
computer 46

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

and gauges that perform continuous testing and gather
data for maintenance.

While software does not physically degrade during op-
eration, its development requires extensive testing (and
other forms of verification); yet software design usually
pays little attention to testing needs. It is as if we had not
learned the lessons of other industries: Software construc-
tion and software verification are essentially separate
activities, each conducted without much consideration of
the other’s needs. A consequence is that testing, in spite of
improved tools, remains a labor-intensive activity.

AUTOTEST
AutoTest is a collection of tools that automate the

testing process by relying on programs that contain the
instruments of their own verification, in the form of
contracts—specifications of classes and their individual
routines (methods). The three main components of Auto-
Test address complementary aspects:

Test Generation•	 : automatically creates and runs test
cases, without any human input such as manually
prepared test cases and test oracles.
Test Extraction•	 : automatically produces test cases
from execution failures. The observation behind Test

M
odern engineering products—from planes,
cars, and industrial plants down to refrig-
erators and coffee machines—routinely
test themselves while they operate. The
goal is to detect possible deficiencies and

to avoid incidents by warning the users of needed main-
tenance actions. This self-testing capability is an integral
part of the design of such artifacts.

The lesson that their builders have learned is to design
for testability. This concept was not always understood:
With cars, for example, we used to have no clue (save for
the oil gauge) that major mechanical trouble might be im-
minent; if we wanted to know more, we would take our
car to a mechanic who would check every component
from scratch, not knowing what actually happened during
operation. Today’s cars, in contrast, are filled with sensors

The AutoTest framework automates the
software testing process by relying on
programs that contain the instruments of
their own verification, in the form of con-
tract-oriented specifications of classes and
their individual routines.

Bertrand Meyer, ETH Zurich and Eiffel Software

Arno Fiva, Ilinca Ciupa, Andreas Leitner, and Yi Wei, ETH Zurich

Emmanuel Stapf, Eiffel Software

PrograMs
ThaT TesT
TheMselves

AutoTest helps provoke failures
and manage information about the
corresponding faults.

47SeptemBer 2009

in later versions, indicating that the software has partly
“regressed.” A project should retain any test that failed
at any stage of its history, then passed after the fault was
corrected; test campaigns should run all such tests to spot
cases of regression.

Automated tools should provide resilience. A large test
suite is likely to contain some test cases that, in a particular
execution, crash the program. Resilience means that the
process may continue anyway with the remaining cases.

One of the most tedious aspects of testing is test case
generation. With modern computers we can run very
large numbers of test cases. Usually, developers or testers
have to devise them; this approach, limited by people’s
time, does not scale up. The AutoTest tools complement
such manual test cases with automatic tests exercising
the software with values generated by algorithms. Object-
oriented programming increases the difficulty because it
requires not only elementary values such as integers but
also objects.

Test oracles represent another challenge. A test run is
only useful if we know whether it passed or failed; an oracle
is a mechanism to determine this. Here too a manual pro-
cess does not scale up. Approaches such as JUnit include
oracles in test cases through such instructions as “assert
(success_criterion),” where “assert” is a general mechanism
that reports failure if the success_criterion does not hold.
This automates the application of oracles, but not their
preparation: The tester must still devise an assert for every
test. AutoTest’s approach removes this requirement by rely-
ing on contracts already present in the code.

Another candidate for automation is minimization. It is
desirable to retain and replay any test that ever failed. The
failure may, however, have happened after a long execu-
tion exercising many instructions that are irrelevant to the
failures. Retaining them would make regression testing too
slow. Minimization means replacing a test case, whenever
possible, with a simplified one producing a failure that
evidences the same fault.

Commonly used frameworks mostly address the first
three goals: test execution, regression testing, and re-
silience. They do not address the most labor-intensive
tasks: preparing test cases, possibly in a minimized form,
and interpreting test results. Without progress on these
issues, testing confronts a paradox: While the growth of
computing power should enable us to perform ever more

Extraction is that some of the most important test
cases are not devised as such: They occur when a
developer tries the program informally during de-
velopment, but then it’s execution fails. The failure is
interesting, in particular for future regression testing,
but usually it is not remembered: The developer fixes
the problem and moves on. From such failures, Test
Extraction automatically creates test cases, which can
be replayed in subsequent test campaigns.
Integration of Manual Tests•	 : supports the development
and management of manually produced tests. Unlike
Test Generation and Test Extraction, this functionality
relies on state-of-the-art techniques and includes no
major innovation, but it ensures a smooth interaction
of the automatic mechanisms with existing practices
by ensuring all tests are managed in the same way
regardless of their origin—generated, extracted, or
manual.

These mechanisms, initially developed for research
purposes at ETH Zurich, have now been integrated into
the EiffelStudio environment and are available both as an
open source download (http://eiffelstudio.origo.ethz.ch)
and commercially. Research continues on the underlying
theory and methods (http://se.ethz.ch/research/autotest).

Our working definition of testing focuses on one essen-
tial aspect: To test a program is to try to make it fail.1 Other
definitions include more lofty goals, such as “provid[ing]
information about the quality of the product or service”
(http://en.wikipedia.org/wiki/Software_testing). But in
practice, the crucial task is to uncover failures of execu-
tion, which in IEEE-standard terminology2 reflect faults
in the program, themselves the result of mistakes in the
developer’s thinking. AutoTest helps provoke failures and
manage information about the corresponding faults.

‘AUTOmATED TESTing’
“Automated testing” is a widely used phrase. To under-

stand what it entails, it is necessary to distinguish several
increasingly ambitious levels of automation.

What is best automated today is test execution. In a proj-
ect that has generated thousands of test cases, running
them manually would be tedious, especially as testing
campaigns occur repeatedly—for example, it is customary
to run extensive tests before every release. Traditionally,
testers wrote scripts to run the tests. The novelty is the
spread of frameworks such as JUnit (www.junit.org) that
avoid project-specific scripts. This widely influential de-
velopment has markedly improved testing practice, but it
only automates a specific task.

A related goal, also addressed by some of today’s tools,
is regression testing. It is a common phenomenon of soft-
ware development that some corrected faults reappear

COVER FE ATURE

computer 48

Contract” sidebar describes the use of contracts in more
detail.

In the traditional Eiffel process, developers write pro-
grams annotated with contracts, then manually run these
programs, relying on the contracts to check the execu-
tions’ correctness. AutoTest’s Test Generation component
adds many more such executions by generating test cases
automatically.

Execution will, on entry to a routine r, evaluate r’s pre-
condition and the class invariant; on exit, it evaluates r’s
postcondition and the invariant. For correct software, such
evaluations always yield true, with no other consequence;
but an evaluation to false, known as a contract violation,
signals a flaw:3

A precondition violation signals a possible fault in the •	

client (the routine that called r).
A postcondition or invariant violation signals a pos-•	

sible fault in the supplier (r itself).

If the call is a result of automatic test generation, the
interpretation of the first case is more subtle:

If the tool directly issued the call to •	 r, this is a problem
with the tool’s generation strategy, not the software
under test; the test case should be ignored. Testing strat-
egies should minimize such spurious occurrences.
If another routine performed the call, the caller did •	

not observe r’s specification, signaling a fault in that
routine.

The benefit of using contracts as oracles is that the soft-
ware is tested as it is. Other tools using contracts often
require software that has been specially prepared for
testing. With Eiffel or Spec# (http://research.microsoft.
com/SpecSharp)—and JML, the Java Modeling Language, if
used to write code rather than to instrument existing Java
code—contracts are there from the start.

In practice, no special skill is required of programmers
using Design by Contract. Although the approach can be
extended to full formal specifications, most contracts
in common usage state simple properties: A variable is
positive, two references point to the same object, a field
is not void. In addition, contracts are not just a theoretical
possibility; programmers use them. Analysis of a large
body of Eiffel code, proprietary and open source, indicates
widespread contract use, accounting for 1.5 to 7 percent
of lines.4

In such a context, writing simple contracts becomes as
natural as any other programming task.

Not all failures result from explicit contract violations;
another typical case is arithmetic overflow. AutoTest re-
cords all failures in the same way. Unlike many static
analysis tools, AutoTest produces no false alarms: Every

exhaustive tests, these manual activities dominate the
process; they limit its practical effectiveness and prevent
scaling it up.

The AutoTest framework includes traditional automa-
tion but particularly innovates on test case generation,
oracles, and minimization. It has already uncovered many
faults in released software and routinely finds new ones
when given classes to analyze.

COnTrACTS AS OrAClES
AutoTest exercises software as it is, without instrumen-

tation. In particular, its approach does not require writing
oracles.

What makes this possible is that the software under
test consists of classes with contracts: Routines may
include preconditions and postconditions; classes may
include invariants. In contract-supporting languages
such as Eiffel, contracts are Boolean expressions of the
underlying programming language, and hence can be
evaluated during execution; this provides the basis of
the contract-based approach to testing. The “Design by

D esign by Contract1 is a mechanism pioneered by Eiffel that
characterizes every software element by answering three

questions:

What does it expect? •	
What does it guarantee? •	
What does it maintain?•	

Answers take the form of preconditions, postconditions, and
invariants. For example, starting a car has the precondition that
the ignition is turned on and the postcondition that the engine is
running. The invariant, applying to all operations of the class
CAR, includes such properties as “dashboard controls are illumi-
nated if and only if ignition is on.”

With Design by Contract, such properties are not expressed in
separate requirements or design documents but become part of
the software; languages such as Eiffel and Spec#, and language
extensions such as JML, include syntax—keywords such as
require, ensure, and invariant—to state contracts.

Applications cover many software tasks: analysis, to make
sure requirements are precise yet abstract; design and imple-
mentation, to obtain software with fewer faults since it is built
to a precise specification; automatic documentation, through
tools extracting the contracts; support for managers, enabling
them to understand program essentials free from implementa-
tion details; better control over language mechanisms such as
inheritance and exceptions; and, with runtime contract moni-
toring, improvements in testing and debugging, which AutoTest
takes further.

reference
 1. B. Meyer, “Applying ‘Design by Contract,’” Computer, Oct.

1992, pp. 40-51.

DeSign By contract

49SeptemBer 2009

New objects •	 diversify the pool.
Creating a new object every time would restrict tests •	

to youthful object structures. For example, a newly
created list object represents a list with zero elements
or one element; realistic testing needs lists with many
elements, obtained by creating a list then repeatedly
calling insertion procedures.

When the decision is to create an object, this object
should satisfy the class invariant. AutoTest relies on the

violation it reports reflects a fault in either the implementa-
tion or the contract.

TEST gEnErATiOn
There has been considerable research on test generation

from specifications. The “Using Specifications for Test Case
Generation: A Short Survey” sidebar highlights some key
aspects of this research.

The Test Generation part of AutoTest is a push-button
testing framework. The only information it requires is a set
of classes to be tested. The tool takes care of the rest by au-
tomating three of the key tasks cited earlier:

To generate tests, it creates instances of the classes •	

and calls their routines with various arguments.
To determine success or failure, AutoTest uses the •	

classes’ contracts as oracles.
The tool produces minimized versions of failed tests •	

for regression testing.

An important property for users is that the environment
will treat all tests in the same way, regardless of their origin
(generated, manual, or extracted); this applies in particular
to regression testing.

Figure 1 shows the principal steps for testing a set of
classes:

Generate instances of the classes under test.•	

Select some of these objects for testing. •	

Select arguments for the features to be called.•	

Run the tests.•	

Assess the outcome: pass or fail, applying the con-•	

tracts as oracles.
Log results and failure-reproducing test cases.•	

Construct a minimized form of every logged test and •	

add it to the regression suite.

The test-generation strategies involve numerous choices
controlled by parameters to AutoTest. Extensive experimen-
tation has produced default values for all these parameters.

Obtaining objects and other values
The unit of testing is a routine call of the form target.

routine (arguments). It requires at least one object, the
target; the arguments may include other objects and primi-
tive values.

To obtain test inputs, AutoTest maintains an object
pool. Whenever it needs an object of a type T, it decides
whether to create a new instance of T or draw from the
pool. Creation is necessary if the pool does not contain
an instance of T; but even if it does, AutoTest will, with a
preset frequency (one of the tool’s parameters), create an
object and add it to the pool. An effective strategy needs
both possibilities:

t he goal of automating testing based on specification is an active
research topic.

Robert V. Binder (•	 Testing Object-Oriented Systems: Models,
Patterns and Tools, Addison-Wesley, 1999) emphasizes con-
tracts as oracles.
Dennis Peters and David Parnas (“Using Test Oracles Gener-•	
ated from Program Documentation,” IEEE Trans. Software
Eng., Mar. 1998, pp. 161-173) use oracles derived from speci-
fications, separate from the program.
The jmlunit script pioneered some of the ideas described •	
in this article, in particular, postconditions as oracles and
the observation that a test that directly violates a precon-
dition does not signal a fault. In jmlunit as described by
Yoonsik Cheon and Gary T. Leavens (“A Simple and Practi-
cal Approach to Unit Testing: The JML and JUnit Way,”
ECOOP 2002—Object-Oriented Programming, LNCS 2374,
Springer, 2002, pp. 1789-1901), test cases remain the user’s
responsibility.
Korat (C. Boyapati, S. Khurshid, and D. Marinov, “Korat: •	
Automated Testing Based on Java Predicates,” Proc. 2002
ACM SIGSOFT Int’l Symp. Software Testing and Analysis, ACM
Press, 2002, pp. 123-133) is an automated testing framework
that uses some of the same concepts as AutoTest; to gener-
ate objects it does not use creation procedures but fills
object fields and discards the result if it violates the invari-
ant. Using creation procedures seems preferable.
DSD-Crasher (C. Csallner and Y. Smaragdakis, “DSD-Crasher: •	
A Hybrid Analysis Tool for Bug Finding,” ACM Trans. Soft-
ware Eng. and Methodology, Apr. 2008, vol. 17, no. 2, art. 8)
infers contracts from executions, then statically explores
paths under the resulting restricted input domain, and gen-
erates test cases to verify the results.
Debra Richardson, Owen O’Malley, and C. Tittle (“Approaches •	
to Specification-Based Testing,” ACM SIGSOFT Software Eng.
Notes, Dec. 1989, pp. 86-96) emphasize extending existing
implementation-based testing to use specifications.
Alexandre K. Petrenko (“Specification Based Testing: •	
Towards Practice,” Perspectives of System Informatics, LNCS
2244, Springer, 2001, pp. 287-300) surveys existing
approaches.
A. Jefferson Offutt, Yiwei Xiong, and Shaoying Liu (“Criteria •	
for Generating Specification-Based Tests,” Proc. 5th Int’l
Congress Eng. of Complex Computer Systems, IEEE CS Press,
1999, pp. 119-129) discuss generating test inputs from state-
based specifications.

uSing SpecificationS for teSt
caSe generation: a Short Survey

COVER FE ATURE

computer 50

Adaptive random testing and object distance
To improve on purely random strategies, adaptive

random testing (ART)5 attempts to space out values evenly
across their domains. This applies in particular to integers.
In object-oriented programming, many interesting inputs
are objects, with no immediate notion of “evenly spaced
out.” We introduced object distance6 to extend ART by en-
suring that a set of objects is representative. The distance
between objects o1 and o2 is a normalized weighted sum
of three properties:

distance between the types, based on their distance •	

in the inheritance graph and the number of distinct
features;
distance between the immediate values of the objects •	

(primitive values or references); and
for matching fields, object distance computed recur-•	

sively with an attenuation factor.

Our measurements show that ART with object distance
uncovers new faults but generally does not find faults
faster than the basic random strategy, and misses some
faults found by this strategy. It thus complements rather
than replaces the basic random strategy.

minimization
AutoTest preserves all failed tests, automatic or manual,

for replay in regression testing.
Preserving the entire original scenario is generally im-

practical, since the execution may involve many irrelevant
instructions. AutoTest’s minimization algorithm attempts
to derive a shorter scenario that still triggers the failure.
The idea is to retain only the instructions that involve the
target and arguments of the failing routine. Having found
such a candidate, AutoTest executes it to check that it re-
produces the failure; if it does not, AutoTest retains the
original. While theoretically not complete, the algorithm
is sound since its resulting scenario always triggers the
same failure. In practice it is near-complete, often reducing
scenario size by several orders of magnitude.7

Boolean queries
A promising strategy, comparable to techniques used for

model checking, follows from the observation that classes
often possess a set of argument-less Boolean-valued queries
on the state: “is_overdraft” for a bank account; “is_empty”
for any container structure; “after,” stating that the cursor is
past the last element, for a list with cursors. We investigated
a Boolean query conjecture:8 The argument-less Boolean
queries of a well-written class yield a partition of the cor-
responding object state space that helps testing strategies.

The rationale for this conjecture is that such queries
characterize the most important divisions of an object’s
possible states: An account is overdraft or not, it is open

normal mechanism for creating instances, satisfying the
invariant: creation procedures (constructors). The steps
are as follows:

Choose a creation procedure (constructor). •	

Choose arguments, if needed, with the strategies de-•	

fined below for routine calls. Some of these arguments
may be objects, requiring recursive application of the
strategy (selection from pool or creation).
Create the object and call the procedure.•	

Any object this algorithm creates at any stage is added
to the pool, contributing to diversification. Any failure
of these operations is logged, even if the operation is not
explicitly part of the requested test. The purpose of test-
ing is to cause failures; it does not matter how: The end
justifies the means.

Besides objects, a call may need primitive values of
types such as INTEGER or CHARACTER. The current strat-
egy uses

distinguished values preset for each type such as, for •	

integers: 0, minimum and maximum integers, ±1,
and so on; and
other values from the range, selected at random.•	

This approach may appear simplistic. We are indeed
investigating more advanced policies. We have learned,
however, that in devising testing strategies sophisticated
ideas do not necessarily outperform simpler approaches.1
The main measure of effectiveness for a testing strate-
gy—at least if we do not rank faults by risk level, but treat
all faults as equally important—is the fault count function
fc (t), the number of faults found in t seconds of testing. A
“smart” strategy’s ability to find more faults or find them
faster can be outweighed by a longer setup time. It is es-
sential to submit any idea, however attractive, to objective
evaluation.

Generate
and select

inputs

Run test
cases with

selected inputs

Minimize
failing

test cases Regression
test suite

Log
results

Log files

Interpret
results (pass/fail)

TC3
TC2
TC1

TC1: 101010110
TC2: 0011101000
TC3: 1110100101

Figure 1. Test Generation’s automated testing process.

51SeptemBer 2009

Figure 2a shows the state after a failure in a bank ac-
count class, with an incorrect implementation of “deposit”
causing a postcondition violation when a user attempts to
withdraw $100 from an account with a balance of $500.
The lower part of the figure shows the source code of the
routine “withdraw,” containing an erroneous postcondition
tagged “withdrawn”: The plus should have been a minus.
Execution causes the postcondition violation shown at the
top part of the figure. The message is the normal EiffelStu-
dio reaction to a postcondition violation, with the debugger
showing the call stack.

Test Extraction’s innovation is to turn this failure au-
tomatically into a test case. Figure 2b shows an example
of an extracted test, including the different components
necessary to reproduce the original exception: “test_with-
draw” calls the routine “withdraw,” and “context” describes
the target object’s state.

Subsequent test executions will display the status of the
extracted test, which initially fails, as shown in Figure 2c.
Once the postcondition has been corrected, the test will
pass and the status will turn green.

Minimization allows AutoTest to record and replay many
such violations. The key idea is that it is not necessary to
replay the program execution as it actually happened; as
any failure is the result of calling a routine on a certain
object in a certain object structure, it suffices to record
that structure and, when replaying, to call the routine on
the target object.

As software evolves, a test may become inapplicable.
To address this situation Test Extraction will check, before
replaying the test, that both the object’s invariant and the
routine’s precondition hold. If either does not, it would
make no sense to run the test; Test Extraction marks it
invalid.10

ExAmplE SESSiOn wiTh AUTOTEST
Originally an independent tool, AutoTest is now simply

the testing part of the EiffelStudio environment. To start
the following example session, just launch EiffelStudio.
While the functionalities are the same across all supported
platforms, the user interface, shown for Windows in the
screenshots in Figure 3, will have a different look and feel
on, for example, Linux, Solaris, or Mac OS X.

To perform automatic tests on the application class
BANK_ACCOUNT and the library classes STRING and

or closed, it bears interest or not. Combining them
yields a representative partition of the space set,
containing dramatically fewer elements. With a
typical class, considering all possible instance
states is intractable, but combining n Boolean
queries yields 2n possibilities, or abstract query
states; in our experience, n is seldom more than
10—for example, only 25 percent of the 217 classes
in the EiffelBase 6.4 library have more than 10
argument-less Boolean queries. The algorithm may limit
this number further by considering only combinations
that satisfy the invariant.

The conjecture suggests looking for a test suite that
maximizes Boolean query coverage (BQC): the percentage
of abstract states exercised. While this strategy is not yet a
standard component of AutoTest, our experiments suggest
that it may be useful. It involves trimming abstract query
states through a constraint solver, then using a theorem
prover for clauses involving noninteger queries. In experi-
ments so far, the strategy yields a BQC close to 100 percent
with minimal invariant adaptation; routine coverage in-
creases from about 85 percent for basic AutoTest to 99 or
100 percent, and the number of faults found increases
significantly.

Test generation results
Table 1 shows results of applying Test Generation (no

BQC) to the EiffelBase9 and Gobo (www.gobosoft.com)
data structure and algorithm libraries, widely used in
operational applications, and to an experimental library
providing complete specifications.

These results are typical of many more experiments.
As the tested classes have different semantics and sizes
in terms of various code metrics, the experiments appear
representative of many problem domains. Since AutoTest
is a unit testing tool and was used for this purpose in the
experiments, we do not claim that these results are rep-
resentative of the performance of contract-based random
testing for entire applications or software systems.

TEST ExTrACTiOn
During development, programmers routinely execute

the program to check that it proceeds as expected. They
generally do not think of these executions as formal test
cases. If results are wrong or the execution otherwise fails,
they fix the problem and return to development; off goes
a potentially interesting test, which could have benefited
future regression testing. The programmers could create
a test case, but most of the time they will not find the task
worth the time—after all, they did correct the problem, or
at least they addressed the symptoms.

Test Extraction will create the test for developers and
give it the same status as any other manual or generated
test. Figure 2 provides an example.

table 1. test generation results.

Tested library Faults
percent failing

routines percent failed tests

EiffelBase 127 6.4 (127/1,984) 3.8 (1,513/39,615)

Gobo libraries 26 4.4 (26/585) 3.7 (2,928/79,886)

Specification library 72 14.1 (72/510) 49.6 (12,860/25,946)

COVER FE ATURE

computer 52

Figure 2. Test Extraction example: (a) catching a contract violation, (b) turning this failure automatically into a test case, and (c)
using the extracted test to reproduce the original exception.

(a)

(c)

(b)

53SeptemBer 2009

eters, such as the classes to be tested and how long random
testing should be performed. AutoTest will test the classes
listed and any others on which they depend directly or
indirectly.

LINKED_LIST, launch the “New Eiffel test” wizard, as
shown in Figure 3a. In the first pane, choose the radio
button labeled “Synthesized test using AutoTest.” The last
wizard window will ask you to specify AutoTest param-

Figure 3. Example session using AutoTest: (a) “New Eiffel test” wizard, (b) sample AutoTest statistics, and (c) minimized witness.

(b)

(c)

(b)

(a)

COVER FE ATURE

computer 54

The development benefited from discussions with numerous
people, in particular Gary Leavens, Peter Müller, Manuel Oriol,
Alexander Pretschner, and Andreas Zeller. Bernd Schoeller
suggested the use of Boolean queries to reduce state spaces,
which Lisa (Ling) Liu studied experimentally. Test Extraction,
as developed by Andreas Leitner, was originally called CDD
(Contract-Driven Development). We presented an earlier ver-
sion of this article, on Test Generation only, at SOFSEM 2007:
B. Meyer et al., “Automatic Testing of Object-Oriented Soft-
ware, Proc. 33rd Conf. Current Trends in Theory and Practice of
Software Development, LNCS 4362, Springer, 2007, pp. 114-129.
Design by Contract is a trademark of Eiffel Software.

references
 1. B. Meyer, “Seven Principles of Software Testing,” Computer,

Aug. 2008, pp. 99-101.
 2. IEEE Std. 610.12-1990, IEEE Standard Glossary of Software

Eng. Terminology, IEEE, 1990.
 3. B. Meyer, Object-Oriented Software Construction, 2nd ed.,

Prentice Hall, 1997.
 4. P. Chalin, “Are Practitioners Writing Contracts?,” Rigorous

Eng. Fault-Tolerant Systems, LNCS 4157, Springer, 2006, pp.
100-113.

 5. T.Y. Chen, H. Leung, and I. Mak, “Adaptive Random Test-
ing,” Proc. 9th Asian Computing Science Conf. (Asian 04),
LNCS 3321, Springer, 2004, pp. 320-329.

 6. I. Ciupa et al., “ARTOO: Adaptive Random Testing for Ob-
ject-Oriented Software,” Proc. 30th Ann. Conf. Software
Eng. (ICSE 08), ACM Press, 2008, pp. 71-80.

 7. I. Ciupa et al., “On the Predictability of Random Tests for
Object-Oriented Software,” Proc. 2008 Int’l Conf. Software
Testing, Verification, and Validation (ICST 08), IEEE CS
Press, 2008, pp. 72-81.

 8. I. Ciupa et al., “Experimental Assessment of Random Test-
ing for Object-Oriented Software,” Proc. 2007 Int’l Symp.
Software Testing and Analysis (ISSTA 07), ACM Press, 2007,
pp. 84-94.

 9. B. Meyer, Reusable Software: The Base Object-Oriented Com-
ponent Libraries, Prentice Hall, 1994.

 10. A. Leitner, “Contract Driven Development = Test Driven
Development - Writing Test Cases,” Proc. 6th Joint Meeting
of the European Software Eng. Conf. and the ACM SIGSOFT
Symp. the Foundations of Software (ESEC-FSE 07), ACM
Press, 2007, pp. 425-434.

 11. L. Liu, B. Meyer, and B. Schoeller, “Using Contracts and
Boolean Queries to Improve the Quality of Automatic Test
Generation,” Tests and Proofs, LNCS 4454, Springer, 2007,
pp. 114-130.

 12. A. Leitner et al., “Efficient Unit Test Case Minimization,”
Proc. 22nd IEEE/ACM Int’l Conf. Automated Software Eng.
(ASE 07), ACM Press, 2007, pp. 417-420.

 13. I. Ciupa et al., “Finding Faults: Manual Testing vs. Random+
Testing vs. User Reports,” Proc. 19th Int’l Symp. Software
Reliability Eng. (ISSRE 08), IEEE Press, 2008, pp. 157-166.

Bertrand Meyer is Professor of Software Engineering at
ETH Zurich (Swiss Federal Institute of Technology), Zurich,
Switzerland, and cofounder and Chief Architect of Eiffel
Software, based in Santa Barbara, Calif. His latest book is
Touch of Class: An Introduction to Programming Well

By default, AutoTest will report result statistics, contract
violations, and other failures in HTML, as in Figure 3b.
All three classes under test are marked in red, indicating
that at least one feature test triggered a failure in each.
Expanding the tree node shows the offending features:
For BANK_ACCOUNT, “default_create,” “balance,” and “de-
posit” were successful (green), but “withdraw” had failures.
Clicking it displays the failure details. This includes a wit-
ness for each failure: a test scenario, generated by the tool,
which triggers the failure. Scrolling shows the first wit-
ness’s offending instructions.

The witness reproduces the postcondition failure (re-
sulting from a fault planted for illustration) encountered
using Test Extraction. This means that AutoTest found the
same erroneous postcondition as the manual process.

Figure 3c shows a real fault, in the routine “adapt” of
the library class STRING. The seldom-used “adapt” serves
to initialize a string from a manifest value “Some Charac-
ters,” as an instance not of STRING but of some descendant
MY_STRING. The witness reveals that “adapt” is missing
a precondition requiring a nonvoid argument. Without it,
“adapt” accepts a void but passes it on to “share,” which
demands a nonvoid argument. The fault, since corrected,
was first uncovered by AutoTest.

W
e have used the AutoTest framework
to perform large-scale experiments,11-13
totaling tens of thousands of hours of
CPU time, that investigate such ques-
tions as: How does the number of faults

found by random testing evolve over time? Are more faults
uncovered as contract violations or through other excep-
tions? How predictable is random testing? Are there more
faults in the contracts or in the implementation? How do
uncovered faults compare to those found by manual test-
ing and by software users?

The AutoTest tools provide significant functional help.
In addition, they yield a better understanding of the chal-
lenges and benefits of tests. Testing will never be an exact
science; it is an imperfect approach that becomes useful
when more ambitious techniques such as static analysis
and proofs let us down. If we cannot guarantee the absence
of faults, we can at least try to find as many as possible,
and make the findings part of a project’s knowledge base
forever, replaying the scenarios before every new release to
ensure old faults don’t creep back in. While more modest
than full verification, this goal is critical for practical soft-
ware development.

Acknowledgments
The original idea for AutoTest came from discussions with

Xavier Rousselot. Karine Bezault started the first version. Per
Madsen provided useful suggestions on state partitioning.

55SeptemBer 2009

in automated software testing, and is now an engineer
at Google’s Zurich office. Contact him at andreasleitner@
google.com.

Yi Wei was an engineer at Eiffel Software and is now a
research assistant at the Chair of Software Engineering at
ETH Zurich, where he is working toward his PhD in auto-
mated software testing and self-repairing programs. Wei
received an MS in engineering from Wuhan University in
China. Contact him at yi.wei@inf.ethz.ch.

Emmanuel Stapf is a senior software developer at Eiffel
Software, where he leads the EiffelStudio development
team. His research interests include compiler development,
integrated development environments, and testing. Stapf
received an engineer’s degree from ENSEEIHT in Toulouse,
France. Contact him at manus@eiffel.com.

(Springer, 2009), based on the introductory programming
course at ETH. He is a Fellow of the ACM and president of
Informatics Europe. Contact him at bertrand.meyer@inf.
ethz.ch.

Arno Fiva was an engineer at Eiffel Software and is now
completing his MS at the Chair of Software Engineering at
ETH Zurich. His research focuses on automated software
testing. Contact him at fivaa@student.ethz.ch.

Ilinca Ciupa was a research assistant at the Chair of Soft-
ware Engineering at ETH Zurich, where she received a PhD
in automated software testing. She is now an automation
engineer at Phonak in Switzerland. Contact her at ilinca.
ciupa@inf.ethz.ch.

Andreas Leitner was a researcher at the Chair of Soft-
ware Engineering at ETH Zurich, where he received a PhD

