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and gauges that perform continuous testing and gather 
data for maintenance.

While software does not physically degrade during op-
eration, its development requires extensive testing (and 
other forms of verification); yet software design usually 
pays little attention to testing needs. It is as if we had not 
learned the lessons of other industries: Software construc-
tion and software verification are essentially separate 
activities, each conducted without much consideration of 
the other’s needs. A consequence is that testing, in spite of 
improved tools, remains a labor-intensive activity.

AUTOTEST
AutoTest is a collection of tools that automate the 

testing process by relying on programs that contain the 
instruments of their own verification, in the form of 
contracts—specifications of classes and their individual 
routines (methods). The three main components of Auto-
Test address complementary aspects: 

Test Generation•	 : automatically creates and runs test 
cases, without any human input such as manually 
prepared test cases and test oracles. 
Test Extraction•	 : automatically produces test cases 
from execution failures. The observation behind Test 

M
odern engineering products—from planes, 
cars, and industrial plants down to refrig-
erators and coffee machines—routinely 
test themselves while they operate. The 
goal is to detect possible deficiencies and 

to avoid incidents by warning the users of needed main-
tenance actions. This self-testing capability is an integral 
part of the design of such artifacts. 

The lesson that their builders have learned is to design 
for testability. This concept was not always understood: 
With cars, for example, we used to have no clue (save for 
the oil gauge) that major mechanical trouble might be im-
minent; if we wanted to know more, we would take our 
car to a mechanic who would check every component 
from scratch, not knowing what actually happened during 
operation. Today’s cars, in contrast, are filled with sensors 

The AutoTest framework automates the 
software testing process by relying on 
programs that contain the instruments of 
their own verification, in the form of con-
tract-oriented specifications of classes and 
their individual routines.
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AutoTest helps provoke failures 
and manage information about the 
corresponding faults.
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in later versions, indicating that the software has partly 
“regressed.” A project should retain any test that failed 
at any stage of its history, then passed after the fault was 
corrected; test campaigns should run all such tests to spot 
cases of regression.

Automated tools should provide resilience. A large test 
suite is likely to contain some test cases that, in a particular 
execution, crash the program. Resilience means that the 
process may continue anyway with the remaining cases.

One of the most tedious aspects of testing is test case 
generation. With modern computers we can run very 
large numbers of test cases. Usually, developers or testers 
have to devise them; this approach, limited by people’s 
time, does not scale up. The AutoTest tools complement 
such manual test cases with automatic tests exercising 
the software with values generated by algorithms. Object-
oriented programming increases the difficulty because it 
requires not only elementary values such as integers but 
also objects.

Test oracles represent another challenge. A test run is 
only useful if we know whether it passed or failed; an oracle 
is a mechanism to determine this. Here too a manual pro-
cess does not scale up. Approaches such as JUnit include 
oracles in test cases through such instructions as “assert 
(success_criterion),” where “assert” is a general mechanism 
that reports failure if the success_criterion does not hold. 
This automates the application of oracles, but not their 
preparation: The tester must still devise an assert for every 
test. AutoTest’s approach removes this requirement by rely-
ing on contracts already present in the code.

Another candidate for automation is minimization. It is 
desirable to retain and replay any test that ever failed. The 
failure may, however, have happened after a long execu-
tion exercising many instructions that are irrelevant to the 
failures. Retaining them would make regression testing too 
slow. Minimization means replacing a test case, whenever 
possible, with a simplified one producing a failure that 
evidences the same fault.

Commonly used frameworks mostly address the first 
three goals: test execution, regression testing, and re-
silience. They do not address the most labor-intensive 
tasks: preparing test cases, possibly in a minimized form, 
and interpreting test results. Without progress on these 
issues, testing confronts a paradox: While the growth of 
computing power should enable us to perform ever more 

Extraction is that some of the most important test 
cases are not devised as such: They occur when a 
developer tries the program informally during de-
velopment, but then it’s execution fails. The failure is 
interesting, in particular for future regression testing, 
but usually it is not remembered: The developer fixes 
the problem and moves on. From such failures, Test 
Extraction automatically creates test cases, which can 
be replayed in subsequent test campaigns.
Integration of Manual Tests•	 : supports the development 
and management of manually produced tests. Unlike 
Test Generation and Test Extraction, this functionality 
relies on state-of-the-art techniques and includes no 
major innovation, but it ensures a smooth interaction 
of the automatic mechanisms with existing practices 
by ensuring all tests are managed in the same way 
regardless of their origin—generated, extracted, or 
manual.

These mechanisms, initially developed for research 
purposes at ETH Zurich, have now been integrated into 
the EiffelStudio environment and are available both as an 
open source download (http://eiffelstudio.origo.ethz.ch) 
and commercially. Research continues on the underlying 
theory and methods (http://se.ethz.ch/research/autotest). 

Our working definition of testing focuses on one essen-
tial aspect: To test a program is to try to make it fail.1 Other 
definitions include more lofty goals, such as “provid[ing] 
information about the quality of the product or service” 
(http://en.wikipedia.org/wiki/Software_testing). But in 
practice, the crucial task is to uncover failures of execu-
tion, which in IEEE-standard terminology2 reflect faults 
in the program, themselves the result of mistakes in the 
developer’s thinking. AutoTest helps provoke failures and 
manage information about the corresponding faults.

‘AUTOmATED TESTing’ 
“Automated testing” is a widely used phrase. To under-

stand what it entails, it is necessary to distinguish several 
increasingly ambitious levels of automation.

What is best automated today is test execution. In a proj-
ect that has generated thousands of test cases, running 
them manually would be tedious, especially as testing 
campaigns occur repeatedly—for example, it is customary 
to run extensive tests before every release. Traditionally, 
testers wrote scripts to run the tests. The novelty is the 
spread of frameworks such as JUnit (www.junit.org) that 
avoid project-specific scripts. This widely influential de-
velopment has markedly improved testing practice, but it 
only automates a specific task.

A related goal, also addressed by some of today’s tools, 
is regression testing. It is a common phenomenon of soft-
ware development that some corrected faults reappear 



COVER FE ATURE

computer 48

Contract” sidebar describes the use of contracts in more 
detail.

In the traditional Eiffel process, developers write pro-
grams annotated with contracts, then manually run these 
programs, relying on the contracts to check the execu-
tions’ correctness. AutoTest’s Test Generation component 
adds many more such executions by generating test cases 
automatically.

Execution will, on entry to a routine r, evaluate r’s pre-
condition and the class invariant; on exit, it evaluates r’s 
postcondition and the invariant. For correct software, such 
evaluations always yield true, with no other consequence; 
but an evaluation to false, known as a contract violation, 
signals a flaw:3

A precondition violation signals a possible fault in the •	

client (the routine that called r).
A postcondition or invariant violation signals a pos-•	

sible fault in the supplier (r itself).

If the call is a result of automatic test generation, the 
interpretation of the first case is more subtle:

If the tool directly issued the call to •	 r, this is a problem 
with the tool’s generation strategy, not the software 
under test; the test case should be ignored. Testing strat-
egies should minimize such spurious occurrences.
If another routine performed the call, the caller did •	

not observe r’s specification, signaling a fault in that 
routine.

The benefit of using contracts as oracles is that the soft-
ware is tested as it is. Other tools using contracts often 
require software that has been specially prepared for 
testing. With Eiffel or Spec# (http://research.microsoft.
com/SpecSharp)—and JML, the Java Modeling Language, if 
used to write code rather than to instrument existing Java 
code—contracts are there from the start. 

In practice, no special skill is required of programmers 
using Design by Contract. Although the approach can be 
extended to full formal specifications, most contracts 
in common usage state simple properties: A variable is 
positive, two references point to the same object, a field 
is not void. In addition, contracts are not just a theoretical 
possibility; programmers use them. Analysis of a large 
body of Eiffel code, proprietary and open source, indicates 
widespread contract use, accounting for 1.5 to 7 percent 
of lines.4

In such a context, writing simple contracts becomes as 
natural as any other programming task.

Not all failures result from explicit contract violations; 
another typical case is arithmetic overflow. AutoTest re-
cords all failures in the same way. Unlike many static 
analysis tools, AutoTest produces no false alarms: Every 

exhaustive tests, these manual activities dominate the 
process; they limit its practical effectiveness and prevent 
scaling it up.

The AutoTest framework includes traditional automa-
tion but particularly innovates on test case generation, 
oracles, and minimization. It has already uncovered many 
faults in released software and routinely finds new ones 
when given classes to analyze.

COnTrACTS AS OrAClES
AutoTest exercises software as it is, without instrumen-

tation. In particular, its approach does not require writing 
oracles. 

What makes this possible is that the software under 
test consists of classes with contracts: Routines may 
include preconditions and postconditions; classes may 
include invariants. In contract-supporting languages 
such as Eiffel, contracts are Boolean expressions of the 
underlying programming language, and hence can be 
evaluated during execution; this provides the basis of 
the contract-based approach to testing. The “Design by 

D esign by Contract1 is a mechanism pioneered by Eiffel that 
characterizes every software element by answering three 

questions: 

What does it expect? •	
What does it guarantee? •	
What does it maintain?•	

Answers take the form of preconditions, postconditions, and 
invariants. For example, starting a car has the precondition that 
the ignition is turned on and the postcondition that the engine is 
running. The invariant, applying to all operations of the class 
CAR, includes such properties as “dashboard controls are illumi-
nated if and only if ignition is on.”

With Design by Contract, such properties are not expressed in 
separate requirements or design documents but become part of 
the software; languages such as Eiffel and Spec#, and language 
extensions such as JML, include syntax—keywords such as 
require, ensure, and invariant—to state contracts. 

Applications cover many software tasks: analysis, to make 
sure requirements are precise yet abstract; design and imple-
mentation, to obtain software with fewer faults since it is built 
to a precise specification; automatic documentation, through 
tools extracting the contracts; support for managers, enabling 
them to understand program essentials free from implementa-
tion details; better control over language mechanisms such as 
inheritance and exceptions; and, with runtime contract moni-
toring, improvements in testing and debugging, which AutoTest 
takes further.

reference
 1. B. Meyer, “Applying ‘Design by Contract,’” Computer, Oct. 

1992, pp. 40-51.

DeSign By contract
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New objects •	 diversify the pool.
Creating a new object every time would restrict tests •	

to youthful object structures. For example, a newly 
created list object represents a list with zero elements 
or one element; realistic testing needs lists with many 
elements, obtained by creating a list then repeatedly 
calling insertion procedures.

When the decision is to create an object, this object 
should satisfy the class invariant. AutoTest relies on the 

violation it reports reflects a fault in either the implementa-
tion or the contract.

TEST gEnErATiOn
There has been considerable research on test generation 

from specifications. The “Using Specifications for Test Case 
Generation: A Short Survey” sidebar highlights some key 
aspects of this research. 

The Test Generation part of AutoTest is a push-button 
testing framework. The only information it requires is a set 
of classes to be tested. The tool takes care of the rest by au-
tomating three of the key tasks cited earlier:

To generate tests, it creates instances of the classes •	

and calls their routines with various arguments. 
To determine success or failure, AutoTest uses the •	

classes’ contracts as oracles. 
The tool produces minimized versions of failed tests •	

for regression testing.

An important property for users is that the environment 
will treat all tests in the same way, regardless of their origin 
(generated, manual, or extracted); this applies in particular 
to regression testing.

Figure 1 shows the principal steps for testing a set of 
classes:

Generate instances of the classes under test.•	

Select some of these objects for testing. •	

Select arguments for the features to be called.•	

Run the tests.•	

Assess the outcome: pass or fail, applying the con-•	

tracts as oracles.
Log results and failure-reproducing test cases.•	

Construct a minimized form of every logged test and •	

add it to the regression suite.

The test-generation strategies involve numerous choices 
controlled by parameters to AutoTest. Extensive experimen-
tation has produced default values for all these parameters.

Obtaining objects and other values
The unit of testing is a routine call of the form target.

routine (arguments). It requires at least one object, the 
target; the arguments may include other objects and primi-
tive values. 

To obtain test inputs, AutoTest maintains an object 
pool. Whenever it needs an object of a type T, it decides 
whether to create a new instance of T or draw from the 
pool. Creation is necessary if the pool does not contain 
an instance of T; but even if it does, AutoTest will, with a 
preset frequency (one of the tool’s parameters), create an 
object and add it to the pool. An effective strategy needs 
both possibilities:

t he goal of automating testing based on specification is an active 
research topic. 

Robert V. Binder (•	 Testing Object-Oriented Systems: Models, 
Patterns and Tools, Addison-Wesley, 1999) emphasizes con-
tracts as oracles. 
Dennis Peters and David Parnas (“Using Test Oracles Gener-•	
ated from Program Documentation,” IEEE Trans. Software 
Eng., Mar. 1998, pp. 161-173) use oracles derived from speci-
fications, separate from the program.  
The jmlunit script pioneered some of the ideas described •	
in this article, in particular, postconditions as oracles and 
the observation that a test that directly violates a precon-
dition does not signal a fault. In jmlunit as described by 
Yoonsik Cheon and Gary T. Leavens (“A Simple and Practi-
cal Approach to Unit Testing: The JML and JUnit Way,” 
ECOOP 2002—Object-Oriented Programming, LNCS 2374, 
Springer, 2002, pp. 1789-1901), test cases remain the user’s 
responsibility.
Korat (C. Boyapati, S. Khurshid, and D. Marinov, “Korat: •	
Automated Testing Based on Java Predicates,” Proc. 2002 
ACM SIGSOFT Int’l Symp. Software Testing and Analysis, ACM 
Press, 2002, pp. 123-133) is an automated testing framework 
that uses some of the same concepts as AutoTest; to gener-
ate objects it does not use creation procedures but fills 
object fields and discards the result if it violates the invari-
ant. Using creation procedures seems preferable. 
DSD-Crasher (C. Csallner and Y. Smaragdakis, “DSD-Crasher: •	
A Hybrid Analysis Tool for Bug Finding,” ACM Trans. Soft-
ware Eng. and Methodology, Apr. 2008, vol. 17, no. 2, art. 8) 
infers contracts from executions, then statically explores 
paths under the resulting restricted input domain, and gen-
erates test cases to verify the results.
Debra Richardson, Owen O’Malley, and C. Tittle (“Approaches •	
to Specification-Based Testing,” ACM SIGSOFT Software Eng. 
Notes, Dec. 1989, pp. 86-96) emphasize extending existing 
implementation-based testing to use specifications.
Alexandre K. Petrenko (“Specification Based Testing: •	
Towards Practice,” Perspectives of System Informatics, LNCS 
2244, Springer, 2001, pp. 287-300) surveys existing 
approaches. 
A. Jefferson Offutt, Yiwei Xiong, and Shaoying Liu (“Criteria •	
for Generating Specification-Based Tests,” Proc. 5th Int’l 
Congress Eng. of Complex Computer Systems, IEEE CS Press, 
1999, pp. 119-129) discuss generating test inputs from state-
based specifications.

uSing SpecificationS for teSt  
caSe generation: a Short Survey 
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Adaptive random testing and object distance
To improve on purely random strategies, adaptive 

random testing (ART)5 attempts to space out values evenly 
across their domains. This applies in particular to integers. 
In object-oriented programming, many interesting inputs 
are objects, with no immediate notion of “evenly spaced 
out.” We introduced object distance6 to extend ART by en-
suring that a set of objects is representative. The distance 
between objects o1 and o2 is a normalized weighted sum 
of three properties:

distance between the types, based on their distance •	

in the inheritance graph and the number of distinct 
features;
distance between the immediate values of the objects •	

(primitive values or references); and
for matching fields, object distance computed recur-•	

sively with an attenuation factor.

Our measurements show that ART with object distance 
uncovers new faults but generally does not find faults 
faster than the basic random strategy, and misses some 
faults found by this strategy. It thus complements rather 
than replaces the basic random strategy.

minimization
AutoTest preserves all failed tests, automatic or manual, 

for replay in regression testing.
Preserving the entire original scenario is generally im-

practical, since the execution may involve many irrelevant 
instructions. AutoTest’s minimization algorithm attempts 
to derive a shorter scenario that still triggers the failure. 
The idea is to retain only the instructions that involve the 
target and arguments of the failing routine. Having found 
such a candidate, AutoTest executes it to check that it re-
produces the failure; if it does not, AutoTest retains the 
original. While theoretically not complete, the algorithm 
is sound since its resulting scenario always triggers the 
same failure. In practice it is near-complete, often reducing 
scenario size by several orders of magnitude.7

Boolean queries
A promising strategy, comparable to techniques used for 

model checking, follows from the observation that classes 
often possess a set of argument-less Boolean-valued queries 
on the state: “is_overdraft” for a bank account; “is_empty” 
for any container structure; “after,” stating that the cursor is 
past the last element, for a list with cursors. We investigated 
a Boolean query conjecture:8 The argument-less Boolean 
queries of a well-written class yield a partition of the cor-
responding object state space that helps testing strategies.

The rationale for this conjecture is that such queries 
characterize the most important divisions of an object’s 
possible states: An account is overdraft or not, it is open 

normal mechanism for creating instances, satisfying the 
invariant: creation procedures (constructors). The steps 
are as follows:

Choose a creation procedure (constructor). •	

Choose arguments, if needed, with the strategies de-•	

fined below for routine calls. Some of these arguments 
may be objects, requiring recursive application of the 
strategy (selection from pool or creation).
Create the object and call the procedure.•	

Any object this algorithm creates at any stage is added 
to the pool, contributing to diversification. Any failure 
of these operations is logged, even if the operation is not 
explicitly part of the requested test. The purpose of test-
ing is to cause failures; it does not matter how: The end 
justifies the means.

Besides objects, a call may need primitive values of 
types such as INTEGER or CHARACTER. The current strat-
egy uses

distinguished values preset for each type such as, for •	

integers: 0, minimum and maximum integers, ±1, 
and so on; and
other values from the range, selected at random.•	

This approach may appear simplistic. We are indeed 
investigating more advanced policies. We have learned, 
however, that in devising testing strategies sophisticated 
ideas do not necessarily outperform simpler approaches.1 
The main measure of effectiveness for a testing strate-
gy—at least if we do not rank faults by risk level, but treat 
all faults as equally important—is the fault count function 
fc (t), the number of faults found in t seconds of testing. A 
“smart” strategy’s ability to find more faults or find them 
faster can be outweighed by a longer setup time. It is es-
sential to submit any idea, however attractive, to objective 
evaluation. 

Generate
and select

inputs

Run test 
cases with

selected inputs

Minimize
failing

test cases Regression
test suite

Log
results

Log files

Interpret
results (pass/fail)

TC3
TC2
TC1

TC1: 101010110
TC2: 0011101000
TC3: 1110100101

Figure 1. Test Generation’s automated testing process.
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Figure 2a shows the state after a failure in a bank ac-
count class, with an incorrect implementation of “deposit” 
causing a postcondition violation when a user attempts to 
withdraw $100 from an account with a balance of $500. 
The lower part of the figure shows the source code of the 
routine “withdraw,” containing an erroneous postcondition 
tagged “withdrawn”: The plus should have been a minus. 
Execution causes the postcondition violation shown at the 
top part of the figure. The message is the normal EiffelStu-
dio reaction to a postcondition violation, with the debugger 
showing the call stack. 

Test Extraction’s innovation is to turn this failure au-
tomatically into a test case. Figure 2b shows an example 
of an extracted test, including the different components 
necessary to reproduce the original exception: “test_with-
draw” calls the routine “withdraw,” and “context” describes 
the target object’s state.

Subsequent test executions will display the status of the 
extracted test, which initially fails, as shown in Figure 2c. 
Once the postcondition has been corrected, the test will 
pass and the status will turn green.

Minimization allows AutoTest to record and replay many 
such violations. The key idea is that it is not necessary to 
replay the program execution as it actually happened; as 
any failure is the result of calling a routine on a certain 
object in a certain object structure, it suffices to record 
that structure and, when replaying, to call the routine on 
the target object.

As software evolves, a test may become inapplicable. 
To address this situation Test Extraction will check, before 
replaying the test, that both the object’s invariant and the 
routine’s precondition hold. If either does not, it would 
make no sense to run the test; Test Extraction marks it 
invalid.10

ExAmplE SESSiOn wiTh AUTOTEST 
Originally an independent tool, AutoTest is now simply 

the testing part of the EiffelStudio environment. To start 
the following example session, just launch EiffelStudio. 
While the functionalities are the same across all supported 
platforms, the user interface, shown for Windows in the 
screenshots in Figure 3, will have a different look and feel 
on, for example, Linux, Solaris, or Mac OS X.

To perform automatic tests on the application class 
BANK_ACCOUNT and the library classes STRING and 

or closed, it bears interest or not. Combining them 
yields a representative partition of the space set, 
containing dramatically fewer elements. With a 
typical class, considering all possible instance 
states is intractable, but combining n Boolean 
queries yields 2n possibilities, or abstract query 
states; in our experience, n is seldom more than 
10—for example, only 25 percent of the 217 classes 
in the EiffelBase 6.4 library have more than 10 
argument-less Boolean queries. The algorithm may limit 
this number further by considering only combinations 
that satisfy the invariant.

The conjecture suggests looking for a test suite that 
maximizes Boolean query coverage (BQC): the percentage 
of abstract states exercised. While this strategy is not yet a 
standard component of AutoTest, our experiments suggest 
that it may be useful. It involves trimming abstract query 
states through a constraint solver, then using a theorem 
prover for clauses involving noninteger queries. In experi-
ments so far, the strategy yields a BQC close to 100 percent 
with minimal invariant adaptation; routine coverage in-
creases from about 85 percent for basic AutoTest to 99 or 
100 percent, and the number of faults found increases 
significantly.

Test generation results
Table 1 shows results of applying Test Generation (no 

BQC) to the EiffelBase9 and Gobo (www.gobosoft.com) 
data structure and algorithm libraries, widely used in 
operational applications, and to an experimental library 
providing complete specifications.

These results are typical of many more experiments. 
As the tested classes have different semantics and sizes 
in terms of various code metrics, the experiments appear 
representative of many problem domains. Since AutoTest 
is a unit testing tool and was used for this purpose in the 
experiments, we do not claim that these results are rep-
resentative of the performance of contract-based random 
testing for entire applications or software systems.

TEST ExTrACTiOn
During development, programmers routinely execute 

the program to check that it proceeds as expected. They 
generally do not think of these executions as formal test 
cases. If results are wrong or the execution otherwise fails, 
they fix the problem and return to development; off goes 
a potentially interesting test, which could have benefited 
future regression testing. The programmers could create 
a test case, but most of the time they will not find the task 
worth the time—after all, they did correct the problem, or 
at least they addressed the symptoms. 

Test Extraction will create the test for developers and 
give it the same status as any other manual or generated 
test. Figure 2 provides an example.

table 1. test generation results.

Tested library Faults
percent failing 

routines percent failed tests

EiffelBase 127 6.4 (127/1,984) 3.8 (1,513/39,615)

Gobo libraries 26 4.4 (26/585) 3.7 (2,928/79,886)

Specification library 72 14.1 (72/510) 49.6 (12,860/25,946)



COVER FE ATURE

computer 52

Figure 2. Test Extraction example: (a) catching a contract violation, (b) turning this failure automatically into a test case, and (c) 
using the extracted test to reproduce the original exception.

(a)

(c)

(b)
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eters, such as the classes to be tested and how long random 
testing should be performed. AutoTest will test the classes 
listed and any others on which they depend directly or 
indirectly. 

LINKED_LIST, launch the “New Eiffel test” wizard, as 
shown in Figure 3a. In the first pane, choose the radio 
button labeled “Synthesized test using AutoTest.” The last 
wizard window will ask you to specify AutoTest param-

Figure 3. Example session using AutoTest: (a) “New Eiffel test” wizard, (b) sample AutoTest statistics, and (c) minimized witness.

(b)

(c)

(b)

(a)
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The development benefited from discussions with numerous 
people, in particular Gary Leavens, Peter Müller, Manuel Oriol, 
Alexander Pretschner, and Andreas Zeller. Bernd Schoeller 
suggested the use of Boolean queries to reduce state spaces, 
which Lisa (Ling) Liu studied experimentally. Test Extraction, 
as developed by Andreas Leitner, was originally called CDD 
(Contract-Driven Development). We presented an earlier ver-
sion of this article, on Test Generation only, at SOFSEM 2007: 
B. Meyer et al., “Automatic Testing of Object-Oriented Soft-
ware, Proc. 33rd Conf. Current Trends in Theory and Practice of 
Software Development, LNCS 4362, Springer, 2007, pp. 114-129. 
Design by Contract is a trademark of Eiffel Software.
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By default, AutoTest will report result statistics, contract 
violations, and other failures in HTML, as in Figure 3b. 
All three classes under test are marked in red, indicating 
that at least one feature test triggered a failure in each. 
Expanding the tree node shows the offending features: 
For BANK_ACCOUNT, “default_create,” “balance,” and “de-
posit” were successful (green), but “withdraw” had failures. 
Clicking it displays the failure details. This includes a wit-
ness for each failure: a test scenario, generated by the tool, 
which triggers the failure. Scrolling shows the first wit-
ness’s offending instructions.

The witness reproduces the postcondition failure (re-
sulting from a fault planted for illustration) encountered 
using Test Extraction. This means that AutoTest found the 
same erroneous postcondition as the manual process. 

Figure 3c shows a real fault, in the routine “adapt” of 
the library class STRING. The seldom-used “adapt” serves 
to initialize a string from a manifest value “Some Charac-
ters,” as an instance not of STRING but of some descendant 
MY_STRING. The witness reveals that “adapt” is missing 
a precondition requiring a nonvoid argument. Without it, 
“adapt” accepts a void but passes it on to “share,” which 
demands a nonvoid argument. The fault, since corrected, 
was first uncovered by AutoTest.

W
e have used the AutoTest framework 
to perform large-scale experiments,11-13 
totaling tens of thousands of hours of 
CPU time, that investigate such ques-
tions as: How does the number of faults 

found by random testing evolve over time? Are more faults 
uncovered as contract violations or through other excep-
tions? How predictable is random testing? Are there more 
faults in the contracts or in the implementation? How do 
uncovered faults compare to those found by manual test-
ing and by software users?

The AutoTest tools provide significant functional help. 
In addition, they yield a better understanding of the chal-
lenges and benefits of tests. Testing will never be an exact 
science; it is an imperfect approach that becomes useful 
when more ambitious techniques such as static analysis 
and proofs let us down. If we cannot guarantee the absence 
of faults, we can at least try to find as many as possible, 
and make the findings part of a project’s knowledge base 
forever, replaying the scenarios before every new release to 
ensure old faults don’t creep back in. While more modest 
than full verification, this goal is critical for practical soft-
ware development.  
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