
fixing technique.

Table 4: Faults fixed in EiffelBase and Gobo classes.
Type of fault # F Model Code
Precondition violation 22 10 (45%) 12 (54%)
Postcondition violation 30 0 (0%) 2 (6%)
Call on void target 7 0 (0%) 0 (0%)
Intermediate assertion violation 5 0 (0%) 0 (0%)
Total 64 10(15%) 14(22%)

The results show that code-based techniques constitute a significant improve-
ment over model-based techniques. Even if model-based techniques perform
already quite satisfactorily on data structure implementations, due to the high
quality of the queries available in their interfaces, code-based fixing succeeded
with 4 more errors (40% improvement). Most of the errors where code-based
fixing succeeds and model-based techniques fail are indicative of subtle bugs
with non-obvious fixes. Three are precondition violations: one is described in
Section 2; the other two—from class DS HASH SET and HASH TABLE—are
similar in that the fix requires to reference a local variable rather than public
queries. The other fault is a postcondition violation, which model-based tech-
niques cannot handle as it requires a fix in a location different than where the
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Listing 2: Routine visit table fixed by AutoFix-E2.

1 visit table (a table : TABLE)
2 local s : STRING ; i: INTEGER
3 do
4 packages.extend (”tabulary”)
5 create s.make empty

6 if a table .count >0 then −− Added by AutoFix-E2

7 from i := 1
8 until i > a table .column count loop
9 −− Append to ‘s’ the table’s content,

10 −− in LATEX form
11 end

12 end −− Added by AutoFix-E2

13 ...
14 s .prepend (”|”) ; s .append (”|”)
15 open environment (”tabulary”, s)
16 ...
17 end

violation occurs (i.e., at the end of the routine’s body).

4.2.2 Text Document Manipulation Library

The second set of experiments tried to determine if code-based techniques can
successfully tackle software beyond well-engineered data structure implementa-
tions. AutoFix-E2 built valid fixes for 5 of the 9 faults in the document library:
one in each of the classes FILE NAME and HTML TRANSLATOR, and 3 in
the class LATEX TRANSLATOR. In comparison, AutoFix-E only fixed one of
the faults, which AutoFix-E2 also fixed; manual inspection confirmed the ex-
pectation that model-based fixing fails whenever the fault conditions cannot be
characterized using only boolean queries—the case for nearly all the errors in
the text document library.

As an example from these experiments, Listing 2 shows the essential parts
of a routine visit table fixed by AutoFix-E2. visit table converts data in
table form, passed as argument a table , into LATEX. To this end, it first opens
a “tabulary” environment (line 4); then, the loop on lines 7–11 converts the
content of the various columns into the string s; finally, it adds delimiters to
the table (line 14), and stores the content of s in the “tabulary” environment
(line 15). The loop fails when the table is empty, because the query column count
of a table has a precondition count>0. The fix wraps a conditional statement
(lines 6–12) around the loop; correspondingly, an empty table becomes an empty
LATEX table as appropriate. This example gives an idea of the kinds of fixes
generated in the second set of experiments, and how code-based techniques can
be successful on them.

4.2.3 Overall Performance of Code-Based Fixing

In the experiments, code-based techniques fixed 19 errors, 73% more than
model-based techniques.
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4.3 Threats to Validity

Some threats may limit the generalizability of the results:

• The choice of using only automatically generated test cases may affect the
performance and quality of the results. On the other hand, if code-based
fixing works well also with manually written test cases it can be applicable
to more software.

• The evaluation uses real software and real errors made by programmers,
but it could target even more classes of diverse application domains. A
larger-scale thorough evaluation belongs to future work.

• Our notion of correctness is relative to the available contracts. Corre-
spondingly, the quality of the contracts may affect the quality of fixes
produced, but we do not know to what extent this holds for the classes
used in the experiments.

5 Related Work

This section summarizes the most relevant related work in two areas: fault
localization and automated program fixing.

5.1 Fault Localization

Fault localization is the process of locating erroneous statements in a program.
Several suggested solutions to this problem use heuristics based on code coverage
(e.g., [13, 19]) or program states (e.g., [11, 24]).

Code coverage. Code coverage metrics have been used to rank instructions
based on their likelihood to trigger failures. [13], for example, introduces the
notion of failure rate: based on a large number of test cases, an instruction
has a high failure rate if it is executed more often in failing test cases than in
passing test cases. A block of code is then “suspicious” of being faulty if it
includes many instructions with high failure rate; [13] suggests to visualize the
failure rates with colors and brightness, and implements the scheme in the tool
Tarantula. [19] proposes a fault localization technique named nearest neighbor.
The nearest neighbor of a given faulty test case is the passing test case in
a test suite which is most similar to the failing test case. Removing all the
instructions mentioned in the nearest neighbor from the faulty test produces a
smaller set of instructions; these are the candidates to be responsible for the
fault under consideration. Several other authors have extended code coverage
techniques for fault localization. For example, [25] addresses the propagation
of infected program states; [15] relies on a model-based approach; and [23]
performs an extensive comparison of variants of fault localization techniques
and outlines general principles behind them. [4] discusses the limitations of
using only state invariants for fault localization, a limitation present in model-
based fixing techniques but removed with the code-based approach.

Program states. The application of code coverage techniques produces a
set of instructions likely to be responsible for failure; programmers still have to
examine each instruction to understand where the problem is. Fault localiza-
tion techniques based on program states aim at alleviating this task. [11], for
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example, requires programmers to insert check points in the program to mark
“points of interest”. Then, a dynamic analysis similar to [13]—but applied to
program states rather than locations—identifies a set of suspicious states. Such
a state-based analysis is finer-grained than those based only on code coverage;
furthermore, the usage of check points introduces more flexibility to skip unin-
teresting parts of the computation, for example repeated iterations of a loop.
delta debugging [24] addresses similar issues: isolating the variables, and their
values, relevant to a failure by analyzing the state difference between passing
and failing test cases. Most fault localization techniques target each fault indi-
vidually, hence they perform poorly when multiple bugs interact and must be
considered together. To address such scenarios, [14] introduces a technique that
separates the effects of multiple faults and identifies predictors associated with
each fault.

Fault localization in code-based fixing. The code-based program fix-
ing techniques of the present paper also exploit fault localization techniques.
To generate fixes completely automatically, however, fault localization must be
sufficiently precise to suggest only a limited number of “suspicious” instructions.
In our case, the usage of contracts help to restrict the search to the boundaries of
the routine where a contract violation occurs. Then, the combination of static
and dynamic analysis techniques that rank state components within routines
produces fault localization sufficiently accurate for fixing faults automatically.

5.2 Automated Program Fixing

This section reviews the most significant contributions to automated fixing of
source code. The related work section in our previous work [21] also describes
different approaches working at runtime on the compiled binary.

[12] presents BugFix, a tool that helps developers fix bugs by suggesting
patches. Their approach uses machine-learning techniques, which can work
without annotations such as contracts. BugFix learns existing fixes in the form
of association rules, and it tries to apply the rules learned to new bugs. Users
can provide feedback—in the form of new examples of correct fixes or valida-
tions of suggestions provided by the tool—which ameliorates the quality of the
suggestions provided over time.

Other authors apply genetic algorithms to generate fixes automatically. [1]
uses a co-evolutionary scheme where an initially faulty program and some test
cases compete to evolve the program into one that satisfies its formal speci-
fication. [22] describes a technique, based on genetic algorithm, that takes a
program, a set of successful test cases, and one failing test case. After rounds
of evolution, the program changes into one that passes all test cases (including
the failing test case). While [22]’s results are significant, as they can patch real
programs of non-trivial size, the role played by evolutionary techniques is not
entirely clear: as pointed out also in [2], the experiments of [22] span only a
limited number of generations (about 10), which suggests that the genetic al-
gorithm performs only a very limited search in the space of possible solutions.
Another limitation of [22] resides in its sensitivity to the quality (and size) of the
provided test suite, an effect which is much less relevant in our approach where
random testing techniques can generate a suitable test suite automatically.

[10] presents a technique that compares two program states at a faulty lo-
cation in the program. Unlike all other approaches to program fixing to date,

18



[10] computes program states statically, using weakest precondition reasoning.
The comparison of the two program states illustrates the source of the error; a
change to the program that reconciles the two states fixes the bug. Weakest pre-
condition reasoning allows for a quite detailed characterization of the states, but
it also requires to start with a strong postcondition (a full functional specifica-
tion), whereas methods based mostly on dynamic analysis—such as code-based
fixing—provide approximate yet useful characterization even with very weak
formal specifications.

5.3 Our Previous Work

As part of the AutoFix joint project between ETH Zurich and Saarland Univer-
sity, we developed the tools Pachika and AutoFix-E. Pachika [5] automatically
builds finite-state behavioral models from a set of passing and failing test cases
of a Java program. Pachika also generates fix candidates by modifying the model
of failing runs in a way which makes it compatible with the model of passing
runs. The modifications can insert new transitions or delete existing transitions
to change the behavior of the failing model; the changes in the model are then
propagated back to the Java implementation.

AutoFix-E [21] implements the first automatic program fixing tool for Eiffel,
based on model-based techniques. AutoFix-E uses argumentless boolean queries
to abstract the object space, hence it works best for classes with a detailed in-
terface. Code-based techniques improve on model-based ones by locating faults
based on both dynamic and static analysis techniques.

6 Future Work

Future work includes the following aspects:

• All our experiments with automated fixing involve automatically gener-
ated test cases, but state-of-the-art random testing is not applicable to
every type of program; for instance, applications involving input through
files or an interactive graphical interface are arduous to test automatically.
We plan to experiment our techniques for automated fixing on new types
of software with manually written test cases.

• A non-negligible portion of the bugs found in EiffelBase, likely represen-
tative of much of software written in Eiffel, are due to incorrect contracts
rather than implementations. We will try to flip over our approach to pro-
gram fixing and fix contracts when the implementation is correct. This
effort is tightly related to our other work on contract inference [20].

• Applying program fixing techniques to languages without contracts re-
quires to consider other types of faults to fix, including exceptions and
I/O errors. We will extend AutoFix-E2 to handle these types of faults.

• While the majority of bugs can be fixed with a small patch, there exist
conspicuous errors that require significant changes to the code. We plan to
apply more ambitious code synthesis techniques to the problem of building
a fix once the “cause” of a fault is known.
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• AutoFix-E2 is part of the Eve verification environment [8]. As part of
the ongoing improvements of Eve, we will ameliorate the user interface of
AutoFix-E2 and its integration with Eve’s other verification aides.

7 Conclusion

This paper introduced code-based automated program fixing, a novel approach
to generate automatically corrections of errors in software equipped with con-
tracts. Preliminary experiments with the supporting tool AutoFix-E2 demon-
strate that code-based techniques extend the applicability of automated program
fixing to more faults in classes beyond well-designed data structure implemen-
tations.
Availability. The AutoFix-E2 source code, and all data and results cited in
this article, are available at:

http://se.inf.ethz.ch/research/autofix/
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